12 United States Patent

Aldes et al.

US008713464B2

US 8.713.464 B2
Apr. 29, 2014

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(60)

(1)

(52)

SYSTEM AND METHOD FOR TEXT INPUT
WITH A MULTI-TOUCH SCREEN

Applicant: Dov Nir Aides, Kiryat Tiv’on (IL)

Inventors: Dov Nir Aides, Kiryat Tiv’on (IL); Alik
Mokeichev, Tel Aviv (IL)

Assignee: Dov Nir Aides, Kiryat Tiv’on (IL)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 13/869,991

Filed: Apr. 25, 2013
Prior Publication Data
US 2013/0290894 Al Oct. 31, 2013

Related U.S. Application Data

Provisional application No. 61/640,335, filed on Apr.
30, 2012.

Int. CI.

GO6F 3/048 (2013.01)
GO6F 3/033 (2013.01)
GO6F 3/14 (2006.01)
GO6F 17/21 (2006.01)
GO6F 17727 (2006.01)
GO6K 9/00 (2006.01)
GO6F 3/0488 (2013.01)
GO6F 17/22 (2006.01)
U.S. CL

CPC ... GO6F 3/04883 (2013.01); GO6F 3/04886

(2013.01); GO6F 17/2217 (2013.01); GO6F

177273 (2013.01); GO6I 17/2735 (2013.01);

GO6IF 17/276 (2013.01)

USPC 7157773, 715/7754; 715/780; 715/863;
715/864;704/9;704/10; 382/187; 382/189

A schematic drawing of an slectronic device having
a multi-touch screen, implementing a soft keyboard

2]

(38) Field of Classification Search
CPC GO6F 3/04883; GO6F 3/04886; GOO6F
17/2217, GO6F 17/273; GO6F 17/2735;
GO6F 17/276
USPC ... 7157754, 773, 780, 863, 864; 704/9, 10;

382/187, 189
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,761,340 A * 6/1998 Suzukicoccovvvviiininnn, 382/189
5,995922 A * 11/1999 Penteroudakis etal. 704/9
7,453,439 Bl 11/2008 Kushler et al.
8,359,543 B2 1/2013 Sengupta
2003/0165801 Al1™*™ 9/2003 Levy .vvivviiiiniiiiiinnnnnnn, 434/227
2004/0140956 Al1* 7/2004 Kushleretal. 345/168
2005/0105781 Al1* 5/2005 Sakamotoetal. 382/119
2005/0146508 Al1* 7/2005 Kirkland etal. 345/169
(Continued)
OTHER PUBLICATIONS

Zhao et al., “Simple vs. Compound Mark Hierarchical Marking
Menus,” 17th Annual ACM Symposium on User Interface Software
and Technology, 2004, 10 pages.™

Primary Examiner — Tadeese Hailu
Assistant Examiner — Eric J Bycer
(74) Attorney, Agent, or Firm — Sorokor Agmon

(57) ABSTRACT

A method of mputting a text word in a computerized system
using a virtual keyboard, including, recording two or more
strokes; wherein each stroke forms contact with the virtual
keyboard and maintains contact forming a trace path as 1t
traverses through multiple keyboard keys, each key repre-
senting a letter; identifying the word based on the recording;;
and wherein every distinct letter 1n the word 1s represented by
a key 1n one of the trace paths.

18 Claims, 19 Drawing Sheets

In order to make

US 8,713,464 B2

Page 2
(56) References Cited 2011/0037718 Al* 2/2011 Stephanick etal. 345/173
2012/0036469 Al* 2/2012 Suraqulccoeeeeeennn, 715/773
U.S. PATENT DOCUMENTS 2012/0303355 Al™* 11/2012 Liuetal.ccoooeiniinninnn... 704/9
2013/0046544 Al1* 2/2013 Kayetal 704/275
2006/0277029 Al* 12/2006 Greenetal.ccccceeeee, 704/4 2013/0249818 Al 9/2013 Zhai et al.
2006/0293880 Al* 12/2006 Elshishinyetal. 704/10
2009/0213081 Al* 8/2009 Case, Jr. .oocovvvvivvnnrnn., 345/173 * cited by examiner

U.S. Patent Apr. 29, 2014 Sheet 1 of 19 US 8,713,464 B2

100
. " o . . . I N
110 A schematic drawing of an electronic device having
a multi-touch screen, implementing a soft keyboard vl 130

150

Figure 1A

U.S. Patent Apr. 29, 2014 Sheet 2 of 19 US 8,713,464 B2

100 —

110 In order to make l

120

Figure 1B

U.S. Patent Apr. 29, 2014 Sheet 3 of 19 US 8,713,464 B2

100
110 The system enables a user {0 inEutagiven I :
/130
120
— o _
loJ(w](ed(a]{T]{v]lull (0] (7]
sIY(Flle) (M) N
AL/ UL
)
AR
Figure 1C
100
110 —-The system enables a user to inputagi_ven B B)
| /130

120 |

U.S. Patent Apr. 29, 2014 Sheet 4 of 19 US 8,713,464 B2

100
110 \\l A trace Key may match a new instance of the same

character again Ve 130

—— - _

Figure 1E

U.S. Patent Apr. 29, 2014 Sheet 5 of 19 US 8,713,464 B2

Electronic Device
100

Multi-touch

Sensitive Display
Applications

110

Text Input
program

Operating System

Power subsystem

320
210

Figure 2

U.S. Patent Apr. 29, 2014 Sheet 6 of 19 US 8,713,464 B2

_ . — — - Electronic Device
100

In order to make

Soft Keyboard End of Input
Implementation Detection

Pointers

A P
. 3441 Candidate E X

E words :

é ,—.—Y—-— ""‘

Evaluation

Stroke Processing

C.(..._.,.

Matching

Word
database

3402 Text Input Program
340

Figure 3

U.S. Patent Apr. 29, 2014 Sheet 7 of 19 US 8,713,464 B2

acquire-pointer

Receive new pointer

4005~

4020

Find trace corresponding to pointer No
in recording

Does pointer
correspond to
a new stroke?

—4022 4015

Initialize a new trace with pointer
and add it to the recording (fig.5a)

No
Return

Analyze pointer and update the trace
(fig.5b)

4025

Does pointer
correspond to the
end of a stroke?

Yes

4030l Finalize the trace (lig.5f) ‘ l

Y

4035 Detect end of input for a word
(fig.4b)

4040

Was end of input No
detected?
|
Yes |
4045

i

No

Evaluate the recording?

|

Yes |
4050
_I_J Evaluate the recording (fig.6a) |
4055 T '

Clear the recording

Figure 4A

Return

U.S. Patent Apr. 29, 2014 Sheet 8 of 19 US 8,713,464 B2

detect-end-of-input

Receive recording and trace 10

4100

4105

Is there an un-finalized
trace in the recording?

Return Yes
continue-input

No
4110

Is there a trace
corresponding to a sweep
in the recording?

Return Yes
evaluate-input

No |
4115

s there a trace other
than 10 in the recording that
overlaps with 10?7

Return Yes
evaluate-input

No

4120

Does 10 |
correspond to a keystroke
of a delimiter?

Return Yes
clear-input

No

Return
continue-input

Figure 4B

U.S. Patent

Apr. 29, 2014 Sheet 9 of 19

(initialize-trace)

Receive trace and pointer

5000

Append first pointer to the 5005
trace path
Compute keyboard key 5010

corresponding to pointer

Compute neighboring keys of 5015

pointer

5020

Initialize a first trace key with
computed keyboard key and
neighboring keys

5025

Initialize other trace attributes

Return

Figure 5A

US 8,713,464 B2

U.S. Patent

Apr. 29, 2014 Sheet 10 of 19

(analyze-pointer)

Receive trace and pointer

5100

| 5105
Append pointer to trace path

5110
Compute trace key (fig.5c)

5115

US 8,713,464 B2

U.S. Patent

Apr. 29, 2014

Sheet 11 of 19

52051 Set p0 and p1 with last two
pointers in trace path
5210—

»| p0 and p1, nearest to p0 that

US 8,713,464 B2

C compute-trace-key)

v

Receive trace

I 2

Interpolate a pointer p between

activates a different key, or p1

Yy

trace key

-

Update length of temp trace key

5265

oes length o

Set key of temp trace key with Key

v

key with neighboring keys of p0 |

Set neighboring keys of temp trace f5255

521 SK Compute keyboard key
corresponding to p0
5220
No Does key
— — correspond to |ast
trace key?
5245 ‘/_5225
Does key No : .
correspond to temp Add nelghbigr;ge i?;s of p to last
trace key? _ —
—5260 y 5250 vy 5230
Add neighboring keys of p to temp

Update length of last trace key

temp key meet min
threshold?

5270

Yes

v 5275

Add temp frace key to trace keys

and initialize new temp trace key

Return

5235

Does p equal p17

f5_240

Figure 5C

Set p0 with p

U.S. Patent

Apr. 29, 2014 Sheet 12 of 19

compute-landmark

5300

Receive trace

Interpolate a pointer px between two consecutive pointers
in the trace path, such that the euclidean walk distance f5305
down the path from the last pointer to px is a defined X,
but px is no farther than a pointer corresponding to the

previous landmark

Does px exist?

5310
Yes

No
Return
Y

l) |
Compute the euclidean distance |/~ 9315

between px and the last pointer

v il

Compute the ratio between X and | 5320
the computed distance

5325
Is ratio No
smaller than Return
1/sqri(2) i
Yes
] Y

Find pointer p1 in the trace path between px and the last 5330
pointer, such that it maximizes the perimeter of the e
triangle created between them

Compute the euclidean distance between p1 and the j5335
path pointer corresponding to the previous landmark

5340

No
Return

Does distance

meet min landmark
spacing?

Yes

Set the trace key corresponding| |/~ 9345
to p1 as landmark key (fig. 5e)

| v

(Return)

Figure 5D

US 8,713,464 B2

U.S. Patent Apr. 29, 2014 Sheet 13 of 19 US 8,713,464 B2

(set-landmark-key J

oy

Receive trace and index of new | 400
landmark pointer

5405

Compute key corresponding to
landmark pointer

9410

Does last trace
ey precede landmark pointer
in path and is different than
landmark key?

No

Y

54201 Find trace key corresponding to
index of landmark pointer and mark
it as landmark key

Add landmark key as a new trace | /"~ 9415
key to trace keys

U.S. Patent Apr. 29, 2014 Sheet 14 of 19
Set trace end time and
mark trace as finalized

5507
No s last

landmark key the first

trace key?

A SN Yes

5510

5515

spacing?

Compute elglidean distance between
last pointer and the pointer
corresponding to last landmark Key

Does distance
meet min landmark

Yes

5520\‘ Reset last landmark key to

non-landmark key

5525

Yes

Is length of

) 4

temp key greater
than zero?

5530—,

Add temp key to trace keys

Figure 5F

—

5540

Does path

length meet min
threhold?

Yes

-)(Return)

US 8,713,464 B2

5500

5505

5535
- Set last trace key as landmark

! 5545
Remove all trace keys excpet last e

U.S. Patent

Apr. 29, 2014 Sheet 15 of 19

(evaluate-recording)

6000

Receive recording

For each entry in database of words

Fast filter normalized word | v 6010
(fig.6b) |

6015

Did word
pass the fast filter?

NoO

Yes

Match normalized word to recording | |/~ 6020
(fig.6¢)
6025
No
Does word match?

Yes

Adjust score using word frequency | / 6030
and/or other considerations
| - 6035
Append word to list of candidate words
_ f6040
Continue to next entry

'] 6045

Sort candidates by score and send {o
soft keyboard

US 8,713,464 B2

Figure 6A

U.S. Patent

Apr. 29, 2014 Sheet 16 of 19

fast-filter

Receive recording and word

6105

NG Does first
letter correspond to
a start key?
Yes
6110
No Does last

letter correspond to
an end key?

6115

Is the recording
a trace-cover of

word?

6120

Is word
a landmark-cover of

No the recording?

Yes

Return False

Figure 6B

US 8,713,464 B2

6100

U.S. Patent

Apr. 29, 2014

Sheet 17 of 19 US 8,713,464 B2

Receive string, traces and working set

| 6200

Is string empty?

6215

lterate matchable trace keys in

working set that can be maiched to
first character of input string

Y

Yas

6210

Are the traces and
working set empty?

Return No
No-Match

Match recursively with string suffix
and an updated working set

| —6220

<F{eturn 0)

6225

Did call match
suffix of string?

Get next trace for working set
(fig.6d)

6240~

Combine match score for suffix
with match score for first character

6230
e 6245

Yy

s there a next trace,

Keep track of best score and
iterate to next trace key

N\

Figure 6C

and doss its first trace key
atch first character

Yes

Y

6250

Match recursively with string suffix,
updated traces, and working set

6255

Did call match
suffix of string?

Yes

Y

Combine matich score for suffix
with match score for first character

<:h 4

6260~

:><%______

Return
best score

U.S. Patent Apr. 29, 2014 Sheet 18 of 19 US 8,713,464 B2

(get-next-trace D

I Receive traces and working set

Yes
Return False

6300

6305

s traces empty?

No
6310

Is working set empty?

Yes

NoO

Find earliest end-time in working set

6320

S start-time of earliest
frace In traces later than
earliest end-time?

NO
Return True

Yes

6325

Does a consumed
trace having earliest end-time
gxist in working set?

No
Return False

Yes

- —~6330

Remove the trace from working set

#/*6335

Call recursively to get next trace

Return result
of call

Figure 6D

U.S. Patent Apr. 29, 2014 Sheet 19 of 19 US 8,713,464 B2

B
=
m
El
S
LO
&l
\

750

US 8,713,464 B2

1

SYSTEM AND METHOD FOR TEXT INPUT
WITH A MULTI-TOUCH SCREEN

RELATED APPLICATIONS

The present application claims priority under 35 U.S.C.
120 from provisional application No. 61/640,335 titled *“Sys-
tem and Method for Text Input with a Multi-Touch Screen”,

filed on Apr. 30, 2012. The disclosure of which i1s incorpo-
rated herein by reference.

TECHNICAL FIELD

The present disclosure relates generally to electronic
devices having a multi-touch sensitive input device, and more
particularly wherein the multi-touch sensitive mput device
implements a keyboard for text input.

BACKGROUND

The practice of mputting text to electronic devices, for
example to form text documents or to send messages over
communication networks has become generally widespread.
Intially devices for inputting text were stationary and
included large keyboards for inputting the text conveniently.
In recent years the use of mobile devices has become more
common and the size of the devices has been reduced signifi-
cantly. Likewise the size of the keyboards for text input has
been reduced.

As the size of the device has been reduced 1t has become
desirable to reduce the size of the keyboard, for example by
implementing a keyboard having a touch sensitive surface
instead of mechanical keys. Commonly, the touch sensitive
surface 1s combined with the display resulting in a touch
screen that serves also for input and also for output. Typically,
the device includes a display that i1s touch sensitive and a
keyboard 1s virtually shown on the display. Users can select a
key with their fingers by touching the display at the position
in which the key 1s displayed. Due to the reduced size of the
device some devices recommend using a pointing device such
as a stylus or special pen to aid i accurately selecting keys.

Generally, when dealing with methods for inputting text
into the device the 1ssues of speed, accuracy and convenience
need to be taken into consideration. Users are interested in
quickly, comfortably and easily entering text without having
to pause to assure accurate alignment to make sure that the
keys are pressed exactly in the center.

In U.S. Pat. No. 7,453,439 to Kushler dated Nov. 18, 2008
there 1s described a method of using a touch sensitive key-
board for text input. In the disclosed method a user imputs
words by forming contact with the keyboard using their finger
or a stylus. The user forms contact with the touch sensitive
keyboard by selecting the first letter of the word and then
sliding from letter to letter 1n sequence to trace out all the
letters of the word. The user only lifts the finger or stylus after
the last letter. The intended word 1s determined based on the
trace path also referred to as an input path. This method
increases text mput speed since:

1. The keyboard 1s constant so the user 1s accustomed to the
positions of the letters;

2. The user’s stylus or finger slides from letter to letter and
does not need to be lifted, lowered, and positioned on each
letter:;

3. The letters do not need to be pressed accurately, rather 1t
1s suificient to pass directly through the region defined for a
key associated with the letter, and thus the user can move
through the letters faster.

10

15

20

25

30

35

40

45

50

55

60

65

2

The method uses a word database to 1dentily one or more
words that best fit the mnput path. Generally the mput path

reflects a sequence of points that can each be associated with
a key that may or may not participate in the word that was
intended by the user. The disclosure suggests comparing the
words from the database with the associated keys and deter-
mining the words that best fit the path. The disclosure speci-
fies that the identification process 1s based on a number of
important constraints, which must be followed, the con-
straints including:

1. Matching the first letter of the word with a “pen-down”
action wherein the stylus first contacts the touch sensi-
tive keyboard;

2. Matching the last letter of the word with a “pen-up”
action wherein the stylus leaves the surface of the touch
sensitive keyboard;

3. Matching the sequence of letters 1n the spelling of the
word with the sequence of letters deduced from the input
path.

The above method was implemented 1n a product called
Swype for use on mobile phones. The product was shown to
indeed 1ncrease mput speed and was demonstrated to set a
Guinness world record regarding the speed for inputting a text
message on a touch screen mobile phone.

SUMMARY

An aspect of an embodiment of the disclosure relates to a
system and method for inputting a text word into an electronic
device. The device includes a virtual keyboard that enables a
user to stroke the keyboard with fingers or pointing devices
and form trace paths across the keyboard that traverses mul-
tiple letters. The user can stroke the keyboard to form multiple
trace paths simultaneously, sequentially or partially overlap-
ping temporally and/or spatially. The multiple trace paths are
combined to serve as a recording that identifies the letters of
the word that the user 1s interested 1n mputting. The word 1s
identified by locating a word from a word database 1n which
all the distinct letters of the word were represented by keys
that were traversed by the user 1n the recording. Optionally,
letters that appear more than once 1n the word may be selected
only once or may be selected more than once to match their
appearance 1n the word.

In an exemplary embodiment of the disclosure, the first
letter of the word will be the first letter 1n the trace path with
the earliest starting time. Optionally, the user 1s required to
traverse all the letters of the word in their order of appearance
in the word, so that the time of selection will identify their
order regardless of the trace path 1n which they were selected.
Alternatively, it 1s sullicient that the user select the letters in
cach trace path 1n the correct order, but letters 1n one trace
paths can be selected before the letters of another trace path
even 11 they follow them 1n the word. In some embodiments of
the mvention, the user can select the letters of the word 1n any
order.

In an exemplary embodiment of the disclosure, the trace
paths overlap each other temporally, for example the user may
select keys on two sides of a virtual keyboard simultaneously
or sequentially by placing a finger 1n contact with each side to
select a first letter on each side and then sliding his fingers
from letter to letter according to the order of the letters 1n the
word the user 1s spelling. Optionally, trace paths may overlap
spatially, for example by crossing over the same area on the
virtual keyboard at different times to reach letters.

In an exemplary embodiment of the disclosure, the system
may determine which of the letters that were traversed actu-
ally participate 1n the word with a higher probability by

US 8,713,464 B2

3

detecting landmark keys. Optionally, the keys representing
the first letters 1n each path and the last letters 1n each path wall
be considered landmark keys. Additionally, letters repre-
sented by keys wherein the trace path traverses them and then
makes a significant change 1n 1ts direction are also considered
landmark letters. Optionally, letters that the user paused on
them for a significant amount of time relative to other letters
will be considered landmark letters.

In an exemplary embodiment of the disclosure, when
searching for a match between the recording and the words
from the word database, the words 1n the database will nar-
rowed down by only leaving words that include all the letters

represented by the landmark keys.

In an exemplary embodiment of the disclosure the method
1s implemented on mobile telephones, touch pad computers,
and small sized electronic devices. Alternatively or addition-
ally, the method can be implemented on any computer or
device having a processor and memory that requires text
input.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be understood and better appre-
ciated from the following detailed description taken in con-
junction with the drawings. Identical structures, elements or
parts, which appear 1n more than one figure, are generally
labeled with the same or similar number 1n all the figures 1n
which they appear, wherein:

FIGS. 1A-1FE are schematic illustrations of inputting text to
an electronic device with a virtual keyboard, according to an
exemplary embodiment of the disclosure;

FI1G. 2 illustrates a simplified block diagram of an elec-
tronic device, according to an exemplary embodiment of the
disclosure:

FI1G. 3 illustrates a sitmplified data flow diagram during use
of an electronic device, according to an exemplary embodi-
ment of the disclosure;

FIG. 4A 1s a flow diagram of a method of creating a record-
ing, according to an exemplary embodiment of the disclosure;

FIG. 4B 1s a flow diagram of a method of detecting the end

of input for a word, according to an exemplary embodiment of

the disclosure;
FIG. 5A 1s a flow diagram of a method of initiating a trace

data structure, according to an exemplary embodiment of the
disclosure;

FIG. 5B 1s a flow diagram of a method of adding a pointer
to a trace data structure, according to an exemplary embodi-
ment of the disclosure;

FI1G. 5C 1s a flow diagram of a method of identifying keys
traversed by a stroke, according to an exemplary embodiment
of the disclosure:

FIG. 5D 1s a flow diagram of a method of detecting land-
mark pointers, according to an exemplary embodiment of the
disclosure:

FIG. 5E 1s a flow diagram of a method of i1dentifying
landmark keys from a landmark pointer, according to an
exemplary embodiment of the disclosure;

FIG. 5F 1s a flow diagram of a method of finalizing a trace,
according to an exemplary embodiment of the disclosure;

FIG. 6A 1s a flow diagram of a method of 1dentifying a list
of candidate words that match a recording, according to an
exemplary embodiment of the disclosure;

FIG. 6B 15 a flow diagram of a method of quickly deter-
mimng 1f a word can match a recording, according to an
exemplary embodiment of the disclosure;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6C 1s a flow diagram of a method of determining a
score for a word matching a recording, according to an exem-

plary embodiment of the disclosure;

FIG. 6D 1s a flow diagram of a method of determining if a
trace structure with the earliest start time should be added to
a recording, according to an exemplary embodiment of the
disclosure:

FIG. 7A 1s a schematic 1llustration of a trace path relating,
to a method of computing a trace key from a pointer, accord-
ing to an exemplary embodiment of the disclosure;

FIG. 7B 1s a schematic illustration of a trace path relating to
a method of computing trace keys from a stroke, according to
an exemplary embodiment of the disclosure;

FIG. 7C 1s a schematic illustration of a trace path with
significant changes 1n direction, according to an exemplary
embodiment of the disclosure.

DETAILED DESCRIPTION

FIGS. 1A-1E are schematic i1llustrations of inputting text to
an electronic device 100 with a virtual keyboard 120, accord-
ing to an exemplary embodiment of the disclosure. In an
exemplary embodiment of the disclosure, electronic device
100 1ncludes a touch screen 110 for displaying text on a text
display area 130. The text 1s input using the virtual keyboard
120 that 1s displayed on touch screen 110. In some embodi-
ments of the disclosure virtual keyboard 120 1s a virtual soft
keyboard that 1s displayed by software on touch screen 110.
Alternatively, virtual keyboard 120 may be physically printed
on touch screen 110. In some embodiments of the disclosure,
virtual keyboard 120 may be a virtual keyboard that 1s dis-
played by illuminating light and recording hand motions of a
user. Optionally, virtual keyboard 120 1s capable of recording
the details of multiple points of contact simultaneously.
Optionally, virtual keyboard 120 can 1dentity different types
of action, for example:

1. A “pointer down” action wherein the user makes initial
contact with the virtual keyboard 120;

2. A “pointer up” action wherein the user releases contact
from the virtual keyboard 120; and

3. A “pointer move” action wherein the user continuously
1s 1n contact with the virtual keyboard 120 moving from one
point to another.

In an exemplary embodiment of the disclosure, electronic
device 100 1s continuously sampling to detect user contact
with touch screen 110. Optionally, for every contact point
identified by device 100 the device records a “pointer” that 1s
a data structure including the type of action, coordinates, time
and other details that may be supported by the virtual key-
board 120, for example contact intensity.

In an exemplary embodiment of the disclosure, the action
of forming contact with the virtual keyboard 120 1s referred to
as a stroke, wherein a keystroke 1s a stroke activating a single
keyboard key and a sweep 1s a stroke that traverses several
keyboard keys 1n sequence.

In an exemplary embodiment of the disclosure, electronic
device 100 1s capable of recording multiple pointers simulta-
neously, so that the user can mput words using one or more
strokes that may or may not overlap temporally and/or spa-
tially, for example the user may place one finger on one side
of virtual keyboard 120, a second finger on the other side and
trace a path of points with each finger traversing the location
of one or more keys. Optionally, the fingers may move simul-
taneously or they may move one aiter another, for example
cach side slhiding across the virtual keyboard 120 to pass
through the region of desired keys representing the letters
needed to spell a word. In an exemplary embodiment of the

US 8,713,464 B2

S

disclosure, the paths may cross over the same area of virtual
keyboard 120 at different times. Optionally, one finger may
be lifted up and moved to a new location to trace an additional
path while the other finger remains 1n contact with the virtual
keyboard 120, thus forming three or more trace paths. In an
exemplary embodiment of the disclosure, the user aims to
form multiple trace paths that traverse the keys representing
every letter of the word the user 1s interested 1n 1nputting. In
some embodiments of the disclosure the user may use three or
more fingers to form the multiple trace paths.

Once the user releases all fingers or strokes a delimiter key
clectronic device 100 records all the trace paths as a recording
and searches for the most probable word that matches the
keys selected by all the trace paths 1n the recording. Option-
ally, during creation of the trace paths electronic device 100
may begin processing and even offer words based on the
current position of the users fingers as 11 the current position
1s the final position. In some embodiments of the disclosure,
device 100 may accept as a recording multiple trace paths
even 1f they do not overlap temporally until a delimiter key 1s
selected or until a pre-selected amount of time passes from
input of the last pointer. Optionally, during the user input or at
least once a recording 1s completed words from a database of
words will be compared with the recording to i1dentily the
word intended by the user. In an exemplary embodiment of
the disclosure, the word can be computed during the input
process by computing the possible words based on the input
up to the specific moment or even based on a guess as to the
turther letters the user will select, to reduce computation time
once the end of input 1s determined. Optionally, the user may
select a word that 1s presented to him 1nstead of completing
the 1put process of all the letters of the word.

In an exemplary embodiment of the disclosure, the com-
pared words will be given a relevancy score and the most
relevant word will be selected. Optionally, one or more words
having the highest scores will be displayed to the user, so that
the user may select the most appropriate word.

The standard keyboard layout (QWERTY) was initially
designed for two handed input wherein the letters were posi-
tioned based on letter frequency 1n words of the mput lan-
guage. The use of multiple trace paths commencing at a
different location on virtual keyboard 120 allows the user to
exploit the benefit of the standard keyboard layout to increase
input speed and reduce the combined length of the trace paths.
As anticipated by the mventor and verified by experimenta-
tion the use of multiple trace paths to mput text enabled text
input exceeding the world record set by the users of prior art
systems forming a single trace path.

FIG. 1A illustrates mput of the word “keyboard” with two
strokes 140, 150. In an exemplary embodiment of the disclo-
sure, the user starts the first stroke 150 with the right hand
thumb, by contacting virtual keyboard 120 near the keyboard
key corresponding to the letter °k” 151. The user then starts the
second stroke 140 with the left hand thumb to input the letters
of the word 1n their order of appearance in the word, by
contacting the virtual keyboard 120 near the keyboard key
corresponding to the letter ‘e’ 141. The user continues the first
stroke through the vicinity of the keyboard keys correspond-
ing to the letters ‘y’, *b” and ‘0’, and the second stroke through
the vicinity of the keyboard keys corresponding to the letters
‘a’, ‘r’ and ‘d’. Once the user detaches both thumbs from the
virtual keyboard 120, electronic device 100 analyzes the two
strokes and outputs the word ‘keyboard’ into the text output
area 130. In an exemplary embodiment of the disclosure, each
key 1s recorded with a time value, to help determine the order
of the letters.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 1B illustrates input of the word “make” with two
strokes 160, 165. In an exemplary embodiment of the disclo-
sure, the letters of a word are input by the user in their correct
order, by mputting the letter ‘m” with the first thumb then
inputting the letter ‘a’ with the second thumb. Afterwards the
letter °k’ 1s input with the first thumb and the letter ‘e’ 1s input
with the second thumb. In some embodiments of the disclo-
sure, the user only needs to mput the letters in their correct
order 1n each stroke. Optionally, one stroke may be completed
betore the other starts. Accordingly, experienced users may
become accustomed to select the first letter with one finger
and then selecting letters simultaneously from both trace
paths using two fingers, for example 1n FIG. 1B the user may
input the letter in the following orders (‘'m’, ‘k’, “a’, ‘e’), (‘m’,
‘a’, ‘K>, ‘e’)yor (‘'m’, ‘a’, ‘e’, ‘’k’). Alternatively, the user may
traverse through all the letters on one side and then traverse
through the letters on the other side.

FIG. 1C illustrates mput of the word “given” with two
strokes 170, 175 whereas F1G. 1D illustrates input of the word
“orven’” with different input strokes 180, 185. In an exemplary
embodiment of the disclosure, the user selects the first letter
‘o’ with one finger and then can select all the letters from one
side (e.g. (‘g”, “v’, ‘€’) 170 or (*g’,‘1’,‘n’) 185) or the letters
from the other side (e.g. (‘1°, ‘n’) 175 or (*v’, ‘¢’) 180) or
interweave the selection of letters (one or more from each
side), as long as each stroke traverses the letters of the word 1n
that stroke 1n their correct order as appearing in the intended
word. Optionally, the selection of which keys will be 1n the
first stroke and which 1n the second stroke 1s ummportant.
Generally the decision by the user to include or exclude a
letter from a specific stroke 1s based on the keyboard position
of each letter relative to the other letters 1n the word. Option-
ally, electronic device 100 1s also tolerant of the geometric
accuracy of the trace path. The path does not need to accu-
rately pass through the center of each key, 1t 1s only suificient
that trace path pass in the vicinity of the desired key for it to
be included 1n the path.

In some embodiments of the disclosure, as long as the user
does not release contact with all fingers from the virtual
keyboard 120 the user may add additional trace paths to serve
as part of a word. Once the user releases contact device 100
will analyze the trace paths to find the intended word. Option-
ally a space 1s added when starting a new word to relieve the
user from the need to keystroke the space explicitly when
inputting text.

FIG. 1E illustrates iput of the word “again” with two
strokes 190, 195. Optionally, the letter ‘a’ that 1s mput by
stroke 190 serves to match all appearances of the letter ‘a’ in
the compared words, so that all the letters of the word are
matched by the user’s strokes.

FIG. 2 illustrates a simplified block diagram of electronic
device 100, according to an exemplary embodiment of the
disclosure. Optionally, electronic device 100 may be amobile
phone, a touch pad, a laptop computer, a desktop computer or
other computerized devices having a touch screen to allow
text input. In some embodiments of the disclosure, electronic
device 100 may mput text from a virtual keyboard by analyz-
ing hand motions of the user in the air. The hand motions
serving as a form of contact with electronic device 100 with-
out actually touching a screen, for example to mput text into
a smart TV remotely. Optionally, the keyboard may be dis-
played on a surface, in the air (e.g. using lights) or on a remote
screen (e.g. a large TV screen or 1lluminated on a wall). In
some embodiments of the disclosure, hand motions may be
used to indicate the beginming and/or end of a stroke, for

US 8,713,464 B2

7

example by closing the users hand to form a fist. Alternatively,
other hand gestures may be used to signity the beginning
and/or end of mnput.

In an exemplary embodiment of the disclosure, electronic
device 100 includes a central processing unit (CPU) 230 for
executing commands, and a memory 240 for interacting with
central processing unit 230. Memory 240 may 1nclude a con-
troller, high speed random access memory, read only
memory, and non-volatile memory elements such as a flash
memory, solid state memory or other types of memory.
Optionally, electronic device 100 includes programs 320, 330
and 340 which are made up from sets of mnstructions stored 1n
memory 240 and configured to be executed by CPU 230. In an
exemplary embodiment of the disclosure the programs
include an operating system 320 to control functionality of
the device, a text input program 340 to control text input and
word output. Additionally, the programs may include other
applications 330 to provide other services that require text
input and/or text output, for example a text editor for process-
ing word documents, an email application to send text mes-
sages and other applications.

As explamned above, electronic device 100 optionally
includes touch screen 110. Touch screen 110 serves as the
output interface for displaying information to the user. Addi-
tionally, touch screen 110 serves to receive mput from the
user. Optionally, electronic device 100 may display a key-
board on touch screen 110 to implement virtual keyboard 120
for the user to 1nput text to electronic device 100.

In an exemplary embodiment of the disclosure, electronic
device 100 also includes a power subsystem 210 for powering
the device. Optionally, power subsystem 210 may include a
battery, a recharging module and any other required compo-
nents for powering electronic device 100.

FI1G. 3 illustrates a simplified data flow diagram during use
of electronic device 100, according to an exemplary embodi-
ment of the disclosure. In an exemplary embodiment of the
disclosure, operating system 320 controls the mput and out-
put from electronic device 100, through the use of touch
screen 110, which includes virtual keyboard 120. Optionally,
the other software applications 330 and text input program
340 communicate indirectly with the mput/output of elec-
tronic device 100 and with each other by calling operating
system application program interfaces (APIs).

In an exemplary embodiment of the disclosure, operating,
system 320 and/or application 330 display the mput-text 1n
the text display area 130 of touch screen 110. Optionally, they
may provide additional functionality, for example, text edit-
ing and storing of the text 1n memory 240.

In an exemplary embodiment of the disclosure, text input
program 340 includes a soit keyboard implementation 341
that handles general soit keyboard functionality, for example,
initialization, displaying a soft keyboard on touch screen 110,
responding to keystrokes, showing words and responding to
candidate word selection, and so forth. The details of operat-
ing system 320, and the specific implementation details of
application 330 to display text on touch screen 110, and
utilize a general virtual keyboard 120 may vary between
different operating systems 320 and electronic devices 100 as
known 1n the art.

In an exemplary embodiment of the disclosure, text input
program 340 includes in addition to the soft keyboard imple-
mentation 341, a stroke acquisition module 342 that includes
an end of mput detection method 343, a stroke processing
module 345, and an evaluation module 344. The evaluation
module 344 includes a matching method 346, receives trace
data structure(s) 3401 that represent the details of a trace path
and a database of words 3402. Optionally, to mput a new

5

10

15

20

25

30

35

40

45

50

55

60

65

8

word, the user strokes virtual keyboard 120 of touch screen
110. As the user strokes touch screen 110, touch screen 110
generates touch data that 1s recerved 3101 by operating sys-
tem 320. The operating system 320 transforms the touch data
and sends 1t 3202 to the text input program 340. In an exem-
plary embodiment of the disclosure, soft keyboard implemen-
tation 341 recerves 3202 the touch data from the operating
system 320 and may send 3411 corresponding characters to
the operating system 320 for display 1n the text display area
130 as with any keyboard. Optionally, the soit keyboard
implementation 341 additionally sends 3412 touch data as a
sequence ol pointers to the stroke acquisition module 342 and
may recerve 3441 a list of corresponding candidate words
from evaluation module 344.

In an exemplary embodiment of the disclosure, soft key-
board implementation 341 may then send 3411 one or more
words from the list of candidate words to display 1n text
display area 130, or to replace previously sent characters, 1f
any. It 1s noted that the interaction between the soft keyboard
implementation 341 and the other modules of text input pro-
gram 340 that are mvolved 1in processing the sequence of
pointers into candidate words, may be seen as resembling the
interaction between a soft keyboard and a spelling correction
and/or automatic word completion component, for example,
the soft keyboard implementation 341 may send 1input data to
a correction component, which generates a list of candidate
corrections, that are used to replace previously output char-
acters, automatically or after selection by user.

In an exemplary embodiment of the disclosure, each
pointer from the sequence of pointers includes an 1d associ-
ating 1t with a particular stroke, the contact location of the
pointer on touch screen 110, the time of contact, and an
action, for example, a pointer-down to signal the start of a
stroke, and a pointer-up to signal the end of a stroke. Option-
ally, the operating system 320 transforms the touch data to the
sequence ol pointers, or provides the text input program 340
with enough information to compute the transformation by
way of an appropriate process. In an exemplary embodiment
of the disclosure, stroke acquisition module 342 receives
3412 cach pointer and progressively creates a recording,
which serves to identily a matching word. The recording 1s
made up from a collection of trace data structures 3401,
wherein each trace data structure 3401 represents a single
stroke that forms a trace path. Each recording can be made up
from one or more strokes, for example one, two, three or more
strokes. In each stroke a user places his or her finger on virtual
keyboard 120, slides over virtual keyboard 120 to form a trace
path that 1s sampled by electronic device 100 as a sequence of
pointers and then releases his or her finger. Optionally, a trace
path may represent a single keystroke or multiple keys.

Stroke acquisition module 342 calls stroke processing
module 345 to analyze the pointer and update the correspond-
ing trace. The stroke acquisition module 342 calls the detect-
end-of-input method 343 to detect 1f the user finmished 1nput-
ting all strokes for a word. Once 1t detects the end of input for
a word 1t may call the evaluation module 344 to process the
recording. In some embodiments of the disclosure, analysis
of the input may begin during input based on finished strokes
or partial strokes to increase response time. In an exemplary
embodiment of the disclosure, the end of input 1s determined
when the user entirely releases contact from virtual keyboard
120 with all fingers, for example the user may trace a first path
with one finger and keep the finger in contact with virtual
keyboard 120 while tracing additional paths with other fin-
gers. Alternatively or additionally, the end of input may be
determined once the user traverses a delimiter key, for
example blank, period, comma, question mark or other non-

US 8,713,464 B2

9

letter keys. Further alternatively or additionally, the end of
input may be determined by a pre-selected time interval pass-
ing from the moment the virtual keyboard 1s released, thus a
user may sequentially trace paths as long as the transition
from one trace path to another 1s performed quickly. Once the
user pauses more than the predetermined time electronic
device 100 will assume that the recording 1s finished and
provide words that match the recording.

In an exemplary embodiment of the disclosure, evaluation
module 344 iterates a database of words 3402 and forms a list
of detected database words that may match the recording. For
cach detected database word the evaluation module calls the
match method 346 to compute 1f and how well the word
matches the recording 3401; the evaluation module may
adjust the matching score of each matched database word
using various considerations, for example, word frequency
and language model. Optionally, the evaluation module sorts
the list of matched database words by their score and sends
3441 the list to soft keyboard implementation 341 as a list of
candidate words. In an exemplary embodiment of the disclo-
sure solt keyboard implementation 341 may modily the listof
words depending on 1ts mode of operation, for example, 1t
may capitalize the first letter of each word or capitalize all
letters. The soft keyboard implementation may additionally
present words from the list of candidate words to the user for
selection. Optionally, soit keyboard implementation 341 may
then send 3411 the highest-ranking candidate word or the
user-selected candidate word to the operating system, which
will send 1t 1n turn to the application 330. The application
displays the text in the text display area 130 of the multi-touch
screen 110. In an exemplary embodiment of the disclosure,
soit keyboard implementation 341 may send delimiters auto-
matically, for example after sending a candidate word, in
response to subsequent input by the user.

In an exemplary embodiment of the disclosure, electronic
device 100 may provide a process for the user to add new
words to the database of words 3402, for example, by accept-
ing input of a word letter by letter with keystrokes. Optionally,
clectronic device 100 displays a user interface to add the word
spelled by the user to the database of words 3402 with pre-
defined properties selected by the user or defined automati-
cally.

In an exemplary embodiment of the disclosure, the user
performs one or more strokes; each stroke forms a trace path
that traverses a sequence of keyboard keys optionally includ-
ing a start key, and a sequence of keys. In some embodiments
of the disclosure, the trace path may also be analyzed to
identify an end key. Electronic device 100 forms a recording
with the multiple trace paths and analyzes the recording to
match a word to the recording from word database 3402. In an
exemplary embodiment of the disclosure, the user 1s required
to essentially selectthe keys 1n all paths or at least in each path
according to their order in the word. Although 1n some
embodiments of the disclosure neighboring keys may be
interchanged as explained below. Optionally, the user can
select the first letter 1n the word with a first hand, for example
with the thumb of the right hand. Then the second letter with
the other hand, for example the thumb of the left hand.
Optionally, the user can then select each proceeding letter
with either the right hand or the left hand 1n the correct order
as they appear in the word or at least so that the letters of each
path are 1n the correct order of appearance 1n the word. Elec-
tronic device 100 1s then expected to i1dentity the word
intended by the user taking 1nto account the order of selection
in each path. It should be noted that there may be more than
two trace paths, for example the user may release one hand
and continue to form a new trace path from a new location or

10

15

20

25

30

35

40

45

50

55

60

65

10

form another trace path with a different finger. In some
embodiments of the disclosure, it will be assumed that a path
that entirely follows a different path temporally (1.e. no tem-
poral overlap) all the letters 1n the later path will be after the
letters of the earlier path. Optionally, evaluation module 344
will accept the traces of the recordings and interweave the
letters from the trace paths to identify the word.

In an exemplary embodiment of the disclosure text input
program 340 overcomes a few problems in i1dentifying the
letters intended by the user and the desired word:

1. The trace paths generally also traverse keys that repre-
sent letters that are not part of the word since they are 1n
the path when sliding from one required letter to another.

2. The user may form a path that does not accurately pass
through the exact center of each required key thus mak-
ing 1t unclear which key was intended, for example two
or more neighbor keys that are close to a pointer on the
trace path.

3. The user may inadvertently swap the order of keys or
swap the order of keys to increase input speed.

4. The sampling rate/accuracy of electronic device 100
may not provide enough pointers to accurately identify
the exact sweep path taken by the user; or electronic
device 100 may provide too many pointers so the point-
ers cannot be relied upon to determine the users inten-
tions 1n selecting letters.

5. There may be many possible permutations to interweave
the keys from multiple trace paths.

In an exemplary embodiment of the disclosure, to handle
these problems, electronic device 100 interpolates a complete
trace path. Then all possible keys along the path are 1dentified.
Optionally, electronic device 100 may calculate the distance
from the center of each key to the interpolated path to decide
which key or keys will be considered to be part of the path. In
an exemplary embodiment of the disclosure, start keys, end
keys and keys where the trace path took a significant change
in direction may be considered landmark keys having a higher
probability of being the actual keys intended by the user.
Optionally, also keys that the user paused on for significantly
more time than other keys may be considered landmark keys.

In an exemplary embodiment of the disclosure, electronic
device 100 will form a trace key data structure for each key
along the trace path. Optionally, the data structure will record
for each key the following information:

1. Neighboring keys that could possibly be intended by the
user mstead of the selected key thus allowing the inter-
change of neighboring keys;

2. A distance of the key and the neighboring keys from the
pointers of the trace path;

3. If the key 15 a landmark key or not;

4. A path index to identily the associated pointer leading to
the 1dentification of the key;

5. The time or time interval during which the key was
selected.

In an exemplary embodiment of the disclosure, each stroke
of the user will be represented by a trace data structure that
includes:

1. A trace path made up from a sequence of pointers 1den-
tifying the location of the stroke path as a function of
time.

2. A sequence of trace keys as described above resulting
from the trace path;

3. A start time;

4. An end time.

As explained above the recording may include multiple

trace paths representing multiple strokes. During creation of
the recording or at least once a recording 1s entirely defined

US 8,713,464 B2

11

clectronic device 100 analyzes the input to determine what
word 1s represented by the recording. In an exemplary

embodiment of the disclosure, word database 3402 includes a
collection of words that are used to 1dentify the word intended
by the user. In some embodiments of the disclosure each word
1s provided with a score representing its frequency in the
language being dealt with. Optionally, more frequent words
will be given preference before less popular words.

In an exemplary embodiment of the disclosure, the words
can be narrowed down by limiting them to words including
the first and/or optionally also the last letters that were deter-
mined to be possible 1n the recording. The possible letters
may 1nclude the neighbors of the keys that were 1dentified as
first and last.

In an exemplary embodiment of the disclosure, the words
can be narrowed down to only include words, which include
all the landmark keys and then comparing the remaining
words with the recording. This option i1s referred to as a
landmark cover. According to this option letters (or their
neighbors), which most probably are 1n the word will be used
to limit the words needed to be compared with the entire trace.

In an exemplary embodiment of the disclosure, the words
can be narrowed down to only include words, 1n which all the
letters of the word appear 1n the trace data structures in the
recording. In this embodiment any word including letters that
do not appear 1n the trace will be removed from the 1dentifi-
cation process. This option 1s referred to as a trace cover.
Optionally, electronic device 100 may be programmed to
allow one or more missing letters to take into account user
CITOrS.

It should be noted that although the user 1s expected to spell
the word with all the letters in order at least 1n each stroke,
according to the above method letters that are neighbors may
be mterchanged 1n a stroke since the trace includes keys and
their neighbors. Additionally, since the process of identifying,
a word 1s statistical 1t 1s possible that electronic device 100
will identily words in which the user selected the letters in the
wrong order.

In an exemplary embodiment of the disclosure, some keys
may represent multiple letters, for example capital letters and
small letters or letters with accents. Optionally, electronic
device 100 needs to determine 11 the key selected by the user
1s referring to the main character represented by the key or to
a secondary character. In an exemplary embodiment of the
disclosure, 1n the matching process between the words of the
word database 3402 and the selected keys, the words of the
word database 3402 may be normalized to be compared using,
the main character, for example by changing capitals to small
letters or by removing accents. Thus for example the word
“Internet” will be matched using small letters and then dis-
played as mitially appearing 1n word database 3402.

In some embodiments of the disclosure, double letters may
be changed to single letters or even letters appearing more
than once 1 a word may be removed for the comparison
process. IT the word 1s selected 1t will be displayed to the user
in its correct—non-normalized form.

SUMMARY OF DEFINITIONS

The terminology used 1n this specification 1s for the pur-
pose of describing clearly some possible embodiments of the
subject matter but 1s not mtended to be limiting of the dis-
closed subject matter. In particular, embodiments of the dis-
closed subject matter may use different definitions, concepts
and/or data structures than those defined here.

A soft keyboard 1s a virtual keyboard implemented by the
system and displayed on a multi-touch screen.

10

15

20

25

30

35

40

45

50

55

60

65

12

A keyboard key on a soft keyboard 1s used to input one
main character (1.e. the character printed on the keyboard key)
and possibly several auxiliary characters (for example, accen-
tuated versions of the main character). For abbreviation, the
flowcharts use the term key to mean keyboard key. The term
should not be confused with trace key and landmark key that
refer to types of data structures.

A stroke 1s the contact action of a user finger, a stylus, or a
compatible device, with the touch screen.

A pointer 1s a data structure representing the contact loca-
tion of a stroke with the multi-touch screen at a particular
point in time.

Each keyboard key has an associated exclusive activation
area. A pointer located within the boundary of the activation
area ol akeyboard key 1s said to activate the keyboard key, and
the keyboard key 1s said to correspond to the pointer or to be
activated by the pointer. The keyboard key corresponding to a
pointer may be computed by way of any appropriate process.

A keystroke 1s a stroke activating a single keyboard key.

A sweep 1s a stroke traversing through several keyboard
keys 1n sequence.

A trace 1s a data structure representing a single stroke that
comprises a trace path, a sequence of trace keys, a start time,
and an end time.

A recording 1s the collection of traces corresponding to a
single input word. The trace with the latest end time 1n a
recording 1s said to be the ending trace.

A trace path 1s the sequence of pointers representing the
contact location of a stroke on the multi-touch screen through
time.

A trace key 1s a data structure including data relating to a
single keyboard key such as the corresponding keyboard key,
associated neighboring keys, a tflag indicating 11 1t 1s a land-
mark key, and a path index into the trace path indicating a
corresponding pointer.

The landmark keys are a subset of the trace keys of a trace,
comprising, the first trace key, the last trace key, and trace
keys corresponding to significant changes in the direction of
the stroke path.

Theneighboring keys associated with a trace key are the set
of keyboard keys 1n a defined vicinity of the stroke location as
it traversed through the keyboard key corresponding to the
trace key. The set includes the keyboard key.

The neighboring keys of a pointer are the set of keyboard
keys 1n a defined vicinity of the pointer. The set includes the
keyboard key.

A start key 1s a neighboring key associated with the first
trace key ol the trace with the earliest start time 1n arecording.

An end key 1s a neighboring key associated with the last
trace key of any trace with an end time later than the start time
of the ending trace of a recording.

A normalized word 1s a transformation of a word 1n which
cach character 1s mapped to the main character of the key-
board key used to input 1t, and characters that do not map to an
alphabet letter are discarded.

Landmark cover: A normalized word w 1s a landmark cover
of'a collection of traces s, 1t for each landmark key k1n a trace
in s,, there exists a character ¢ 1n w, such that ¢ 1s the main
character of a neighboring key of k.

Trace cover: A collection of traces s, 1s a trace cover of a
normalized word w, 1f for each character ¢ 1n w, there exists a
trace key k1n a trace 1n s,, such that ¢ 1s the main character of
a neighboring key of k.

The description includes pseudo-code describing the logic
of exemplary embodiments of the subject matter. The pseudo-
code 1s for the purpose of describing clearly some possible
embodiments of the subject matter but 1s not intended to be

US 8,713,464 B2

13

limiting of the described subject matter. In particular, the
logic of certain embodiments of the disclosed subject matter
may correspond to different pseudo code.

Additionally or alternatively, the pseudo code included 1n
the current description may not be complete and may imply
details. For example, where the pseudo-code describes the
creation of a new data structure, the fields of the data structure
may be assumed 1nitialized to default values, such as zero for
scalars and empty collections for lists, sets and maps. Addi-
tionally, the scope, initialization and definition of a data struc-
ture may be implied from the description and/or from its name
and use 1n the pseudo-code.

DETAILED METHODS

Following are detailed methods for implementing specific
embodiments of the disclosure:
The Acquire-Pointer Method of Stroke Acquisition Module

342:

In accordance with an embodiment, the acquire-pointer
method operates as a state machine to create a recording and
send 1t to the evaluation module. In its 1nitial state, 1t has an
empty recording.

FIG. 4A 1s a flowchart of the acquire-pointer method, in
accordance with an embodiment of the disclosed subject mat-
ter.

In accordance with an embodiment at block 4005, the
method receives a new pointer representing the location of a
particular stroke at a particular time.

In accordance with an embodiment at block 4010, the
method tests if the pointer corresponds to the start of a new
stroke; 11 not, the method proceeds to block 4020.

In accordance with an embodiment of the disclosed subject
matter, the method may detect 11 a pointer corresponds to a
new stroke 11 1ts pointer action value corresponds to the start
of a new stroke, for example pointer-down, or alternatively, 1f
its 1d does not correspond to an existing trace 1n the recording.

In accordance with an embodiment, at block 4015, the
method calls the initialize-trace method (FIG. 5A) of the
stroke processing module 345 to mitialize a new trace data
structure 3401 to represent the stroke; then adds the trace to
the recording, and finally returns control to the caller.

In accordance with an embodiment, as the method initial-
1zes and adds trace data structures 3401 to the recording, 1t
makes sure their start times are strictly increasing; an embodi-
ment of the disclosed subject matter may do that by adding a
small value to the start time of a new trace if 1t has the same
start time as a previous trace in the recording.

In accordance with an embodiment, at block 4020, the
method finds the trace corresponding to the pointer in the
recording, by the stroke 1d of the pointer.

In accordance with an embodiment, at block 4022, the
method calls the analyze-pointer method (FIG. 5B) of the
stroke processing module to analyze the new pointer and
update the trace data structure.

In accordance with an embodiment at block 4025, the
method tests 11 the pointer action corresponds to the end of a
stroke; 1f not, the method returns control to the caller.

In accordance with an embodiment at block 4030, the
method calls the finalize-trace method (FIG. 5F) of the stroke
processing module 345 to finalize the trace.

In accordance with an embodiment at block 4035, the
method calls the detect-end-of-input method (FIG. 4B) to
detect if the user finished inputting all strokes for a word.

In accordance with an embodiment, the detect-end-of-in-
put method (FIG. 4B) returns a value indicating 1f end of input

10

15

20

25

30

35

40

45

50

55

60

65

14

was detected, and 11 the recording should be evaluated. The
method tests the returned value at blocks 4040 and 4045.

In accordance with an embodiment at block 4040, the
method tests 1f end of input was detected; 1f not, the method
returns control to the caller.

In accordance with an embodiment at block 4045, the
method tests 11 the recording should be evaluated; 1f not, the
method proceeds to block 4055.

In accordance with an embodiment at block 4050, the
method calls the evaluate-recording method (FIG. 6 A) of the
evaluation module to find and output database words match-
ing the recording.

In accordance with an embodiment at block 4055, the
method clears the recording, so 1t may acquire strokes for a
new word; and finally the method returns control to the caller.

The following pseudo code describes the logic ofapossible
embodiment of the method.

TABL.

L]
[

acquire-pointer(pointer p):

1. if p.action 1s POINTER_DOWN:

2. trace t = new trace
id-map[p.1d] = length(recording)
recording.append(t)
stroke-processing-module.initialize-trace(t, p)
return

. 1int index = 1d-map[p.1d]
. trace t = recording[index]
10. stroke-processing-module.analyze-pointer(t, p)

12. if p.action 1s POINTER_UP:
stroke-processing-module.finalize-trace(t)

int detect = detect-end-of-input{recording, t)

if detect 1s CONTINUE: return

if detect 1s EVALUATE:
evaluation-module.evaluate-recording(recording)

clear(recording)

clear(id-map)

S X e nESPESomuom s w

The Detect-End-of-Input Method of the Stroke Acquisition
Module 342:

The detect-end-of-input method detects 11 the user finished
inputting all strokes for a word and 11 the strokes should be
evaluated, 1n accordance with an embodiment of the disclosed
subject matter.

In accordance with an embodiment of the disclosed subject
matter, the method detects end of input for a word 11 the user
keystrokes a keyboard key corresponding to a delimiter; the
method includes additional tests to detect end of input for a
word automatically.

FIG. 4B 1s a flowchart of the detect-end-of-input method,
in accordance with an embodiment of the disclosed subject
matter.

In accordance with an embodiment at block 4100, the
method receives a recording and the trace t0 corresponding to
the last acquired pointer.

In accordance with an embodiment 1f the recording con-
tains traces that the acquire-method did not yet finalize, 1t
means the user 1s still inputting at least one stroke.

In accordance with an embodiment at block 4105, the
method tests 1f there exists an un-finalized trace 1n the record-
ing; 1f so, the method returns control with a value indicating
end of input was not detected.

In accordance with an embodiment, if the user inputs a
sweep, the system detects end of input for a word when the
user ends all contact with the multi-touch screen; this criteria
enables the user to mput multiple temporally overlapping
sweeps 1n sequence. Consequently, since at this point the

US 8,713,464 B2

15

method has already established that all traces were finalized,
if 1t finds a trace corresponding to a sweep, 1t concludes that
the user fimshed mputting all strokes for a word.

An embodiment of the disclosed subject matter may be
configured to disable this test depending on user preference °
settings stored 1n memory.

In accordance with an embodiment, a finalized trace cor-
responds to a sweep 11 1t has two or more trace keys (as will be

described below).

In accordance with an embodiment, at block 4110, the
method tests if there exists a trace 1n the recording that cor-
responds to a sweep; 1 so, the method returns control with a
value indicating end of input was detected and the recording,
should be evaluated. 5

In accordance with an embodiment of the disclosed subject
matter, the system enables the user to mput a word with
keystrokes.

In accordance with an embodiment of the disclosed subject
matter, the method may enable the user to signal the end ofa 20
keystroked word by keystroking the last letter of the word
with a defined temporal overlap with a previous keystroke, for
example by detaching the two keystroking fingers together
off the touch screen.

In accordance with an embodiment, the method determines 25
a keystroke t overlap with the latest keystroke t0 enough to
detect end of mput, 1f (t.end-t0.start)>(t0.end—-t0.start)*0.67,
but a different function may be used.

This mode relieves the user from having to keystroke
explicitly a delimiter such as the space key. In addition, 1t 30
provides for some words, a similar user experience to mput-
ting a word with two sweeps.

For example, the user may 1nput the two letter word “1s’, by
keystroking the keyboard key corresponding to the letter “1°
with the right hand thumb, and the keyboard key correspond- 35
ing to the letter ‘s’ with the left hand thumb, and detach the
two thumbs simultaneously to signal end of word.

An embodiment of the disclosed subject matter may be
configured to disable this test depending on user preference
settings stored 1n memory. 40

In accordance with an embodiment at block 4115, the
method tests 1 there exists a trace 1n the recording, other than
t0 that overlaps temporally with t0 a defined amount of time;
if so, the method returns control with a value indicating end of
input was detected and the recording should be evaluated. 45

In accordance with an embodiment, 11 the user keystrokes
a delimiter, the method will return a value indicating end of
input was detected but evaluation should not be done; this
mode may be used by the user to input words unknown to the
system. 50

In accordance with an embodiment at block 4120, the
method tests 1f t0 corresponds to a keystroke of a delimiter
key. I1 so, the method returns control with a value indicating,
end of mput was detected but the recording should not be
evaluated, otherwise 1t returns control with a value indicating 55
end of input was not detected.

In accordance with an embodiment of the disclosed subject
matter, the method may detect end of mnput by way of any
other appropriate process; for example, the system may allow
a user to input multiple sweeps 1in sequence without tempo- 60
rally overlapping them, by not including automatic detection
and by evaluating the recording when a delimiter 1s key-
stroked; or for example, the system may be configured to
disable specific end-of-input tests by user preference settings
stored 1n memory, or use other tests not described here. 65

The following pseudo code describes the logic of a possible
embodiment of the method.

10

16
TABL.

(Ll

2

detect-end-of-1nput(trace[| recording, trace t O):

1. for trace t in recording:
2. if not t.finalized: return CONTINUE

. for trace t in recording:
if length(t.keys) > 1: return EVALUATE

3

4

5

0.

7. for trace t 1n recording:

8. if t 1s not tO and (t.end - tO .start) > (tO .end — tO .start) * 0.67:
9. return EVALUATE

0.

1. if is-delimiter-key(first-element-in(tO .keys)):

2
3
4
5

recording.remove(tO)
return CLEAR

b bk

15. return CONTINUE

The Imtialize-Trace Method of the Stroke Processing Module
345:

The 1ni1tialize-trace method 1nitializes a new trace data to
represent an input stroke in accordance with an embodiment.
FIG. SA 1s a flowchart of the initialize-trace method 1n

accordance with an embodiment of the disclosed subject mat-
ter.

In accordance with an embodiment at block 5000, the
method receives the trace to mnitialize and a first pointer cor-

responding to the trace.

In accordance with an embodiment at block 5005, the
method appends the first pointer to the empty trace path.

In accordance with an embodiment at block 5010, the
method computes the keyboard key corresponding to the
pointer.

In accordance with an embodiment at block 5015, the
method computes the neighboring keys of the pointer.

In accordance with an embodiment, a keyboard key k 1s a
neighboring key of a pointer p, 11 p falls within the area of an
cllipse having major and minor radn twice the keyboard key
width and height, respectively, and centered at the center
point of k. Additionally or alternatively, 1t can be computed 11
a keyboard key 1s a neighboring key of a pointer p by way of
any appropriate process; for example, the system may use the
area ol a rectangle instead of an ellipse, or transform the area
of the ellipse to correspond to a velocity vector computed for
the pointer.

In accordance with an embodiment at block 5020, the
method creates a new trace key data structure and 1nitializes 1t
with the keyboard key, the neighboring keys, tlags it as a
landmark key, sets 1ts path index to the first pointer 1n the trace
path, and appends it to the list of trace keys.

In accordance with an embodiment, a trace includes a
temporary trace key (as will be described below), to represent
the next trace key not yet appended to the trace keys.

In accordance with an embodiment at block 5025, the
method sets the trace start time to the timestamp of the first
pointer, and creates the temporary trace key; then 1t returns
control to the caller of the method.

The following pseudo code describes the logic of a possible
embodiment of the method.

TABL

L1

3

initialize-trace(trace t, pointer p):
1. trace-key tk = new trace-key
2. tk.key = key-from-pointer(p)
3. tk.neighbors = neighbors-from-pointer(p)
4. tk.landmark = true
5. tk.path-index =0
6. t.keys.append(tk)

US 8,713,464 B2

17
TABLE 3-continued

7. t.path.append(p)
8. t.start = p.timestamp

9. t.tmp = new trace-key
10. t.finalized = false

The Analyze-Pointer Method of the Stroke Processing Mod-

ule 345:

In accordance with an embodiment the analyze-pointer
method progressively adds mnformation to a trace with each
input pointer.

FIG. 5B 1s a flowchart of the analyze-pointer method in
accordance with an embodiment of the disclosed subject mat-
ter.

In accordance with an embodiment at block 5100, the
method receives the last acquired pointer and the correspond-
ing trace.

In accordance with an embodiment at block 5105, the
method appends the pointer to the trace path.

In accordance with an embodiment at block 5110, the
method calls the compute-trace-key method (FIG. 5C) of the
stroke processing module to compute the next trace key.

In accordance with an embodiment at block 5115, the
method calls the compute-landmark method (FIG. 5D) of the
stroke processing module to compute the next landmark key;
then it returns control to the caller of the method.

The following pseudo-code describes the logic of a pos-
sible embodiment of the method.

TABLE 4

analyze-pointer(trace t, pointer p):
1. t.path.append(p)

2. compute-trace-key(t)

3. compute-landmark(t)

The Compute-Trace-Key Method of the Stroke Processing
Module 345:

The compute-trace-key method progressively computes
the sequence of trace keys corresponding to keyboard keys
traversed by a stroke 1n accordance with an embodiment.

One possible approach of an embodiment of the method,
would include determining the keyboard key activated by a
new pointer and creating a new trace key 1f the last trace key
corresponds to a different keyboard key. However, such an
approach may fail to handle correctly several cases. One case
1s stroke jitters that result in consecutive pointers jumping
back and forth between keyboard keys during a stroke. Addi-
tionally, 1t may compute staircases of keyboard keys for
diagonal strokes, and finally it may skip keyboard keys 1n case
a “hiccup” in the system results 1n a pointer that 1s several
keyboard keys away from the preceding pointer.

To handle the case where a pointer pl “qumps” several
keyboard keys away from the preceding pointer p0, an
embodiment of the method interpolates an intermediate
pointer p that 1s nearest to p0 but in the activation area of a
different keyboard key. FIG. 7A shows a pointer p0 710 in the
activation area of the keyboard key corresponding to the letter
‘F’, and a pointer p1 712 1n the activation area of the keyboard
key corresponding to the letter ‘B’, several keyboard keys
apart. This embodiment of the method interpolates an inter-
mediate pointer p 711 between p0 and pl at the nearest
location to p0 that 1s 1n the activation area of a different
keyboard key, 1n this case the keyboard key corresponding to
the letter ‘G’.

To handle the staircase and uttering stroke problem, an
embodiment of the method computes the distance traversed

10

15

20

25

30

35

40

45

50

55

60

65

18

by the stroke since first leaving the activation area of the
keyboard key corresponding to the last trace key. This
embodiment of the method will only create a new trace key
once the distance traversed meets a minimum threshold. FIG.
7B 1llustrates a stroke 720 traversing through the activation
area ol several keyboard keys. This embodiment of the
method does not generate a trace key for the keyboard key
corresponding to the letter ‘G’ since the distance traversed
721 does not meet the minimum threshold, whereas it gener-
ates a trace key for the keyboard key corresponding to the
letter °V’ since the distance traversed 722 does meet the
minimum threshold.

In accordance with an embodiment of the disclosed subject
matter, the method uses a temporary trace key to keep track of
the next trace key until 1t meets the minimum distance thresh-
old and added as a new trace key.

FIG. 5C 1s a flowchart of the compute-trace-key method 1n
accordance with an embodiment of the disclosed subject mat-
ter.

In accordance with an embodiment at block 5200, the
method recerves a trace to compute.

In accordance with an embodiment at block 5205, the
method looks up the two last pointers 1n the trace path as p0
and pl.

In accordance with an embodiment at block 5210, the
method interpolates an intermediate pointer p between p0 and
pl that 1s nearest to p0 but 1s 1n the activation area of a
different keyboard key; i no such pointer exists then it
assigns p with the value of p1. The process of interpolating the
pointer p can be implemented using any appropriate mterpo-
lation technique.

In accordance with an embodiment at block 5215, the
method computes the keyboard key k0 corresponding to p0.
The kevyboard key k0 may or may not be different from the
keyboard key of the last trace key.

In accordance with an embodiment at block 5220, the
method tests 1f the keyboard key k0 corresponds to the last
trace key; 11 not, the method proceeds to block 5245.

In accordance with an embodiment for each trace key, the
method computes 1ts neighboring keys as the union of the
neighboring keys of the pointers falling inside the activation
area ol the corresponding keyboard key, and the pointers
interpolated on the border of the activation area.

In accordance with an embodiment at block 5225, the
method computes the neighboring keys of p and adds them to
the set of neighboring keys of the last trace key.

In accordance with an embodiment, the method may keep
track of the length of the stroke segment corresponding to a
trace key, for example, for statistics, or debugging.

In accordance with an embodiment at block 5230, the
method computes the distance between p0 and p and adds 1t to
the length of the last trace key.

In accordance with an embodiment in the final interpola-
tion 1teration, which may be the first or a subsequent 1teration,
for example 11 both p0 and p1 fall within the activation area of
the same keyboard key, the interpolated pointer p equals pl.

In accordance with an embodiment at block 5235, the

method tests 1f the pointer p equals pl; 1f so, the method
returns control to the caller of the method.

In accordance with an embodiment at block 5240, the
method sets p0 with the value of p and returns to block 5210

for a new interpolation cycle.

The keyboard key k0 may be different than the keyboard
key of the temporary trace key if the stroke continues to a new
keyboard key before meeting the minmimum length threshold.

US 8,713,464 B2

19

In accordance with an embodiment at block 5245, the
method tests 11 the keyboard key k0 corresponds to the tem-
porary trace key; 1t so, the method proceeds to block 5260.

In accordance with an embodiment at block 5250, the
method sets the keyboard key of the temporary trace key to

the keyboard key k0.

In accordance with an embodiment at block 5255, the
method sets the neighboring keys of the temporary trace key
to the neighboring keys of p0.

In accordance with an embodiment at block 5260, the
method computes the neighboring keys of p and adds them to
the set of neighboring keys of the temporary trace key.

In accordance with an embodiment at block 5265, the
method computes the distance between p0 and p and adds 1t to
the length of the temporary trace key.

In accordance with an embodiment, the method uses a
mimmum length threshold of 30% of a keyboard key width,
but any other threshold may be used.

In accordance with an embodiment at block 5270, the
method tests 1f the length of the temporary trace key meets the

mimmum length threshold; 1f not, the method proceeds to
block 5235 for a new iteration.

In accordance with an embodiment at block 5275, the
method sets the path index of the temporary trace key to the
last pointer 1n the trace path, adds the temporary trace key to
the list of trace keys as a new trace key, and mitializes a new
temporary trace key; then, the method proceeds to block 5235
for a new 1teration.

The following pseudo code describes the logic of a possible
embodiment of the method.

TABL.

(L]
N

compute-trace-key(trace t):
1. pointer pO = t.path[length(t.path)-2]
2. pointer pl = t.path[length(t.path)-1]

3.
4. do:
5. pointer p = interpolate-at-key-boundary(p0O , pl)
6. key kO = key-from-pointer(p0O)
7.
8. if kO equal last-element-in(t.keys).key:
9. last-element-in(t.keys).neighbors +=
neighbors-from-pointer(p)
10. last-element-1n(t.keys).length += distance(pO , p)
11. if pl equal p: return 17
12. pU=p
13. continue
14.
15. if kO not equal t.tmp.key:
16. t.tmp.key = kO
17. t.tmp.neighbors = neighbors-from-pointer(pO)
18.
19. t.tmp.neighhors += neighbors-from-pointer(p)
20. t.tmp.length += distance(p0O , p)
21.
22. if t.tmp.length >= KEY_WIDTH * 0.3:
23. t.tmp.path-index = length(t.path) — 1
24, t.keys.append(t.tmp)
25. t.tmp = new trace-key
206.
27. if pl equal p: return
28. pU=p

The Compute-Landmark Method of the Stroke Processing
Module 345:

In accordance with an embodiment, the compute-landmark
method detects pointers corresponding to significant changes
in the direction of the stroke path, and 1s designed to be
isensitive to typical jitters and inaccuracies 1n the sequence
of pointers generated from touch sensitive screens systems 1n
response to contact.

10

15

20

25

30

35

40

45

50

55

60

65

20

FIG. 7C illustrates how the method operates 1n accordance
with an embodiment of the disclosed subject matter; the
method walks a defined Euclidean distance 765 back the trace
path 750, from the latest pointer p0 755, to a pointer px 760
interpolated between two trace path pointers; then 1t com-
putes the ratio between the walk distance 765 and the direct
Euclidean distance 770 between p0 and px. A ratio of 1:1
corresponds to a straight line, while a small ratio corresponds
to an infliction 1n the path. It the ratio falls below a defined
threshold, the method locates the landmark pointer as the
pointer pl 780 between p0 and px, which maximizes the
perimeter of the triangle 775 defined by the three pointers.

In accordance with an embodiment of the disclosed subject
matter, the method uses a walk distance of 85% the height of

a keyboard key, and a threshold ratio of 1/sqrt(2). The thresh-

old ratio of 1/sqrt(2) 1s used since 1t 1s the ratio between the
hypotenuse and the sum of the other two sides in a right angle
triangle, and 1s therefore the ratio corresponding to a perfect
right angle change of direction 1n the stroke path. However, a
different embodiment of the disclosed subject matter may use
a different ratio and/or walk distance.

FIG. 5D 1s a flowchart of the compute-landmark method, 1n
accordance with an embodiment of the disclosed subject mat-
ter.

In accordance with an embodiment at block 5300, the
method recerves a trace to compute.

In accordance with an embodiment at block 5305, the
method “walks™ a defined Euclidean distance down the
recorded trace path to a pointer px that 1t interpolates between
two consecutive trace path pointers; however, the method will
not walk beyond a previous landmark pointer.

In accordance with an embodiment at block 5310, the
method tests 11 the entire distance was walked successiully; 1T
not, the method returns control to the caller of the method.

In accordance with an embodiment at block 5315, the
method computes the Euclidean distance between the two
endpoints of the walked path segment.

In accordance with an embodiment at block 5320, the
method computes the ratio between the defined walk dis-
tance, and the Euclidean distance between the two endpoints
of the walked segment.

In accordance with an embodiment at block 5325, the
method tests 1f the computed ratio 1s smaller than 1/sqrt(2); 1T
not, the method returns control to the caller of the method.

In accordance with an embodiment at block 5330, the
method finds, 1n the walked path segment, the trace path
pointer that maximizes the perimeter of the triangle defined
by the pointer and the two endpoints of the walked segment.

In accordance with an embodiment the computed pointer1s
designated the landmark pointer.

In accordance with an embodiment at block 5335, the
method computes the Fuclidean distance between the new
landmark pointer and the previous landmark pointer.

In accordance with an embodiment at block 5340, the
method tests 1 the computed distance meets a minimum
spacing threshold; if not, the method discards the new land-
mark pointer to keep minimal landmark spacing, and returns
control to the caller of the method.

In accordance with an embodiment, the method uses a
landmark spacing threshold of one keyboard key height, but
any other threshold may be used.

In accordance with an embodiment at block 5345, the
method calls the set-landmark-key method of the stroke pro-
cessing module to find the corresponding trace key and mark
it as a landmark key.

US 8,713,464 B2

21

An embodiment of the disclosed subject matter may use
any other appropriate technique to locate trace path pointers
corresponding to significant changes in the direction of the

trace path.
The following pseudo code describes the logic of a possible
embodiment of the method.

TABL.

L1
N

compute-landmark(trace t):

. pointer p0O = last-element-in(t.path)

. float segment-length = O

. floatd =0

. 1nt prev-landmark = previous-landmark-index(t) 19
. 1nt 1 = length(t.path) — 2

. while 1 > prev-landmark:

pointer pl = t.path[i]

d = distance(pO , pl)

if segment-length + d >= WALK_DISTANCE:
break

segment-length +=d

p0 =pl

——

. 1f segment-length + d < WALK_DISTANCE:
return

0 NO U R LD D0 0N YR W

O

. float ratio = (WALK_DISTANCE - segment-length) / d

N
=

. pointer px = linear-combination(p0 , pl , ratio)
21. pointer pO = last-element-in(t.path)
22.
23. 1f distance(pO , px) > WALK_DISTANCE / sqrt(2):
24. return
25.
26. int new-landmark = 0O
27. float max-legs =0
28.
29. while 1 < length(t.path) - 2:
30. 1++
31. float legs = distance(p0 , t.path[i]) + distance(p x ,
t.path[1])
32. if max-legs < legs:
33. max-legs = legs
34, new-landmark =1
35.
36. pointer pO = t.path[prev-landmark]

37.
38.
39.
40.
41.

pointer pl = t.path[new-landmark]
if distance(pO , pl) <KEY_HEIGHT:
return

set-landmark-key(t, new-landmark)

The Set-Landmark-Key Method of the Stroke Processing
Module 345:

In accordance with an embodiment, the method finds the
trace key corresponding to a landmark pointer and marks 1t as
a landmark key. The landmark pointer may correspond to one
of the existing trace keys or to the temporary trace key. If the
pointer corresponds to the temporary trace key, the method
adds the temporary trace key to the list of trace keys.

FIG. 5E 1s a flowchart of the set-landmark-key method in
accordance with an embodiment of the disclosed subject mat-
ter.

In accordance with an embodiment at block 5400, the
method receives a trace to compute and the index of the
landmark pointer 1n the trace path.

In accordance with an embodiment at block 5405, the
method computes the keyboard key k0, corresponding to the
landmark pointer.

In accordance with an embodiment at block 5410, the
method tests 11 k0 1s different from the keyboard key of the last
trace key, and 11 the path index of the last trace key precedes
the index of the landmark pointer; 11 not, the method proceeds

to block 5420.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

In accordance with an embodiment if the landmark pointer
comes after the path index of the last trace key and corre-
sponds to a different keyboard key 1t means that 1t corre-
sponds to a keyboard key that has not yet met the minimum
length threshold required for a new trace key.

In accordance with an embodiment at block 54185, the
method 1mitializes a new trace key as a landmark key from the
landmark pointer, adds 1t to the trace keys, and then returns
control to the caller of the method.

In accordance with an embodiment at block 5420, the
method iterates backwards the list of trace keys until 1t finds
the trace key corresponding to the landmark pointer and
marks it as a landmark key.

The following pseudo code describes the logic of a possible
embodiment of the method.

TABL.

7

(Ll

set-landmark-key(trace t, int landmark-index):
1. key landmark-key = key-from-pointer(t.path[landmark-index])

. 1f last-element-1n(t.keys).path-index <= landmark-index and
last-element-in(t.keys).key not equal landmark-key:
t.tmp.key = landmark-key

t.tmp.landmark = true

t.tmp.path-index = landmark-index
t.keys.append(t.tmp)

t.tmp = new trace-key

return

12. int 1 = length(t.keys) — 1
13. while t.keys[1].path-index > landmark-index:
i——

16. if t.keys[1].key not equal landmark-key:
1++

. t.keys[i].landmark = true
. t.keys[i].path-index = l[andmark-index

SOV -1a D WN—=OWo-Ja A W

L b b b
L L L

The Finalize-Trace Method of the Stroke Processing Module
345:

FIG. 5F 1s a flowchart of the finalize-trace method of the
stroke processing module 345 1n accordance with an embodi-
ment of the disclosed subject matter.

In accordance with an embodiment at block 5500, the
method recerves the trace to finalize.

In accordance with an embodiment at block 5505, the
method sets the end time of the trace to the timestamp of the
last pointer 1n the trace path and marks the trace as finalized.

In accordance with an embodiment the method discards the
last landmark 11 required, to keep minimal landmark spacing
from the last pointer of the trace.

In accordance with an embodiment at block 5507, the
method finds the last landmark key in the trace keys, and tests
if 1t 1s the first trace key; 1t so, the method proceeds to block
5525.

In accordance with an embodiment at block 5510, the
method computes the Euclidean distance between the last
pointer 1n the trace path and the pointer corresponding to the
last landmark key.

In accordance with an embodiment at block 5515, the
method tests 1f the computed distance meets the minimum
landmark spacing threshold; it so, the method proceeds to
block 5525.

In accordance with an embodiment at block 5520, the
method resets the last landmark key to a non-landmark key,
that 1s, a regular trace key.

In accordance with an embodiment of the disclosed subject
matter, 11 the length of the temporary trace key of a finalized
trace 1s greater than zero 1t means the corresponding stroke

US 8,713,464 B2

23

ended 1n the activation area of a keyboard key before meeting
the minimum length threshold for a new trace key.

In accordance with an embodiment at block 5525, the
method tests 1f the length of the temporary trace key of the
trace 1s greater than zero; 1f not, the method proceeds to block
5535.

In accordance with an embodiment at block 5530, the
method adds the temporary trace key as the last trace key.

In accordance with an embodiment at block 5535, the
method sets the last trace key as a landmark key.

In accordance with an embodiment when the user key-
strokes a keyboard key, the effective result may be a stroke of
some actual length; in particular, the first and last pointers of
the keystroke may activate different keyboard keys. To dis-
tinguish between an intended keystroke and a sweep the
method uses a mimimum sweep length threshold of half the
width of a keyboard key, but a different mimmimum sweep
length threshold may be used instead.

In accordance with an embodiment at block 5540, the
method tests 11 the Euclidean length of the trace path meets
the minimum sweep length threshold; if so, the method
returns control to the caller of the method.

In accordance with an embodiment at block 5545, the
method removes all trace keys except the last trace key, in
elfect, classifying the stroke as a keystroke.

The following pseudo code describes the logic of a possible
embodiment of the method.

TABL.

(L]
o0

finalize-trace(trace t):
. t.end = last-element-in(t.path).timestamp
. t.finalized = true

. pointer pO = last-element-1n(t.path)
. 1nt 1 = length(t.keys) — 1
. while 1> 0:
if t.keys[i].landmark:
pointer pl = t.path[t.keys[1].path-index]
if distance(pO , pl) < KEY_HEIGHT:
t.keys[i].landmark = false
break

i——

14. if t.tmp.length > O:
t.keys.append(t.tmp)

17. last-element-in(t.keys).landmark = true

18. last-element-in(t.keys).path-index = length(t.path) - 1

19.

20. if length(t.keys) == 2 and

21. t.keys[O].length + t.keys[1].length < KEY_WIDTH * 0.5:
22. remove-first(t.keys)

00 ~1 O D W= O 000y W

The Evaluate-Recording Method of the Evaluation Module
344:

The evaluate-recording method computes a list of candi-
date words that match a recording in accordance with an
embodiment of the disclosed subject matter.

In accordance with an embodiment the method 1terates a
database of words that correspond to dictionary words 1n a
given language; for each word 1n the database, the method
computes the normalized word and takes 1t through a
sequence ol computations; the sequence comprises fast fil-
tering, matching, and optionally adjusting the match score.

In accordance with an embodiment, the method may use
various schemes to store words 1n the database, for example,
sort the database by the frequency of words 1n the language,
include grammatical information with each word, and
include the normalized form of the word 1n the database to
reduce computation time, and so on.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

It 1s advantageous if the evaluate-recording method com-
pletes quickly; the user may perceive the system as unrespon-
stve 1f the method takes longer than 200 ms to complete. The
performance of the system depends on various factors, for
example, the performance of the system hardware compo-
nents, the technology used by the operating system, and the
specific embodiment of the disclosed subject matter.

For example, an embodiment of the disclosed subject mat-
ter having a 800 MHz ARMv6 CPU and an ANDROID 2.3
operating system may be able to iterate a 100,000 words
dictionary within 50 to 150 ms, by employing specific per-
formance optimizations particular to that system. The com-
bination of the ANDROID operating system with the ARMv6
CPU 1s notable for extremely slow memory allocation and
data structures such as maps, sets and lists; the embodiment
may work around these limitations by avoiding memory allo-
cations at performance hotspots, and by using low level table
lookups, prepared for each recording prior to iterating the
database. An example for such a lookup table 1s a Boolean
array indicating 1f a character corresponds to a neighboring
key of a trace key. However, since performance optimizations
that may be specific to certain embodiments of the disclosed
subject matter are well known 1n the art, and may be created
using well-known engineering methods, they are not
described further in this description.

In accordance with an embodiment, the method may stop
iterating the database after a defined time elapsed, to keep the
system responsive. If the method iterates the words 1n the
database 1n descending frequency order, 1t will still iterate the
most frequent words.

FIG. 6A 1s a flowchart of the evaluate-recording method 1n
accordance with an embodiment.

In accordance with an embodiment at block 6000, the
method recerves the recording.

In accordance with an embodiment at block 6005, the
method iterates each word entry 1n the database of words.

In accordance with an embodiment, the method calls the
tast-filter method (FIG. 6B) to determine quickly 11 a normal-
1zed word can possibly match the recording; the purpose of
the fast filter method 1s to reduce the time to evaluate a
recording to an acceptable level, and 1t may or may not be
required 1n a system that can evaluate the recording quickly
without it, for example, future hardware that would perform
computations an order of magmtude faster than contempo-
rary hardware may or may not require the fast filter.

In accordance with an embodiment at block 6010, the
method calls the fast-filter method to determine quickly 11 the
normalized word can possibly match the recording.

In accordance with an embodiment at block 6015, the
method tests 1f the normalized word passed the fast filter; 1T
not, the method proceeds to a new iteration at block 6005.

In accordance with an embodiment at block 6020, the
method calls the match method to determine 1f, and how well,
the normalized word matches the recording.

In accordance with an embodiment at block 6025, the
method tests 1f the normalized word matched the recording; 1T
not, the method proceeds to a new iteration at block 6005.

In accordance with an embodiment at block 6030, the
method may adjust the match score of the word, computed by
the match method, using various considerations, for example,
by word frequency 1n the language or 1n text generated pre-
viously by the user, by language model, and so on.

In accordance with an embodiment, the system includes a
database of 100,000 word forms of the English language
sorted by descending frequency; according to Zipt’s law, the
frequency of each word 1s reversely proportional to 1ts rank 1n
such a database. The method adjusts the score of each

US 8,713,464 B2

25

matched word with a scalar computed as 100-log(rank) 3/15,
but other functions may be used.

In accordance with embodiment of the disclosed subject
matter, the system may use any other appropriate natural
language processing technique to adjust the score of a
matched word; for example the system may use statistics of
bigrams and colocations 1n text previously iput by user; for
example, the system may analyze grammar of input text, or
adjust the frequency of words 1n the word database to retlect
frequency 1n text previously mput by user, and similar
enhancements.

In accordance with an embodiment at block 6035, the
method adds the matched word and its score to a list of
candidate words.

In accordance with an embodiment at block 6040, the
method, proceeds to a new 1teration at block 6005 if there are
more entries 1n the database.

In accordance with an embodiment at block 6045, the
method sorts the candidate words by their score and sends the
sorted list of candidate words to the soft keyboard for output.

The following pseudo code describes the logic of a possible
embodiment of the method.

TABL

(L.
\O

evaluate-recording(trace[| traces):
1. list candidates = new list
2. 1nt score
3.
. for entry e 1in descending-frequency-sorted-dictionary:
if not fast-filter(e.normalized-word, traces):
continue

score = match(e.normalized-word, traces):
if score == -1:
continue

score += 100 - log(e.rank) "3/15

4
5
6
7
8
9.
10.
11
|2
3 candidates.append({score, e.word))
|4
5
|6

15. sort-by-descending-score(candidates)
. output(candidates)

The Fast-Filter Method of the Evaluation Module 344:

In accordance with an embodiment, the fast filter method
comprises a sequence of tests designed to determine quickly
if a given word can possibly match the recording.

In accordance with an embodiment, the purpose of the fast
filter method 1s to reduce the time to evaluate arecording to an
acceptable level; 1t consists of a sequence of tests that can be
performed quickly and combine to eliminate a significant
percent of tested words.

In accordance with an embodiment, the individual tests are
ordered from the simplest to the most computationally heavy.

An embodiment of the disclosed subject matter may per-
form additional and/or different tests, 1n the same or in dit-
terent order than that described here.

In accordance with an embodiment, 1t 1s noted that the
described tests may be optimized to use simple table lookups
that may be computed quickly.

It 1s noted that the defimitions of the start key, end key, trace
cover and landmark cover, are derived from the set of condi-
tions and the definition of the order relation (as will be
described below), and that an embodiment of the disclosed
subject matter may use and implement different definitions.

FIG. 6B 1s a flowchart of the fast-filter method 1n accor-
dance with an embodiment of the disclosed subject matter.

In accordance with an embodiment at block 6100, the
method recerves the recording and a normalized word.

5

10

15

20

25

30

35

40

45

50

55

60

65

26

In accordance with an embodiment at block 6105, the
method tests 11 the first character of the word corresponds to
a start key of the recording; 11 not, the method returns control
with False as result.

In accordance with an embodiment the fast filter tests 1f the
last character of the word corresponds to an end key. In one
embodiment of the disclosed subject matter, an end key 1s a
neighboring key of the last trace key of any trace with an end
time later than the start time of the ending trace of arecording.
This defimition enables the user to end contact with the touch
screen with either finger first. It allows for a natural and more
relaxed user experience. It also means the last character of a
word need not correspond to the location or time of the last
point of contact with the touch screen.

In accordance with an embodiment at block 6110, the
method tests 11 the last character ol the word corresponds to an
end key of the recording; 11 not, the method returns control
with False as result.

In accordance with an embodiment at block 6115, the
method tests 1f the recording 1s a trace cover of the normalized
word; 1f not, the method returns control with False as result.

In accordance with an embodiment, a collection of traces s,
1S a trace cover of a normalized word w, 1t for each character
c 1n w, there exists a trace key k 1n a trace 1n s, such that c 1s
the main character of a neighboring key of k; the method may
compute 1f the recording 1s a trace cover of the normalized
word by way of any appropriate process.

In accordance with an embodiment at block 6120, the
method tests 1 the normalized word 1s a landmark cover of the
recording; 1i not, the method returns control with False as
result.

In accordance with an embodiment, a normalized word w
1s a landmark cover of a collection of traces s, 1t for each
landmark key k 1n a trace 1n s,, there exists a character ¢ in w,
such that ¢ 1s the main character of a neighboring key of k; the
method may compute 1f the normalized word 1s a landmark
cover of the recording by way of any appropriate process.

Finally, In accordance with an embodiment the method
returns control with True as the result.

The following pseudo code describes the logic ofapossible
embodiment of the method.

TABLE 10

fast-filter(string word, trace[] traces):
. 1f word[0O] not in start-keys-of(traces):
return false

. 1f word[length(word)-1] not 1n end-keys-of(traces):
return false

.inti1=1

. while 1 < length(word) — 1:

if word[1] not in cover-of(traces):
return false

. set landmarks = new set

. for char ¢ 1n word:

for key | in get-landmarks-covered-by-char(c, traces):
landmarks +=1

16. if length(landmarks) < length(get-landmarks(traces)):

return false

00N WN S OO0 N R W

. return true

The match method of the evaluation module In accordance
with an embodiment the match method determines 1f and how
well a normalized word matches a collection of traces.

In accordance with an embodiment, the method computes
recursively all matches between an input string and an input
collection of traces; the method scores each match and out-
puts the best score.

US 8,713,464 B2

27

In accordance with an embodiment, the mput string 1s
assumed to be a normalized string and the collection of traces
1s assumed to consist of traces having distinct start times.

In accordance with an embodiment, a match between a
string and a collection of traces may be seen as a mapping
from characters of the string into trace keys of the collection
of traces that satisfies the following conditions:

1. A character 1n the input string may be matched to
(mapped to) a trace key 11 and only 11 1t 1s the main character
of a neighboring key of the trace key.

2. All landmark keys 1n the collection of traces must be
matched to (mapped from) characters 1n the input string.

3. A single trace key may only be matched to a single
character, or multiple instances of the same character.

4. For each pair of trace keys that are matched to characters
ol the input string, 1f the trace keys are ordered 1n respect to
cach other, that order must be preserved by the corresponding
characters 1n the iput string.

In accordance with an embodiment, the following partial
order relation 1s defined on trace keys 1n a collection of traces:

1. Within a trace, all trace keys are naturally ordered in
respect to each other.

2. I a trace A ends before a trace B starts, then the trace
keys of A precede the trace keys of B.

3. If a trace A starts before a trace B starts, then the first
trace key of A precedes the trace keys of B.

It 1s noted that the described set of conditions and the
definition of the order relation were chosen since they balance
simplicity of implementation, matching accuracy and usabil-
ity; however, the conditions and/or order relation may be
modified 1n various ways to produce different system behav-
1ior. For example, the third statement of the order relation
definition may be modified to “If a trace A starts t millisec-
onds or more before a trace B starts . . . ” to increase matching
freedom; notably, this will affect the definition of the start key,
and may remove the requirement for distinct start times of the
input collection of traces. For another example, the system
may be modified to allow a letter not to match any trace key,
to make the system tolerant to missing letters. On the other
hand, more conditions may be itroduced, for example, the

system may record the time of landmarks and use it for
ordering trace keys.

It 1s noted that the defimitions of the start key, end key, trace
cover and landmark cover are dertved from the described set
of conditions and the definition of the order relation, and that
an embodiment of the disclosed subject matter may use and
implement different definitions. For example, and end key
may be defined to include only neighboring keys associated
with the last trace key of the ending trace 1n a recording, or a
start key may be defined to include neighboring keys associ-
ated with the first trace key of any trace with a start time that
1s early enough 1n the recording.

In accordance with an embodiment, the method uses a
working set of traces to keep track of the matching conditions
eiliciently; the working set 1s a data structure consisting of
traces, and for each trace an indication of the latest trace key
and the character of the mput string that were matched.

In accordance with an embodiment, a trace in the working
set 15 said to be consumed if its last trace key was matched,
and a working set 1s said to be empty 11 1t has no unconsumed
traces; the method may remove a consumed trace from the
working set.

In accordance with an embodiment, the trace keys follow-
ing the latest matched trace key 1n a trace are said to be
unmatched.

10

15

20

25

30

35

40

45

50

55

60

65

28

In accordance with an embodiment, the method may only
add a trace to the working set 11 1ts trace keys are not ordered
in respect to unmatched trace keys in the working set.

In accordance with an embodiment, the trace keys of atrace
in the working set, starting with the latest matched trace key
and ending with the first following unmatched landmark key,
are said to be matchable.

In accordance with an embodiment, to compute a match
recursively, the method matches the first character of the input
string to a matchable trace key, and then matches the rest of
the string recursively, which is a strictly smaller sub problem.

FIG. 6C 1s a tlowchart of the match method 1n accordance
with an embodiment of the disclosed subject matter.

In accordance with an embodiment at block 6200, the
method receives a string, a collection of traces, and a working
set.

In accordance with an embodiment, the method expects a
normalized string and a collection of traces having distinct
start times; when the evaluation method calls the match
method 1t sends a normalized word, the recording, and an
empty working set.

In accordance with an embodiment at block 6205, the
method tests if the string 1s empty; i1 not, the method proceeds
to block 6215.

In accordance with an embodiment at block 6210, the
method tests 1f the working set and the collection of traces are
empty; 11 so, the method returns control with a score of zero
corresponding to the trivial match, otherwise 1t returns con-
trol with a value indicating no-match, since the remaining
trace keys cannot be matched to an empty string.

In accordance with an embodiment, the trace keys of atrace
in the working set, starting with the latest matched trace key
and ending with the first following unmatched landmark key,
are said to be matchable trace keys.

In accordance with an embodiment at block 6215, the
method iterates the matchable trace keys 1n the working set,
skipping trace keys that cannot be matched to the first char-
acter of the mput string.

It1s noted that 1n accordance with an embodiment when the
evaluation module calls the method 1t sends an empty work-
ing set, and therefore no trace keys are imtially 1terated, and
control proceeds to block 6240 to add the earliest trace to the
working set.

It1s noted that 1n accordance with an embodiment while the
latest matched trace key of a trace remains matchable, 1t may
only be matched to a new instance of the same character with
which 1t 1s already matched. For example FIG. 1E illustrates
two strokes 190, 195 corresponding to the word ‘again’; the
method matches the third letter of the word, the letter ‘a’, to
the keystroke on the left 190 again, after 1t has already
matched the first letter of the word with that keystroke.

In accordance with an embodiment at block 6220, the
method makes a copy of the working set and updates 1t to
indicate the trace key and the first character of the string
matched to 1t, and then calls recursively the match method
with the rest of the string and the updated working set.

In accordance with an embodiment at block 6225, the
method tests 1f the recursive call matched the suifix of the
string; 11 not, the method proceeds to the next match iteration
at block 62135.

In accordance with an embodiment at block 6230, the
method scores the match of the first character of the input
string with the 1teration trace key, and combines 1t with the
score for the sullix of the string.

In accordance with an embodiment, the method scores the
match with 20 points 11 the first character of the input string
corresponds to the keyboard key of the matched trace key, and

US 8,713,464 B2

29

with another 20 points 11 the trace key 1s a landmark key, and
then the method adds the score computed by the recursive
call.

In accordance with an embodiment of the disclosed subject
matter, the method may use additional and/or different scor-
ing schemes. For example, the method may keep track of the
distance of each neighboring key from the path segment cor-
responding to the trace key and score a match based on that
distance. For example, the method may penalize the match 1f
the path distance traversed since the previously matched trace
key, 1s sigmficantly longer than the Euclidean distance
between the locations of the corresponding keyboard keys,
and so on.

In accordance with an embodiment at block 6235, the
method keeps track of the best score so far, and proceeds to
the next iteration at block 62135.

In accordance with an embodiment when the method fin-
ishes iterating the matchable trace keys of the working set, 1t
tries to expand the working set with a new trace from the
collection of traces. More specifically, the method finds the
trace with the earliest start time 1n the collection of traces, and
if 1ts trace keys are not ordered 1n respect to unmatched trace
keys 1n the working set, the method removes the trace from
the collection of traces and adds it to the working set.

In accordance with an embodiment at block 6240, the
method calls the get-next-trace method (FIG. 6D), to com-
pute 1f 1t may move the earliest trace in the input collection of
traces, to the working set.

In accordance with an embodiment at block 6245, the
method tests 1f 1t may move the earliest trace, and 11 its first
trace key can be matched to the first character of the input
string; 11 not, the method returns control to the caller with the
best score so far or a value indicating no-match.

In accordance with an embodiment at block 6250, the
method removes the earliest trace from the input collection of
traces, adds it to the working set, and indicates 1ts first trace
key 1s matched to the first character of the input string; then
the method calls the match method recursively with the rest of
the mput string, the updated collection of traces and the
updated working set.

In accordance with an embodiment at block 6255, the
method tests 1f the recursive call matched the suilix of the
string; 11 not, the method returns control to the caller with the
best score so far or a value indicating no-match.

In accordance with an embodiment at block 6260, the
method scores the match of the first character of the input
string with the 1teration trace key, and combines 1t with the
score for the sullix of the string.

In accordance with an embodiment, the method then
returns control with the best score so far or a value indicating,
no-match.

In accordance with an embodiment of the disclosed subject
matter, the structure of the described recursion may be modi-
fied 1n various ways. For example, the method may use tail
recursion and compute the score of the entire match branch at
the stop condition of the recursion; for example, the method
may be modified from recursion to iteration, and so forth.

In accordance with an embodiment of the disclosed subject
matter, the method may compute a function of the match
scores other than the best score; for example, the sum of all
scores, or an average of the scores, or any other appropriate
function.

The following pseudo code describes the logic of a possible
embodiment of the method; 1t uses the PYTHON language
notation for sequence slicing, for example, str[1:] 1s the

10

15

20 1

25

30

35

40

45

50

55

60

65

30

proper sullix of str starting with the second character. The
pseudo code assumes the traces 1n remaining-traces are sorted
by their start times.

TABLE 11

match(string str, trace[| remaining-traces, work-trace[| working-set):
1. if length(str) == 0O:

2. if length(remaining-traces) > 0O:
3. return -1
4. for work-trace wo 1n working-set:
5. if length(wo.trace) > wo.index + 1:
0. return —1
7. return O
8.
9. score = -1
10. char ¢ = str[0]
11.
12.int1=0
13. while 1 < length(working-set):
14. work-trace wo = working-set/[1]
15. if ¢ not 1in cover-of(wo.trace.):
16. 1++
7. continue
18.
19. int | = wo.index
20. if ¢ != wo.char:
21. J++
22.
23. while | <length(wo.trace.keys):
24, trace-key tk = wo.trace.keys|[j]
25. if ¢ 1n tk.neighbors:
26. work-trace[| working-setO = copy(working-set)
27. working-setO[1].index = |
28. working-setO[1].char = ¢
29.
30. int score0 = match(str[1:], remaining-traces,
working-set0)
31. if scored > —1:
32. if ¢ equals tk.key:
33. scorel += 20
34, if tk.landmark:
35. scorel) += 20
36. score = max(score, score()
37.
38. if | > wo.index and tk.landmark:
39. break
40. J++
41. 1++
42,
43. if not get-new-work-trace(traces, working-set):

44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62. return score

refurn score

trace t = remaining-traces|0]
if ¢ not 1n t.keys[0].neighbors:
return score

work-trace wo = new work-trace
wo.trace =1t

wo.ndex =0

wo.char =c¢

working-set.append(wo)

int score0 = match(str[1:], remaimming-traces[1:], working-set)
if score0 > —1:
if ¢ equals trace.key:
scorel += 40
score = max(score, score()

The Get-Next-Trace Method of the Evaluation Module 344:
The method tests if the trace having the earliest start time 1n

the collection of traces may be added to the working set in
accordance with an embodiment.

FIG. 6D 1s a flowchart of the get-next-trace method 1n
accordance with an embodiment of the disclosed subject mat-

ter.
In accordance with an embodiment at block 6300, the
method recerves a collection of traces and a working set.

US 8,713,464 B2

31

In accordance with an embodiment at block 6305, the
method tests 1f the collection of traces 1s empty; if so, the
method returns control with False as result.

In accordance with an embodiment at block 6310, the
method tests 1f the working set 1s empty; 1f so, the method
returns True as the result.

In accordance with an embodiment at block 6315, the
method finds the earliest end time of a trace 1n the working set.

In accordance with an embodiment at block 6320, the
method tests 11 the start time of the earliest trace in the input
collection of traces 1s later than the earliest end time; 1f not,
the method returns control with True as the result.

In accordance with an embodiment at block 6325, the
method looks for a consumed trace 1n the working set, having,
the earliest end time; it the method finds none, it returns
control with False as the result.

In accordance with an embodiment at block 6330, the
method removes the consumed trace from the working set.

In accordance with an embodiment at block 6335, the
method calls recursively the get-next-trace method (FIG.
6D).

Finally, 1n accordance with an embodiment the method
returns control with the result from the recursive call.

The following pseudo code describes the logic of a possible
embodiment of the method. The pseudo code assumes the
traces 1n remaining-traces are sorted by their start times.

TABLE 12

get-next-trace(trace| | remaining-traces, work-trace| | working-set):
1. if length(remaining-traces) == 0:
2. return false
3.
4. 1if length(working-set) == O:
: return true
. 33
. 1nt end-time = working-set[0].trace.end
. for work-trace wo 1n working-set:
end-time = min{end-time, wo.trace.end)

11. if remaining-traces|[0].start <= end-time:
return true

SR ESo®aew

14. for work-trace wo 1n working-set:
15. if wo.trace.end == end-time and
wo.index + 1 >= length(wo.trace.keys):

16. working-set.remove(wo)

17. return get-new-work-trace(remaining-traces,
working-set)

1%.

19. return false

It 1s to be understood that the presently disclosed subject
matter 1s not limited 1n 1ts application to the details set forth in
the description contained herein or 1llustrated in the drawings.
The presently disclosed subject matter 1s capable of other
embodiments and of being practiced and carried out 1n vari-
ous ways. Hence, 1t 1s to be understood that the phraseology
and terminology employed herein are for the purpose of
description and should not be regarded as limiting. As such,
those skilled 1n the art will appreciate that the conception
upon which this disclosure 1s based can readily be utilized as
a basis for designing other structures, methods, and systems
for carrying out the several purposes of the presently dis-
closed subject matter.

It1s also to be understood that any of the methods described
herein can include fewer, more and/or different stages than
illustrated in the drawings, the stages can be executed 1n a
different order than illustrated, stages that are illustrated as
being executed sequentially can be executed 1n parallel, and/
or stages that are illustrated as being executed 1n parallel can

5

10

15

20

25

30

35

40

45

50

55

60

65

32

be executed sequentially. Any of the methods described
herein can be implemented instead of and/or 1n combination
with any other suitable techniques.

It 1s also to be understood that certain embodiments of the
presently disclosed subject matter are applicable to the archi-
tecture of system(s) described herein with reference to the
figures. However, the presently disclosed subject matter 1s not
bound by the specific architecture; equivalent and/or modi-
fied functionality can be consolidated or divided 1n another
manner and can be implemented 1n any appropriate combi-
nation of software, firmware and/or hardware. Those versed
in the art will readily appreciate that the presently disclosed
subject matter 1s, likewise, applicable to any suitable archi-
tecture implementing a text input system.

It 1s also to be understood that for simplicity of description,
some of the embodiments described herein ascribe a specific
method stage and/or task to a particular module within the
system. However 1n other embodiments the specific stage
and/or task can be ascribed more generally to the system,
and/or more specifically to any module(s) 1n the system.

It 1s also to be understood that the system according to the
presently disclosed subject matter can be, at least partly, a
suitably programmed computer. Likewise, the presently dis-
closed subject matter contemplates a computer program
being readable by a computer for executing the method of the
presently disclosed subject matter. The subject matter further
contemplates a machine-readable memory tangibly embody-
ing a program of mstructions executable by the machine for
executing a method of the subject matter.

Those skilled 1n the art will readily appreciate that various
modifications and changes can be applied to the embodiments
of the presently disclosed subject matter as hereinbefore
described without departing from its scope, defined 1n and by
the appended claims.

It should be appreciated that the above described methods
and apparatus may be varied 1n many ways, including omiat-
ting or adding steps, changing the order of steps and the type
of devices used. It should be appreciated that different fea-
tures may be combined in different ways. In particular, not all
the features shown above in a particular embodiment are
necessary in every embodiment of the disclosure. Further
combinations of the above features are also considered to be
within the scope of some embodiments of the disclosure. It
will also be appreciated by persons skilled in the art that the
present disclosure 1s not limited to what has been particularly
shown and described hereinabove.

We claim:
1. A method of inputting a text word intended by a user in
a computerized system using a virtual keyboard, comprising:
recording two or more strokes, wherein in each stroke the
user forms contact with the virtual keyboard and main-
tains contact forming a trace path traversing through
multiple keyboard keys, representing letters of the word.,
wherein the user can enter as many letters of the word as
desired 1n each stroke;
identitying the word based on the recording; and
wherein two or more distinct letters of the word are
selected from the trace path of a first stroke of the two or
more strokes and at least one letter ol the word appearing
between the letters selected from the first stroke 1s
selected from a different stroke that overlaps temporally
with the first stroke.
2. A method according to claim 1, wherein 1n each trace
path, keys representing the letters of the word are traversed in
the order of appearance 1n the word.

US 8,713,464 B2

33

3. A method according to claim 1, wherein each of the keys
representing letters of the word are traversed 1n the order of
appearance in the word.

4. A method according to claim 1, wherein the first letter of
the word 1s selected by an 1nitial contact of one of the strokes
with the virtual keyboard before contact by any other stroke.

5. A method of claim 1, further comprising a third stroke,
wherein all the keys of a trace path formed by the third stroke
that starts after completion of the first and second strokes are
considered to represent letters of the word appearing aiter the
letters represented by the keys of the trace paths of the first
and second strokes.

6. A method according to claim 1, wherein end of 1input for
the word 1s determined by releasing contact from the virtual
keyboard.

7. A method according to claim 1, wherein end of input for
the word 1s determined by selecting a delimiter key.

8. A method according to claim 1, wherein end of input for
the word 1s determined by releasing contact from the virtual
keyboard for more than a pre-selected time interval.

9. A method according to claim 1, wherein said identifying
1s performed during input of the trace paths and updated as the
trace paths are formed.

10. A method according to claim 1, wherein the word 1s
selected by comparing the letters of words from a word data-
base to the letters represented by the keyboard keys in the
trace paths that were mput to select the word.

11. A method according to claim 10, wherein the letters of
words from the word database are normalized to compare the
main character of the key that represents the letter with the
recorded trace paths.

12. A method according to claim 1, wherein every letter 1n
the word 1s represented by traversal of a key in one of the trace
paths.

13. A method according to claim 1, wherein the 1dentified
word includes all landmark keys of the recording, wherein a
landmark key 1s a key that was indicated as participating in the
word with a higher probability than other keys.

5

10

15

20

25

30

35

34

14. An electronic device for inputting a text word intended
by a user, comprising;:

a Processor;

memory;

a touch sensitive screen;

a virtual keyboard displayed on the touch sensitive screen;

an operating system that 1s executed by the processor in the

memory and 1s capable of mputting multiple points of
contact with the virtual keyboard simultaneously;
a text input program executed by the processor in memory;
wherein the text input program 1s programmed to:

record two or more strokes, wherein 1n each stroke the user
forms contact with the virtual keyboard and maintains
contact forming a trace path traversing through multiple
keyboard keys, representing a-letters of the word,
wherein the user can enter as many letters of the word as
desired 1n each stroke;

identity the word based on the recording; and

wherein two or more distinct letters of the word are

selected from the trace path of a first stroke of the two or
more strokes and at least one letter of the word appearing
between the letters selected from the first stroke 1s
selected from a different stroke that overlaps temporally
with the first stroke.

15. A device according to claim 14, wherein 1n each trace
path, keys representing the letters of the word are traversed in
the order of appearance 1n the word.

16. A device according to claim 14, wherein each of the
keys representing letters of the word are traversed 1n the order
ol appearance in the word.

17. A device according to claim 14, wherein the first letter
of the word 1s selected by an 1nitial contact with the virtual
keyboard.

18. A non-transitory computer readable storage medium
containing a set of istructions for a computerized system, to
perform the method of claim 1.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

