a2y United States Patent
Pohorsky et al.

US008707333B1

US 8.707,333 B1
Apr. 22, 2014

(10) Patent No.:
45) Date of Patent:

(54) MESSAGE ARGUMENT DESCRIPTORS

(75) Inventors: Tom Pohorsky, Santa Cruz, CA (US);
Bala Vijayakumar, San Jose, CA (US);
Scott Lee, Bellevue, WA (US);
Srinivasan Ramachandran, Bangalore

(IN)

(73) Assignee: EMC Corporation, Hopkinton, MA
(US)
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1301 days.

(21) Appl. No.: 11/811,363

(22) Filed: Jun. 8, 2007
(51) Imt. CL.
GO6F 3/00 (2006.01)
GO6F 7/04 (2006.01)
GO6F 15/16 (2006.01)
(52) U.S. CL
USPC 719/316; 719/313; 726/26; 726/27;

709/229

(58) Field of Classification Search
CPC . HO4L 63/0428; HO4L 63/0823; HO4L 65/80;
HO4L 63/12; HO4L 63/08; HO4L 69/329;
HO4L 67/34; HO4L 67/36; HO4L 29/12009;
HO4L 29/12433; HO4L 61/2539; HO4W 12/06;
HO4W 12/08; HO4W 12/12
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

3/2001 Polo-Wood et al.

4/2002 Grahametal. 709/203

7/2004 Ergezinger etal. 709/229
11/2004 Pioli et al.

6,199,070 Bl
2002/0046240 Al*
2004/0139204 Al*
2004/0220045 Al

2005/0137845 Al 6/2005 Carrol et al.

2005/0138207 Al 6/2005 Chen et al.

2005/0267738 Al 12/2005 Wilkinson et al.

2006/0047499 Al 3/2006 Chen et al.

2006/0095774 Al* 5/2006 Butterfield etal. 713/176

2006/0190493 Al* 82006 Kawaietal. 707/104.1

2007/0106998 Al* 5/2007 Zeldinetal. 719/313

2007/0244976 Al* 10/2007 Carrolletal. 709/206

2007/0299925 Al* 12/2007 Kukland 709/206

2008/0222735 Al* 9/2008 Cohenetal. 726/27

2008/0222736 Al* 9/2008 Boodaeietal. 726/27
OTHER PUBLICATIONS

“Preventing Piracy, Reverse Engineering, and Tampering”, Gleb

Naumovich, 2003, pp. 1-8.*

Matsubara et al., “A Practical Guide for Resource Monitoring and
Control (RMC)”, Aug. 2002, pp. 1-220 [retrieved from http://www.

redbooks.ibm.com/pubs/pdis/redbooks/sg246615.pdt].
J. Hutchins, “Machine Translation: History”, Encyclopedia of Lan-

guage Lingustics, 2nd Edition, vol. 7, pp. 375-383, 2006.

Farghaly et al., “Arabic Natural Language Processing: Challenges
and Solutions”, ACM Transactions on Asian Language Information
Processing, vol. 8, No. 4, Article 14, Dec. 2009.

Marasco et al., “Software Development Productivity and Project
Success Rates: Are We Attacking the Right Problem?”, Feb. 15, 2006.
A. Kelly, “C by Dissection”, Addison-Wesley Publishing Co., pp.
3-12,361-378, 1996.

(Continued)

Primary Examiner — 1uan Dao
(74) Attorney, Agent, or Firm — Van Pelt, Y1 & James LLP

(57) ABSTRACT

Specilying a message 1s disclosed. A message and one or
more arguments of the message are specified. An argument
type 1s associating with at least one of the one or more argu-
ments. Processing a message 1s disclosed. A message 1s 1den-
tified to be transformed. The message 1s transformed at least
in part by using an argument type associated with an argu-
ment of the message.

30 Claims, 4 Drawing Sheets

N—

Message | ~114 F‘rgggaem 112 Message | ~116
Reviewer Processor Translator
Message
Catalog | 108
N 7
~106
Message [102 Message Message | ~110
Generator Renderer Viewer
() ~104
Message
Storage

US 8,707,333 Bl

Page 2
(56) References Cited W.R. Stevens, “UNIX Network Programming”, vol. 1, 2nd Ed., 1998,
pp. XV-XVII,
W.R. Stevens, “UNIX Network Programming™, vol. 2, 2nd Ed., 1998,
OTHER PUBLICATIONS pp. 3-4.

Pohorsky et al., U.S. Appl. No. 11/811,274, filed Jun. 8, 2007.
IEEE 100, The Authoritative Dictionary on IEEE Standard Terms,

7th Ed., pp. 606, 649, 721, 2000. * cited by examiner

U.S. Patent Apr. 22, 2014 Sheet 1 of 4

Message
Reviewer

Code
Processor

Message
- Catalog 108

106

Message | 102 Message
Generator | Renderer

Message
Storage

FIG. 1

US 8,707,333 B1

Message

Translator

Message

Viewer

116

110

U.S. Patent

Apr. 22,2014 Sheet 2 of 4

Specify a message form
and one or more arguments
of the message form

For each argument of the
one or more arguments,
associlate an argument type

FIG. 2

US 8,707,333 B1

202

204

U.S. Patent Apr. 22, 2014 Sheet 3 of 4 US 8,707,333 B1

ldentify a message 302

to be transformed

Transform the message

at least In part by using

an argument type associated
with an argument of

the message

304

FIG. 3

U.S. Patent

Apr. 22,2014 Sheet 4 of 4

Receive an identification
of an argument type
associated with message
data to be modified when
rendering a message

Render the message
Including by modifying
data of the message
that are associated with
the identified argument type

FIG. 4

US 8,707,333 B1

402

404

US 8,707,333 Bl

1
MESSAGE ARGUMENT DESCRIPTORS

BACKGROUND OF THE INVENTION

A message (e.g., status message, error message, log entry,
text data for display to a user, etc.) 1s often specified by a
programmer 1n program code. Specilying the text message
typically includes specitying one or more arguments of the
message that can be used to dynamic determine at least a
portion of the message during runtime of the program. For
example, a program variable 1s specified as an argument of the
message, and the content of the variable 1s included 1n a
generated output of the message such as a log file or output
text to be displayed to a user. Processing can be performed
using the specification of the message in program code and/or
the generated message output. Often the processing requires
information about arguments of the message. However, the
generated message output does not typically include data
about the arguments of the message. For the specification of
the message 1n program code, although the programming
language of the program code can be used to specily a data
type (e.g., integer, tloat, string, etc.) associated with the mes-
sage argument, often the processing performed using the
program code message specification requires information
about message arguments that cannot be determined from the
associated data type information. Therefore there 1s a need for
a way to determine additional information about an argument
ol a program code message.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
tollowing detailed description and the accompanying draw-
Ings.

FIG. 1 1s a block diagram illustrating an embodiment of a
program code message environment.

FIG. 2 1s a flowchart 1llustrating an embodiment of a pro-
cess for associating an argument type with a message form.

FIG. 3 1s flowchart illustrating an embodiment of a process
for processing a message.

FI1G. 4 1s a flowchart illustrating an embodiment of a pro-
cess for rendering a message.

DETAILED DESCRIPTION

The mvention can be implemented in numerous ways,
including as a process, an apparatus, a system, a composition
ol matter, a computer readable medium such as a computer
readable storage medium or a computer network wherein
program 1nstructions are sent over optical or communication
links. In this specification, these implementations, or any
other form that the invention may take, may be referred to as
techniques. A component such as a processor or a memory
described as being configured to perform a task includes both
a general component that 1s temporarily configured to per-
form the task at a given time or a specific component that 1s
manufactured to perform the task. In general, the order of the
steps of disclosed processes may be altered within the scope
of the invention.

A detailed description of one or more embodiments of the
invention s provided below along with accompanying figures
that 1llustrate the principles of the invention. The invention 1s
described in connection with such embodiments, but the
invention 1s not limited to any embodiment. The scope of the
invention 1s limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the

10

15

20

25

30

35

40

45

50

55

60

65

2

following description 1n order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the mvention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clanty, technical material that 1s
known 1n the technical fields related to the mvention has not
been described 1n detail so that the invention i1s not unneces-
sarily obscured.

Associating an argument type with an argument of a mes-
sage 1s disclosed. In some embodiments, the message
includes text specified in program code for output. When the
message of the program code 1s outputted, the message output
includes contents of one or more arguments of the message at
the time the message was outputted, and the argument con-
tents are associated with one or more corresponding argu-
ment types. Using the associated arguments types, the mes-
sage specification and/or the message output can be modified,
searched, transformed, categorized, and/or otherwise pro-
cessed. For example, in rendering the message for a viewer
that 1s not authorized to view private contents of the message,
contents of message arguments associated with an argument
type that indicates the associated content as private are obfus-
cated belfore the message 1s rendered for display.

FIG. 1 1s a block diagram 1llustrating an embodiment of a
program code message environment. Message generator 102
generates a message output. In some embodiments, message
generator 102 executes at least a portion of program code that
includes a specification of a message to be generated. For
example, using a syntax of a programming language, a pro-
grammer specifies the message for output when a program/
process of the program code 1s executed. The message output
generated by generator 102 1s stored 1n message storage 104.
For example, the message output 1s stored 1n a log file 1n
storage 104. In some embodiments, the message output 1s
stored 1n storage 104 not as an end destination but as a tem-
porary destination before the generated message output 1s
used to render the message 1n a desired format. For example,
an error message to be displayed to a user i1s temporarily
stored 1n message storage 104 before being sent to be ren-
dered for a viewer 1n a desired language. In some embodi-
ments, the message output includes contents of one or more
message arguments at the time the message output was gen-
crated. For example, contents of one or more variables used as
message arguments are stored in the message output. The
message argument contents stored 1n the message output are
not substituted 1n a message form of the message until the
message 1s rendered.

Message renderer 106 renders a message output stored 1n
message storage 104. In some embodiments, message ren-
derer 106 renders the message output in response to a request
for the message output to be viewed. Rendering the message
includes displaying the message imn a determined context.
Message catalog 108 includes data that can be used to render
a message. In some embodiments, foreign language transla-
tions of a message are stored in message catalog 108. A
plurality of message catalogs may be used. In the example
shown, message catalog 108 1s used at least 1n part to render
the message. Message catalog 108 1s optional. Message
viewer 110 1s to view the rendered message. Examples of
message viewer 110 imnclude a log viewer, a message dialog,
and any other interface that can be used to view a rendered
message.

Program code processor 112 processes program code to
identily and manage messages defined 1n the program code.
For example, one or more messages specified 1n program
code are identified and added to message catalog 108 by
processor 112. Message reviewer 114 reviews messages

US 8,707,333 Bl

3

stored 1n message catalog 108. For example, the messages are
reviewed for grammar, spelling, readability, correctness, and/
or compliance. Message translator 116 translates one or more
messages stored 1n catalog 108. The translated messages may
be stored 1n catalog 108, another message catalog, and/or in
another destination. In various embodiments, program code
processor 112, message reviewer 114, and/or message trans-
lator 116 are optional.

Processing can be performed using the specification of the
message 1 program code and/or the message output. Since
the message includes one or more arguments that are deter-
mined at runtime, uncertainty about the function and/or
semantic role of message arguments makes some desired
processing difficult. For example, the ability to recognize the
meaning ol certain parts of a text 1s useful during language
translation where different semantic meaning of a word can
result 1n different translation of the same text in the same
language. If semantic meaning can be provided about mes-
sage arguments to be substituted 1n the message text, the
translation of the message can be improved.

FI1G. 2 1s a flowchart illustrating an embodiment of a pro-
cess for associating an argument type with a message form. At
202, amessage form and one or more arguments, 1f any, of the
message are specified. Specifying the message form and
arguments 1s mcluded in specifying a message in program
code. An example of the program code includes code gener-
ated using a function-oriented programming language such as
the C programming language. The message form defines the
content and/or structure of the message. For example, the
message form defines the text to be rendered along with
contents of one or more message argument variables, 1f any.
The one or more arguments of the message form allow con-
tents of the arguments to be mserted 1nto an output generated
using the message form. For example, to display “Hello” with
a name of a person dynamically obtained from a program
code variable, the following C programming language state-
ment can be used: printf(**Hello % s, name). “Hello % s 1s
the message form and “name” 1s the argument of the message.
When the printf statement 1s executed, contents of the “name”™
variable 1s substituted for the “% s 1n the message form.

At 204, an argument type 1s associated with at least one
argument of the one or more arguments. In some embodi-
ments, more than one argument type 1s or may be associated
with a single argument. In some embodiments, associating
the argument type includes specilying in program code an
argument type identifier for each of the one or more argu-
ments. In some embodiments, the argument of the message 1s
associated with a programming language data type 1dentifier
in addition to the argument type i1dentifier. For example, a
variable specified as an argument of the message 1s associated
with the data type identifier when the varniable is instantiated
in program code. In some embodiments, the argument type
identifier 1dentifies one of a plurality of predetermined argu-
ment types. For example, 1n a function-oriented program-
ming language such as the C programming language, mes-
sage argument type identifiers are specified 1n some

embodiments by “#define” as shown below.
#define AD_NONE 0 /* no description */
ftdetine AD MINNUM 1 /* use 1 to 9 for numbers */
#define AD_NUMx 1 /* integer */
#define AD_NUMI 2 /* long integer */
ftdefine AD NUMT 3 /* double float */
#define AD_NUMu 35 /* unsigned */
#define AD_MAXNUM 9 /* use 1 to 9 for numbers */
#define AD_LIT 10 /* text literal */
#define AD_MLIT 11 /* text literal preceded with Msg 1D

*/

5

10

15

20

25

30

35

40

45

50

55

60

65

4

#tdefine AD MIN OBFUS 12 /* start of main obfuscation
AD set */

ftdefine AD HOST 12 /* hostname */

ftdefine AD USER 13 /* username */

#define AD_NETADDR 14 /* network address, e.g. TCP/
[P address */

ftdetfine AD MAX OBFUS 19 /* end of main obfuscation
AD set */

#define AD_PROG 20 /* program name */

#define AD_DEYV 21 /* device name */

#define AD_VOL 22 /* volume name */

#define AD_PATH 23 /* path name */

#define AD_ERROR 24 /* error strings */

#define AD_TYPE 25 /* RAP Attribute Types */

#define AD_GROUP 26 /* group name */

#define AD_POOL 27 /* pool name */

#define AD_PRIV 28 /* privilege type */

#define AD_TIMESEC 30 /* display time, seconds since
1970 */

ftdefine AD TIMEMIL 31 /* time, milliseconds since
1970 */

ftdefine AD TIMENAN 32 /* time, nanoseconds since
1970 */

ftdefine AD_TIMET 33 /* time, time_t */

#define AD_TIMET64 34 /* time, 1g_time64_t */

#define AD_TIMESTR 35 /* time, text string */

#define AD_TIMEUNK 36 /* time, unknown format */

#define AD_OP 40 /* operation, e.g. backup, rewind,
delete */

#define AD_STATUS41 /* adjective like successtul,
incomplete */

ftdefine AD NOUN 42 /* noun */

#define ADVERB 43 /* verb */

#define AD_PROD_DATA 44 /* product data */

#define AD_ARCHREQNAME 45 /* Archive Request
Name */

#define AD_SLOTRANGE 46 /* Slot range */

#define AD_SLOT 47 /* Slot */

#define AD_LABEL 48 /* Label */

ftdefine AD STBUF 49 /* Structured text stored as char

butfer */
In the example above, a message argument associated with
the “AD_STBUF” argument type 1dentifier includes a com-
plete message. This allows a message to be recursively nested
as an argument 1n another message. In some embodiments, a
data structure such as a struct of the C programming language
associates the message arguments with the message argument
type 1dentifier. A message argument identifier may be
assigned manually and/or automatically. For example, a pro-
grammer 1dentifies specifies the argument type identifier
when specilying the message in program code. In another
example, the message argument type for a message argument
1s determined automatically at least in part by examining the
content of the message argument.

FIG. 3 1s flowchart 1llustrating an embodiment of a process
for processing a message. At 302, a message to be processed
1s 1dentified. In some embodiments, identifying the message
includes 1dentifying message data 1in program code and/or 1n
a message catalog such as catalog 108 of FIG. 1. For example,
the message to be processed 1s 1dentified at least 1n part by
using an 1dentifier of the message. The message 1dentifier can
be used to obtain from a message catalog data associated with
the message. In some embodiments, identifying the message
includes identitying a message output. In some embodiments,
the message output includes contents of one or more message

arguments at the time the message output was generated. A

US 8,707,333 Bl

S

respective message argument identifier and message argu-
ment type 1dentifier are associated with each included mes-
sage argument content.

At 304, the message 1s processed at least in part by using an
argument type associated with an argument of the message. In
some embodiments, processing the message includes per-
forming one or more of the following: translating at least a
portion of the message using an argument type, searching at
least a portion of the message using an argument type, and
transforming at least a portion of the message using an argu-
ment type.

For example, when translating a message form of the mes-
sage to another language, 1t 1s difficult to determine what type
of data will be substituted 1n as the message argument. If no
additional information about the message argument 1s avail-
able, the translation of the message form may not be gram-
matically correct. The message argument type can provide
additional semantic information about the message argument
to create a better translation of the message form. As an
example, 1 the C programming language, 11 the message
form to translate 1s “% s: % s % s % s”, a foreign language
translator has no 1dea on what semantic role (1.e. noun, verb,
adjective, etc) each % s represents without an associated
message argument type identifier. Depending on the role, the
order of the % s may be different for different languages. For
cach % s message argument, there exists an associated mes-
sage argument type 1dentifier (e.g. identifiers that that identily
the first and second % s are nouns, the third % s 1s a verb, and
the last % s 1s an status). The translator can make informed
per-language adjustments to the translated message form
using the message argument type information.

In another example, the message 1s outputted in a log. The
log may contain large amount of other messages, and a viewer
may desire to filter the log to only view messages of interest.
By using message argument type 1dentifier associated with
the messages 1n the output, context-specific search 1s pos-
sible. A text search only within message argument contents
associated with a specified argument type can be performed.
For example, instead of finding all instances of “Server2,” a
user can search for instances of “Server2” only when used as
a device host (e.g., associated with device host message argu-
ment type) or only when used as a data source (e.g., associated
with data source message argument type).

In another example, the message argument type 1dentifier
1s used to validate the message during source coding and
runtime. The message can be checked to determine whether
the message follows a required pattern of one or more mes-
sage argument types and/or includes a not allowed pattern of
one or more message argument types.

FI1G. 4 1s a flowchart illustrating an embodiment of a pro-
cess for rendering a message. In some embodiments, the
process of FIG. 4 1s included 304 of FIG. 3. At 402, an
identification of an argument type associated with message
data to be modified when rendering a message 1s received. In
some embodiments, the message data includes message argu-
ment content mcluded 1n a message output of a message
specified 1n program code. At 404, the message 1s rendered
including by moditying the message data that are associated
with the identified argument type. Rendering the message
includes displaying at least a portion of the message to a
viewer. In various embodiments, modifying the message data
includes translating, obiuscating, replacing, adding, and/or
removing content of the message data.

For example, 11 contents of specific message arguments are
desired to be hidden to a non-secure third party, sensitive data
such as host name and network address (e.g., content associ-
ated with host name argument type and network address

10

15

20

25

30

35

40

45

50

55

60

65

6

argument type) can be scrambled or aliased so that 1t 1s obtus-
cated when rendered for display. In another example, when
the message argument content 1s a time value, different
locales may wish to view the time value 1n different formats.
One locale may desire to view the time 1n a MM/DD/YY
format, whereas another locale may wish to view the time 1n
a DD/MM/YY format. By using an argument type to deter-
mine that a message argument content 1s associated with a
time value, the content can be translated into a desired time
format of the viewer.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention 1s not limited to the details provided. There are
many alternative ways of implementing the mvention. The
disclosed embodiments are illustrative and not restrictive.

What 1s claimed 1s:

1. A method of processing a message, comprising:

identilying a message to be transformed;

using a processor to transiform the message at least 1n part

by using an obfuscation argument type, wherein:
the obfuscation argument type 1s associated with a net-
work entity 1identifier argument;
the network entity 1identifier argument 1s associated with
identifying an enfity 1in a network and 1s used to
dynamically determine message data at runtime; and
transforming includes:
receiving 1dentification of one or more argument
types associated with message data to be obius-
cated, wherein the identified argument types
include the obfuscation argument type; and
in response to receiving the obfuscation argument
type as one of the argument types associated with
message data to be obfuscated, transforming the
message 1nto a partially obfuscated message where
the network entity identifier argument 1s replaced
with an obfuscated network entity 1dentifier from
which the network entity identifier argument being
replaced cannot be determined; and
displaying the partially obfuscated message, wherein the
obfuscated network entity identifier 1s displayed in place
of the network entity identifier argument.

2. A method as recited 1n claim 1, wherein identifying the
message to be transformed includes using an identifier of the
message to obtain message data associated with the message.

3. A method as recited 1n claim 2, wherein the message data
1s included 1n a messages catalog.

4. A method as recited in claim 1, wherein identifying the
message mcludes 1dentifying an output generated using the
message.

5. A method as recited in claim 4, wherein the message
output includes content of the argument at the time the mes-
sage output was generated and includes an i1dentifier of the
argument type associated the content of the argument.

6. A method as recited 1n claim 1, wherein transforming the
message includes using a recerved 1dentifier of the argument
type to 1dentify the argument as an argument to be modified.

7. A method as recited 1n claim 1, wherein:

the obfuscation argument type 1s a first obfuscation argu-

ment type, the network entity identifier argument 1s a
first network entity 1dentifier argument, and the obfus-
cated network entity 1dentifier 1s a first obfuscated net-
work entity 1dentifier;

the identified argument types include a second obfuscation

argument type that 1s associated with a second network
entity 1identifier argument; and

transforming the message into the partially obfuscated

message includes transtforming the message into the par-

US 8,707,333 Bl

7

tially obfuscated message where the first network entity
identifier argument 1s replaced with the first obfuscated
network entity identifier and the second network entity
identifier argument 1s replaced with a second obfuscated
network entity identifier.

8. A method as recited in claim 7, wherein the first network
entity 1identifier argument 1s associated with a hostname and
the second network entity identifier argument 1s associated
with a username.

9. A method as recited in claim 7, wherein the first network
entity 1identifier argument 1s associated with a hostname and
the second network entity identifier argument 1s associated
with a network address.

10. A method as recited 1n claim 7, wherein the first net-
work entity identifier argument 1s associated with a username
and the second network entity identifier argument 1s associ-
ated with a network address.

11. A system for processing a message, comprising:

a processor configured to:

identily a message to be transformed;
transform the message at least 1n part by using an obfus-
cation argument type, wherein:
the obfuscation argument type 1s associated with a
network entity identifier argument;
the network entity i1dentifier argument 1s associated
with 1dentifying an entity in a network and 1s used
to dynamically determine message data at runtime;
and
transforming includes:
receiving 1dentification of one or more argument
types associated with message data to be obfus-
cated, wherein the identified argument types
include the obfuscation argument type; and
in response to recerving the obfuscation argument
type as one of the argument types associated
with message data to be obluscated, transform-
ing the message nto a partially obfuscated mes-
sage where the network entity i1dentifier argu-
ment 1s replaced with an obfuscated network
entity 1identifier from which the network entity
identifier argument being replaced cannot be
determined; and
display the partially obfuscated message, wherein the
obfuscated network entity identifier 1s displayed 1n
place of the network entity identifier argument; and
a memory coupled with the processor, wherein the memory

1s configured to provide the processor with instructions.

12. A system as recited 1in claim 11, wherein identifying the
message to be transformed includes using an 1identifier of the
message to obtain message data associated with the message.

13. A system as recited in claim 12, wherein the message
data 1s included 1n a messages catalog.

14. A system as recited in claim 11, wherein identifying the
message 1includes 1dentifying an output generated using the
message.

15. A system as recited 1n claim 14, wherein the message
output includes content of the argument at the time the mes-
sage output was generated and includes an 1dentifier of the
argument type associated the content of the argument.

16. A system as recited in claim 11, wherein transforming
the message includes using a received 1dentifier of the argu-
ment type to identily the argument as an argument to be
modified.

17. A system as recited in claim 11, wherein:

the obfuscation argument type 1s a first obfuscation argu-

ment type, the network entity identifier argument 1s a

5

10

15

20

25

30

35

40

45

50

55

60

65

8

first network entity identifier argument, and the obfus-
cated network entity identifier 1s a first obfuscated net-
work entity 1dentifier;

the identified argument types include a second obfuscation

argument type that 1s associated with a second network
entity 1identifier argument; and

transforming the message into the partially obfuscated

message includes transforming the message into the par-
tially obfuscated message where the first network entity
identifier argument 1s replaced with the first obfuscated
network entity identifier and the second network entity
identifier argument 1s replaced with a second obfuscated
network entity identifier.

18. A system as recited in claim 17, wherein the first net-
work entity identifier argument 1s associated with a hostname
and the second network entity 1dentifier argument 1s associ-
ated with a username.

19. A system as recited 1n claim 17, wherein the first net-
work enfity identifier argument 1s associated with a hostname
and the second network entity identifier argument 1s associ-
ated with a network address.

20. A system as recited 1n claim 17, wherein the {irst net-
work entity identifier argument 1s associated with a username
and the second network entity 1dentifier argument 1s associ-
ated with a network address.

21. A computer program product for processing a message,
the computer program product being embodied 1n a tangible,
non-transitory computer readable storage medium and com-
prising computer mnstructions for:

identilying a message to be transformed;

transforming the message at least in part by using an obfus-

cation argument type, wherein:
the obfuscation argument type 1s associated with a net-
work entity identifier argument;
the network entity identifier argument 1s associated with
identifying an enfity 1n a network and 1s used to
dynamically determine message data at runtime; and
transforming includes:
receiving identification of one or more argument
types associated with message data to be obfus-
cated, wherein the identified argument types
include the obfuscation argument type; and
in response to receiving the obfuscation argument
type as one of the argument types associated with
message data to be obfuscated, transforming the
message 1nto a partially obfuscated message where
the network entity identifier argument 1s replaced
with an obfuscated network entity 1dentifier from
which the network entity identifier argument being
replaced cannot be determined; and
displaying the partially obfuscated message to a user,
wherein the obfuscated network entity identifier 1s dis-
played in place of the network entity identifier argument.

22. A computer program product as recited in claim 21,
wherein 1dentitying the message to be transformed 1ncludes
using an 1dentifier of the message to obtain message data
associated with the message.

23. A computer program product as recited in claim 22,
wherein the message data 1s included 1n a messages catalog.

24. A computer program product as recited 1n claim 21,
wherein 1dentifying the message includes 1dentifying an out-
put generated using the message.

25. A computer program product as recited 1n claim 24,
wherein the message output includes content of the argument
at the time the message output was generated and includes an
identifier of the argument type associated the content of the
argument.

US 8,707,333 Bl
9 10

26. A computer program product as recited 1 claim 21, identifier argument 1s replaced with the first obfuscated
wherein transforming the message includes using a received network entity 1dentifier and the second network entity
identifier of the argument type to identify the argument as an 1identifier argument 1s replaced with a second obtuscated
argument to be modified. network entity identifier.

27. A computer program product as recited in claim 21, > 28. A computer program product as recited in claim 27,
wherein: wherein the first network entity identifier argument 1s associ-

ated with a hostname and the second network entity identifier
argument 1s associated with a username.
29. A computer program product as recited 1n claim 27,
10 wherein the first network entity identifier argument 1s associ-
ated with a hostname and the second network entity identifier
argument 1s associated with a network address.
30. A computer program product as recited in claim 27,
wherein the first network entity identifier argument 1s associ-
15 ated with a username and the second network entity identifier
argument 1s associated with a network address.

the obfuscation argument type 1s a first obfuscation argu-
ment type, the network entity identifier argument 1s a

first network entity 1dentifier argument, and the obfus-
cated network entity 1dentifier 1s a first obfuscated net-
work entity 1dentifier;

the 1dentified argument types include a second obfuscation
argument type that 1s associated with a second network
entity identifier argument; and

transforming the message into the partially obfuscated
message includes transforming the message into the par-
tially obfuscated message where the first network entity N T

	Front Page
	Drawings
	Specification
	Claims

