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(57) ABSTRACT

Implementations of the present disclosure include methods,
systems, and computer-readable storage mediums for 1denti-
tying matching elements between a source model and a target
model comprising recerving a source model and a target
model, the source model and the target model each being
stored 1n computer-readable memory; processing the source
model and the target model to generate a plurality of simailar-
ity values, each similarity value being associated with an
clement of the source model and an element of the target
model; generating a similarity value construct based on the
plurality of similarity values and elements of the source
model and the target model; and i1dentifying matching ele-
ments between the source model and the target model based
on the similarity value construct.
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MODEL MATCHING FOR TRACE LINK
GENERATION

BACKGROUND

Model-driven software development (MDSD) 1s the auto-
matic (or semi-automatic) generation of software systems
from models across multiple stages. This process can entail
the step-wise refinement of models, where the last develop-
ment stage results 1n the generation of executable source
code. This last development step falls into the category of
model-to-text transformations and 1s not limited to source
code generation. Generally the output 1s string-based and any
form of text can be possible. The model transformations
preceding the last development step are referred to as model-
to-model transformations.

A model transformation can be executed through a trans-
formation engine, which understands and processes a trans-
formation program, being an instance of a corresponding
transformation language. A transformation program defines
how an output (e.g. source code of a particular programming,
language) 1s constructed depending on model data used as
input. To understand which output elements were generated
by which rule 1n the transformation program on the basis of
which model input elements, traceability data 1s employed
between the generated output, the transformation program,
and the input models.

Traceability 1s the degree to which a relationship can be
established between two or more products of the development
process, 1n particular, products having a predecessor-succes-
sor or master-subordinate relationship to one another. For
example, the degree to which the requirements and design of
a given soltware component match. Traceability data in
MDSD can be understood as the runtime footprint of model
transformation execution. Trace links provide this kind of
information by associating iput and output elements with
respect to the execution of a certain transformation rules.

SUMMARY

Implementations of the present disclosure include com-
puter-implemented methods 1including the actions of 1denti-
tying matching elements between a source model and a target
model. The method comprises receiving a source model and
a target model, the source model and the target model each
being stored 1n computer-readable memory; processing the
source model and the target model to generate a plurality of
similarity values, each similarity value being associated with
an element of the source model and an element of the target
model; generating a similarity value construct based on the
plurality of similarity values and elements of the source
model and the target model; and i1dentifying matching ele-
ments between the source model and the target model based
on the similarity value construct.

The implementation can optionally include one or more of
the follow features. For instance, the target model 1s provided
based on a transformation of the source model. Also, the
method can 1include converting a data structure of the source
model to a data structure of a common data model. Addition-
ally, the method can include converting a data structure of the
target model to a data structure of a common data model.
Other examples include the plurality of similarity values are
based on similarity measures, the similarity measures includ-
ing attribute similarity measures, connection similarity mea-
sures and 1nstance-of similarity measures; the processing fur-
ther including determining the similarity value for each
combination of the elements of the source model and the
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2

clements of the target model; the processing further including
comparing an attribute of each element of the source model to
an attribute of each element of the target model; the process-
ing further including propagating the similarity values of
child combinations of elements of the source model and ele-
ments of the target model to respective parent combinations
of elements of the source model and elements of the target
model. Another example includes the processing further
including determining, for each combination of elements of
the source model and elements of the target model, corre-
sponding combinations of elements of a source meta-model
and elements of a target meta-model; and propagating a simi-
larity value of the corresponding combinations of elements of
the source meta-model and the elements of the target meta-
model to the respective combinations of elements of the
source model and elements of the target model. The method
turther including extracting one or more trace links based on
the matching elements, each trace link associating an input
clement of the source model to an output element of the target
model 1n view of a transformation rule.

The present disclosure also provides a computer-readable
storage medium coupled to one or more processors and hav-
ing instructions stored thereon which, when executed by the
one or more processors, cause the one or more processors to
perform operations 1 accordance with implementations of
the methods provided herein.

The present disclosure further provides a system for imple-
menting the methods provided herein. The system includes
one or more processors, and a computer-readable storage
medium coupled to the one or more processors having
instructions stored thereon which, when executed by the one
Or more processors, cause the one or more processors to
perform operations in accordance with implementations of
the methods provided herein.

It 1s appreciated that methods 1n accordance with the
present disclosure can include any combination of the aspects
and features described herein. That 1s, methods 1n accordance
with the present disclosure are not limited to the combina-
tions of aspects and features specifically described herein, but
also include any combination of the aspects and features
provided.

The details of one or more implementations of the present
disclosure are set forth 1n the accompanying drawings and the
description below. Other features and advantages of the
present disclosure will be apparent from the description and
drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram of a traceability model matching,
system.

FIG. 2 show instances of a source model and a target model
according to respective meta-models.

FIG. 3 shows an example of a model matching process
utilizing the attribute similarity values and the connection
similarity values.

FIG. 4 shows an example of a meta-model mapping.

FIG. § shows an example of a model matching process
utilizing the instance-of similarity measures and the meta-
model mapping.

FIG. 6 1s a flowchart of an example process that can be
executed 1n accordance with implementations of the present
disclosure.

FIG. 7 1s a schematic illustration of example computer
systems that can be used to execute implementations of the
present disclosure.

Like reference symbols 1n the various drawings indicate
like elements.
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DETAILED DESCRIPTION

Implementations of the present disclosure are generally
directed to generation of trace links in model driven software.
In some implementations, a source model can be transformed
to a target model. The source model and the target model can
cach be mapped to graphs that can include elements such as
graph nodes (e.g., entities) and data nodes (e.g., attributes).
The source model and the target model are 1input to a trace-
ability model matching system that creates a mapping
between the elements of the source model and the target
model. This mapping 1s construed to extract trace links
between the source model and the target model. The trace
links facilitate determining which target model elements
were formed from which source model elements.

To determine (e.g., extract) the trace links between the
source and target models, the traceability model matching
system recerves the source and target models. In some 1imple-
mentations, the source and target models are imported into a
common data model. In this manner, the source model and the
target model have a common basis for matching algorithms,
detailed further below. The traceability model matching sys-
tem processes the source and the target models to generate
similarity values between the elements of the source model
and the target model. In some examples, the matching algo-
rithms are applied to the source model and the target model to
identify model elements that refer to the same conceptual
entity. The traceability model matching system generates a
similarity value construct based on the similarity values. In
some 1mplementations, each matching algorithm provides
similarity values for all source and target model element
combinations and generates a respective similarity value
matrix. The matrices (e.g., one matrix for each matching

algorithm) are arranged 1n a similarity value construct (e.g., a
similarity value cube (SVC)). The SVC 1s configured to
derive a mapping (or matches) between the source elements
and the target elements. The traceability model matching
system 1dentifies matching elements between the source
model and the target model based on the similarity value
construct. In some examples, the mapping 1s analyzed and
trace links are extracted between the source model and the
target model.

FIG. 1 1s a block diagram of a traceability model matching,
system 100. The traceability model matching system 100
includes a model import module 102, a model matching mod-
ule 104, a configuration module 106, and a trace link extrac-
tion module 108.

The model import module 102 receives a source model 110
and a target model 112. In some examples, the source model
110 and the target model 112 are each transformed to a
common data model. In some implementations, the common
data model 1s an internal data model to the system 100. For
example, the source model 110 and the target model 112 can
be provided 1n different model languages. Consequently, the
source model 110 and the target model 112 are transformed
into a similar format (e.g., a format of the common data
model). In some implementations, the system 100 includes an
import module 102 for each source model 110 and data model
112, dependent upon the language of the source model 110
and the data model 112. Furthermore, as mentioned above,
the matching algorithms can be operable on the common data
model. Consequently, the source model 110 and the target
model 112 are transformed into the common data model such
that the matching algorithms can be applied to the source
model 110 and the target model 112. In some 1mplementa-
tions, the common data model includes a graph structure. In
some examples, the graph structure can facilitate uniform and
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4

adequate expression of the source model 110 and the target
model 112 and expression of the source model 110 and the
target model 112 1n relation to corresponding meta-models.
In some examples, the graph structure can include type attrib-
uted graphs. In some implementations, the system 100 can
employ individual matching algorithms for each source
model 110 and target model 112. In some 1implementations,
the source model 110 and/or the target model 112 can be
abstractions of text, e.g., software language text.

The model matching module 104 process the source model
110 and the target model 112 to generate similarity values
between elements of the source model 110 and the target
model 112. To that end, model matching 1s employed to find
a mapping between the source model 110 and the target
model 112 based on a given similarity measure. For each
source-target element combination, a similarity value 1s
determined according to a predefined similarity measure. The
resulting similarities are analyzed and matches are derived
between the source-target element combinations. In some
examples, diflerent similarity measures derive differing simi-
larity values between each source-target element combina-
tion. For example, each source element 1s compared with each
target element employing the matching algorithms, and for
cach comparison, similarity values can be determined. Based
on the similarity values between each source-target element
combination, it 1s determined whether the source-target ele-
ment combinations are matched. To that end, and 1n some
implementations, the matching algorithms can include an
attribute similanty measure (ATTRIBUTES), a connection
similarity measure (CONNECTIONS), and an instance-of
similarity measure (INSTANCEOF). In some examples, the
similarity values can be between O and 1, where, the higher
the similarity value, the higher the similarity between the
source-target element combinations.

In some implementations, the attribute similarity measure
includes determining similar elements from the source model
110 and the target model 112 by indication of shared
attributes (e.g., characteristics or values) of the source model
110 and the target model 112 elements. The model matching
module 104 compares the attributes of each source element to
the attributes of each target element, and dependent on the
attribute similarity measure algorithm employed, the model
matching module 104 determines a similarity value for each
source-target element combination based on the attributes of
the source-target element combination. For each source-tar-
get graph node combination containing data nodes, the
attribute similarity value 1s determined. In some examples,
for each source-target graph node combination, the data (e.g.,
attribute) nodes of the source graph node and the data (e.g.,
attribute) nodes of the target graph node are determined. The
attribute similarity measure 1s determined for each source-
target attribute data node combination for each source-target
graph node combination and 1s stored in an attribute similarity
matrix. In some examples, the attribute similarity matrix 1s
reduced to a single attribute similarity value dependent upon
the selection strategy applied to the attribute similarity
matrix. This single attribute similarity value 1s the attribute
similarity value between two given source-target graph
nodes. In some implementations, the data nodes can include
labels (1.¢., strings).

In some implementations, the connection similarity mea-
sure includes propagating the similarity value of child source-
target graph node combinations to parent source-target graph
node combinations. In other words, the source-target parent
graph node combinations inherent the similarity values of 1ts
chuld source-target graph node combinations. For example,
two parent graph nodes from the source model 110 and the
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target model 112 that have similar children graph nodes will
likely refer to the same entity. For each parent source-target
graph node combination, the child graph nodes of the source
parent graph node and the child graph nodes of the target
parent graph node are determined. The combination similar- 53
ity measure 1s determined for each source-target chuld graph
node combination of each source-target parent graph node
combination and placed in a connection similarity matrix.

6

The combination similarity matrix 1s reduced to a single
combination value dependent upon the selection strategy
applied to the connection similarity matrix. This single con-
nection similarity value 1s the connection similarity value
between two given parent source-target graph nodes.

Example algorithms that can be used in implementations of
the present disclosure include algorithms A-D, provided
below.

Require: compare : D! x D& — similiarityValues

Ensure: dataNode
Ensure: dataNode

1: function COMPUTESIMILIARITY (dataNode
returncompare (dataNode

2:

1 1
soLree = Dg E VBE
target < DS E VE‘

dataNode

SOuUrce,

mrger)

dataNode

SOLYCE, targe r)

3: end function
Ensure:s, € V..
Ensure: t; € V&
4: tunction MATCHATTRIBUTES (s;, t;)

5:
O:
7:
8.

Q-

Nodes,, ..t 1< {target,,' (e) | e € En,' and sourcey ! (€) =s;}
Nﬂdesmge;‘if T {target,. (€) | € € B, and source,,,” () = ;)
for all s; € Nodes,, .. ", k={1,.., [Vp'l} do

for all t;, € Nodes g, ', 1 = {1,..., | V5°I} do

ATT=y o
SIMMH(;:WH(;) = SUI;, 75—

cﬂmputeSimiliarity(sfk, ‘5-3)

10: end for
11: end for
12: return computeSetSimiliarity (SIMj . onzax 3)‘4 11
13: end function
14: function MATCHCONNECTEDNODES (s,, t.)
15: Nodes,, ..~ "< {target;' (e) | e € EG{ and source.” () = s,
16: Nodes, ... "< {target;” (¢) | e € E5” and sources” () =t}
17: forall s; € Nodes,,, e ,p=1{1,.., IV5'l-1}do
18: forallt, € Nodes,zrger " 5 q={1s, | V57l = 1} do
19: SIM i ooty sim, ; <
match Attributes (SI-P, Efq)
20: end for
21: end for
22: return computeSetSimiliarity (SIMj 2, nzax(a) CON

23: end function

End

Algorithm A: determining an attribute similarity value and

a connection similarity value

Require: AG' = (G, D') and AG? = (G*, D})

Require: Gl = WGI, Vﬂ,l, EGI, ENAI, EEAI, (s-::}urcejl, targeg-l)je 1G. NA, EA})
Require: G° = (Vz2, V2, B2, Ens’s Bz i (s-:nurcef, targe‘gf)jE {G. NA, EA})
Require: D' = (S5}, OP,Y) and D? = (S5 OP,2)
Require: similarityValues = {rr ER and 0 = r= 1} U {UNKNOWN}
Ensure: similarityMeasure € {ATTRIBUTES, CONNECTIONS}

1: procedure MATCHGRAPHS (AG', AG?, similarityMeasure)

2:
3:
4.

foralls,EVs!,i={1,.., 1V} do
forallt, EVgZ,j = {1,..., V7l} do
SIM p 11175213 simy <

matchNodes(s;, t,, similarityMeasure)

5:
O:
7:
R:

end for
end for

matches <= retrieveMatches SIM, 1y

end procedure

Ensure: s, E V'
Ensure: t; C V2
9: function MATCHNODES (s,, t;, similarityMeasure)

0
1
12:
13:
14
5

b:

end

if similiarityMeasure = ATTRIBUTES then
return matchAttributes (s,, t;)

else 1f similiarityMeasure = CONNECTIONS then
return matchConnectedNodes (s;, t;)

end if

return UNKNOWN

end function
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Algorithm B: mapping between the source model and the
target model

ATT_Type EVGI

Solivree

Ensure: s; € Vz'and Node

Ensure: tj € V ;2and Nc:-derm.gef i type gy 2

Ensure: typeSimilarityMeasure € similarityMeasure

Ensure: typeSimilarityMeasure € similarityMeasure \ {INSTANCEOF }
1: function MATCHNODETYPES (s;, t;)

I

2: NDdESSDH?"{T&'A TG_T}’PE& tl(sl)
3: Nodes,, 117 £2(t)
e Y ATT Type ATT_Type
4: return matchNodes (Node,,,,,...” " "=, Node,,,.., %%,
typeSimilarityMeasure)
5: end function
end

Algorithm C: determining the instance-of similarity value

Require: AG! = (G1, D) and AG® = (G?, D?)
Require: G' =

10

15

1 1 1 1 1 1 1
¢ V¥p»Eg,Engs Exy, (source;”, target) )€ 1o w4, £ay)

Require: G” = (FGE: FDE: Ec_?z: ENAE: E&f: (SGUTC%;&: tﬂfgﬁﬁz)je |G, NA, EA}-)

Require: ATG! = (TG!, Z') with Z! as final algebra of D!
Require: ATG? = (TG?, Z?) with Z~ as final algebra of D?
Require: TG' = (G, Z') and TG? = (G?, Z?)

Require: G! =

Require: TAG' = (AG' t') over ATG! with t! : AG'— ATG!
Require: TAG® = (AG”,t°} over ATG” with t% : AG°— ATG”

| G;: VE';: EG;: ENA;: EEA;: (SDUTG%;: Tﬂrgﬂ‘&;)j € o4, EA‘}-)
Require: G” = (Vo Vo', E6%, Eng®s Egg™, (SC'UTC%- , larget, )_;E [G, NA, EA}-)

Require: similarityValues = {rir € Randr=0 andr= 1} U {UNKNOWN}
Ensure: similarityMeasure € { ATTRIBUTES, CONNECTIONS, INSTANCEOF }

1: procedure MATCHTYPEDGRAPHS (TAG!, TAG?, similarityMeasure)

2: matchGraphs (AG!, AG?, similarityMeasure)
3: end procedure
Ensure (s, t;) € Vel x VAU (V! xV 2
4: tfunction MATCHNODES ((s;, t;), similarity Measure)
5: if similiarityMeasure = ATTRIBUTES then
return matchAttributes (s;, t,)
else 1f similiarityMeasure = CONNECTIONS then
return matchConnectedNodes (s;, t;)
else 1f similiarityMeasure = INSTANCEOTF then
return matchNodeTypes (s;, t;)
end if
return UNKNOWN
13: end function

XS

So S B

end

Algorithm D: mapping between the source model and the
target model

G mndicates a graph, AG indicates an attributed graph, D,
indicates a data sort (a set of data nodes of the same sort, that
1s, with labels of the same language, ¢.g. String), D indicates
an algebraic signature, where S, indicates the set S of sorts
tor D, and OP, indicates a family of n-ary operations on S,
7. indicates the final algebra of D, ATG indicates an attributed
typed graph, V indicates a set of graph nodes (V. graph
nodes, V ,, data nodes), E indicates a set of graph edges (E
usual graph edges and special edges E.,, and E.., used for
node resp. edge attribution), and TAG 1ndicates a typed attrib-
uted graph. Also, 1talicized passages indicate reference to the
meta-model. Example algorithm A provides for determining
an attribute similarity value and a connection similarity value.

The attribute similarity value and the connection similarity
value can be employed to match the source model 110 and the
target model 112 and provide a mapping between the source
and the target graph nodes. Example algorithm B provides for
mapping between the source model 110 and the target model
112. Algorithm B utilizes the match Attributes and the match-
ConnectedNodes functions provided in Algorithm A.

The 1nstance-of similarity measure includes matching
graph nodes of the source model 110 and the target model 112
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based on matching between source and target meta-models.
In other words, the nstance-of similarity measure includes
propagating the similarity of meta-model nodes to respective
model nodes. Specifically, for each source-target graph node
combination, the corresponding meta-model graph nodes are
determined. For each meta-model graph node combination,
an mstance-of similarity value 1s determined. The instance-of
similarity value of each meta-model source-target graph node
combination 1s propagated to the corresponding model
source-target graph node combination and placed 1 an
instance-of similarity matrix. The instance-of similarity
matrix 1s reduced to a single instance-of similarity value
dependent upon the selection strategy applied to the instance-
of similarity matrix. This single instance-of similarity value 1s
the mstance-of similarity value between two given source-
target graph nodes.

Example algorithm C provides for determining the
instance-of similarity value. Algorithm C employs the match-
Nodes function provided in Algorithm B.

The instance-of similarity value can be employed to match
the source model 110 and the target model 112 and provide a
mapping between the source and the target graph nodes.
Example algorithm D provides for mapping between the
source model 110 and the target model 112. Algorithm D
employs the matchGraphs function defined 1in Algorithm B
and the matchNodeTypes function defined 1n Algorithm C.

In some 1implementations, additional matching algorithms

can also be in employed by the model matching module 104
in conjunction with the above-mentioned matching algo-
rithms. For example, a graph edit distance (GED) algorithm
and/or a pattern matcher algorithm can be employed. The
GED algorithm determines a similarity of two given source-
target element combinations based on a connection of the
source-target element combination 1n a common subgraph.
The pattern matcher algorithm determines a similarity of two
given source-target element combinations based on a recur-
ring pattern in the source and the target model.

The configuration module 106 generates a similarity value
construct based on the similarity measures. Specifically, each
matching algorithm provides similarity values between ele-
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ments of the source model 110 and the target model 112, with
the similarity values placed 1n a respective similarity value
matrix. The similarity value matrices are arranged into a
similarity value construct, or a similarity value cube (SVC).
To provide a mapping (or matching) between source-target
clement combinations from the SVC, the SVC 1s configured
to form an aggregation matrix by either determining the aver-
age of the similarity values or by selecting all similarity
values exceeding a threshold. Further, the selection of how
the SVC 1s configured can affect the quality of matching
results.

The trace link extraction module 108 matches elements
between the source model 110 and the target model 112 based
on the similanty value construct. Specifically, the trace link
extraction module 108 analyzes the mapping and extracts
trace links 114 between the source model 110 and the target
model 112. For example, a trace link 114 can be extracted
between the source model 110 and the target model 112 when
the similarity value, as provided in the SVC, between a
source-target element combination 1s above a threshold.

FIG. 2 show instances of a source model 202 and a target
model 206 according to respective meta-models. Specifically,
the source model 202 1s an instance of the source meta-model
204 and the target model 206 1s an instance of the target
meta-model 208. The source model 202 and the target model
206 can be imported to the system 100 by the model import
module 102. The source model 202 and the target model 206
can be analogous to the source model 110 and the target
model 112, respectively, mentioned above with respect to
FIG. 1.

The source meta-model 204 includes an entity graph node
210 that has a child feature graph node 212. The entity graph
node 210 and the feature graph node 212 both contain a string
data node 214. Further, the source model 202 includes an
entity graph node 216 that contains a data node 218 of “per-
son.” The entity graph node 216 has child nodes of featurel
graph node 220 and feature2 graph node 222. Featurel graph
node 220 contains a data node 224 of “name” and feature2
graph node 222 contains a data node 226 of “age.”

The target meta-model 208 includes a class graph node 250
that has a child field graph node 252 and a child method graph
node 254. The class graph node 250, the child field graph
node 252, and the child method graph node 254 contain a
string data node 256. Further, the target model 206 includes a
class graph node 258 that contains a data node 260 of “per-
son.” The class graph node 258 has child nodes of field1 graph
node 262, field2 graph node 264, methodl graph node 266,
and method2 graph node 268. Field1 graph node 262 contains
a data node 270 of “name;” field2 graph node 264 contains a
data node 272 of “age;” methodl graph node 266 contains a
data node 274 of “getName;” and method2 graph node 268
contains a data node 276 of “getAge.”

FIG. 3 shows an example of a model matching process
utilizing the attribute similarity values and the connection
similarity values. Specifically, FIG. 3 includes mappings
between the source model 202 and the target model 206. To
that end, employing Algorithms A and B, the product of the
set of all source graph nodes (e.g., entity graph node 216,
teaturel graph node 220, and feature2 graph node 222) and
the set of all target graph nodes (e.g., class graph node 258,
field1 graph node 262, field2 graph node 264, method1 graph
node 266, and method2 graph node 268) 1s determined, pro-
viding a stmilarity matrix (for each of the attribute similarity
values and of the connection similarity values) of fifteen cells
for each source-target graph node combination. The similar-
ity values can be based on the attribute similarity values
and/or the connection similarity values.
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To that end, when the similarity values are based on the
attribute similarity values, the data nodes of each source-
target graph node combination are retrieved, and the attribute
similarity values are determined. The attribute similarity val-
ues are dependent on the specific algorithm employed, (e.g.,
the computeSimiliarity function of Algorithm A). In some
examples, the similarity values are determined such that, for
given data sorts D '=D ' =String, with veD." and weD 7, the

function compare: D xD—ssimilarityValues can be
defined as:

I, 1fv=w
compare(v, w)=< 0,5, it vCw

0, 1fv+w

Continuing the example, for the source-target graph node
combination of entity graph node 216 and class graph node
258, the data nodes 218 and 260 are retrieved. Since the labels
(1.e., strings) of data nodes 218 and 260 are identical (e.g.,
contain the attribute “person”), a similarity value of 1 (or any
value between 0 and 1) 1s assigned to the source-target graph
node combination of entity graph node 216 and class graph
node 258. Analogously, for the source-target graph node com-
bination of featurel graph node 220 and class graph node 258,
a similarity value of 0 1s determined, since the data node 224
and the data node 260 are not identical (the data node 224
contains the attribute “name” and the data node 260 contains
the attribute “person’). Similarly, the above compare function
can be applied to each of the remaining source-target graph

node combination of the source model 202 and the target
model 206, as shown by Table 1.

TABL

L1

1

Example similarity values of graph nodes.

class field1 field?2 methodl method2
entity 1 0 0 0 0
featurel 0 1 0 0.5 0
feature? 0 0 1 0 0.5

The resulting mapping of the source-target graph node
combinations 1s depicted in FIG. 3. Specifically, line 302
includes a value of 1 and represents the similarity value
between entity graph node 216 and class graph node 258; line
304 includes a value of 1 and represents the similarity value
between featurel graph node 220 and field1 graph node 262;
line 306 includes a value of 1 and represents the similarity
value between feature2 graph node 222 and field2 graph node
264; line 308 includes a value of 0.5 and represents the simi-
larity value between featurel graph node 220 and methodl
graph node 266; and line 310 includes a value of 0.5 and
represents the similarity value between feature2 graph node
222 and method2 graph node 268.

To that end, when the similarity values are based on the
connection similarity measure, the children graph nodes of
cach source-target graph node combination are retrieved, and
the similarity values are determined. For example, the fea-
turel graph node 220 and feature2 graph node 222 are
retrieved for the entity graph node 216 and field1 graph node
262, ficld2 graph node 264, methodl graph node 266, and
method2 graph node 268 are retrieved for the class graph
node 258. To that end, for each child source-target graph node
combination, a similarity value 1s determined based on the
similarity values of Table 1, resulting in a similarity value
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matrix. In some implementations, the similarity value matrix
1s reduced to a singularly value by taking the average of all
values from corresponding child source-target graph node
combinations. Continuing the example, a similarity value of
0.75 (average of lines 304-310) 1s determined and propagated
to the parent source-target graph node combination of entity

graph node 216 and class graph node 258, denoted by line
312.

FIG. 4 shows an example of a meta-model mapping. Spe-
cifically, FIG. 4 includes mappings between the source meta-
model 204 and the target meta-model 208. Specifically, the
entity graph node 210 of the source meta-model 204 1s
mapped to the class graph node 250 of the target meta-model
208. Further, the feature graph node 212 of the source meta-
model 204 1s mapped to the field graph node 252 and the
method graph node 254 of the target meta-model 208.

FIG. 5 shows an example of a model matching process
utilizing the instance-of similarity measures and the meta-
model mapping of FIG. 4. Specifically, FIG. 5 includes map-
pings between the source model 202 and the target model 206.
To that end, employing Algorithms C and D, the product of

the set of all source graph nodes (e.g., entity graph node 216,
teaturel graph node 220, and feature2 graph node 222) and

the set of all target graph nodes (e.g., class graph node 238,
field1 graph node 262, field2 graph node 264, method1 graph
node 266, and method2 graph node 268) 1s determined, pro-
viding an istance-of similarity matrix of fifteen cells for each
source-target graph node combination.

For each source-target graph node combination, a similar-
ity value 1s determined between the nodes of the source meta-
model 204 and the target meta-model 208. For example, the
entity graph node 210 of the source meta-model 204 corre-
sponds to the entity graph node 216 of the source model 202.
Further, since a mapping exists between the entity graph node
210 of the source meta-model 204 and the class graph node
250 of the target meta-model 208, the similarly value of 1 (or
any value between 0 and 1) 1s propagated to the corresponding
source-target graph node combination of the enftity graph
node 216 of the source model 202 and the class graph node
2358 of the target model 208. Similarly, the similarity of the
entity graph node 216 of the source model 202 and the field
graph node 262 of the target model 206 can be determined.
However, since the entity graph node 210 of the source meta-
model 204 and the field graph node 252 of the target meta-
model 208 do not match, the similanty of the source-target
graph node combination of the entity graph node 216 and the
field graph node 262 1s 0. Similarly, the above can be applied
to the remaining source-target graph node combinations of
the source model 202 and the target model 206 and propa-
gated to the corresponding source-target graph node combi-
nations of the source model 202 and the target model 208, as

shown by Table 2.

TABL

(L]

2

Example similarity values of A3 nodes.

class fieldl field? methodl method?2
entity 1 0 0 0 0
featurel 0 1 1 1 1
feature? 0 1 1 1 1

FI1G. 6 1s a flowchart of an example process 600 that can be
executed 1n accordance with implementations of the present
disclosure. The example process 600 can be executed using
one or more computing devices.
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The source model and the target model are received (602).
For example, the model import module 102 receives the
source model 110 (or the source model 202) and the target
model 112 (or the target model 206). In some 1implementa-
tions, the source model 110 and the target model 112 data can
be retrieved from computer-readable memory. The source
model and the target model are imported (604). For example,
the model import module 102 imports source model 110 (or
the source model 202) and the target model 112 (or the target
model 206) into a common data model of the system 100.
Similarity values between the source model and the target
model are determined (606). For example, the model match-
ing module 104 generates similarity values between the
source model 110 (or the source model 202) and the target
model 112 (or the target model 206). The similanty values
can mclude, among others, the attribute similarity values, the
connections similarity values, and the instance-of similarity
values. Further, each matching algorithm of the model match-
ing module 104 provides similarity values for all source-
target model node combinations and generates a respective
similarity value matrix. The SVC 1s constructed (608). For
example, the configuration module 106 constructs the SVC
based on the similarity values between the source model 110
(or the source model 202) and the target model 112 (or the
target model 206). To provide a mapping (or matching)
between source-target node combinations from the SVC, the
SVC 1s configured to form an aggregation matrix by either
determining the average of the similarity values or by select-
ing all similarity values exceeding a threshold. Match(es)
between elements of the source model and the target model
are 1dentified (610). For example, the trace link extraction
module 108 1dentifies matches between nodes of the source
model 110 (or the source model 202) and the target model 112
(or the target model 206) based on the SVC. Trace links are
extracted between the source model and the target model
(612). For example, the trace link extraction module 108
analyzes the match(es) between elements of the source model
110 (or the source model 202) and the target model 112 (or the
target model 206), and extracts trace links based on these
match(es).

Retferring now to FIG. 7, a schematic diagram of an
example computing system 800 1s provided. The system 700
can be used for the operations described 1n association with
the implementations described herein. For example, the sys-
tem 700 may be 1included in any or all of the server compo-
nents discussed herein. The system 700 includes a processor
710, amemory 720, a storage device 730, and an input/output
device 740. Each of the components 710, 720, 730, and 740
are imnterconnected using a system bus 750. The processor 710
1s capable of processing 1nstructions for execution within the
system 700. In one implementation, the processor 710 1s a
single-threaded processor. In another implementation, the
processor 710 1s a multi-threaded processor. The processor
710 1s capable of processing instructions stored in the
memory 720 or on the storage device 730 to display graphical
information for a user interface on the input/output device
740.

The memory 720 stores information within the system 700.
In one implementation, the memory 720 1s a computer-read-
able medium. In one implementation, the memory 720 1s a
volatile memory umit. In another implementation, the
memory 720 1s a non-volatile memory unit. The storage
device 730 1s capable of providing mass storage for the sys-
tem 700. In one implementation, the storage device 730 1s a
computer-readable medium. In various different implemen-
tations, the storage device 730 may be a tloppy disk device, a
hard disk device, an optical disk device, or a tape device. The
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input/output device 740 provides input/output operations for
the system 700. In one implementation, the input/output
device 740 includes a keyboard and/or pointing device. In
another implementation, the mnput/output device 740 includes
a display unit for displaying graphical user interfaces.

The features described can be implemented 1n digital elec-
tronic circuitry, or in computer hardware, firmware, software,
or 1n combinations of them. The apparatus can be i1mple-
mented 1n a computer program product tangibly embodied in
an information carrier, €.g., in a machine-readable storage
device, for execution by a programmable processor; and
method steps can be performed by a programmable processor
executing a program of instructions to perform functions of
the described implementations by operating on input data and
generating output. The described features can be imple-
mented advantageously in one or more computer programs
that are executable on a programmable system 1ncluding at
least one programmable processor coupled to receive data
and 1nstructions from, and to transmit data and instructions to,
a data storage system, at least one mput device, and at least
one output device. A computer program 1s a set of instructions
that can be used, directly or indirectly, 1n a computer to
perform a certain activity or bring about a certain result. A
computer program can be written 1n any form of program-
ming language, including compiled or interpreted languages,
and 1t can be deployed 1n any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use 1n a computing environment.

Suitable processors for the execution of a program of
instructions 1nclude, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gener-
ally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. The
essential elements ol a computer are a processor for executing
instructions and one or more memories for storing instruc-
tions and data. Generally, a computer will also include, or be
operatively coupled to communicate with, one or more mass
storage devices for storing data files; such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks such as mternal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks. The processor and the memory can be
supplemented by, or incorporated in, ASICs (application-
specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as a
CRT (cathoderay tube) or LCD (liquid crystal display ) moni-
tor for displaying information to the user and a keyboard and
a pointing device such as a mouse or a trackball by which the
user can provide input to the computer.

The features can be implemented 1n a computer system that
includes a back-end component, such as a data server, or that
includes a middleware component, such as an application
server or an Internet server, or that includes a front-end com-
ponent, such as a client computer having a graphical user
interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form
or medium of digital data communication such as a commu-
nication network. Examples of communication networks
include, e.g., a LAN, a WAN, and the computers and networks
forming the Internet.
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The computer system can include clients and servers. A

client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.
In addition, the logic flows depicted 1n the figures do not
require the particular order shown, or sequential order, to
achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described
flows, and other components may be added to, or removed
from, the described systems. Accordingly, other implemen-
tations are within the scope of the following claims.

A number of implementations of the present disclosure
have been described. Nevertheless, 1t will be understood that
various modifications may be made without departing from
the spirit and scope of the present disclosure. Accordingly,
other implementations are within the scope of the following
claims.

What 1s claimed 1s:

1. A computer-implemented method for 1identifying match-
ing elements between a source model and a target model, the
method comprising:

receving a source model and a target model, the source

model including one or more source elements and the
target model including one or more targets elements, the
source model and the target model each being stored in
computer-readable memory;

processing the source model and the target model based on

two or more matching algorithms, the processing

including:

calculating, for each matching algorithm, a similarity
value for each combination of the source element and
the target element, and

generating, for each matching algorithm, a similarity
value matrix based on the similarity values associated
with the matching algorithm;

generating a similarity value cube based on the similarity

value matrix associated with each matching algorithm;
and

identifying matching elements between the source model

and the target model based on the similarity value cube.

2. The method of claim 1, wherein the target model 1s
provided based on a transformation of the source model.

3. The method of claim 1, further comprising converting a
data structure of the source model to a data structure of a
common data model.

4. The method of claim 1, further comprising converting a
data structure of the target model to a data structure of a
common data model.

5. The method of claim 1, wherein the two or more match-
ing algorithms include an attribute similarity measure, a con-
nection similarity measure and an instance-of similarity mea-
sure.

6. The method of claim 1, wherein the processing further
includes comparing, for each combination of the source ele-
ment and the target element, an attribute of the source element
to an attribute of the target element.

7. The method of claim 1, wherein processing further
includes propagating, for each child combination of the
source element and the target element, the similarnty value of
the child combination to a respective parent combination of
the source model element and the target model element.

8. The method of claim 1, wherein processing further
includes:

determining, for each combination of the source model

clement and the target model element, a corresponding
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combination of a source meta-model element and a tar-
get meta-model element; and

propagating, for each combination of the source meta-

model element and the target meta-model element, a
similarity value of the combination to the respective
combination of the source model element and the target
model element.

9. The method of claim 1, further comprising extracting,
one or more trace links based on the matching elements, each
trace link associating an input element of the source model to
an output element of the target model in view of a transior-
mation rule.

10. A non-transitory computer-readable storage medium
coupled to one or more processors and having instructions

stored thereon which, when executed by the one or more
processors, cause the one or more processors to perform
operations for improving keyword searches, the operations
comprising;

receiving a source model and a target model, the source

model including one or more source elements and the
target model including one or more target elements, the
source model and the target model each being stored 1n
computer-readable memory;

processing the source model and the target model based on

two or more matching algorithms, the processing

including;:

calculating, for each matching algorithm, a similarity
value for each combination of the source element and
the target element, and

generating, for each matching algorithm, a similarity
value matrix based on the similarity values associated
with the matching algorithm;

generating a similarity value cube based on the similarity

value matrix associated with each matching algorithm;
and

identifying matching elements between the source model

and the target model based on the similarity value cube.

11. The non-transitory computer-readable storage medium
of claim 10, wherein the target model 1s provided based on a
transformation of the source model.

12. The non-transitory computer-readable storage medium
of claim 10, wherein the operation of processing further
includes propagating, for each child combination of the
source element and the target element, the similarity value of
the child combination to a respective parent combination of
the source model element and the target model element.

13. The non-transitory computer-readable storage medium
of claim 10, wherein the operation ol processing further
includes:

determining, for each combination of the source model

clement and the target model element, a corresponding
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combination of a source meta-model element and a tar-
get meta-model element; and

propagating, for each combination of the source meta-

model element and the target meta-model element, a
similarity value of the combination to the respective
combination of the source model element and the target
model element.

14. The non-transitory computer-readable storage medium
of claim 10, the operations further comprising extracting one
or more trace links based on the matching elements, each
trace link associating an input element of the source model to
an output element of the target model in view of a transior-
mation rule.

15. A system, comprising:

a computing device; and

a computer-readable storage device coupled to the com-

puting device and having instructions stored thereon
which, when executed by the computing device, cause
the computing device to perform operations for improv-
ing keyword searches for enterprise services, the opera-
tions comprising:
receiving a source model and a target model, the source
model including one or more source elements and the
target model including one or more target elements,
the source model and the target model each being
stored 1n computer-readable memory;
processing the source model and the target model based
on two or more matching algorithms, the processing
including:
calculating, for each matching algorithm, a similarity
value for each combination of the source element
and the target element, and
generating, for each matching algorithm, a similarity
value matrix based on the similarity values associ-
ated with the matching algorithm;
generating a similarity value cube based on the similar-
1ty value matrix associated with each matching algo-
rithm; and
identifying matching elements between the source
model and the target model based on the similarity
value cube.

16. The system of claim 15, the operations further com-
prising converting a data structure of the source model to a
data structure of a common data model.

17. The system of claim 15, the operations further com-
prising converting a data structure of the target model to a data
structure of a common data model.

18. The system of claim 15, wherein the two or more
matching algorithms include an attribute similarity measure,
a connection similarity measure and an 1instance-of similarity
measure.
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