US008713371B2
12 United States Patent (10) Patent No.: US 8.713.371 B2
Williams et al. 45) Date of Patent: Apr. 29, 2014
(54) CONTROLLING GENERATION OF DEBUG 7.849.206 B2 12/2010 Watt et al.
EXCEPTIONS 2001/0049763 Al 12/2001 Barry et al.
2002/0188831 Al 12/2002 Jackson et al.
. s | 2003/0101322 Al* 5/2003 Gardnerccoovv..... 711/163
(75) Inventors: Michael John Williams, Ely (GB); 2003/0135787 Al 7/2003 DeWitt, Jr. et al
Richard Roy Grisenthwaite, Nr 2007/0180322 Al 8/2007 Todoroki et al.
Royston (GB) 2008/0034193 Al 2/2008 Day et al.
2008/0082802 Al 4/2008 Muramatsu et al.

(73) Assignee: ARM Limited, Cambridge (GB)
FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 EP 1054322 11/2000
U.S.C. 154(b) by 295 days. (Continued)
OTHER PUBLICATIONS

(21) Appl. No.: 13/296,445

Acrospace Computer Security applications Conference, Dec. 1988,

(22) Filed: Nov. 15, 2011 Clifton and Fernandez, pp. 194-198, “A Microprocessor design for

(65) Prior Publication Data multilevel security”. | o |
Trusted Computing Group (TCG), Main Specification Version 1.1a,
US 2012/0198278 Al Aug. 2, 2012 Sep. 1, 2001, pp. i-x and 1-322.
(30) Foreign Application Priority Data (Continued)
Jan. 28,2011 (GB) oo, 1101490.9 Primary Examiner — Kamimn Patel

(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.
(51) Int.CL

GO6l 11/00 (2006.01) (57) ABSTRACT
(52) US. Cl. A data processing apparatus for performing data processing
USPC e, 714/30;712/227 operations in response to execution of program instructions
(58) Field of Classification Search and debug circuitry for performing operations. The data pro-
USPC e 714/30 cessing apparatus includes a data store for storing a current
See application file for complete search history. debug exception mask value. The data processing circuitry is
_ configured to set the mask value to a first value 1n the data
(56) References Cited store 1n response to executing critical code and on termination
U S PATENT DOCUMENTS ol execution of the critical code to reset the .mas.k Va}ue to not
store the first value. The data processing circuitry i1s config-
5390,310 A 7/1995 Welland ured, 1n response to receipt of a control signal indicating a
5491,793 A * 2/1996 Somasundaram et al. 714/45 debug exception 1s to be taken, to allow the exception to be
5,574,786 A . 11/1996 Dayan et al. taken 1f the mask value 1s not set to the first value and not to
gﬁggﬁgé é 5 ?gggg Eg;%fift al 7%5%’ allow said exception to be taken if the mask value 1s set to the
6,249,881 B1* 6/2001 Portenetal. 714/38.13 lirst value.
6,282,657 B1* 8/2001 Kaplanetal. 726/1
6,604,123 B 8/2003 Bruno et al. 23 Claims, 7 Drawing Sheets
=)o] Hypervisor debug "

| # sevices }

l R e oy Ll it el kbl b i r ripmpllepiippelepiyel pareirer

EL1 |Guest OS 1 gahe] 1Guest Q5 2 debug
. S.e,mﬁés, L rrrrrr }891"“{?951
=Le | Aop’ App? A?PSE }Ap?d—l
R— | '

' Debug hardware l

b e B B e B e

US 8,713,371 B2
Page 2

(56)

EP
GB

SECECECECE R

WO
WO
WO

References Cited

FOREIGN PATENT DOCUMENTS

1 162 536

2 380 831

0 581479
2000-76087
2000-347942
2001-230770
2002-526822
2002-318700
2004-515180
WO 99/38073
WO 02/44875
WO 03/010638

12/2001
4/2003
12/1998
3/2000
12/2000
8/2001
8/2002
10/2002
5/2004
7/1999
6/2002
2/2003

OTHER PUBLICATIONS
English translation of Office Action dated Jul. 8, 2008 1n Japanese
Application No. 2003-386042.
List of Cited References and documents 1ssued by the Japanese
Patent Office mailed Nov. 7, 2008 1n Japanese application 2003 -
386042,
UK Search Report dated May 27, 2011 1in GB 1101490.9.
International Search Report and Written Opinion of the International

Searching Authority mailed Apr. 2, 2012 in PC'T/GB2012/050115.
Written Opinion of the International Preliminary Examining Author-
ity mailed Jan. 21, 2013 in PCT/GB2012/050115.

International Preliminary Report on Patentability mailed Apr. 22,
2013 in PCT/GB2012/050115.

* cited by examiner

U.S. Patent Apr. 29, 2014 Sheet 1 of 7 US 8,713,371 B2

=, Hypervisor e‘ebug
| sErvicES

EL1 | Guest 08 1 [Tigprg Guest 08 2 "Gy |
servicis B services

=y App? App® App*
Debug hardware

FIG. 1

10

42
HOSt Processor 48

40
debugger . — g
GE
44 43

FIG. 2

U.S. Patent Apr. 29, 2014 Sheet 2 of 7 US 8,713,371 B2

RDS

P13
i
S

EL1 kemel criical | Systemcall erifical
Areglon handler region |

CPSR D=1 CPSR D=0 CPSR D=1 |
| refurn

ELO e restore state b
exception:; save state

system call

FIG. 3a

re-enfrant exception RDE=1

CPSR D=0 exception returmn

.
L “‘Q Q,_,_?Yﬁemﬁ” ——
| CPSRD=11 breakpoint ~ handler CPSR D=1

handler '

breakpoint return |

1%

ELD e L.

exception

FIG. 3b

U.S. Patent Apr. 29, 2014 Sheet 3 of 7 US 8,713,371 B2

watchpoint e ontrant exception
debut exceptior return

avent
L1 l Qwatek point sttem call
- e T e

?CPSRDﬂ handie handler CPSR D=1
\....HW..J‘ i e r Aty eyttt tossatosnsaarr .
- pendng - opsRD=1 CPSR D=0 retur
J ,.__:19 («m pending flag =0 i
LD | CPSR D is cleared by software o
exception '

F1G. 4

US 8,713,371 B2

Sheet 4 of 7

Apr. 29, 2014

U.S. Patent

G Ol4
aabbngep
19BBngap Buiptad
S}8}dwos uondaoxs SAIOR
de]s 8l
S SIEIES b p9)8)diwos
a81s
‘530b0ngap Uiym ~ sabbngsp o
(M40 Buleso Ag apeo [eoilio buiAes 2abbngep \ wimal uondeoxs AR
j0 ‘uondaoxs dols aipMlog Suipusd-lou- e HUE ——— 130Dngsp
mmﬁmw INOUIIM mwwo I2ONLID Jo/puUe (uondeoxs) SAIIOE LONBAIOE SAljoRUl
sshbngep wo | A~
gap Wol] 2300ngap O] Wnjoy hejeIdilos 2IBM}0S
| 4313 \
* ap0o 120010 e iabbngap
aD0S {eIHLO 10 10 1oBbngsp uondaoxs da}s alemyosg UL %m:omxmfu\

/pue 1ebbngep uiyum uoinosex3

buipusd
-SANOR

SUE] INOUUM BP0 1BJIILD JO

jebbngap woll sabbngsp 01 uiney

U.S. Patent Apr. 29, 2014 Sheet 5 of 7 US 8,713,371 B2

Receive an interrupt for 51

* Take intr{u_pt xceptintE1 and set debug mask flag

Does debug
avent occur

2 L Fl
b B | gy p—r ¥ i

Yes «

NO 3

e —<ioeu>
»«.«tﬁ:.‘-.—*ﬁ-'.‘. e o o T TR rem
- Yes

Set pending flag |

Flmsh exeoutmg
onhcatcode
Setdebu
mask flag

No 3§

s pending
flag set?

Take debg
exception at &

Yes NO

Take debug Continue
exoepnon execution

FI1G. 6

U.S. Patent Apr. 29, 2014 Sheet 6 of 7 US 8,713,371 B2

Yes

Does debug _Yes
event occur
No
No s pending
flag set
L Ye g -%“wwmmwmwm. —
T - Yes Take dbug -
{ s TDE bit set 1 exception at EL2
: No | ' - t
eturn
o s KDE bit set |
¥ Yes
Is debug mask No Take re-entrant
flag set (in critical ~1 debug exception |
code)? atELT 1
" Yes
Set pending flag _Retun__|

N efulpeel o rnnmwmw

s debug
mask flag set (in critical
code)?

No _Yes

s at start
of critical
code’

of critical

No

s at end of interrupt ™
nangier

C o Yes
Return from interrupt exception

FIG. 7

U.S. Patent Apr. 29, 2014 Sheet 7 of 7 US 8,713,371 B2

VM
mplementation

L s e

Application °00

!

APT {Virtual)

vy 510

Host 0% S 220

Host Hardware S 030

F1G. 8

US 8,713,371 B2

1

CONTROLLING GENERATION OF DEBUG
EXCEPTIONS

BACKGROUND OF THE INVENTION

This application claims priority to UK Application No.

1101490.9, filed 28 Jan. 2011, the entire contents of which 1s
hereby incorporated by reference.

FIELD OF THE INVENTION

The field of the invention relates to data processing appa-
ratus and in particular to performing diagnostic operations on
data processing apparatus.

DESCRIPTION OF THE PRIOR ART

It 1s known to provide data processing systems with diag-
nostic mechanisms which can be used to perform diagnostic
operations (e.g. software and hardware fault identification
and analysis (debug)) upon the data processing systems so as
to assist 1n the development of hardware, operating systems,
application programs, overall system designs and the like.

When analysing a data processing system, an external
debugger may be used which comprises a debug program run
on a host system that 1s connected to the system to be analysed
such that control signals specitying diagnostic operations to
be performed on the system are passed from the host to the
system.

External debuggers involve a debugger being connected to
he target via an external port which 1s then used to program
he debug hardware, The processor 1s configured such that
ebug events cause entry to a special debug state 1n which the
ata processing apparatus 1s interrogated and controlled by
he external debugger. The conversion of debug events into
ebug state entry 1s controlled by a hardware authentication
interface but this does not gate the debugger’s ability to pro-
gram the debug hardware.

Alternatively there may be a self-hosted debug system
where debug monitor software 1s executed on the target being,
debugged. The debug hardware on the processor i1s pro-
grammed to generate debug events and the processor 1s con-
figured such that debug events are converted into debug
exceptions handled by the software. Often the debug software
runs as an unprivileged or low hierarchy task (usually when
debugging other unprivileged applications) using services of
a privileged or higher hierarchy soiftware executive or kernel
to program the debug hardware and be kept mformed of
debug events. In other scenarios the kernel 1s 1tself debugged.

Generally the two schemes share most of the debug hard-
ware such as breakpoint and watchpoint registers.

There are at least three routes for the debug hardware to be
programmed:

1) By a debug monitor in the—{for kernel mode debugging;

2) By a kernel on behalf of an unprivileged debugger task,

for application debugging,

3) By an external debugger via a dedicated debug port.

One problem with debugging 1s that the programming of
breakpoint registers by the debug agent, which 1s perhaps an
external agent, can generate exceptions in the code which
may include the operating system code. This has risks asso-
ciated with 1t and can cause software malfunction.

It would be desirable to be able to allow debug of a system
including an operating system while reducing the risk of the
generation of exceptions within the code that might cause the
system to malfunction.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

A first aspect of the present invention provides a data
processing apparatus comprising: data processing circuitry
for performing data processing operations in response to
execution of program 1instructions; debug circuitry for per-
forming operations; said data processing apparatus compris-
ing a data store for storing a debug exception mask value; said
data processing circuitry being configured to set said debug
exception mask value to a first value in said data store 1n
response to executing critical code and on termination of
execution of said critical code to reset said debug exception
mask value not to store said first value; wherein said data
processing apparatus is configured to allow a debug exception
to be taken if said debug exception mask value 1s not set to
said, first value and not to allow said debug exception to be
taken 1f said debug exception mask value 1s set to said first
value,

The present invention recognises that the execution of
some code 1s critical to the performance and correct behav-
iour of the system, such that interrupting the code will almost
certainly cause the system to maltunction. It also recognises
that although asynchronous interrupts may occur at any point
during processing, these generally occur independently of
instructions 1n a currently executing instruction stream and
can be allowed to remain pending for a while, the system
being configured to take these exceptions when a suitable
point 1n the processing 1s reached. Synchronous exceptions
occur 1n response to an instruction within the instruction
stream and thus, are conventionally taken immediately.

This can cause problems 11 synchronous exceptions occur
during the execution of critical code. Generally a data pro-
cessing system will guard against such an eventuality by
ensuring that during critical code no memory region 1is
accessed that might generate a synchronous exception such as
a data abort. However, the present invention recognises that
there are other synchronous exceptions that can be generated
by debug circuitry and that these are outside the control of the
normal processing operations and arrive as unexpected
exceptions. It 1s important that these are not taken and thus,
the present invention provides a system wherein in response
to executing critical code the processor sets a mask value
which 1s then used to 1nhibit the taking of any debug excep-
tions that are received while this critical code 1s executing. At
the end of executing the critical code the mask value 1s reset
so that 1t no longer holds the value that inhibited the taking of
the exceptions. Thus, 1n this simple yet elegant fashion critical
code 1s protected from exceptions generated synchronously
during debug.

In some embodiments the debug circuitry sends a signal to
the data processing circuitry indicating a debug exception 1s
to be taken and the processing circuitry imhibits or allows the
taking of the exception 1n dependence upon the current debug
mask value. In other embodiments 1t 1s the debug circuitry
itself that responds to the current mask value by not asserting
the control signal to send to the processing circuitry if the
debug mask value 1s set.

Although the debug operations that are performed may be
controlled by debug software executing on an external host, in
some embodiments said debug circuitry performs said debug
operations controlled by software executing on said data pro-
cessing circultry.

Critical code may be a number of things, but 1n some
embodiments 1t comprises a plurality of instructions interrup-
tion of which may generate a soitware malfunction.

The data processing apparatus may be configured to inhibit
the taking of exceptions received from debug circuitry when

US 8,713,371 B2

3

executing different sorts of codes, but 1t 1s advantageous 1f 1t
inhibits 1t during execution of code where taking of an excep-
tion may generate a software maltunction. Clearly 1t 1s impor-
tant when executing such a code that taking of exceptions 1s
inhibited.

This code may comprise a number of things for example it
may be code used to save or restore register values configur-
ing the system, 1t may comprise code acknowledging, dis-
abling or re-enabling interrupt system registers, or it may
comprise code for storing a state of a processor to a data store
or code for restoring the state from the data store. Clearly, 1t 1s
important that the state of the processor 1s correctly stored and
correctly restored and thus, interruption of such code 1s best
avoided.

In some embodiments, said data processing circuitry 1s
configured to execute the program instructions corresponding
to a plurality of different software hierarchical levels, a higher
soltware hierarchical level being a level with greater privi-
leges than a lower software hierarchical level such that there
are at least some data storage locations that can be accessed
from said higher hierarchical level that cannot be to accessed
from said lower hierarchical level; said current debug excep-
tion mask value indicating whether taking of a debug excep-
tion at a same hierarchical level as a level software 1s currently
operating at 1s allowable.

Many processing apparatus process data at different soft-
ware hierarchical levels, access to certain memory regions
and system registers being inhibited from lower hierarchical
levels and allowed from higher ones. A debug exception mask
value may be used to inhibit debug exceptions being taken at
a same hierarchical level as software 1s currently operating at,
these exceptions are often called re-entrant exceptions. Thus,
when processing mstructions at a certain hierarchical level 1f
the control signal indicates that the debug software 1s to be
executed at that same hierarchical level then the debug excep-
tion mask value can be used to avoid the exception being
taken and this can be used to 1inhibit the taking of exceptions
when critical code 1s currently being executed at that level. It
critical code 1s being executed 1t 1s important that an exception
1s not taken at that level as registers storing values vital for the
correct behaviour of the processor may be overwritten. If
however the control signal indicates that the exception 1s to be
taken at a different hierarchical level (1n many embodiments
exceptions are only allowed to be taken at a higher hierarchi-
cal level) to the currently executing code, then as this other
hierarchical level will have 1ts own 1nterrupt registers inter-
ruption of the critical code at the lower hierarchical level can
be allowed, as no registers storing important information will
be overwritten. In this way, embodiments of the present
invention provide granularity to the system and only inhibit
the taking of exceptions at hierarchical levels where the tak-
ing of the exceptions may cause a software malfunction.

In some embodiments, said data processing apparatus
comprising a data store configured to store a plurality of
debug exception mask values corresponding to said plurality
of different software hierarchical levels; said data processing
circuitry being configured when switching to one of said
plurality of hierarchical software levels to set said current
debug exception mask value to a value of said debug excep-
tion mask value stored for said one of said hierarchical soft-
ware level.

In some embodiments the processing apparatus may have
storage for storing debug exception mask values for different
soltware hierarchical levels, these values being used to set a
current value of said debug exception mask value when
switching to execution of program instructions at that level.

[

10

15

20

25

30

35

40

45

50

55

60

65

4

Storing different mask values for different hierarchical levels
provides a high degree of granularity and control.

In some embodiments, said data processing apparatus
comprises a status storage region for storing said current
debug exception mask value, said data processing circuitry
being responsive to switching from one hierarchical software
level to a different software hierarchical level to store a value
of said debug exception mask value 1n said status storage
region for said one hierarchical level and when switching
back to said one hierarchical level to restore said debug
exception mask value.

Alternatively rather than storing different mask values for
the different hierarchical levels, the value of a debug excep-
tion mask may be stored in a status storage regions when
leaving a hierarchical level and then this value may be
restored to the debug exception mask storage position on
return to the level, so that 1f a debug exception was masked at
a level then when returning to that level 1t 1s masked again.

In some embodiments said data processing apparatus com-
prises a status storage region for storing status indicators, at
least one of said status indicators comprising a debug allow-
able status indicator corresponding to at least one of said
software hierarchical levels; said data processing circuitry
being configured when executing instructions at a predeter-
mined software hierarchical level and said debug software 1s
to be executed on said processing circuitry at said predeter-
mined hierarchical level to allow said exception to be taken 11
said debug allowable status indicator for said predetermined
soltware hierarchical level 1s set to a predetermined allowable
value and said current debug exception mask value 1s not set
to said first value and not to allow said exception to be taken
il erther said status indicator 1s not set to said predetermined
allowable value or said current debug exception mask value 1s
set to said first value.

The present technique also recognises that the debugging
of systems at different hierarchical levels can lead to excep-
tions being triggered within higher hierarchical levels where
perhaps important code such as operating system code may
be being executed and interruption of this code may not be
desirable. For example, if a system has been set up such that
an operating system running on the processor can be
debugged, 1t may be desirable at some point to be able to
inhibit this from happening so that during normal operation
the generation of exceptions 1nto the operating system are not
allowed, Such generation of exceptions can cause malfunc-
tion of the operating system and can provide security prob-
lems. Therefore, embodiments of the present invention pro-
vide a status indicator that can be set to allow or not allow
debugging at certain hierarchical levels. In this way, when the
system 1s being tested for example debugging of all hierar-
chical levels may be allowed but when the system 1s shipped
debugging of the higher hierarchical levels may be inhibited
by setting this status indicator. This means that any applica-
tion run on the system can be debugged but the operating
system which has been thoroughly tested before shipping 1s
not allowed to have debug exceptions generated within 1t.

This 1s advantageous particularly where there 1s an external
means for setting breakpoint registers for example. In such a
case, an external agent could generate exceptions within an
operating system, and such exceptions would not be under the
control of the processing system and could cause serious
errors and therefore are best avoided.

In some embodiments, said data processing circuitry 1s
configured 1n response to receipt of said control signal from
said debug circuitry indicating said debug exception is to be
taken when executing instructions at a predetermined soft-
ware hierarchical level and said debug software 1s to be

[

[

US 8,713,371 B2

S

executed at a higher predetermined software hierarchical
level to allow said exception to be taken.

Where a debug exception 1s taken that indicates the debug
soltware 1s to be executed at a higher predetermined software
hierarchical level than the level currently executing instruc-
tions then this exception 1s always allowed to be taken as this
higher level has its own registers for storing interrupt values
and thus, even were 1t to interrupt critical code at the lower
level 1t would not cause the state of the processor to be
corrupted.

In some embodiments, said data processing circuitry 1s
configured when switching from a lower to a higher software
hierarchical level in response to an exception to set said
current debug exception mask value to said first value.

On taking an exception critical code 1s executed and thus,
it 1s desirable 1f the processing apparatus sets the mask value
such that the critical code cannot be interrupted by the taking
of a further debug exception at this level.

Debug exceptions can take a number of forms but there
may be a watchpoint which 1s an address stored 1n a register,
wherein access or an attempt to access to this address triggers
assertion of a debug control signal or it could be a breakpoint
which 1s also an address stored in a debug register, wherein
executing or attempting to execute an instruction having this
address causes the debug control signal to be asserted.

In some embodiments, said data processing circuitry 1s
configured in response to receipt of a control signal from said
debug circuitry indicating a debug exception 1s to be taken
and said debug exception mask value being set to said {first
value, to assert a pending debug exception signal and in
response to said mask being cleared to not store said first
value to take said pending debug exception.

As noted previously, debug exceptions are synchronous
exceptions 1n that they occur in response to execution of
instructions, In the case that the mask value 1s set to a first
value indicating that the exception cannot be triggered then in
some embodiments a pending debug exception signal 1s gen-
erated and when the mask has cleared and no longer stores the
first value then the pending debug exception can be taken
provided that the debug allowable status indicator indicates
that it 1s allowable This 1s desirable as the debug exception
indicates that a person debugging the program wants to know
the status of the processor. Thus, although an immediate
response 1s inhibited as this might cause software malfunc-

tion a later response 1s allowed and may generate useful
information.

In some embodiments, said data processing circuitry 1s
configured 1n response to a step mode control signal to
execute 1n a step mode wherein instructions within a program
are executed as sequential steps, wherein 1n said step mode
said data processing circuitry 1s configured after execution of
cach of said sequential 1nstructions to assert a debug excep-
tion.

One possible debug mode that embodiments of the present
invention, support 1s the step mode wherein each 1nstruction
1s executed and then a debug exception 1s taken. In this way,
the program 1s stepped through and after execution of each
instruction control 1s given to debug software such that the
values 1n registers or other state of the processor can be
queried.

In some embodiments, 1n response to said data processing,
circuitry receiving an exception during execution of one of
said sequential instructions, said data processing apparatus 1s
configured to set said current debug exception mask value to
said first value and assert upending debug exception and 1n
response to said current debug exception mask value not

10

15

20

25

30

35

40

45

50

55

60

65

6

being set to said first value said data processing circuitry 1s
configured to take said pending debug exception.

If an exception occurs during execution of the sequential
instructions in a stepwise mode then the use of the pending
debug exception and the debug exception mask can help
ensure that the debug exception 1s not taken during execution
ol the critical code 1n the exception but the debug exception 1s
taken when the mask has been cleared, which occurs when the
critical code 1s complete.

In some embodiments, said data processing circuitry 1s
configured to set a plurality of masks for masking different
types of exceptions when switching from a lower to a higher
soltware hierarchical level 1in response to an exception and to
reset all of said masks 1n response to execution of a single
instruction.

In addition to the mask masking out the debug exception,
there may be other masks set to mask the taking of other
asynchronous, exceptions during the execution of critical
code. If this 1s the case, then 1f termination of the critical code
1s 1ndicated by a single instruction then execution of this
instruction could trigger clearing of all of the masks. In this
way, the clearing of the debug mask does not require any
additional code as 1t can be cleared along with the other
masks.

In some embodiments said single instruction comprises an
instruction indicating execution of critical code has finished.

It should be noted that any subset of the masks could be
cleared or indeed set in one 1nstruction. Although the different
hierarchical levels of the processing apparatus can be a num-
ber of things, in some embodiments there 1s a first low level
which 1s a level where application software 1s executed, a
second higher level where operating systems software 1s
executed and a third highest level where hypervisor software
1S executed,

In some embodiments, said data processing apparatus
comprises a status storage region for storing indicators, com-
prising a status indicator and a further trap indicator, said trap
indicator having a trap value indicating said debug software 1s
to be executed at said hypervisor level; said data processing
circuitry being configured in response to said trap indicator
having said trap value, not to allow a debug exception to be
taken 11 said processing circuitry 1s currently operating at said
hypervisor level and either said status indicator 1s not set to
said predetermined allowable value or said current debug
exception mask value 1s set to said first value, and to allow a
debug exception to be taken at said hypervisor level if both
said status indicator 1s set to said predetermined allowable
value and said current debug exception mask value 1s not set
to said first value, or said data processing circuitry 1s currently
operating a level hierarchically lower than said hypervisor
level.

One way of providing granularity 1s to have a single status
indicator that allows or does not allow re-entrant debug
exceptions to occur at the current hierarchical level and a
turther trap indicator that traps exceptions into the hypervisor
level provided the current level 1s hierarchically below hyper-
visor level. In many cases such as in the embodiment shown
in FIG. 1 there 1s no level above hypervisor level, however, 1f
there 1s such a level and the processing circuitry 1s operating
at that level then the trap value will not trap the exception into
the hypervisor level as exceptions cannot be taken at lower
hierarchical levels. As noted previously exceptions can
always be taken at a higher level, so if the exception occurs at
a level that 1s below the hypervisor level then it can be taken.
If the processing circuitry 1s operating at the hypervisor level
then provided that the status indicator allows the exception to
be taken and 1t 1s not masked then 1t will taken.

US 8,713,371 B2

7

A second aspect of the present invention provides a method
for controlling initiation of debug operations within a data
processing apparatus, said method comprising the steps of:
setting a current debug exception mask value to a first value 1n
a data store within said data processing apparatus 1n response
to said data processing apparatus executing critical code and
on termination of execution of said critical code resetting said
current debug exception mask value not to store said first
value; allowing a debug exception to be taken 11 said current
debug exception mask value 1s not set to said first value and
not allowing said debug exception to be taken 1f said current
debug exception mask value 1s set to said first value.

A third aspect of the present invention provides a computer
program product storing a computer program, which 1s oper-
able when executed on a data processor to control the data
processor to perform the steps of the method according to a
second aspect of the present invention.

A Tourth aspect of the present invention provides a virtual
machine provided by a computer program executing upon a
data processing apparatus, said virtual machine providing an
instruction execution environment according to the data pro-
cessing apparatus of the first aspect of the present invention.

A fifth aspect of the present invention provides means for
processing data comprising: processing means for perform-
ing data processing operations in response to execution of
program 1nstructions; debug means for performing opera-
tions controlled by debug software; said means for processing,
data comprising a storage means for storing a debug excep-
tion mask value; said data processing means being for setting,
said debug exception mask value to a first value 1n said storage
means 1n response to executing critical code and on termina-
tion of execution of said critical code for resetting said debug,
exception mask value not to store said first value; wherein
said processing means 1s configured to allow a debug excep-
tion to be taken 11 said debug exception mask value 1s not set
to said first value and not to allow said debug exception to be
taken 11 said debug exception mask value 1s set to said first
value.

The above, and other objects, features and advantages of
this mvention will be apparent from the following detailed
description of illustrative embodiments which 1s to be read 1n
connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the hierarchical software levels of a data
processing apparatus according to an embodiment of the
present invention;

FIG. 2 shows a data processing apparatus connected to a
host debugger:;

FI1G. 3a shows the taking of an exception at the EL1 level
from the EL.O level with KDE set to O;

FIG. 35 shows the taking of an exception at the EL1 level
from the ELO level with KDE set to 1 and the taking of a
re-entrant exception in response to a debug event;

FIG. 4 shows the taking of an exception at the EL1 level
from the ELO level with KDE set to 1 and the taking of a
re-entrant exception in response to a debug event occurring,
during when a debug mask 1s set;

FIG. 5 shows a state diagram indicating the states encoun-
tered during software step debug operation;

FIG. 6 shows a tlow diagram 1llustrating steps that occur
when executing critical code having taken an interrupt;

FI1G. 7 shows a flow diagram similar to FIG. 6, but where
multiple exceptions may occur; and

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 8 shows a virtual machine implementation of an
embodiment of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 schematically illustrates the different hierarchical
soltware levels of a data processing apparatus according to an
embodiment of the present invention. In this embodiment
there 1s a highest hierarchical level EL2, that comprises the
hypervisor. This may have some debug services within it,
where the debugger can run as a hypervisor application, and
the hypervisor i1s responsible for programming the debug
hardware.

The next level 1s the EL1 level where guest operating
systems are executed. These levels may also have debug
services within them. Once again these debug services are
responsible for programming the debug hardware.

The third level 1s the lowest ELO level which is the level at
which applications are executed. One of these applications
may be a debug application.

FIG. 2 shows a data processing apparatus according to an
embodiment of the present invention. Data processing appa-
ratus 10 1n this embodiment 1s connected to a host debugger
20. The host debugger communicates with data processing
apparatus 10 via an input 12 and transmits debug instructions
to the data processing apparatus 10 and receives diagnostic
data from it. Data processing apparatus 10 comprises a pro-
cessor 30 for executing a stream of istructions. It also com-
prises debug hardware 40, 47, 48 which includes data storage
40 for storing status indicators and mask values indicating
whether or not a debug exception can be taken and registers
47, 48 within register bank 42 for storing breakpoint and

watchpoint values indicating places where a debug exception
should be taken.

With regard to the mask values there may be several mask
values stored each one pertaining to a particular hierarchical
level and acting to mask debug exceptions that are to be taken
at that level. One of these will be the current debug mask value
or mask flag, which when set inhibits debug exceptions that
are re-entrant exceptions that are to be taken at the current
soltware hierarchical level. This mask flag 1s part of the state
ol the processor and thus, when storing state in response to an
interrupt this value 1s also stored. The operation of the mask
values 1s described later.

There 1s also at least one store 46 for storing this state of a
processor, when an interrupt or other exception 1s taken. As
noted previously the state of the processor stored 1n data store
46 may 1nclude the current debug mask value or mask flag 1f
the processor 1s changing software hierarchical level.

There may be several stores 46, one for each software
hierarchical level. When an interrupt 1s taken at say EL1, the
current state o the processor will be saved to a store 46 for the
EL1 level, when switching back to the interrupted processing
at EL1 the state 1s restored from the store 46 for EL1. If the
debug mask was set for EL1, then this value will have been
stored 1n the store and will be set again when the state 1s
restored.

The stores 46 may be dedicated solely for the purpose of
storing the state of a processor when exceptions are taken, or
may be part ol a more general purpose store, such as a data
memory.

The host debugger 20 may program the debug hardware 40,
477, 48 1tself and execute the debugging software on a separate
processor within host debugger 20. Alternatively, the proces-
sor 30 may have debug services within one of 1ts software
hierarchical levels and 1n response to signals from the host

US 8,713,371 B2

9

debugger these may be used to program the debug hardware,
Furthermore, the host debugger 20 may itself be a program
executing on processor 30.

The breakpoint and watchpoint values are set 1n the regis-
ters 47 and 48. In response to an address 1n the breakpoint
registers appearing as the address of an instruction that 1s
being executed or in response to an address 1n the watchpoint
registers appearing as the address of a data location being
accessed, a debug exception 1s generated. This exception
causes the debug soitware to take control of the processor and
communicate with the user 1 order to relay to the debugger
information about the state of the processor at this point.

As noted previously, there are circumstances where the
taking of an exception when code 1s being executed 1s not
desirable and thus, embodiments of the present invention
provide mechanisms for inhibiting the taking of these debug
exceptions where 1t 1s mappropriate to do so. This sort of
granularity of control can be done in different ways. For
example, the taking of exceptions when an operating system
1s executing may not be desirable, however 1t may be desir-
able to be able to debug that operating system prior to ship-
ping 1t, Thus, 1t may be advantageous to provide a kernel
debugger within a operating system at the EL1 level but to be
able to 1nhibit the taking of any exceptions generated by this
debugger with the use of an inhibit flag: the KDE bat.

Thus, 11 the KDE bit stored 1n data store 40 1s clear then any
breakpoints or watchpoints are disabled such that no excep-
tions are generated 1f these addresses are accessed from the
EL1 level unless the TDE bit 1s set, which will be described
later. In this way, the ability to debug the operating system 1s
provided along with the ability to disable this debugging such
that where appropriate exceptions cannot be generated 1nto
the kernel. Thus, the system can be debugged thoroughly
prior to shlppmg but after shipping the KDE bit could, for
example, be permanently cleared such that no debugging of
the kernel 1s allowed.

There 1s also a TDE bit stored in data store 40 and this bit
traps any exceptions generated by a breakpoint or watchpoint
match into the hypervisor at the EL2 level so that any excep-
tions generated are taken and serviced within the hypervisor.
Although, 1n this example data store 40 1s shown as a different
store to registers 42 these flags may be stored within registers
within register bank 42.

It should be noted that although the KDE bit 1s described
above with respect to the EL1 level, there may also be a
separate KDE bait for the FL2 level that inhibits the taking of
debug exceptions at this level.

Alternatively, 1n some embodiments there 1s a single KDE
bit which relates to the EL1 level 1f the TDE bit 1s not set. IT
the TDE bit 1s set, debug exceptions are trapped 1nto hyper-
visor level and 1n some embodiments the TDE bit 1s used
when set to indicate that the KDE bait relates to the EL2 level.
As the TDE bit being set traps any debug exception into the
hypervisor level, 11 the exception occurs at the EL1 level the
exception can always be taken as it 1s being taken at a higher
hierarchical level, thus it 1s convenient to use a single KDE bit
tor both the EL1 level (when TDE 1s not set) and the EL2 level
when TDE 1s set.

In this way the TDE and KDE bits together can inhibit or
allow the taking of re-entrant exceptions at the ELL1 and the
EL2 levels.

In addition to the ability to provide granularity in whether
or not kernel debug 1s allowed, there may also be the ability to
inhibit the taking of debugging exceptions when particular
code 1s executed. This 1s provided by the current debug mask
value or mask flag 43. The mask tlag 1s set by processor 30
when executing a particular code. Thus, 11 the processor 1s

10

15

20

25

30

35

40

45

50

55

60

65

10

executing code at the ELL1 level and that code 1s critical code
interruption of which might cause a software malfunction
then the processor 30 sets the debug mask flag. Then if a
debug exception 1s generated 1t cannot be taken at this level as
this mask flag inhibits 1t from being taken.

In some embodiments, this may mean that the exception 1s
never taken, while in other embodiments a pending flag 44
might be set. If this 1s the case, when the mask flag 1s reset
alter the processor has finished executing the critical code,
perhaps by a soitware instruction, the pending exception can
be taken.

This 1s shown 1n more detail with respect to FIGS. 3a, 35
and 4. In these figures an application 1s running at the appli-
cation EL0 level and an exception 1s recerved (this exception
may be any type of exception not just a debug exception). The
processor then moves to the ELL1 level to process the excep-
tion. Imitially when starting execution at this level, critical
code 1s executed which saves the state of the processor such
that on return to the application this state can be restored. It 1s
important that during execution of this critical code no further
exception 1s taken at this level as this would overwrite this
state that 1s being saved. Thus, at this point the debug mask
flag CPSR.D 1s set to 1. The system exception handler 1s then
executed and this processes the exception. At some point
during this processing, the system exception handler may
have completed saving the state of the processor, meaning
that software can leave this critical code region and the
CPSR.D flag 1s set to 0. When the system exception handler
has completed its processing of the exception, 1t determines
that it must return to processing the interrupted application
and thus a further critical code region 1s entered and the debug
mask tlag CPSR.D 1s set to 1 again while the state of the
processor at the point of the original exception 1s restored.

In FIG. 3a the KDE hit 1s set to O and thus, no debug
exceptions are allowed to be taken at the EL1 level and all
breakpoints and watchpoints are disabled. Thus, no debug
exceptions are recerved during the processing at ELL1, 1n
neither the critical region nor the rest of the system exception

handler.

In FIG. 35 the KDE bit 1s set to 1, and thus debug excep-
tions are allowed to be taken at the EL.1 level, but not inside
the critical code regions. Such a re-entrant debug exception 1s
received, 1n response to a breakpoint and as at this point the
debug mask flag CPSR.D 1s 0 and KDE=1, this debug excep-
tion 1s taken and the kernel processes the exception using a
breakpoint handler. When this 1s complete there 1s an excep-
tion return and the kernel continues processing the system
exception handler. When the system exception processing has
completed then the critical region of code 1s entered where the
debug mask flag 1s set to 1 and 11 any debug exception 1is
received at this point 1t 1s 1gnored.

FIG. 4 shows a further example of handling exceptions
according to an embodiment of the present invention. Once
again as 1n FIG. 3b the KDE bait 1s set, and an exception 1s
received at the application level and 1s taken and processing
switches to the EL1 level. Critical code 1s initially executed
for saving the state of the processor and thus the debug mask
flag CPSR.D 1s set to 1. During this time a watchpoint debug
event occurs and as the debug mask flag 1s set this cannot be
taken, however, because KDE 1is set rather than 1gnoring this
watchpoint 1n this embodiment a pending debug exception
flag 1s set to 1. Thus, when the critical code has finished
executing and the Software has reset the debug mask tlag to O
the pending debug exception flag indicates to the processor
that there 1s a pending debug exception and this is therefore
taken at this point and the kernel executes the watchpoint
handler to handle the exception.

US 8,713,371 B2

11

Immediately the pending debug exception 1s taken the pro-
cessor saves the current value of the pending debug mask flag

which 1s O and then sets it (CPSR.D) to 1. The debug excep-

tion handler in this case the watchpoint handler 1s then
executed and when 1t has completed the stored value for the
debug mask flag 1s restored 1n this case CPSR.D 1s reset to 0.
At this point the system call handler executes and when this
has completed the soitware enters the exception return code,
which 1s critical code and thus, the debug exception flag

CPSR.Di1sonceagain setto 1 for the duration of the execution
of this code.

Although, 1n the previous examples the KDE bit has been

described with respect to the EL1 level, there may also be a
KDE bit relevant for the EL2 level. If the KDE bit 1s clear for

a particular level then software debug events are disabled
within that level. In some embodiments, there will be some
debug events that are enabled even 11 the KDE bit 1s clear for
that level. For example software breakpoint instructions are a
type of istruction that generates a debug exception: a debug-
ger replaces an actual program instruction with a software
breakpoint instruction as a means to set a breakpoint at a
location when no hardware breakpoint register 42 1s avail-
able. Since the original program instruction 1s no longer
present, 1t would be unsate to 1gnore such debug exceptions,
even when the KDE bait 1s clear,

When the TDE bit 1s set then software debug events from
either the EL0 or the EL1 levels are trapped to the EL2 level.
Thus, 11 the TOE bait 1s set any debug event occurring in EL0
or EL1 will not be affected by the KDE bit for the EL1 level
and will be taken at the EL2 level.

In some embodiments there 1s a single KDE bit which
alfects debug exceptions at the ELL1 level when the TDE hit 1s
clear, and affects debug exceptions at the EL2 level when the
TDE bit 1s set.

In some embodiments, the debugger i1s configured to
execute a simple soltware step state machine wherein after
cach istruction 1s executed the processor 1s stopped and the
state analysed. As software step 1s under software control,
stepping 1s also controlled by the global debug enable con-
trols such that the soitware step to debugger 1s either enabled
or disabled at the current exception level.

FIG. 5 shows a state diagram 1ndicating the states encoun-
tered during an example software step debug operation. In
this diagram, there are three types of code: the “debugger”
comprises the debugger code 1tsell, for example, code that
executes at EL1; the “debuggee” comprises the code being
debugged, for example, code that executes at EL0O and, 1f
KDE 1s set, code executing at ELL1 other than critical code;
and “critical code” comprises code that must not be inter-
rupted by a debug exception, that 1s, code executed at the
same level as the debugger (EL1) with the debug mask tlag
CPSR.D set.

Before starting the step process the software step state
machine 1s 1n the inactive state and the debugger code 1s
running. The debugger sets the process up for stepping by
setting the single-step control flag 1n the monitor debug status
and control register (MDSCR_EL1) from the EL1 level. The
debugger then executes an exception return instruction to
jump 1nto the debuggee code. When 1n the debuggee code the
single-step debug events are active, but the exception 1s not
yet pending.

The processor then executes an instruction which, nor-
mally, moves the software step state machine to the active-
pending state. At this point the pending software step debug,
exception 1s taken and execution returns to the debugger and
single-step 1s complete.

10

15

20

25

30

35

40

45

50

55

60

65

12

However, if during execution of the instruction another
exception 1s encountered then this 1s taken and as critical code
1s run 1nitially, the processor sets the debug mask flag,
CPSR.D, meaning the pending single-step debug exception 1s
masked. The debug exception can be taken only when the
critical code has completed and the CPSR.D flag 1s cleared. If
the exception handler does not clear the CPSR.D flag, how-
ever, and returns to the debuggee code. The pending single-
step debug exception will be cleared 11 the exception handler
returns to re-execute the struction that was being stepped.

The granulanty that can be achieved through the debug
mask flag and the TDE and KDE bits 1s shown for some
example cases 1n the following table. This table shows
whether a debug event 1s taken or not from some configura-
tions of these tlags. In this embodiment debug exceptions are

only taken at the ELL1 or EL2 levels.

Level TDE KDE CPSR.D Action on debug event

601 ELO 0 X X Take at ELL1

602 1 X X Take at EL2

603 EL1 0 0 X Ignore

604 0 1 1 Ignore

605 0 1 0 Re-entrant exception to EL1
606 1 X X Take at EL.2

607 EL2 0 X X Ignore

OUR 1 0 X Ignore

609 1 1 1 Ignore

610 1 1 0 Re-entrant exception to EL2

The first two rows 601, 602 show what occurs when execut-
ing at ELO. IT the TDE bit 1s clear (row 601), a debug excep-
tion at ELO 1s handled at EL1. If the TDE bit 1s set (row 602),
a debug exception at EL0 1s handled at EL2. Note that the
CPSR.D flag and KDE bit have no effect at EL0. In this table,

“X”means “don’t care,” meaning the action for that row does

not depend on the value for that column.
The next four rows 603, 604, 605, 606 show the behaviour

when executing at EL1. If both the TDE and KDE bits are
clear (row 603) then debug exceptions are 1gnored. If the
KDE bit 1s set and the TDE bait 1s clear then debug exceptions
are potentially allowed at EL1, depending on the value of the
CPSR.D flag. In row 604, the CPSR.D flag 1s also set. In this
case critical code 1s being executed at the EL1 level. Debug
events are currently masked and will be ignored. However, 1n
row 6035 the CPSR.D flag 1s clear so the debug exception 1s
allowed as a re-entrant exception to EL1. In row 606 the TDE
bit 1s set so the KDE hit and CPSR.D flag are 1ignored and the
debug exception 1s taken at EL2.

The remaining four rows, 607, 608, 609, 610 show the
behaviour when executing at EL2. If either the TDE or KDE
bits are clear (rows 607, 608), debug exceptions are 1gnored.
It the TDE and KDE baits are both set, however, then debug
exceptions are potentially allowed at EL2, depending on the
value of the CFSR.D flag. Inrow 609, the CFSR.D flag 1s also
set. In this case critical code 1s being executed at the EL2
level. Debug events are currently masked and will be 1ignored.
However, 1n row 610 the CPSR.D flag 1s clear so the debug
exception 1s allowed as a re-entrant exception to EL2.

FIG. 6 shows steps performed 1n response to receiving an
interrupt. If an interrupt 1s received at the EL0 level, then an
interrupt exception 1s taken at the ELL1 level and the debug
mask flag 1s set and the critical code necessary for processing,
an nterrupt exception which relates to storing the current
state of the processor 1s performed. During execution of the
critical code the debug mask flag 1s set so that 1f a debug event
occurs, unless the TDE bit 1s set or the KDE bit 1s set, 1t 1s

US 8,713,371 B2

13

ignored. In this embodiment if the TDE bit 1s not set and the
KDE bit 1s set a pending debug exception flag 1s set. It the
TDE bit 1s set then the exception 1s trapped to the EL2 level
where 1t 1s processed and then on return execution of the
critical code 1s finished, and no pending debug exception flag
1s set. In other embodiments a pending debug exception flag
may be set for particular types of debug exception but not
others (which are 1gnored), or not set at all.

After the critical code has finished executing the debug
mask flag 1s reset and it 1s determined whether the debug
exception pending flag 1s set or not. If 1t 1s set then the pending
debug exception 1s taken; if not execution of the interrupt
exception continues.

FI1G. 7 1s a stmilar flow diagram to that of FIG. 6 but1s more
complex as it shows additionally what could occur if multiple
debug events occurred during execution of the critical code.
Thus, again an interrupt for EL1 1s recerved and 1s taken, the
critical code 1s executed so the debug mask 1s set. It 1s then
determined whether a debug event occurs or whether the
pending flag 1s set indicating a debug event 1s pending. IT
either 1s true and the TDE bit is set then the exception 1s taken
at EL2. Otherwise 1f the KDE b1t 1s not set, so that debug 1s not
allowed at the EL1 level then the event 1s 1ignored.

If the KDE bit 1s set indicating debug 1s allowed then 1t 1s
determined whether the debug mask 1s still set (is critical code
still executing) 11 1t 1s then the pending flag 1s set, if not the
re-entrant exception at EL1 1s taken. The pending flag 1s
cumulative, meaning that if 1t was already set then it remains
set.

If the exception 1s not taken then or 1f no debug event has
occurred 1t 1s then determined whether the debug mask 1s still
set. IT 1t 15 not 1t 1s determined whether the processor 1s at the
start of processing critical code, 1 so the debug mask flag 1s
set 1l not 1t 1s not. If the debug mask 1s still set it 1s determined
whether the processor 1s at the end of execution of critical
code, 11 so the debug mask tlag 1s cleared 11 not it 1s not. It 1s
then determined whether the end of the interrupt handler has
been reached. 11 so a return from the exception back to EL0 1s
executed, if not 1t 1s again determined whether a debug event
has occurred and the method steps are repeated.

FIG. 8 illustrates a virtual machine implementation that
may be used. Whilst the earlier described embodiments
implement the present invention 1n terms of apparatus and
methods for operating specific processing hardware support-
ing the techniques concerned, 1t 1s also possible to provide
so-called virtual machine implementations of hardware
devices. These virtual machine implementations run on a host
processor 330 running a host operating system 320 support-
ing a virtual machine program 510. Typically, large powertul
processors are required to provide virtual machine implemen-
tations which execute at a reasonable speed, but such an
approach may be justified in certain circumstances, such as
when there 1s a desire to run code native to another processor
for compatibility or re-use reasons. The virtual machine pro-
gram 510 provides an application program interface to an
application program 500 which 1s the same as the application
program interface which would be provided by the real hard-
ware which 1s the device being modelled by the wvirtual
machine program 510. Thus, the program instructions,
including the control of memory accesses described above,
may be executed from within the application program 500
using the virtual machine program 510 to model their inter-
action with the virtual machine hardware.

Although 1llustrative embodiments of the invention have
been described 1n detail herein with reference to the accom-
panying drawings, it 1s to be understood that the invention 1s
not limited to those precise embodiments, and that various

10

15

20

25

30

35

40

45

50

55

60

65

14

changes and modifications can be effected therein by one
skilled 1n the art without departing from the scope and spirit of
the mvention as defined by the appended claims.

We claim:

1. A data processing apparatus comprising;

data processing circuitry for performing data processing

operations in response to execution of program instruc-
tions;

debug circuitry for performing debug operations;

said data processing apparatus comprising a data store for

storing a current debug exception mask value;

said data processing circuitry being configured to set said

current debug exception mask value to a first value 1n
said data store 1n response to executing critical code and
on termination of execution of said critical code to reset
said current debug exception mask value to not store said
first value; wherein said data processing circuitry 1s con-
figured to allow a debug exception to be taken 1f said
current debug exception mask value 1s not set to said first
value and not to allow said debug exception to be taken
if sa1d current debug exception mask value 1s set to said
first value, said data processing circuitry further config-
ured to execute program instructions corresponding to a
plurality of different software hierarchical levels, a
higher software hierarchical level being a level with
greater privileges than a lower software hierarchical
level such that there are at least some data storage loca-
tions that can be accessed from said higher hierarchical
level and cannot be accessed from said lower hierarchi-
cal level, and said current debug exception mask value
indicating whether taking of a debug exception at a same
hierarchical level as a level software 1s currently operat-
ing at 1s allowable.

2. A data processing apparatus according to claim 1,
wherein said debug circuitry performs said debug operations
controlled by debug software executing on said data process-
Ing circuitry.

3. A data processing apparatus according to claim 1,
wherein said critical code comprises a plurality of 1nstruc-
tions mterruption of which may generate a software malfunc-
tion.

4. A data processing apparatus according to claim 2,
wherein said critical code comprises code for storing a state of
a processor to a data store and code for restoring a state of a
processor from state stored 1n a data store.

5. A data processing apparatus according to claim 1, said
data processing apparatus comprising a data store configured
to store a plurality of debug exception mask values corre-
sponding to said plurality of different soitware hierarchical
levels:

said data processing circuitry being configured to set said

current debug exception mask value when switching to
one of said plurality of hierarchical sottware levels to a
value of said debug exception mask value stored for said
one of said hierarchical software levels.

6. A data processing apparatus according to claim 1, said
data processing apparatus comprising a status storage region
for storing said current debug exception mask value, said data
processing circuitry being responsive to switching from one
hierarchical software level to a different software hierarchical
level to store a value of said debug exception mask value 1n
said status storage region for said one hierarchical level and
when switching back to said one hierarchical level to restore
said debug exception mask value.

US 8,713,371 B2

15

7. A data processing apparatus according to claim 1,
wherein

said data processing apparatus comprising a status storage

region for storing status indicators, at least one of said
status 1ndicators comprising a debug allowable status
indicator corresponding to at least one of said software
hierarchical levels;

said data processing circuitry being configured when

executing nstructions at a predetermined software hier-
archical level where said debug software 1s to be
executed on said processing circuitry at said predeter-
mined hierarchical level to allow said debug exception to
be taken if said debug allowable status indicator for said
predetermined software hierarchical level 1s set to a pre-
determined allowable value and said current debug
exception mask value 1s not set to said first value and not
to allow said debug exception to be taken 11 either said
status 1ndicator 1s not set to said predetermined allow-
able value or said current debug exception mask value 1s
set to said first value.

8. A data processing apparatus according to claim 4, said
data processing circuitry being configured when executing
instructions at a predetermined software hierarchical level
and said debug software 1s to be executed at a higher prede-
termined software hierarchical level to allow said exception
to be taken.

9. A data processing apparatus according to claim 1,

wherein said data processing circuitry 1s configured when

switching from a lower to a higher software hierarchical
level in response to an exception to set said debug excep-
tion mask value to said first value.

10. A data processing apparatus according to claim 4,

said data processing circuitry being configured to set a

plurality of masks for masking different types of excep-
tions when switching from a lower to a higher software
hierarchical level inresponse to an exception and to reset
all of said masks 1n response to execution of a single
instruction.

11. A data processing apparatus according to claim 10,
wherein said single instruction comprises an instruction mndi-
cating execution of critical code has finished.

12. A data processing apparatus according to claim 4,
wherein

said soitware hierarchical levels comprise a first low level

comprising application soitware, a second higher level
comprising operating system software and an extension
to said operating system software comprising debug
soltware and a third highest level comprising hypervisor
soltware.

13. A dataprocessing apparatus according to claim 12, said
data processing apparatus comprising a status storage region
for storing indicators, comprising a status indicator and a
turther trap indicator, said trap indicator having a trap value
indicating said debug software 1s to be executed at said hyper-
visor level;

said data processing circuitry being configured in response

to said trap indicator having said trap value, not to allow
a debug exception to be taken if said processing circuitry
1s currently operating at said hypervisor level and either
said status indicator i1s not set to said predetermined
allowable value or said current debug exception mask
value 1s set to said first value, and to allow a debug
exception to be taken at said hypervisor level 11 both said
status 1ndicator 1s set to said predetermined allowable
value and said current debug exception mask value 1s not

5

10

15

20

25

30

35

40

45

50

55

60

65

16

set to said first value, or said data processing circuitry 1s
currently operating a level hierarchically lower than said
hypervisor level.

14. A data processing apparatus according to claim 1,
wherein

said debug exception comprises at least one of a watch-

point or a breakpoint.

15. A data processing apparatus according to claim 1,
wherein said data processing circuitry being configured in
response to receipt ol a a debug exception and to said current
debug exception mask value being set to said first value, to
assert a pending debug exception signal and 1n response to
said current debug exception mask value being cleared not to
store said first value and to take said pending debug excep-
tion.

16. A data processing apparatus according to claim 1,
wherein

said data processing circuitry 1s configured 1n response to a

step mode control signal to execute in a step mode
wherein mstructions within a program are executed as
sequential steps, wherein 1n said step mode said data
processing circuitry 1s configured after execution of
cach of said sequential instructions to assert a debug
exception.

17. A data processing apparatus according to claim 16,
wherein 1n response to said data processing circuitry receiv-
ing an exception during execution of one of said sequential
instructions, said data processing apparatus 1s configured to
set said current debug exception mask value to said first value
and to assert a pending debug exception and 1n response to
said current debug exception mask value not being set to said
first value, said data processing circuitry 1s configured to take
said pending debug exception.

18. A method for controlling imitiation of debug operations
within a data processing apparatus, said method comprising
the steps of:

setting a current debug exception mask value to a first value

in a data store within said data processing apparatus 1n
response to said data processing apparatus executing
critical code and on termination of execution of said
critical code resetting said current debug exception
mask value not to store said first value;

allowing a debug exception to be taken if said current

debug exception mask value 1s not set to said first value
and not allowing said debug exception to be taken 11 said
current debug exception mask value 1s set to said {first
value, wherein said data processing circuitry being con-
figured to execute program instructions corresponding
to a plurality of different soitware hierarchical levels, a
higher soitware hierarchical level being a level with
greater privileges than a lower software hierarchical
level such that there are at least some data storage loca-
tions that can be accessed from said higher hierarchical
level and cannot be accessed from said lower hierarchi-
cal level;

said current debug exception mask value indicating

whether taking of a debug exception at a same hierar-
chical level as a level software 1s currently operating at1s
allowable.

19. A method according to claim 18,

said data processing apparatus comprising a status storage

region for storing status indicators, at least one of said
status 1ndicators comprising a debug allowable status
indicator corresponding to at least one of said software
hierarchical levels:

when executing instructions at said predetermined sofit-

ware hierarchical level:

US 8,713,371 B2

17

allowing said debug exception to be taken if said debug
allowable status indicator for said predetermined sofit-
ware hierarchical level 1s set to a predetermined allow-
able value and said current debug exception mask value
1s not set to said first value; and

not allowing said debug exception to be taken 1f either said

status 1ndicator 1s not set to said predetermined allow-
able value or said current debug exception mask value 1s
set to said first value.

20. A method according to claam 18, when executing
instructions at a predetermined software hierarchical level
and said debug software 1s to be executed at a higher prede-
termined soltware hierarchical level allowing said debug
exception to be taken.

21. A computer program product imncluding a non-transi-
tory computer readable storage medium, said medium storing,
a computer program which 1s operable when executed on a
data processor to control the data processor to perform the
steps of the method according to claim 18.

22. A virtual machine provided by a computer program
executing upon a data processing apparatus, said virtual

10

15

18

machine providing an instruction execution environment
according to the data processing apparatus as claimed 1n
claim 1.
23. A data processor comprising;:
processing means for performing data processing opera-
tions 1n response to execution ol program instructions;
debug means for performing debug operations;
said processing means comprising a storage means for
storing a debug exception mask value;
said processing means for setting said debug exception
mask value to a first value 1n said storage means, 1n
response to executing critical code and on termination of
execution of said critical code, for resetting said debug
exception mask value not to store said first value;
wherein said processing means 1s configured to allow a
debug exception to be taken 1f said debug exception
mask value 1s not set to said first value and not to allow
said debug exception to be taken 1f said debug exception
mask value 1s set to said first value.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

