United States Patent

US008713061B1

(12) (10) Patent No.: US 8,713,061 B1
Sheth et al. 45) Date of Patent: *Apr. 29, 2014
(54) SELF-SERVICE ADMINISTRATION OF A 6,542,907 B1 4/2003 Cohen
DATABASE 6,560,639 Bl 5/2003 Dan et al.
6,671,821 B1 12/2003 Castro et al.
. 6,675,299 B2 1/2004 Porter et al.
(75) Inventors: Rajesh Sudhakar Sheth, Bellevye, WA 6.961.768 B2 11/2005 Davis et al.
(US); Leon Robert Warman, Kirkland, 6,981,135 Bl 12/2005 Trask
WA (US); Narayan Gangadhar, Seattle, 6,988,139 Bl 1/2006 Jervis et al.
WA (US) 7,062,559 B2 6/2006 Yoshimura et al.
7,124,289 Bl 10/2006 Suorsa
(73) Assignee: Amazon Technologies, Inc., Reno, NV 7,133,907 B2 11722006 Carlson et al.
(US) (Continued)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 Ralph Mietzner & Frank Leymann, “Towards Provisioning the
U.S.C. 154(b) by 0 days. Cloud: On the Usage of Multi-Granularity Flows and Services to
Th; tont ; biect t ¢ ol d; Realize a Unified Provisioning Infrastructure for SaaS Applications™,
> PAICLT 15 SUBJELE 10 a HHIAl G158~ 9008 IEEE Congress on Services— Part I, 2008, pp. 310.*
claimer.
(Continued)
(21) Appl. No.: 13/620,999
| Primary Examiner — Rehana Perveen
(22) Filed: Sep. 15, 2012 Assistant Examiner — Scott A. Waldron
o (74) Attorney, Agent, or Firm — Novak Druce Connolly
Related U.S. Application Data Bove + Quigg LLP
(63) Continuation of application No. 12/418,4773, filed on
Apr. 3, 2009. (37) ABSTRACT
Admuinistrative aspects of a data environment, such as the
(51) Int. CIL. creation, deletion, and management of databases, are man-
Goor 17/30 (2006.01) aged using a set of self-service Web services of a separate
(52) U.S. CL control environment. A user can submit a Web services call
USPC e 707/792 into an externally-facing interface of the control environment.
(38) Field of Classification Search The control environment can receive the call, extract intor-
CPC e, GO6F 9/5477, GO6F 17/30289 mation from the call, and determine appropriate actions to be
USPC o, 707/790, 792: 719/328 performed in the data environment. A workflow can be instan-
See application file for complete search history. tiated that includes tasks used to perform the action in the data
environment. Such an approach allows administrative aspects
(56) References Cited of the data environment to be managed through Web service

U.S. PATENT DOCUMENTS

5,555,404 A 9/1996 Torbjornsen et al.
6,018,746 A 1/2000 Hull et al.
6,205,465 Bl 3/2001 Schoening et al.
6,442,707 Bl 8/2002 McGrath et al.

202

calls to the control environment. Native access to databases 1n
the data environment 1s provided using at least one externally-
facing interface of the data environment, without accessing
the control environment.

23 Claims, 6 Drawing Sheets

SEllll'.l
Application
204

MNetwork

20

| ControlPlane |) DataPlane |
: Wab ssrvice layer 212 1| : :
: | : NAT Router |
| b 224 |
| |
| 232 Sweeper l | i _I :
| \Workfl | : | | Customer : [: [
) orkflow | | Nata I |
| L) ez) gl
: | I |) | l
| Monitoring : | | H“;:;Igr' | : | :
| 18 | | : J| | : | |
I | | * - —-——— 1,1
Ly 'L_‘_f:‘_{iq :
| L . | [|
Monitoring Adrmin E 234
| | Backup(s) |
: 220 222 | : 230 |
| |

%
%

US 8,713,061 B1

Page 2
(56) References Cited 2009/0063563 Al 3/2009 Khangaonkar et al.
2009/0106411 Al 4/2009 Lisieck et al.
U.S. PATENT DOCUMENTS 2009/0164853 Al 6/2009 Gokhale et al.
2009/0198940 Al 8/2009 Ash et al.

7.315,826 Bl 1/2008 Guheen et al. 2009/0216881 Al 8/2009 Lovy et al.

7.415.484 Bl 2/2008 Tulkoff et al. 2009/0271656 A1 10/2009 Yokota et al.

7.418.484 B2 8/2008 Presley 2009/0328065 A1 12/2009 Wookey

7.478.263 Bl 1/2009 Kownacki et al. 2010/0036851 Al 2/2010 Paterson-Jones et al.

7.502.329 B2 3/2000 1. 2010/0125555 Al 5/2010 Lau et al.

7,506,021 B2 3/2009 Polan et al. 2010/0169707 Al 7/2010 Mathew et al.

7,536,686 B2 5/2009 Tan et al. 2010/0191713 Al 7/2010 Lomet et al.

7,624,133 Bl 11/2009 Ojalvo 2010/0250499 Al 9/2010 McAlister et al.

7,680,771 B2 3/2010 Cialini et al. 2010/0250748 Al 9/2010 Sivasubramanian et al.

7,769,721 B2 /2010 Ueoka et al. 2010/0251002 Al 9/2010 Sivasubramanian et al.

7.801.932 B2 9/2010 Krishnaswamy 2010/0251242 Al 9/2010 Sivasqbramanian et al.

7,966,528 B2 6/2011 Troppmann et al. 2010/0251339 Al 9/2010 McAlister

7,991,749 B2 8/2011 Nishikawa et al. 201170004457 AL 1/2011 Haviv etal.

8,020,037 BI 0/2011 Schwartz et al. 2011/0083138 Al 4/2011 Sivasubramanian et al.

8,041,679 B1 10/2011 Narayanan 2011/0099146 Al 4/2011 McAlister et al.

8,078,587 B2 12/2011 Wahlert et al. 2011/0099147 Al 4/2011 McAlister et al.

8,121,981 B2 /2012 Simek et al. 2011/0099420 Al 4/2011 Sivasubramanian et al.

8,150,808 B2 4/2012 Zha et al.

8,150,004 B2 4/2012 Queck et al. OTHER PUBLICATIONS

8,156,082 B2 4/2012 Srivastava et al.

8,307,003 Bl 11/2012 Gangadhar et al. U.S. Appl. No. 12/418,475, filed Apr. 3, 2009, Sheth.
2002/0019844 Al 2/2002 Kurowski et al. “Examination Report dated Oct. 9, 2012, Singapore Application No.
2002/0147709 A1 10/2002 Rajarajan et al. 201107040-6, Oct. 9, 2012, 4 pages.

2003/0005091 Al 1/2003 Ullmann et al. “Final Office Action dated Oct. 14, 20117, U.S. Appl. No.
2003/0212775 AT 11/2003 Steele et al. 12/415,958, filed Oct. 14, 2011, 23 pages.

2003/0212898 Al 11/2003 Steele et al. . - . .,

2004/0073676 A1 4/2004 Honma et al. Final Office Action dated Oct. 16, 20127, U.S. Appl. No.
2004/0078637 Al 4/2004 Fellin et al. 12/575,381, filed Oct. 16, 2012, 41 pages.

2004/0148443 Al 7/2004 Achiwa “Final Office Action dated Nov. 1, 2012, U.S. Appl. No. 12/606,106,
2004/0163008 Al 8/2004 Kim filed Nov. 1, 2012, 29 pages.

2004/0174823 Al 9/2004 Steele et al. “Non Final Office Action dated Mar. 14, 20127, U.S. Appl. No.
2005/0004999 A 1/2005 Moore et al. 12/606,093, filed Mar. 14, 2012, 24 pages.

gggg;gg%;ggi i 3%882 ngl?iz fteiﬂz;,l “Non Final Office Action dated Apr. 18, 20127, U.S. Appl. No.
2005/0193245 Al 9/2005 Hayden et al. 12/575,381, filed Apr. 18, 2012, 31 pages.

2005/0210128 Al 0/2005 Cannon et al. “Non Final Office Action dated Apr. 29, 20117, U.S. Appl. No.
2005/0216788 Al 9/2005 Mani-Meitav et al. 12/415,968, filed Apr. 29, 2011, 30 pages.

2005/0243611 A1 11/2005 Lubbers et al. “Non Final Office Action dated May 31, 20127, U.S. Appl. No.
2005/0262164 Al 11/2005 Guiheneuf et al. 12/606,106, filed May 31, 2012, 27 pages.

2005/0283655 Al . [2/2005 Ashmore “Notice of Allowance dated Oct. 24, 2012, U.S. Appl. No.
ggggfg?gég% i %gggg Eﬁ:gl‘gi’ """"""""" 7097219 12/606,093, filed Oct. 24, 2012, 13 pages.

2006/0106774 Al 5/2006 Cohen et al “Notice of Allowance dated Mar. 9, 2012”, U.S. Appl. No.
2007/0022122 Al 1/2007 Bahar et al. 12/415,958, filed Mar. 9, 2012, 15 pages.

2007/0061266 Al 3/2007 Moore et al. “Non-Final Office Action dated May 2, 20117, U.S. Appl. No.
2007/0061487 Al 3/2007 Moore et al. 12/415,958, filed May 2, 2011, 27 pages.

2007/0156842 Al 7/2007 Vermeulen et al. “Notice of Allowance dated Jun. 26, 20127, U.S. Appl. No.
2007/0156872 Al1* 7/2007 Stoyanova 709/223 12/606,093, filed Jun. 26, 2012, 8 pages.

2007/0162420 Al 7/2007 Ou etal. “Notice of Allowance dated Jul. 5,2012”,U.S. Appl. No. 12/415,958,
2007/0174691 Al 7/2007 D’Souza et al. filed Jul. 5, 2012, 25 pages.

2007/0234028 Ai‘ 1072007 Ro_thman et al. “PCT International Search Report and Written Opinion dated Dec. 2,
2007/0234115 AL 1072007 Saika 20107, PCT Application No. PCT/US2010/051757, Dec. 2, 2010, 7
2007/0244996 Al 10/2007 Ahmed et al. pagesj ’ ’ Lo ’
388%8328232 i H%gg; gii?&i?e?ﬁl. “PCT International Search Report and Written Opinion dated Dec.
2007/0260012 Al 11/2007 Hatasaki et al. 23,2010, PC'T Application No. PCT/US2010/54133, Dec. 23, 2010,
2007/0271275 Al1* 11/2007 Fassetteetal. 707/10 7 pages.

2007/0283443 Al 12/2007 McPherson et al. “PCT International Search Report and Written Opinion dated Dec.
2007/0288526 Al 12/2007 Mankad et al. 21,2010”, PC'T Application No. PCT/US2010/54139, Dec. 21, 2010,
2007/0299828 Al 12/2007 Lewis et al. 7 pages.

2008/0040509 Al 2/2008 Werb et al. “PCT International Search Report and Written Opinion dated Dec.
2008/0065650- AL 32008 Kimetal. 21,2010, PCT Application No. PCT/US2010/54141, Dec. 21, 2010,
2008/0109448 Al 5/2008 Aboel-Nil et al. 7 pages.

%882?8831;2 i g%ggg Eiggggii Zt Z‘: “PCT International Se:;_lrch_ Report and Written Opinion dated May
2008/0162590 Al 77008 Kundu et al 25, 20107, PCT Application No. PCT/US2010/029476, May 25,
2008/0183991 Al 7/2008 Cosmadopoulos et al. 2010, 7 pages. | o
2008/0189413 Al /7008 Srivastava et al. “Written Opinion dated Feb. 15, 2012”7, Singapore Application
2008/0195622 A1 8/2008 Lelcuk et al. No.201107040-6, Feb. 15, 2012, 5 pages.

2008/0244579 A1 10/2008 Muller Battles, Brett et al., “Reducing Data Center Power Consumption
2008/0256384 Al 10/2008 Branson et al. Through Efficient Storage™, http://www.it-executive.nl/images/
2008/0263388 A1l 10/2008 Allen et al. downloads/reducing-datacenter-power.pdf, Reducing Data Center
2009/0006888 Al 1/2009 Bernhard et al. Power Consumption Through Efficient Storage, Google Scholar,
2009/0019535 Al 1/2009 Mishra et al. 2007 9 pages, http://www.it-executive.nl/images/downloads/reduc-
2009/0063509 Al 3/2009 Lockhart et al. ing-datacenter-power.pdf, 2007, 9 pages.

US 8,713,061 B1

Page 3
(56) References Cited “Non Final Office Action dated Oct. 14, 20107, U.S. Appl. No.
12/415,998, filed Oct. 14, 2010.
OTHER PUBLICATIONS “Non Final Office Action dated Dec. 14, 20107, U.S. Appl. No.
12/415,987, filed Dec. 14, 2010.
Cordy, James R. et al., “Practical Language-Independent Detection “Non Final Office Action dated Feb. 14, 20117, U.S. Appl. No.
of Near-Miss Clones”, http://delivery.acm.org/10.1145/1040000/ 12/606,097, filed Feb. 14, 2011.
“Non Final Office Action dated Mar. 18, 20137, U.S. Appl. No.

1034915/pl-cordy.pdf, 2001, 12 pages.

Ghemawat, Sanjay et al., ““The Google File System”, http://delivery. 13/299,601, filed Mar. 18, 2013.

“Non Fi lO Action dated May 2, 20117, U.S. Appl. No.
acm.org/10.1145/1150000/1142512/p337-lomet.pdf, 2003, 15 (5310 47s ﬁle;ﬁayc;o;mf‘zo s, S
pages. “Non Final Office Action dated May 28, 20137, U.S. Appl. No.
Lahiri, Tirthankar et al., “Cache Fusion: Extending Shared-Disk 12/606,106, filed May 28, 2013.
Clusters with Shared Caches”, Cache Fusion: Extending Shared- “Non Final Office Action dated Jun. 20, 20137, U.S. Appl. No.

Disk Clusters with Shared Caches, Google Scholar, 2001 http://
www.vldb.org/cont/2001/P683 .pdt, http://www.vldb.org/cont/2001/
P683.pdf, 2001, 4 pages.

Lomet, David et al. , “Recovery from “Bad” User Transactions”,

13/621,073, filed Jun. 20, 2013.

“Non Final Office Action dated Jul. 23, 2013”, Japan Application
2012-536964, Jul. 23, 2013.

“Non Final Office Action dated Jul. 23, 2013”, Japan Application

http://delivery.acm/org/10.1145/1150000/1142512/9, 2006, 10 2012-536966, Jul. 23, 2013.

pages. “Non Final Office Action dated Aug. 19, 20117, U.S. Appl. No.
Lorentz, Diana et al., “““Oracle 91 SQL Reference™”’, Oct. 2002, 1-1 to 12/416,017, filed Aug. 19, 2011.

1-3. “Non Final Office Action dated Sep. 13, 20127, U.S. Appl. No.

Mietzner, Ralph et al., “““Towards Provisioning the Cloud: On the
Usage of Multi-Granularity Flows and Services to Realize a Unified
Provisioning Infrastructure for SaaS Applications™”, 2008 IEE Con-

13/294,099, filed Sep. 13, 2012.
“Non Final Office Action dated Sep. 14, 2012”7, U.S. Appl. No.
13/299,601, filed Sep. 14, 2012, 15 pages.

gress on Services, Part 1, 2008, 3-10. “Notice of Allowance dated Nov. 13, 20127, U.S. Appl. No.
Wang, Y1 et al. , “Virtual Routers on the Move: Live Router Migration 12/415,968, filed Nov. 13, 2012.

as a Network-Management Primitive”, http://delivery.acm.org/10. “Notice of Allowance dated Mar. 16, 20127, U.S. Appl. No.
1145/1410000/1402985/p23 1-wang.pdf, 2008, 12 pages. 12/418,475, filed Mar. 16, 2012, 11 pages.

“Examination Report dated Oct. 19, 2012, Singapore Application “Notice of Allowance dated Apr. 15, 20117, U.S. Appl. No.
201202870-0, Oct. 19, 2012, 8 pages. 12/415,987, filed Apr. 15, 2011.

“Examination Report dated Oct. 29, 20127, Singapore Application “Notice of Allowance dated Apr. 18, 20137, U.S. Appl. No.
201202868-4, Oct. 29, 2012, 5 pages. 13/620,962, filed Apr. 18, 2013.

“Examination Report dated Dec. 11, 2012”, Singapore Application “Notice of Allowance dated Jun. 1, 20127, U.S. Appl. No.
201202502-9, Dec. 11, 2012, 8 pages. 12/415,968, filed Jun. 1, 2012.

“Examination Report dated May 17, 2013”, Singapore Application “Notice of Allowance dated Jun. 28, 20127, U.S. Appl. No.
201202967-4, May 17, 2013, 10 pages. 12/418,475, filed Jun. 28, 2012, 20 pages.

“Extended European Search Report dated Sep. 19, 2013, Europe “Notice of Allowance dated Jul. 12, 2011”7, U.S. Appl. No.

Application 10827392.1, Sep. 19, 2013, 6 pages.

“Final Office Action dated Oct. 19, 2011”7, U.S. Appl. No. “Notice of Allowance dated Jul. 9, 2013”, Japan Application 2012-
12/418,475, filed Oct. 19, 2011, 26 pages. 533307, Jul. 9, 2013.

“Final Office Action dated Dec. 19, 20117, U.S. Appl. No. “Notice of Allowance dated Aug. 12, 20137, U.S. Appl. No.
12/415,968, filed Dec. 19, 2011. 13/299,601, filed Aug. 12, 2013.

“Final Office Action dated Feb. 22, 2013”, U.S. Appl. No. “Notice of Allowance dated Aug. 26, 2013, U.S. Appl. No.
13/294,099, filed Feb. 22, 2013. 13/620,962, filed Aug. 26, 2013.

“Final Office Action dated Mar. 22, 20117, U.S. Appl. No. “Notice of Allowance dated Aug. 8, 2011”7, U.S. Appl. No.

12/415,998, filed Mar. 22, 2011.

“Final Office Action dated May 8, 20137, U.S. Appl. No. 12/416,017,
filed May 8, 2013.

“Non Final Office Action dated Jan. 2, 2013”, U.S. Appl. No.
13/620,962, filed Jan. 2, 2013.

12/606,097, filed Jul. 12, 2011.

12/415,987, filed Aug. 8, 2011.
“Written Opinion dated Oct. 2, 20127,
201202967-4, Oct. 2, 2012, 14 pages.

* cited by examiner

Singapore Application

U.S. Patent Apr. 29, 2014 Sheet 1 of 6 US 8,713,061 B1

S‘l 00

102 Web Application
Server Server

106

User
Information

Development
Server

120 —~

U.S. Patent

Sweeper

Workflow |

Apr. 29, 2014

202

214 |

Monitoring

218

Sheet 2 of 6

Network

F1G. 2

US 8,713,061 B1

Application _
204 |

206

|

| | Customer

| | Data |

, 226 _J I}
EL3 II|I

|

|

|

|

8200

B s I I L i B o |

U.S. Patent Apr. 29, 2014 Sheet 3 of 6 US 8,713,061 B1

Receive call through B 302
API of control plane 3-
— 304
Determine desired action(s)
Store information to job 306
queue
308

Detect job information in
queue

Send request to initiate >10
workflow for each action

i Assemble workflow including 312

al least one task

314

Send state information for _
| current task to be performed

o~ 316

“Another ~~____No
task? "

Send message to customer
that action(s) completed

318

Enable customer to access
resource using interface of |
target environment '

320

FIG. 3

U.S. Patent Apr. 29, 2014 Sheet 4 of 6 US 8,713,061 B1

% 400

Send request for status

408 410

Action _No |

“# Retries ~~._ Yes .

- 408

VWrite action information

412 o job queue

Resend request

414"\‘ Detect job information in
queue

416 ™\ Send request to initiate
'? workfiow for each action

418 7™\ | Assemble workflow including |
o at feast one task

420~

Execute workflow

FIG. 4

U.S. Patent Apr. 29, 2014 Sheet 5 of 6 US 8,713,061 B1

900

wabr{}waef ' - . - _. . _ ' L
JLE DzT IE”W i"A‘i-’QR T‘“S T-C}DL‘:‘ __

Repository name RepOSHOTY A e _
. 564*\% ;-
Task @ Provision QCreate O Delete O Modify 302 |
Database engine |
Storage capacity

| Partition scheme

Secufity scheme

- Access key

FIG. 5

U.S. Patent Apr. 29, 2014 Sheet 6 of 6 US 8,713,061 B1

gﬁﬁﬁ

- arkﬂc}w Service Host A | Host B

Schedule Activity

Deocider

| Decider Compieted |-

iiiii

L Foll Decider Queue =

Poll Activity Queue

| | Activity Completed |g—

. l Dispatcher |

606

Dispalcher

FIG. 6

US 8,713,061 Bl

1

SELF-SERVICE ADMINISTRATION OF A
DATABASE

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 12/418,475, filed on Apr. 3, 2009, 1ssuing as U.S.

Pat. No. 8,307,003, and entitled “Selt-Service Control Envi-
ronment, which 1s a continuation-in-part of U.S. patent appli-
cation Ser. No. 12/415,938, filed on Mar. 31, 2009, and
entitled “Control Service for Relational Data Management,”
cach of which 1s hereby incorporated herein 1n 1ts entirety by
reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material that 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as 1t appears 1n the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND

As an 1ncreasing number of applications and services are
being made available over networks such as the Internet, an
increasing number of content, application, and/or service pro-
viders are turning to technologies such as cloud computing.
Cloud computing, 1n general, 1s an approach to providing
access 1o electronic resources through services, such as Web
services, where the hardware and/or software used to support
those services 1s dynamically scalable to meet the needs of the
services at any given time. A user or customer typically will
rent, lease, or otherwise pay for access to resources through
the cloud, and thus does not have to purchase and maintain the
hardware and/or software to provide access to these
resources.

While aspects of various applications and resources can be
adjusted and managed 1n the cloud, the data repositories upon
which these applications and resources rely are not similarly
adjustable. Typically, performing tasks such as provisioning
and scaling data storage are tedious manual procedures, 1n
which a customer has to provide a database administrator
(DBA) or similar expert user with configuration information
and requirements, such that the DBA can determine whether
the configuration 1s valid. The DBA typically then has to
enable, tune, and optimize the data repository. There 1s no,
casy way for a customer to dynamically and/or automatically
adjust the data storage capacity, or manage other such aspects
ol a data repository.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present dis-
closure will be described with reference to the drawings, 1n
which:

FI1G. 1 illustrates an environment in which various embodi-
ments can be implemented;

FI1G. 2 illustrates an example separation of a control plane
and a data plane that can be used 1n accordance with various
embodiments;

FIG. 3 illustrates an example process for requesting an
action through the control plane to be performed in the data
plane 1n accordance with one embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 illustrates an example process for monitoring and
automatically performing actions in the data plane 1n accor-

dance with one embodiment;

FIG. 5 illustrates example communication tlow between
hosts 1n a data plane and a workilow service in the control
plane 1n accordance with one embodiment; and

FIG. 6 illustrates an example of a display for generating a
request for action 1n the data plane to be submitted to a user
interface of the control plane 1n accordance with one embodi-
ment.

DETAILED DESCRIPTION

Systems and methods 1n accordance with various embodi-
ments of the present disclosure may overcome one or more of
the aforementioned and other deficiencies experienced in
conventional approaches to managing aspects of data storage
in an electronic environment. In particular, various embodi-
ments provide a separate control environment, or control
plane, that can be used to control aspects of a data environ-
ment, or data plane. The functionality of a control plane can
be provided as a set of Web services, enabling the control
plane to act as a virtual database administrator (DBA). A user
or customer can submit a request to the control plane through
one of a plurality of externally-visible application program-
ming interfaces (APIs), for example. Each API can corre-
spond to at least one specific function to be performed with
respect to a data repository, such as a relational database, 1n
the data environment. A request recetved to one of the APIs
can be analyzed to determine the desired action(s) to be
performed 1n the data plane, such as actions that create,
delete, modily, expand, or otherwise modify a data store or
data storage instance. A component such as a worktlow com-
ponent can determine the appropriate tasks for the action, and
cause the tasks to be executed 1n an appropriate order. At least
one of these tasks typically will be performed in the data
environment, such as to adjust an aspect of a relational data-
base.

A monitoring component of the control plane also can be
provided that can monitor the health or status of components
in the data plane, and can automatically determine actions to
be taken 1n the data plane. State information can be passed to
a component of the data plane for each task necessary to
perform the action, such that the control plane can manage the
performance of the tasks without having direct access into the
data stores or other such components of the data plane.

Once provisioned, a user can native access to the data
instance(s) in the data plane, and can simply point existing
applications (such as MySQL applications) to the DNS (do-
main name system) address or other location information for
the particular instance. There 1s no restriction or modification
of query models or other such functionality, as a user can
continue to use applications built on MySQL, Oracle, or other
such database technology.

A control environment also can be used to create and/or
manage aspects of other resources 1n a separate environment.
For example, customers can call ito a control plane or con-
trol service to manage aspects of various applications, ser-
viCces, Or resources 1n a separate environment, such as may be
accessible over a network. Such an approach can allow these
resources to be managed by customers via Web services, or
another such mechanism, while controlling the type of access
those customers have and the ability of those customers to
alfect various aspects. Further, such functionality can be pro-
vided imndependent of whether those customers would other-
wise have access to perform such changes without the need
for an experienced operator or other such user.

US 8,713,061 Bl

3

FIG. 1 illustrates an example of an environment 100 for
implementing aspects 1n accordance with various embodi-
ments. As will be appreciated, although a Web-based envi-
ronment 1s used for purposes of explanation, different envi-
ronments may be used, as appropriate, to implement various
embodiments. The environment 100 shown includes both a
testing or development portion (or side) and a production
portion. The production portion includes an electronic client
device 102, which can include any appropriate device oper-
able to send and recerve requests, messages, or information
over an appropriate network 104 and convey information
back to a user of the device. Examples of such client devices
include personal computers, cell phones, handheld messag-
ing devices, laptop computers, set-top boxes, personal data
assistants, electronic book readers, and the like. The network
can include any appropnate network, including an intranet,
the Internet, a cellular network, a local area network, or any
other such network or combination thereof. Components
used for such a system can depend at least 1n part upon the
type of network and/or environment selected. Protocols and
components for communicating via such a network are well
known and will not be discussed herein 1n detail. Communi-
cation over the network can be enabled by wired or wireless
connections, and combinations thereof. In this example, the
network includes the Internet, as the environment includes a
Web server 106 for receiving requests and serving content 1n
response thereto, although for other networks an alternative
device serving a similar purpose could be used as would be
apparent to one of ordinary skill 1n the art.

The illustrative environment includes at least one applica-
tion server 108 and a data store 110. It should be understood
that there can be several application servers, layers, or other
clements, processes, or components, which may be chained
or otherwise configured, which can interact to perform tasks
such as obtaining data from an appropriate data store. As used
herein the term “data store” refers to any device or combina-
tion of devices capable of storing, accessing, and retrieving,
data, which may include any combination and number of data
servers, databases, data storage devices, and data storage
media, 1n any standard, distributed, or clustered environment.
The application server can include any approprate hardware
and software for integrating with the data store as needed to
execute aspects of one or more applications for the client
device, handling a majority of the data access and business
logic for an application. The application server provides
access control services in cooperation with the data store, and
1s able to generate content such as text, graphics, audio, and/
or video to be transferred to the user, which may be served to
the user by the Web server 1n the form of HTML, XML, or
another appropnate structured language 1n this example. The
handling of all requests and responses, as well as the delivery
of content between the client device 102 and the application
server 108, can be handled by the Web server. It should be
understood that the Web and application servers are not
required and are merely example components, as structured
code discussed herein can be executed on any appropriate
device or host machine as discussed elsewhere herein. Fur-
ther, the environment can be architected 1n such a way that a
test automation framework can be provided as a service to
which a user or application can subscribe. A test automation
framework can be provided as an implementation of any of
the various testing patterns discussed herein, although vari-
ous other implementations can be used as well, as discussed
or suggested herein.

The environment also includes a development and/or test-
ing side, which includes a user device 118 allowing a user
such as a developer, data administrator, or tester to access the

10

15

20

25

30

35

40

45

50

55

60

65

4

system. The user device 118 can be any appropriate device or
machine, such as 1s described above with respect to the client
device 102. The environment also includes a development
server 120, which functions similar to the application server
108 but typically runs code during development and testing
betore the code 1s deployed and executed on the production
side and 1s accessible to outside users, for example. In some
embodiments, an application server can function as a devel-
opment server, and separate production and testing storage
may not be used.

The data store 110 can include several separate data tables,
databases, or other data storage mechanisms and media for
storing data relating to a particular aspect. For example, the
data store 1llustrated includes mechanisms for storing produc-
tion data 112 and user information 116, which can be used to
serve content for the production side. The data store also 1s
shown to include a mechanism for storing testing data 114,
which can be used with the user information for the testing
side. It should be understood that there can be many other
aspects that may need to be stored in the data store, such as for
page 1image miformation and access right information, which
can be stored 1n any of the above listed mechanisms as appro-
priate or 1n additional mechanisms 1n the data store 110. The
data store 110 1s operable, through logic associated therewith,
to receive instructions from the application server 108 or
development server 120, and obtain, update, or otherwise
process data in response thereto. In one example, a user might
submit a search request for a certain type of item. In this case,
the data store might access the user information to verify the
identity of the user, and can access the catalog detail infor-
mation to obtain mformation about items of that type. The
information then can be returned to the user, such as in a
results listing on a Web page that the user 1s able to view via
a browser on the user device 102. Information for a particular
item of 1interest can be viewed 1n a dedicated page or window
of the browser.

Each server typically will include an operating system that
provides executable program instructions for the general
administration and operation of that server, and typically will
include a computer-readable medium storing instructions
that, when executed by a processor of the server, allow the
server to perform its intended functions. Suitable implemen-
tations for the operating system and general functionality of
the servers are known or commercially available, and are
readily implemented by persons having ordinary skill in the
art, particularly in light of the disclosure herein.

The environment in one embodiment 1s a distributed com-
puting environment utilizing several computer systems and
components that are interconnected via communication links,
using one or more computer networks or direct connections.
However, it will be appreciated by those of ordinary skill 1in
the art that such a system could operate equally well 1n a
system having fewer or a greater number of components than
are 1llustrated 1n FIG. 1. Thus, the depiction of the system 100
in FIG. 1 should be taken as being illustrative 1n nature, and
not limiting to the scope of the disclosure.

An environment such as that i1llustrated 1n FIG. 1 can be
useful for a provider such as an electronic marketplace,
wherein multiple hosts might be used to perform tasks such as
serving content, authenticating users, performing payment
transactions, or performing any of a number of other such
tasks. Some of these hosts may be configured to offer the
same functionality, while other servers might be configured to
perform at least some different functions. The electronic envi-
ronment in such cases might mclude additional components
and/or other arrangements, such as those illustrated 1n the
configuration 200 of FIG. 2, discussed 1n detail below.

US 8,713,061 Bl

S

Systems and methods 1n accordance with one embodiment
provide a relational database service (“RDS”) that enables
developers, customers, or other authorized users to easily and
cost-effectively obtain and configure relational databases so
that users can perform tasks such as storing, processing, and
querying relational data sets 1n a cloud. While this example 1s
discussed with respect to the Internet, Web services, and
Internet-based technology, it should be understood that
aspects of the various embodiments can be used with any
appropriate services available or offered over a network 1n an
electronic environment. Further, while the service 1s referred
to herein as a “relational database service,” it should be under-
stood that such a service can be used with any appropriate
type of data repository or data storage 1n an electronic envi-
ronment. An RDS 1n this example includes at least one Web
service that enables users or customers to easily manage
relational data sets without worrying about the administrative
complexities of deployment, upgrades, patch management,
backups, replication, failover, capacity management, scaling,
and other such aspects of data management. Developers are
thus freed to develop sophisticated cloud applications with-
out worrying about the complexities of managing the data-
base infrastructure.

An RDS 1n one embodiment provides a separate “control
plane” that includes components (e.g., hardware and soft-
ware) useful for managing aspects of the data storage. In one
embodiment, a set of data management application program-
ming interfaces (APIs) or other such interfaces are provided
that allow a user or customer to make calls 1into the RDS to
perform certain tasks relating to the data storage. The user still
can use the direct interfaces or APIs to communicate with the
data repositories, however, and can use the RDS-specific
APIs of the control plane only when necessary to manage the
data storage or perform a similar task.

FIG. 2 illustrates an example of an RDS implementation
200 that can be used 1n accordance with one embodiment. In
this example, a computing device 202 for an end user 1s shown
to be able to make calls through a network 206 into a control
plane 208 to perform a task such as to provision a data reposi-
tory of the data plane 210. The user or an application 204 can
access the provisioned repository directly through an inter-
face of a data plane 210. While an end user computing device
and application are used for purposes of explanation, it should
be understood that any appropriate user, application, service,
device, component, or resource can access the interface(s) of
the control plane and/or data plane as approprniate in the
various embodiments. Further, while the components are
separated into control and data “planes,” 1t should be under-
stood that this can refer to an actual or virtual separation of at
least some resources (e.g., hardware and/or software) used to
provide the respective functionality.

The control plane 208 1n this example 1s essentially a
virtual layer of hardware and software components that
handles control and management actions, such as provision-
ing, scaling, replication, etc. The control plane 1n this embodi-
ment includes a Web services layer 212, or tier, which can
include at least one Web server, for example, along with
computer-executable software, application servers, or other
such components. The Web services layer also can include a
set of APIs 232 (or other such interfaces) for recerving Web
services calls or requests from across the network 206. Each
API can be provided to receive requests for at least one
specific action to be performed with respect to the data envi-
ronment, such as to provision, scale, clone, or hibernate an
instance of a relational database. Upon receiving a request to
one of the APIs, the Web services layer can parse or otherwise
analyze the request to determine the steps or actions needed to

10

15

20

25

30

35

40

45

50

55

60

65

6

act on or process the call. For example, a Web service call
might be received that includes a request to create a data
repository. In this example, the Web services layer can parse
the request to determine the type of data repository to be
created, the storage volume requested, the type of hardware
requested (11 any), or other such aspects. Information for the
request can be written to an administration (“Admin™) data
store 222, or other appropriate storage location or job queue,
for subsequent processing.

A Web service layer in one embodiment includes a scalable
set of customer-facing servers that can provide the various
control plane APIs and return the appropriate responses based
on the API specifications. The Web service layer also can
include at least one API service layer that 1n one embodiment
consists of stateless, replicated servers which process the
externally-facing customer APIs. The Web service layer can
be responsible for Web service front end features such as
authenticating customers based on credentials, authorizing
the customer, throttling customer requests to the API servers,
validating user mput, and marshalling or unmarshalling
requests and responses. The API layer also can be responsible
for reading and writing database configuration data to/from
the administration data store, 1n response to the API calls. In
many embodiments, the Web services layer and/or API ser-
vice layer will be the only externally visible component, or
the only component that 1s visible to, and accessible by,
customers of the control service. The servers of the Web
services layer can be stateless and scaled horizontally as
known 1n the art. API servers, as well as the persistent data
store, can be spread across multiple data centers 1n a region,
for example, such that the servers are resilient to single data
center failures.

The control plane 1 this embodiment includes what 1s
referred to herein as a “sweeper” component 214. A sweeper
component can be any appropriate component operable to
poll various components of the control plane or otherwise
determine any tasks to be executed in response to an outstand-
ing request. In this example, the Web services layer might
place instructions or information for the “create database”™
request in the admin data store 222, or a similar job queue, and
the sweeper can periodically check the admin data store for
outstanding jobs. Various other approaches can be used as
would be apparent to one of ordinary skill 1n the art, such as
the Web services layer sending a notification to a sweeper that
a 10b exists. The sweeper component can pick up the “create
database™ request, and using information for the request can
send a request, call, or other such command to a worktlow
component 216 operable to instantiate at least one worktlow
for the request. The workilow 1n one embodiment 1s generated
and maintained using a workflow service as 1s discussed
clsewhere herein. A workilow in general 1s a sequence of
tasks that should be executed to perform a specific job. The

workflow 1s not the actual work, but an abstraction of the work
that controls the flow of mnformation and execution of the
work. A worktlow also can be thought of as a state machine,
which can manage and return the state of a process at any time
during execution. A workilow component (or system of com-
ponents) 1n one embodiment 1s operable to manage and/or
perform the hosting and executing of workflows for tasks
such as: repository creation, modification, and deletion;
recovery and backup; security group creation, deletion, and
modification; user credentials management; and key rotation
and credential management. Such workflows can be 1mple-
mented on top of a worktlow service, as discussed elsewhere
herein. The worktlow component also can manage difier-

US 8,713,061 Bl

7

ences between worktlow steps used for different database
engines, such as MySQL, as the underlying worktlow service
does not necessarily change.

In this example, a workiflow can be instantiated using a
workilow template for creating a database and applying infor-
mation extracted from the original request. For example, 1T
the request 1s for a MySQL® Relational Database Manage-
ment System (RDBMS) instance, as opposed to an Oracle®
RDBMS or other such instance, then a specific task will be
added to the workilow that 1s directed toward MySQL
instances. The workflow component also can select specific
tasks related to the amount of storage requested, any specific
hardware requirements, or other such tasks. These tasks can
be added to the workflow 1n an order of execution usetul for
the overall job. While some tasks can be performed 1n parallel,
other tasks rely on previous tasks to be completed first. The
workilow component or service can include this information
in the worktlow, and the tasks can be executed and informa-
tion passed as needed.

An example “create database” worktlow for a customer
might includes tasks such as provisioning a data store
instance, allocating a volume of off-instance persistent stor-
age, attaching the persistent storage volume to the data store
instance, then allocating and attaching a DNS address or other
address, port, interface, or identifier which the customer can
use to access or otherwise connect to the data instance. In this
example, a user 1s provided with the DNS address and a port
address to be used to access the instance. The worktlow also
can include tasks to download and 1nstall any binaries or other
information used for the specific data storage technology
(e.g., MySQL). The workiflow component can manage the
execution of these and any related tasks, or any other appro-
priate combination of such tasks, and can generate a response
to the request indicating the creation of a “database” in
response to the “create database™ request, which actually
corresponds to a data store instance in the data plane 210, and
provide the DNS address to be used to access the instance. A
user then can access the data store instance directly using the
DNS address and port, without having to access or go through
the control plane 208. Various other workiflow templates can
be used to perform similar jobs, such as deleting, creating, or
modifying one of more data store instances, such as to
increase storage. In some embodiments, the workilow infor-
mation 1s written to storage, and at least one separate execu-
tion component (not shown) pulls or otherwise accesses or
receives tasks to be executed based upon the workilow 1nfor-
mation. For example, there might be a dedicated provisioning,
component that executes provisioning tasks, and this compo-
nent might not be called by the workilow component, but can
monitor a task queue or can receive information for a provi-
sioning task 1n any of a number of related ways as should be
apparent.

As mentioned, various embodiments can take advantage of
a workflow service that can receive requests or calls for a
current state of a process or task, such as the provisioning of
a repository, and can return the current state of the process.
The workilow component and/or worktlow service do not
make the actual calls or requests to perform each task, but
instead manage the state and configuration information for
the workilow that enables the components of the control plane
to determine the next task to be performed, and any informa-
tion needed for that task, then generate the appropriate call(s)
into the data plane including that state information, whereby
a component of the data plane can make the call to perform the
task. Worktlows and tasks can be scheduled in parallel in
order to 1increase throughput and maximize processing
resources. As discussed, the actual performing of the tasks

10

15

20

25

30

35

40

45

50

55

60

65

8

will occur 1n the data plane, but the tasks will originate from
the control plane. For example, the worktlow component can
communicate with a host manager, which can make calls into
the data store. Thus, for a given task a call could be made to
the workilow service passing certain parameters, whereby the
workflow service generates the sequence of tasks for the
workflow and provides the current state, such that a task for
the present state can be performed. After the task 1s performed
(or otherwise resolved or concluded), a component such as
the host manager can reply to the service, which can then
provide mnformation about the next state in the worktlow, such
that the next task can be performed. Each time one of the tasks
for the worktlow 1s performed, the service can provide a new
task to be performed until the worktlow 1s completed. Further,
multiple threads can be running in parallel for different work-
flows to accelerate the processing of the worktlow.

The control plane 208 1n this embodiment also includes at
least one monitoring component 218. When a data instance 1s
created 1n the data plane, information for the instance can be
written to a data store in the control plane, such as a monitor-
ing data store 220. It should be understood that the monitoring
data store can be a separate data store, or can be a portion of
another data store such as a distinct set of tables 1n an Admin
data store 222, or other appropriate repository. A monitoring
component can access the information in the monitoring data
store to determine active instances 234 in the data plane 210.
A monitoring component also can perform other tasks, such
as collecting log and/or event information from multiple com-
ponents of the control plane and/or data plane, such as the
Web service layer, worktlow component, sweeper compo-
nent, and various host managers. Using such event informa-
tion, the monitoring component can expose customer-visible
events, for purposes such as implementing customer-facing
APIs. A monitoring component can constantly monitor the
health of all the running repositories and/or imstances for the
control plane, detect the failure of any of these instances, and
initiate the appropriate recovery process(es).

Each instance 234 1n the data plane can include at least one
data store 226 and a host manager component 228 for the
machine providing access to the data store. A host manager in
one embodiment 1s an application or software agent executing
on an instance and/or application server, such as a Tomcat or
Java application server, programmed to manage tasks such as
soltware deployment and data store operations, as well as
monitoring a state of the data store and/or the respective
instance. A host manager in one embodiment listens on a port
that can only be reached from the internal system compo-
nents, and 1s not available to customers or other outside enti-
ties. In some embodiments, the host manager cannot 1mitiate
any calls 1into the control plane layer. A host manager can be
responsible for managing and/or performing tasks such as
setting up the instances for a new repository, including setting
up logical volumes and file systems, installing database bina-
ries and seeds, and starting or stopping the repository. A host
manager can monitor the health of the data store, as well as
monitoring the data store for error conditions such as 1/O
errors or data storage errors, and can restart the data store 1f
necessary. A host manager also perform and/or mange the
installation of software patches and upgrades for the data
store and/or operating system. A host manger also can collect
relevant metrics, such as may relate to CPU, memory, and I/O
usage.

The monitoring component can communicate periodically
with each host manager 228 for monitored instances 234,
such as by sending a specific request or by monitoring heart-
beats from the host managers, to determine a status of each
host. In one embodiment, the monitoring component includes

US 8,713,061 Bl

9

a set of event processors (or monitoring servers) configured to
1ssue commands to each host manager, such as to get the
status of a particular host and/or 1nstance. If a response 1s not
received alter a specified number of retries, then the monitor-
ing component can determine that there 1s a problem and can
store information 1n the Admin data store 222 or another such
10b queue to perform an action for the instance, such as to
verily the problem and re-provision the instance if necessary.
The sweeper can access this information and kick off arecov-
ery workflow for the instance to attempt to automatically
recover from the failure. The host manager 228 can act as a
proxy for the monitoring and other components of the control
plane, performing tasks for the instances on behalf of the
control plane components. Occasionally, a problem will
occur with one of the mstances, such as the corresponding
host, instance, or volume crashing, rebooting, restarting, etc.,
which cannot be solved automatically. In one embodiment,
there 1s a logging component (not shown) that can log these
and other customer visibility events. The logging component
can nclude an API or other such interface such that if an
instance 1s unavailable for a period of time, a customer can
call an appropriate “events” or similar API to get the infor-
mation regarding the event. In some cases, a request may be
left pending when an instance fails. Since the control plane 1n
this embodiment 1s separate from the data plane, the control
plane never receives the data request and thus cannot queue
the request for subsequent submission (although i some
embodiments this information could be forwarded to the con-
trol plane). Thus, the control plane 1n this embodiment pro-
vides information to the user regarding the failure so the user
can handle the request as necessary.

As discussed, once an 1stance 1s provisioned and a user 1s
provided with a DNS address or other address or location, the
user can send requests “directly” to the data plane 210
through the network using a Java Database Connectivity
(JDBC) or other such client to directly interact with that
instance 234. In one embodiment, the data plane takes the
form of (or at least includes or 1s part of) a computing cloud
environment, or a set of Web services and resources that
provides data storage and access across a “cloud” or dynamic
network of hardware and/or software components. A DNS
address 1s beneficial 1n such a dynamic cloud environment, as
instance or availability failures, for example, can be masked
by programmatically remapping a DNS address to any appro-
priate replacement instance for a use. A request recerved from
a user 202 or application 204, for example, can be directed to
a network address translation (NAT) router 224, or other
appropriate component, which can direct the request to the
actual instance 234 or host corresponding to the DNS of the
request. As discussed, such an approach allows for instances
to be dynamically moved, updated, replicated, etc., without
requiring the user or application to change the DNS or other
address used to access the instance. As discussed, each
instance 234 can include a host manager 228 and a data store
226, and can have at least one backup instance or copy 1n
persistent storage 230. Using such an approach, once the
instance has been configured through the control plane, a
user, application, service, or component can interact with the
instance directly through requests to the data plane, without
having to access the control plane 232. For example, the user
can directly 1ssue structured query language (SQL) or other
such commands relating to the data 1n the instance through the
DNS address. The user would only have to access the control
plane 1 the user wants to perform a task such as expanding the
storage capacity of an instance. In at least one embodiment,
the functionality of the control plane 208 can be offered as at
least one service by a provider that may or may not be related

10

15

20

25

30

35

40

45

50

55

60

65

10

to a provider of the data plane 210, but may simply be a
third-party service that can be used to provision and manage
data instances in the data plane, and can also monitor and
ensure availability of those instances 1n a separate data plane
210.

As discussed, one advantage to providing the functionality
of a control plane as a Web service or other such service 1s that
the control plane functions as a virtual database administrator
(DBA) and avoids the need for a human DBA to perform tasks
such as provisioning data. Provisioning data 1s presently a
tedious manual procedure, requiring a DBA to receive the
necessary configuration information, determine whether the
configuration 1s valid, optimize and tune the instance, and
perform other such tasks, which take a significant amount of
time and effort. Further, such an approach provides many
opportunities for error, which might not be discovered until
alter data 1s lost. Using a control plane or service as described
herein, a user or customer can 1nstead submuit a call including
information such as a type of hardware and a version of a
database product. The control plane or service can then per-
form the necessary tasks to create, delete, modily, expand, or
otherwise modily a data store or data storage instance. The
control plane also can support several different database
engines in a consistent fashion, without requiring a DBA to be
an expert 1n each of the engines. Once provisioned, the user
has native access to the data instance(s), and can simply point
existing applications (such as MySQL applications) to the
DNS address or other location information for the particular
instance. There 1s no restriction or modification of query
models or other such functionality, as a user can continue to
use applications built on MySQL, Oracle, or other database
technology.

Using components such as those discussed above, FIG. 3
illustrates an example process 300 by which a customer can
request the performance of a control-related task with respect
to at least one data instance, repository, or other such data
source 1n a data environment, here the data plane, using the
control plane or a similar data control service. While the term
“customer” 1s used herein to refer to the “owner” of data, or a
data store or instance hosted by the RDS system, it should be
understood that the term customer 1s merely an example, and
that any appropnate user or developer can be allowed to
access the control plane and data plane 1n the various embodi-
ments. Further, while an embodiment relating to the control
of a data environment 1s described, 1t should be understood
that stmilar approaches can be used to control and/or manage
various other components, devices, applications, services, or
other such resources 1n an environment separate from the
control environment.

A request, such as a Web services call, 1s received through
one of a plurality of control plane APIs or other such cus-
tomer-facing control plane interface components 302. The
request 1s analyzed to determine at least one action needed to
process the request 304. As discussed, this can take the form
ol a component of a Web services layer parsing the request to
determine the action(s) being requested. In an embodiment
where the API recerving the request corresponds to a specific
action to be performed, the Web services layer can extract
information from the request to be used in determining
aspects or parameters of the action to be performed. In this
embodiment, information for each action, such as the type of
action and parameters to be used to perform the action, 1s
written to a job queue 306, such as may be located 1n an
Admin data store or other such storage location. The job
queue can be momitored, such as by a sweeper component, to
determine the presence of job information 308 and, when job
information 1s detected, a request can be sent to 1nitiate a

US 8,713,061 Bl

11

worktlow for the requested action 310. This can include a
request sent by the sweeper component to a worktlow com-
ponent and/or service to instantiate a workilow. In other
embodiments, a workilow component might monitor the job
queue for jobs, or a component of the Web services layer may
send the job information directly to a worktlow component.

Upon receiving the job information, the information 1s
analyzed to determine and/or assemble an appropriate work-
flow for the requested action 312. As discussed, different
tasks can be selected for the workilow based upon factors
such as the type of action requested, the parameters of the
request, and the type of database engine being used. Begin-
ning with the first task of the worktlow, state information 1s
sent to a host manager 1n the data environment operable to use
the state information to determine a task to be performed,
perform the task with respect to a data repository and/or data
istance, and return a response upon completion of the task
314. Upon receiving the response, the workflow component
deter mines whether there 1s another task to be performed
316. If so, state information for the next task 1s sent to the host
manager, and upon completion of that task the host manager
sends a response to the workilow component. After the final
task has been completed, a message 1s sent to the requesting,
customer (or another appropriate user, application, or loca-
tion) that the requested action has been completed 318. After
the action has been performed, the customer 1s able to directly
access the data instance upon which the action was performed
using a data interface of the data environment, without
accessing or passing through the control plane 320. I the
action 1s performed with respect to a resource other than a
data instance in a data environment, then native or direct
access to the resource an be provided through the target
environment using another appropriate interface. As men-
tioned, the user can provided with a DNS address and port
number, for example, such that if the action resulted 1n move-
ment of data or another similar action, the customer or an
application can continue to use the same DNS address, which
will be directed to the appropriate location in the data plane.

Similarly, FIG. 4 illustrates an example process 400 by
which a control plane or control service can monitor the
performance of a data instance (or data store, repository, etc.)
in a data environment, here the data plane. A request for status
1s sent to a host manager component for a data instance 402.
A determination 1s made as to whether a response 1s recerved
within a specified amount of time 404. If no response 1s
recerved, 1t 1s determined whether a threshold number of
requests have been sent 406. If a threshold number of requests
have not been send, another request can be sent 408. If a
response message 1s received, the response 1s analyzed to
determine whether the message includes any errors or tasks to
be addressed 410. If not, and the instance 1s determined to be
healthy, the process can continue with another request for
status being sent at a later time. If the response message
indicates that an action needs to be performed with respect to
the data instance, information for the action, such as the type
of action and parameters to be used to perform the action, 1s
written to a job queue 412, such as may be located 1n an
Admin data store or other such storage location. The job
queue can be monitored to determine the presence of job
information 414, such as by a sweeper component, and when
job information 1s detected, a request can be sent to 1nitiate a
workilow for the requested action 416. In other embodiments,
a workflow component might monitor the job queue for jobs,
or a component of the Web services layer may send the job
information directly to a worktlow component.

Upon receiving the job information, the information 1s
analyzed to determine and/or assemble an appropriate work-

10

15

20

25

30

35

40

45

50

55

60

65

12

flow for the requested action 418. Beginning with the first task
of the workflow, state information 1s sent to a host manager 1n
the data environment to perform the task and execute the
worktlow 420, such as may be accomplished using a process
described with respect to steps 314 to 316 of the process of
FIG. 3. If the final task 1s completed successtully, the data
instance can simply continue to process requests sent from
customers or applications via a data plane interface. If any
task cannot be completed successiully, a message can be sent
to a customer (or another appropriate user, application, or
location) indicating a potential problem with the data
istance. Various other notification actions can occur, such as
generating an action notification and/or adding information to
an error log.

Specific Interface Examples

As discussed above, users of the control plane can perform
various tasks relating to data repositories and data instances
using a set of APIs or other such interfaces. While the selec-
tion and names of the example APIs are used for purposes of
explanation, 1t should be apparent that other selections, com-
binations, names, and other aspects can vary between the
various embodiments. As discussed 1n one of the examples
above, customers can create a data store using a “CreateDa-
tabase” or similar API. The user can call a Web service to
specily any desired values for an instance type (which
describes the CPU and memory capacity), storage size,
repository name, port, and other such values. The customer
could also utilize a “DescribeDatabase’ or similar API to poll
on the status of the repository to determine the state of the
repository, such as whether the repository state 1s provi-
sioned. When the status of database 1s “AVAILABLE,” for
example, the customer can retrieve an endpoint which 1s
returned as part of a response to the DescribeDatabase call.
Customers can delete a repository or instance using a
“DeleteDatabase” or similar API. Customers also can have
the ability to lubernate a repository or instance, placing an
instance 1n a “sleep” state, for example, using a “Hibernate-
Database™ or similar API. During such a “sleep” state, the
data typically will not be accessible but the data will be
backed up durably. Customers can wake a hibernated data
repository or instance using a “ResumeDatabase”™ or similar
API.

As mentioned earlier, a control plane or service can handle
the complexity of not just database provisioning, but also
tasks such as upgrades, patch management, backups, and
fallover. A customer can control the times for backups and
maintenance activities by enabling customers to specily (or
modily) the backup window and maintenance window times
while invoking a “CreateDatabase™ (or “ModityDatabase™ or
similar) API. Using a “ModifyDatabase™ API, customers can
increase the storage size, change the instance type, or modity
various other fields.

Customers also can be provided with at least one “Database
Access Control” or similar API. When a data repository 1s
created, users can specily one or more existing security
groups to restrict network access to the repository. Customers
can authorize access to the repository by adding permission
rules to the security group that 1s applied to the repository
using an API such as an AuthorizeDBSecurityGrouplngress
API. Customers can also add or remove security groups from
a repository at any time using an API such as a “ModifyDa-
tabase” API. Customers can create (or delete) security groups
using similar APIs, such as a “CreateDBSecurityGroup”™ (or

“DeleteDBSecurityGroups™) API.

US 8,713,061 Bl

13

A control plane also can provide at least one “Database
User Management™ or similar API. As part of a CreateData-

base API, for example, customers 1n one embodiment can be
expected to supply the username and password for a special
repository user, such as may be called a “Repository Owner.”
A Repository Owner 1s a special type of user who owns the
repository schema objects. After creation of a repository, a
customer can perform tasks such as to add more users to using
a “CreateDatabaseUser” API, remove users using a “Deletc-
DatabaseUser” API, and list customers using a “DescribeDa-
tabaseUsers” API. Customers also can obtain the history of
events (such as outages due to maintenance or backup related
events) related to the repositories and instances using a
“DescribeEvents™ or similar API.

Customer Example

In this example a customer wants to provision a new data
instance, mstead of maintaining and managing an existing
MySQL database. In this example, the existing CUSTOMER
database 1s 60 GB, and storage growth estimates are around
10% per month. Based on these initial capacity requirements,
the customer selects an instance to be provisioned with an
initial capacity of 80 GB. The customer chooses a master user
and master user password, and based on firewall requirements
chooses an appropriate port number (e.g., 4030) on which the
data mstance will be listening.

The customer, 1f not already signed up or subscribed to the
control service, can sign up for the service. In some embodi-
ments, the user will receive software or will access an inter-
face page through the Internet, for example, that will allow a
user to submit requests to the control plane or service. For
example, FIG. 5 1llustrates an example of a display 500, here
a page rendered 1n a browser application, that can allow a user
to make calls 1nto the control plane. As 1llustrated, the inter-
face can include options that allow the user to enter infothia-
tion needed to perform a control action on the data plane. For
example, the interface page can include options to specily a
repository for the action 502, select an action to be performed
504, and specily options for the action 506, such as a database
engine to be use or capacity to be requested, as well as version
information 308 or other such options. In other embodiments,
a user can manually (or otherwise) create and submit Web
service calls to the control plane. In the following example,
the customer generates a request to create a new data reposi-
tory using a command line tool. A request can take the form
of, for example:

rds-create-database --identifier customerprod --dbname

customer --size 80 -class small --engine mysql5.1
--master master_username --password master_pass-
word --port 4030
The customer can have the ability to check on the provision-
ing status, and can request a connect string using the com-
mand line tool to describe the repository, such as by submit-
ting:

describe-repositories customerprod
The customer can grant access to the default security group,
such as from the address range 205.192.0.0/16 by:

authorize default -s 205.192.0.0/16
The customer also can check on the status of security
changes, such as by submitting:

describe-group default

Once the request has been submitted, the control plane can
asynchronously execute the request to provision the reposi-
tory. A “DescribeDatabases” or similar API can be used to
determine the status of the request. While provisioming 1s still
in progress, the status will show as “Pending Creation,” for

10

15

20

25

30

35

40

45

50

55

60

65

14

example, and can be changed to a state such as “Created” once
the provisioning has been completed. At this point, the cus-
tomer can have all the information necessary for connecting,
to the repository.

Once the repository has been provisioned and 1s available,
the customer can perform various actions on the data plane.
For example, the customer can populate the CUSTOMER
repository, such as by using a MySQL dump utility or similar
data transfer process. The customer 1n this example runs a
command (1.e., on the source MySQL database server using a
compatible client utility) such as the following:

$ mysqldump -opt customerimysqgl--host end_point_host-

name --port 4030 -C customer
The customer also can verily that the required tables are
created, such as by submitting:

$ mysql -u master_usernname -h end_point_hostname

--port 4030 -p master_password

Mysqgl> show tables;

Tables 1n customer

Tablel
Table2
Table3

The repository 1s ready for use by one of the customer’s
applications. The customer changes the connect string (or
other pointer) for the application to point to new 1instance
database instead of the original self-managed database.

In this example, the customer also wants to implement data
security through role-based access control. Before turning on
the provisioned and loaded data instance and making the
instance available, the customer wants to 1implement role
based access control such that a development team will have
read/write access to the repository but business analysts will
only obtain read access. The client also wants “master user”
access limited to handful of senior members, so the remaining
developers need a different database user role.

With respect to the control plane, the customer can submit
a request to create the new database user using the command
line tool, for example, such as by submitting the following:

create-user --1dentifier customerprod --username developl

--password developl
create-user --1dentifier customerprod --username analyst]
--password analystl
The customer can also check on provisioming status for the
request, such as by submitting:

describe-users customerprod
While provisioning 1s still in progress, the status can show a
state such as “Pending Creation,” and the status will be
changed to a state such as “Created” once the provisioning
has been completed. The customer can now perform neces-
sary tasks for securing the users 1n the data plane.

The customer then can, with respect to the data plane, grant
read/write privileges to a developl user for all tables owned
by master_username, such as by submuitting:

$ mysql-umaster_username -h end_point_hostname --port

4030 -p masterl
Mysql>grant select, insert, update, delete on master_user-
name.* to ‘developl’@%’;
The customer can also grant read privileges to an analystl
user for all tables owned by master_username:
$ mysql-umaster_username -h end_point_hostname --port
4030 -p masterl

US 8,713,061 Bl

15

Mysql>grant select

master_username.*to‘analystl’ @ %’;

After the 1nstance has been running for a while, the cus-
tomer may decide to scale up the size of the instance, such as
to 150 GB of storage. The customer 1n this example thus can
submit a request to modily the database capacity using the
command line tool, such as by submitting;:

modily-database --1dentifier customerprod --size 130
If the system also allows to adjust the size of an instance for
compute or processing needs, then that adjustment can be
made 1n the same or a similar command by speciiying an
additional parameter value. The customer also can checkon a
provisioning status for the adjustment by submitting a com-
mand such as:

describe-databases customerprod
The requested repository modifications 1n one embodiment
take place during the maintenance window specified by the
customer as discussed above. While the changes are 1n
progress, the status be, for example, “Pending Modification,”
which can be changed to a value such as “Active” once the
provisioning has been completed. As discussed, the customer
does not have to take any actions on the data plane side during
the execution of this request. On the control plane side, the
customer can subscribe to a service such as an auto-scaling
plan. Once subscribed, the customer does not have to take any
action, even on the control plane, as the auto-scaling can be
configured to manage capacity for the customer and scale up
or down as needed.

At some point, the customer may wish to implement
improved or updated processes for various development
needs and may wish to set up a test instance of a particular
data store. The customer may also want to take a snapshot of
the production instance so that the test instance 1s fully popu-
lated and comparable with the production date. The customer
decides that, for the particular needs of the testing procedure,
the customer can utilize a SMALL instance for purposes of
processing capacity, and can provision the same storage
capacity as 1s used for production. The customer thus can
submit a request to clone the database using a command line
tool, such as by submitting:

create-database --1dentifier customertest --dbname tcus-

tomer --size 150 --class small--engine mysql5.1--master
master_username --password master_password--port
4030
The customer can also check on the provisioning status by
submitting a command such as:

describe-databases customertest
The requested modifications can take place during the main-
tenance window previously specified by the customer. While
the changes are 1n progress, the status will show as “Pending,
Modification,” for example, and can be changed to a state
such as “Active” once the provisioning has been completed.
The customer does not have to take any actions on the data
plane side during the execution of this request. On the control
plane side, the customer can subscribe to a service such as
auto-scaling, as mentioned previously, such that once sub-
scribed the customer does not have to take any action even on
the control plan as the auto-scaling service will manage the
scaling for the customer.

As discussed previously, the use of a control plane or
service 1n accordance with various embodiments does not
restrict the type of SQL queries that a customer can run, and
does not impose any restrictions relating to construction of a
schema, such as to be partition ready and not allow queries
spanmng partitions. Instead, a repository such as a relational
database can be provisioned 1n a computing “cloud” without
restricting the users” schema or queries. As commonly

Oon

10

15

20

25

30

35

40

45

50

55

60

65

16

known, even though there 1s a theoretical SQL standard, the
SQL quirks, syntaxes and their behaviors (e.g., NULL han-
dling) vary across different relational database engines (e.g.,
MySQL, Oracle, or Postgres). For at least these reasons, users
may wish to choose a relational database engine that 1s famail-
1ar for purposes of programming and operations. Such an
approach allows customers to use the same set of database
tools that the customers have used previously for tasks such as
data modeling, development, and debugging, even when the
customers migrate their data stores to the cloud (or elsewhere)
via the control plane. Using such an approach, customers are
not required to rewrite their application or any operational
tools, which lowers the barrier of entry significantly for cus-
tomers to move data to the cloud.

A customer’s data repositories can be moved to the cloud n
one embodiment by running the repositories on compute
nodes of a cloud computing environment. Block level storage
volumes, such as off-instance storage volumes that persist
independently from the life of an istance, can be used with
these instances for storing the repository binary, logs and
volumes, for example. Such an approach can be advanta-
geous, as the virtualization provides flexibility to quickly and
casily scale a compute and storage resources for a repository.
Further, such an approach can provide for persistent storage
in the cloud.

As known 1n the art, relational databases can be run in
different modes, such as may include: stand-alone (non-rep-
licated), replicated, or replicated and partitioned. A customer
typically makes the choice of which mode to run for a reposi-
tory based on the availability and scalability needs of the
repository and the incurred total cost of ownership (TCO).
Some applications and services to not require a repository to
be highly available and durable, and may instead utilize a
stand-alone repository that 1s able to tolerate outages on the
order of minutes. Other applications and servers can require a
repository to be always available, and require the repository
to never lose data even 1in the event of a failure. In this case, the
applications and services typically require a replicated data-
base offering. Some users, applications, or services require a
massively scalable repository that can partition data across
multiple repositories, such that scaling can occur beyond the
compute and storage capacity of a single database. To address
these different use cases, an approach 1n accordance with one
embodiment offers at least two modes, such as stand-alone
and high availability, for each database engine. Some
embodiments also allow customers build their own partition-
ing layer on top of either stand-alone or high availability
repositories.

As mentioned, the control plane layer can take advantage,
or “sit on top,” of various basic soltware frameworks for
performing tasks such as: implementing workflows, estab-
lishing secure communication channels between the host
managers of the data plane and the components of the control
plane, installing software on the instances of the data plane,
and performing various database backup and recovery proce-
dures.

For example, a control plane layer can take advantage of a
workiflow service to manage worktlows. As commonly
known, a key characteristic of any workflow engine 1s that the
engine enables asynchronous and resumable processing. As
discussed above, a worktlow can be thought of as a state
machine that starts with an 1mitial state and goes through a
series of intermediate state transitions by executing different
steps ol the worktlow before reaching the end goal. This end
goal can be thought of as the terminal state of a state machine.
A worktlow service offers the ability to create worktlows, and
provides hooks to determine the current state of a given work-

US 8,713,061 Bl

17

flow and the step(s) to next be executed. The service can store
the current state of the state machine, keeping track of the
steps which executed successtully and the steps that must be
executed to keep the workiflow moving. The service does not,
in general, actually execute the state transitions for us. The
precise tasks of executing the tasks for a workilow will in

many embodiments be performed by the “client” components
ol the worktlow.

Since a control plane can have multiple workflows running
in parallel at any given time, and these workilows can be for
performing different tasks, the control plane can take advan-
tage of an architecture that 1s able to schedule multiple work-
flows and execute multiple activities 1n parallel. In one
embodiment, the control plane includes various worker fleets
that are programmed to execute the various workilow tasks.
The interaction between these worker fleets and the worktlow
service will be described with respect to the configuration 600
of FIG. 6. Each worker host runs three components 1n this
example, a poller component 604, a decider component 602,
and a dispatcher component 606. Each host runs a single
poller thread, which polls the decider queue for each work-
flow type. The decider queues are polled 1n one embodiment
based on the priority order of different workilow types. For
instance, the decider queues can be polled for a recovery
worktlow ahead of a repository creation workilow. It, for
example, a pollDeciderQueue API returns a non-empty list of
decisions, the poller can forward the decisions to the decider
component. The decider component then can make a decision
regarding the next task to execute 1n a given worktlow, and
can call a “startActivity” or similar API to add the task to the
activity queue for a given workilow. During the polling, the
poller can move to the next task when the decider queue
returns empty results, and can poll the activity queue using a
“Poll ActivityQueue” or similar API. ITthe pollActivityQueue
API returns a non-empty list, this list can be handed over to a
dispatcher threadpool, which can be tasked with executing
the worktlow activity. Upon successiul completion of the
workilow activity, an “ActivityCompleted” or stmilar API can
be called, which will call the worktlow service to enqueue in
the decision queue.

Each workflow host 1n the workilow fleet runs a poller
threader, decider, and dispatcher threadpool 1n this example.
The workilows can be defined 1n one embodiment using an
annotations framework, and a worktlow application can build
these definitions at startup by reading from the appropnate
classpath. The worktlow service host first registers the list of
registered workiflows and activity types using APIs of the
workilow sevice such as a “registerWorktlow'Type™ and “reg-
isterActivity Type” API. Since these APIs are idempotent 1n
this example, each API can be called multiple times from
multiple fleets.

New workilow instances of different workilow types may
need to be created for tasks such as repository creation,
repository deletion, repository modification, repository
recovery, repository backups, user creation, user deletion,
password reset, security management, and other such tasks.
Each of these workilow instances can be created using a
sweeper that constantly sweeps the Admin repository for any
changes to be executed, as discussed above with respect to
FIG. 2. For instance, 1f a user wants to create a new repository

then the Web service layer can store the required configura-
tion in Admin DB with a status column such as “PENDING

CHANGES.” Each workilow host can runs a sweeper thread
that sweeps for any database or security group records with
status set to PENDING CHANGES, and can start a work-

flow accordingly.

10

15

20

25

30

35

40

45

50

55

60

65

18

While 1n some embodiments the workilow service’s “cre-
ateWorktlow” API can be called directly from the Web ser-
vice layer as soon as the required configuration is stored 1n the
Admin repository, calling the workflow service directly can
result in a two-phase commuit style problem. If the workilow
1s not available from the workflow service, then the Admin
repository updates have to be rolled back and CreateData-
baseAPI call not accepted. To avoid such two-phase commit
style 1ssues, various embodiments utilize the sweeper archi-
tecture that 1s operable to sweep for new workilow activities
to be started by looking at changes to the Admin repository
records with a status set to be PENDING_CHANGES, for

example.

Another architecture that can be utilized advantageously
relates to providing secure communications to the host man-
agers ol the data plane from the components of the host plane.
In one embodiment, the workflow and monitoring compo-
nents of the control plane are constantly communicating with
the host managers to perform various tasks (e.g., database
maintenance and software installation), as well as to check
the status of the various instances and/or repositories. It 1s
important in at least some embodiments that all communica-
tions between the control plane and the host managers occur
over a secure network that prevents anyone from eavesdrop-
ping or 1ssuing unauthorized commands to the host managers.

In one embodiment, all communication channels to the
host managers are secure using a hypertext transier protocol
over a secure socket layer (SSL). Each application server
hosting a host manager application can be started using
scripts at bootup of an instance. Before starting the applica-
tion server engine, a script can be executed that generates a
seli-signed certificate and installs the certificate to enable the
SSL communication channel(s). SSL communication 1s used
in one embodiment for encrypting the communication chan-
nel and not for client authentication. Client authentication 1s
instead achieved with a public/private key signature embed-
ded 1n each request, such that in one embodiment all clients
s1gn query string parameters using a private key. This signa-
ture can be validated by a custom interceptor, which can be
deployed with the application server for the host manager.
Further, a security group (1.e., firewall rules) can be estab-
lished for each momitored 1nstance 1n the data plane such that
only hosts sitting 1n a given network or secure group can
communicate using the host manager port. Secure informa-
tion and credentials (such as private keys) can be stored 1n an
appropriate keystore, which can provide for functionality
such as key management and rotation.

Another architecture can be used to assist with software
installation and maintenance. Software will generally need to
be installed on instances 1n the data plane instances during
various stages of the repository lifecycle. To create a reposi-
tory, various binaries and/or seeds may need to be stalled.
After the repository is created, various patches may need to be
applied to the database, as well as critical security patches that
may need to be mstalled to the operating system. It thus can be
desirable 1n some embodiments to build upon a flexible soft-
ware 1nstallation architecture or framework that enables the
installation of different types of software on the various
instances. One of the key requirements of such a framework
may be to not only to 1stall new software, but also to provide
information on the current set of installed software and the
respective versions. It also can be desirable for such a frame-
work to provide functionality to resolve contlicts during
installation, verily the success of installation, and provide
APIs or other mechanisms to query the list of mstalled soft-
ware.

US 8,713,061 Bl

19

An 1installation framework in one embodiment takes
advantage of a packet manager such as RPM (Red Hat Pack-
age Manager), which enables software to be distributed that 1s
already compiled, such that the software can be 1nstalled with
a single command. The software can be stored 1n a “bucket,”
such that the software can be installed from pre-defined
URLs. An RPM or similar mstaller command can take the
package’s manifest file (which can be another URL) and the
RPM URL as two different parameters. The installed RPMs
will be signed by the control plane and/or by Red Hat, and
both keys can be installed and maintained for the instances.
Software installation 1n such a situation can be executed by a
host manager, which can provide an “installSoftware™ or
similar API. Such an API can take into account parameters
such as Package URL, Manifest URL, RetryCount, Forceln-
stall flag, and RPM root location). Upon mvoking this API,
the manifest file will be downloaded, and each item will be
compared to the currently installed list of applications. If the
item 1s already 1nstalled, then an attempt to reinstall will not
be done unless a “force mnstall” or similar tlag 1s specified. To
check whether an individual package has been installed, each
host manager can provide a “getStatusofSoftware” or similar
API. The “installSoftware™ host manager API can be 1dem-
potent (as worktlow may die and retry the step again) and
asynchronous (as software installation takes a while to com-
plete). These two aspects can be achieved by using a static
object for synchromization, which can prevent a second
“installSoftware” call from interfering with the first call.

An “installSoftware” API in accordance with one embodi-
ment runs 1n a loop for a maximum of “RetryCount” times.
The API also removes any 1nstallation files which might exist
from a previous failed attempt The API can download a mani-
fest file and determine which 1tems need to be 1nstalled, then
download the file(s) or package from an appropriate reposi-
tory or other source. The appropriate RPM files are then
processed and installed. A final cleanup step then can be
executed, regardless ol the presence of any errors 1n the instal-
lation process.

The installation of the host manager application and any
updates also can be managed for each instance, 1n a way that
does not require taking down all the other instances. In one
embodiment, an instance starts the application server engine
at bootup, and the host manager 1s installed by calling the
application server manager framework to deploy the new host
application. As with other communications, the communica-
tion can be intercepted and the client authenticated before
installing software or pushing updates to a host manager,
which can be accomplished without affecting the availability
ol existing repositories.

Another aspect that can rely upon an underlying frame-
work relates to repository and data backup. It can be desirable
for the control plane to backup customer repositories and
instance for various reasons, such as user-mnitiated backups
(which can be performed during the backup time windows)
and system-initiated backups during database restore, etc. A
single framework can be implemented to handle both
instances. To backup a repository, a framework can handle
backing up both the data files and any associated log files.
While various steps and processes will be described, it should
be understood that various steps and approaches can differ
from various database engines, such as MySQL and others.

An approach for backing up data 1n accordance with one
embodiment suspends data operations until shapshots are
taken of the appropriate data volumes, and the log files a
similarly copied into an appropriate location. For example, an
Admin tier can watit for the backup window before initiating,
a backup procedure. Once inside the backup window, the

10

15

20

25

30

35

40

45

50

55

60

65

20

Admin tier can reate a worktlow that will create a worktlow
instance for repository backups. In one example, the work-
flow mmvokes a “supendDatabaseForBackup™ or similar API
for the host manager. This API can manage tasks to, for
example, flush and lock the tables, suspend 1/O to the data
volume, create and mount an LVM snapshot for the log vol-
ume, create a log position file with the last log position, and
start a timer to resume the database. This timer can be used to
resume the repository 1n case the Admin tier hangs up while
performing a task, such as taking snapshots, preventing the
repository from being accidentally suspended for indefinite
period of time. The workflow can poll the host manager for
completion of these and/or other such tasks. Once the work-
flow has confirmed that the host manager has suspended the
repository, the workilow can will attempt to backup the data
volumes using a set of ordered tasks. For example, the work-
flow can indicate to create snapshots of each data volume, and
verily that the snapshots have been successiully created. A
row can be inserted for each snapshot volume 1n a location
such as a backup_data_volumes table. Subsequently, the
workflow can invoke a host manager’s “resumeDatabase-
FromBackup™ or similar API. This process can copy the
repository logs and log position information to an appropriate
storage location, can unmount the log snapshot, remove log
snapshot log volume, and unlock all tables. The Admin tier
then can create a customer event that indicates the backup has
been completed and the repository 1s again available.

As discussed, the log files also can be backed up 1n a similar
tashion. The logs can be used to perform tasks such as replay-
ing various transactions in case the data files have to be
restored. The engine logs can be copied to an approprate
storage location, such that previously backed-up log files can
be obtained using a simple list command. A host manager will
use this result to determine whether there are logs that need to
be copied. For example, the host manager can request a
bucket list to obtain the list of log files written such that the
last sequence can be backed up. It new logs have been created,
it can first be determined that the logs are not actively being
written to by a database engine, and then the logs can be
copied and the copying verified to have been performed suc-
cessiully.

Another aspect that can be handled by taking advantage of
various frameworks includes the management of various
security aspects, such as secure keys and user credentials.
Secure information such as secure keys and passwords can be
stored using a secure key management system or service,

such as 1s described 1n U.S. patent application Ser. No.
12/3772,597, filed on Feb. 17, 2009, 1ssuing as U.S. Pat. No.

8,245,037 on Aug. 14, 2012, and entitled “Encryption Key
Management,” which 1s hereby incorporated herein by refer-
ence. Such a service can contain at least two versions for each
credential, an ‘OLD’ version and the current version. A key
can be rotated, for example, by uploading the new value for
the key to the service, such as by using the base name for the
key, and launching a workflow to propagate that key value to
host managers as needed. Once that workflow 1s terminated
successiully, such that each appropriate host has the new
credential, the old version of the key can be effectively
replaced with the new value. If, for any credential, the old key
does not match the new key, that 1s an indication that a key
rotation process 1s currently underway. A new key rotation 1s
not started 1f the old key does not match the current key, as
such an approach can risk losing credentials that may still be
in use. A command line utility or similar interface can be used
to push keys to the key management service, which can
enforce this check.

US 8,713,061 Bl

21

A separate workflow can be defined for updating and/or
rotating credentials such as host manager credentials on all
host manager instances. Such an approach can utilize the
same 1nputs as a “SendCredentials™ or similar API on the each
host manager, such as credential type, public key, and
optional private key. In place of the credential value, however,
the worktlow can will accept the name of the key used to store
that value 1n the key management service. The worktlow can
verily that the current value 1s different from the new value,
and 1f the values are the same the workilow can terminate with
an appropriate error condition. For each active host managed
by the control plane, a sub-workilow can be launched that will
send the new credential(s) to the host managers on each host.
Once all the sub-workflows are complete, the new credential
value can replace the old value. Any host that 1s created or
reactivated while this worktlow 1s 1in progress typically waill
need to be given the new version of the credential instead of
the original.

A sub-workflow for sending the credentials to a host can
utilize require the same mputs as the original workilow, as
well as the host name and port for the specific host manager.
The sub-worktlow can call an “UpdateCredentials™ or similar
API on the host manager for each specified credential, and
can call a “GetCredentials™ or similar API on the host man-
ager to verily that the update has completed. The host man-
ager 1n at least one embodiment will not report the new value
for the credential until everything has been done to put the
credential in place. It all host managers are not updated within
an appropriate period of time, such as two hours (where two
hours 1s configurable and easy to update as required), the
workilow can time out and generate an error ticket or other
such indication of failure. All the root/admin credentials used
by a host manager to communicate with a repository can be
stored 1n the Admin repository 1n an encrypted form. When
rotating the keys to encrypt passwords in the Admin reposi-
tory, the new keys can be uploaded to the management service
and a worktlow launched to re-encrypt all appropriate user
passwords using the new key. Once that workflow completes
successiully, the new encryption key can be used. In addition
to changing the encryption keys, this worktlow can also
change the root password for each database. A workilow for
rotating password encryption keys can verily that the new
encryption key 1s different from the old encryption key,
encrypt any user passwords for in-tlight workflows with the
new key, and encrypt the root passwords for any inactive
repositories with the new key. Since the repository 1s mnactive,
the passwords may not be changed but can be re-encrypted
with the new keys. For each active repository, a new root
password can be generated and stored 1n a pending changes
field (encrypted with the new key) and a sub-workilow can be
launched for updating host manager credentials with the new
password. When the sub-worktlow completes, the new root
password can be written back to the data repository, using the
new encryption key. The root database password will not be
changed when a repository 1s 1nactive, but the worktlow that
reactivates the repository can change the root password once
the repository 1s active.

An approach 1n accordance with one embodiment utilizes
a command line utility that wraps a remote command and
enforces restrictions on how credentials are rotated. This can
guarantee that public and private keys are only rotated 1n
tandem, and that no key 1s rotated 1f a previous rotation 1s still
in progress. The utility can verily that the keys were success-
tully deployed to all hosts and then launch the appropriate
workilow 1n the appropriate control plane environment. A
command line utility can use a syntax such as:

5

10

15

20

25

30

35

40

45

50

55

60

65

22

rotate-rds-key \
--stage One of Devo, Integ, QA, or Prod}
--type credential_typeh
--publicKey value for public key !
--privateKey optional for some types; value for private key

Such a utility can fail 1f the current key 1s different from the
old key on any host 1n the fleet, there 1s an error copying the
new key to any host in the fleet, or the workilow step could not
be started. In the case where the keys are already different,
there may be no changes to roll back. The utility can roll back
any changes in the other cases and alert the user of cases
where the roll back was unsuccessiul.

In a case where a host manager instance dies during an
“UpdateCredentials™ or stmilar worktlow, allowing the work-
flow to retry can handle many scenarios with no special logic
on the worktlow side. Workflow steps other than the step that
1s updating credentials may receive “MissingCredential” or
similar exceptions from which the worktlows will need to
recover. In such cases, it can be acceptable to send the new
credential to the host manager. In the case of a database
administration password, the password change may not have
taken effect. The worktlow step that tries to re-send the root
password (as well as any other call to Host Manager that
requires the root password from other worktlows) can fail
with a “MissingCredentials” or similar exception. Workilow
steps other than the change password worktlow can attempt to
set the credential to the new password and handle any failures.
The worktlow that 1s actively trying to change the password
can first try sending the new password. If that succeeds, the
workflow 1s done; otherwise, the workilow can retry with the
old password followed by the new password. If the host
manager receives an “UpdateCredentials” or similar call for
the root password where the host manager does not currently
have a password in memory, the host manager can attempt to
connect to the repository using that password and fail if the
connection cannot be established.

The rotations of various credentials and secure objects are
accomplished 1n many instances without any noticeable
impact on the customers. As the web service layer in many
embodiments does not use any of these credentials as part of
processing customer requests, the customer API calls can
continue to proceed as normal. The impact of rotating a cre-
dential can vary somewhat depending on the type of creden-
tial being rotated. For example, when a new pair of Web
services keys 1s generated, requests signed with the original
pair may start to fail. This will only affect worktlow steps, in
general, which the workflow system can retry for a period of
time. The new Web services credentials can be uploaded
quickly to the management service in order to minimize the
disruption to ongoing workilows. While worktlows for gen-
erating and propagating new passwords are 1n progress, work-
flow boxes can have access to both old and new encryption
keys, such that connections can be made to individual reposi-
tories and instances while each workflow 1s 1n progress. For
host manager authentication keys, production hosts can have
retry logic 1n place to retry connections with the old key it
requests are being rejected. For RPM signing keys, host man-
agers may be unable to install software for some time 11 a key
1s rotated.

As discussed above, the various embodiments can be
implemented 1 a wide variety of operating environments,
which in some cases can include one or more user computers,
computing devices, or processing devices which can be used
to operate any of a number of applications. User or client

US 8,713,061 Bl

23

devices can imclude any of a number of general purpose
personal computers, such as desktop or laptop computers
running a standard operating system, as well as cellular, wire-
less, and handheld devices running mobile software and
capable of supporting anumber of networking and messaging
protocols. Such a system also can include a number of work-
stations running any of a variety of commercially-available
operating systems and other known applications for purposes
such as development and database management. These
devices also can include other electronic devices, such as
dummy terminals, thin-clients, gaming systems, and other
devices capable of communicating via a network.

Various aspects also can be implemented as part of at least
one service or Web service, such as may be part of a service-
oriented architecture. Services such as Web services can coms-
municate using any appropriate type of messaging, such as by
using messages 1n extensible markup language (XML) for-

mat and exchanged using an appropriate protocol such as
SOAP (derived from the “Simple Object Access Protocol™).
Processes provided or executed by such services can be writ-
ten 1n any appropriate language, such as the Web Services
Description Language (WSDL). Using a language such as
WSDL allows for functionality such as the automated gen-
eration of client-side code 1n various SOAP frameworks.

Most embodiments utilize at least one network that would
be familiar to those skilled 1n the art for supporting commu-
nications using any of a variety of commercially-available
protocols, such as TCP/IP, OSI, FTP, UPnP, NFS, CIFS, and
AppleTalk. The network can be, for example, a local area
network, a wide-area network, a virtual private network, the
Internet, an intranet, an extranet, a public switched telephone
network, an infrared network, a wireless network, and any
combination thereof.

In embodiments utilizing a Web server, the Web server can
run any of a variety of server or mid-tier applications, includ-
ing HITTP servers, FTP servers, CGI servers, data servers,
Java servers, and business application servers. The server(s)
also may be capable of executing programs or scripts in
response requests from user devices, such as by executing one
or more Web applications that may be implemented as one or
more scripts or programs written 1n any programming lan-
guage, such as Java®, C, C# or C++, or any scripting lan-
guage, such as Perl, Python, or TCL, as well as combinations
thereol. The server(s) may also include database servers,
including without limitation those commercially available
from Oracle®, Microsoft®, Sybase®, and IBM®.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside 1n a variety of locations, such as on a storage
medium local to (and/or resident 1n) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the informa-
tion may reside 1n a storage-area network (“SAN”) familiar to
those skilled mn the art. Similarly, any necessary files for
performing the functions attributed to the computers, servers,
or other network devices may be stored locally and/or
remotely, as appropriate. Where a system includes comput-
erized devices, each such device can include hardware ele-
ments that may be electrically coupled via a bus, the elements
including, for example, at least one central processing unit
(CPU), at least one input device (e.g., a mouse, keyboard,
controller, touch screen, or keypad), and at least one output
device (e.g., a display device, printer, or speaker). Such a
system may also include one or more storage devices, such as
disk drives, optical storage devices, and solid-state storage
devices such as random access memory (“RAM”) or read-

5

10

15

20

25

30

35

40

45

50

55

60

65

24

only memory (“ROM™), as well as removable media devices,
memory cards, flash cards, etc.

Such devices also can include a computer-readable storage
media reader, a communications device (e.g., a modem, a
network card (wireless or wired), an infrared communication
device, etc.), and working memory as described above. The
computer-readable storage media reader can be connected
with, or configured to receive, a computer-readable storage
medium, representing remote, local, fixed, and/or removable
storage devices as well as storage media for temporarily
and/or more permanently containing, storing, transmitting,
and retrieving computer-readable information. The system
and various devices also typically will include a number of
soltware applications, modules, services, or other elements
located within at least one working memory device, including
an operating system and application programs, such as a
client application or Web browser. It should be appreciated
that alternate embodiments may have numerous variations
from that described above. For example, customized hard-
ware might also be used and/or particular elements might be
implemented in hardware, software (including portable soft-
ware, such as applets), or both. Further, connection to other
computing devices such as network input/output devices may
be employed.

Storage media and computer readable media for containing
code, or portions of code, can include any appropriate media
known or used 1n the art, including storage media and com-
munication media, such as but not limited to volatile and
non-volatile, removable and non-removable media 1mple-
mented 1n any method or technology for storage and/or trans-
mission of mformation such as computer readable nstruc-

tions, data structures, program modules, or other data,
including RAM, ROM, EEPROM, flash memory or other

memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by the a system
device. Based on the disclosure and teachings provided
herein, a person of ordinary skill in the art will appreciate
other ways and/or methods to implement the various embodi-
ments.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth 1n the
claims.

What 1s claimed 1s:

1. A computer-implemented method of enabling seli-ser-
vice administration of a relational database, comprising:

under control of one or more computer systems configured

with executable instructions,

providing a plurality of application programming inter-
faces (APIs) each enabling a user to submit a Web
service request to a control environment and corre-
sponding to a specified action to be performed with
respect to configuration of the relational database for
the user 1n a data environment, the data environment
being separate from the control environment; and

in response to recerving the Web service request through
one of the plurality of APIs, causing at least one task
to be performed 1n the data environment correspond-
ing to the specified action,

wherein the configuration of the relational database by
the user 1s performed via the control environment and
data of the relational database can be accessed using a

US 8,713,061 Bl

25

data interface of the data environment that 1s config-
ured to operate independent of the control environ-
ment.

2. The computer-implemented method of claim 1, wherein
the plurality of APIs enable at least one of creating, upgrad-
ing, downgrading, scaling, replicating, backing up, failing
over, restoring, rebooting, hibernating, resuming from hiber-
nation, or deleting the relational database 1n the data environ-
ment.

3. The computer-implemented method of claim 1, wherein:

the specified action comprises creating the relational data-

base; and

the at least one task includes at least one of instantiating the

relational database, setting a storage volume for the rela-
tional database, downloading binaries for one of a plu-
rality of database engines, assigning a domain name
system (DNS) name or network address information to
the relational database, and assigning hardware to sup-
port the relational database.

4. A computer-implemented method of enabling self-ser-
vice administration of a database, comprising:

under control of one or more computer systems configured

with executable instructions,

providing a plurality of externally-facing interfaces each
enabling a user to submit a Web service request to a
control environment, each of the plurality of exter-
nally-facing interfaces corresponding to an action to
be performed with respect to configuration of the
database 1n a data environment, the data environment
being separate from the control environment; and

in response to recewving the Web service request to the
control environment through one of the plurality of
externally-facing interfaces, causing at least one task
to be performed 1n the data environment correspond-
ing to the action,

wherein the configuration of the database by the user 1s
performed via the control environment.

5. The computer-implemented method of claim 4, wherein
the database can be accessed using a data interface of the data
environment that 1s configured to operate independent of the
control environment.

6. The computer-implemented method of claim 3, further
comprising:

providing the user with a DNS name or network address

information enabling the user to access the database
using a data interface.

7. The computer-implemented method of claim 4, wherein
causing the at least one task to be performed in the data
environment COmprises:

determining a worktlow to be executed 1n the control envi-

ronment to perform the action 1n the data environment;
and

executing the worktlow in the control environment, the

workilow including one or more tasks to be performed 1n
the data environment corresponding to the action.

8. The computer-implemented method of claim 4, wherein
causing the at least one task to be performed in the data
environment comprises sending, a request corresponding to
the Web service request to a host manager for a host machine
in the data environment, the host manager being operable to
perform one or more tasks 1n the data environment and further
operable to collect and monitor health information for at least
one-aspect of the data environment.

9. The computer-implemented method of claim 4, wherein
the plurality of externally-facing interfaces enable at least one
of creating, upgrading, downgrading, scaling, replicating,

5

10

15

20

25

30

35

40

45

50

55

60

65

26

backing up, failing over, restoring, rebooting, hibernating,
resuming from hibernation, or deleting the database in the
data environment.

10. A system for enabling self-service administration of a
database, comprising;:

at least one processor; and

memory 1including instructions that, when executed by the

at least one processor, cause the system to:

provide a plurality of externally-facing interfaces each
enabling a user to submit a Web service request to a
control environment and corresponding to an action
to be performed with respect to configuration of the
database 1n a data environment, the data environment
being separate from the control environment; and

in response to receiving the Web service request to the
control environment through one of the plurality of
externally-facing interfaces, cause at least one task to
be performed 1n the data environment corresponding
to the action,

wherein the configuration of the database by the user 1s
performed via the control environment.

11. The system of claim 10, wherein the database can be
accessed using a data interface of the data environment that 1s
configured to operate independent of the control environ-
ment.

12. The system of claim 11, wherein the instructions, when
executed by the at least one processor, further cause the sys-
tem to:

provide the user with a DNS name or network address

information enabling the user to access the database
using the data interface.

13. The system of claim 10, wherein the instructions to
cause the at least one task to be performed in the data envi-
ronment comprise instructions, when executed by the least
one processor, cause the system to:

determine a worktlow to be executed 1n the control envi-

ronment to perform the action 1n the data environment;
and

execute the worktlow 1n the control environment, the work-

flow including one or more tasks to be performed in the
data environment corresponding to the action.

14. The system of claim 13, wherein the worktlow 1s based
upon a worktlow template.

15. The system of claim 13, wherein the worktlow 1s based
at least 1n part upon an engine of the database.

16. The system of claim 10, wherein the plurality of exter-
nally-facing interfaces enable at least one of creating, upgrad-
ing, downgrading, scaling, replicating, backing up, failing
over, restoring, rebooting, hibernating, resuming from hiber-
nation, or deleting the database in the data environment.

17. A non-transitory computer readable storage medium
storing instructions for enabling self-service administration
of a database, the mstructions when executed by a processor
causing the processor to:

provide a plurality of externally-facing interfaces each

enabling a user to submit a Web service request to a
control environment and corresponding to an action to
be performed with respect to configuration of the data-
base 1n a data environment, the data environment being
separate from the control environment; and

in response to recewving the Web service request to the

control environment through one of the plurality of
externally-facing interfaces, cause at least one task to be
performed 1n the data environment corresponding to the
action,

wherein the configuration of the database by the user 1s

performed via the control environment.

US 8,713,061 Bl

27

18. The non-transitory computer readable storage medium
of claim 17, wherein the database can be accessed using a data
interface of the data environment that 1s configured to operate
independent of the control environment.

19. The non-transitory computer readable storage medium
of claim 18, wherein the instructions when executed by the
processor further cause the processor to:

provide the user with a DNS name or network address

information enabling the user to access the database
using the data interface.

20. The non-transitory computer readable storage medium
of claim 17, wherein the instructions to cause the at least one
task to be performed in the data environment comprise

istructions, when executed by the processor, to cause the

processor 1o:
determine a workflow to be executed in the control envi-

ronment to perform the action 1n the data environment;
and

10

15

28

execute the worktlow 1n the control environment, the work-
flow including the at least one task to be performed 1n the
data environment corresponding to the action.

21. The non-transitory computer readable storage medium
of claim 20, wherein the workflow 1s based upon a worktlow
template.

22. The non-transitory computer readable storage medium
of claim 20, wherein the worktlow 1s based at least in part
upon an engine of the database.

23. The non-transitory computer readable storage medium
of claim 17, wherein the plurality of externally-facing inter-
faces enable at least one of creating, upgrading, downgrading,
scaling, replicating, backing up, failing over, restoring,
rebooting, hibernating, resuming from hibernation, or delet-
ing the database 1n the data environment.

¥ K H oK ¥

	Front Page
	Drawings
	Specification
	Claims

