12 United States Patent

Koning et al.

US008707315B2

US 8,707,315 B2
Apr. 22, 2014

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(63)

(1)
(52)

(58)

METHOD AND SYSTEM FOR
IMPLEMENTING REALTIME SPINLOCKS

Inventors: Maarten Koning, Bloomfield (CA);
Raymond Richardson, Richmond, CA

(US)

Assignee: Wind River Systems, Inc., Alameda,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1043 days.

Appl. No.: 12/183,174

Filed: Jul. 31, 2008
Prior Publication Data
US 2010/0031265 Al Feb. 4, 2010
Int. CIl.
GO6F 9/46 (2006.01)
U.S. CL
USPC e, 718/103; 718/104
Field of Classification Search
None

See application file for complete search history.

(Start

)

l

Spinlock receives a

205 -7 request for access
to a resource

IS resource
avallable?

215
N ¥

Spinlock grants

NG

(56) References Cited

U.S. PATENT DOCUMENTS

6,845,504 B2* 1/2005 Huaetal. 718/104

8,020,166 B2* 9/2011 Ruemmler 718/104

2002/0087769 Al* 7/2002 McKenneyetal. 710/200
OTHER PUBLICATIONS

Diniz et al. (Dynamic Feedback: An Effective Technique for Adap-
tive Computing, May 1997, pp. 71-84).*

* cited by examiner

Primary Examiner — Andrew Caldwell
Assistant Examiner — George Giroux
(74) Attorney, Agent, or Firm — Fay Kaplun & Marcin, LLP

(57) ABSTRACT

A system and method for receiving a request from a requester
for access to a computing resource, mstructing the requester
to wait for access to the resource when the resource 1s unavail-
able and allowing the requester to perform other tasks while
waiting, determining whether the requester 1s available when
the resource subsequently becomes available, and granting
access to the resource by the requester 1f the requester 1s
available.

16 Claims, 2 Drawing Sheets

Resource Accosss
Method -~ 200

225
v

Spinlock instructs

ol processor 1o spin
access to resource and/or run o
interrupt s
22
O\) 4
Spinlock locks -«

resource

4

<>

Did resource
hecome available?

235

Are there multiple
requests?

7

Spinlock Igrants
access based an

desired policy

U.S. Patent Apr. 22, 2014 Sheet 1 of 2 US 8,707,315 B2

System 100
\ - Resource
140
150
Processor Processor FProcessor
110 120 130

FIGURE 1

U.S. Patent Apr. 22, 2014 Sheet 2 of 2 US 8,707,315 B2

(Start) Resource Accesss
Method -- 200

h 4

Spinlock receives a

205 _~~ Y request for access
fo a resource

210
IS resource

available?

215 225
N Y /

Spinlock instructs
processor to spin
and/or run
interrupts

22 230
0\ Y _
Spinlock locks L

resource

Spinlock grants
access to resource

-l

Did resource
hecome avallable?

!

END

235

Are there multiple
requests 7

240

vy

Spinlock Igrants
access based on
desired policy

FIGURE 2

US 8,707,315 B2

1

METHOD AND SYSTEM FOR
IMPLEMENTING REALTIME SPINLOCKS

BACKGROUND

Locks are mechanisms used to control access to computing,
resources with limited capacity. Spinlocks enable requesters
that are waiting for access to an occupied resource to execute
other threads while they are waiting. However, spinlocks may
incorporate delays and mefficiencies if the locked resource 1s
assigned to a requester that 1s executing other threads and
unable to immediately begin using the resource.

SUMMARY OF THE INVENTION

A method for recerving a request from a requester for
access to a computing resource, mstructing the requester to
wait for access to the resource when the resource 1s unavail-
able and allowing the requester to perform other tasks while
waiting, determining whether the requestor 1s available when
the resource subsequently becomes available and granting
access to the resource by the requester 1t the requester is
available.

A system having a computing resource, a plurality of
requesters having controlled access to the resource, and a
spinlock controlling access by the plurality of requesters to
the resource, the spinlock receiving a request from a first
requester for access to the resource, instructing the first
requester to wait for access to the resource when the resource
1s unavailable and allowing the first requester to perform other
tasks while waiting, determining whether the first requester 1s
available when the resource subsequently becomes available,
and granting access to the resource by the first requester i1f the
first requester 1s available.

A system having a processor and a set of instructions
executing on the processor, the set of instructions operable to
receive a request from a requester for access to a computing,
resource, instruct the requester to wait for access to the
resource when the resource 1s unavailable and allow the
requestor to perform other tasks while waiting, determine
whether the requester 1s available when the resource subse-
quently becomes available, and grant access to the resource
by the requester i1 the requester 1s available.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary system including a realtime
spinlock according to the present invention.

FIG. 2 shows an exemplary method for implementing real-
time spinlocks according to the present invention.

DETAILED DESCRIPTION

The exemplary embodiments of the present invention may
be further understood with reference to the following descrip-
tion and the appended drawings, wherein like elements are
referred to with the same reference numerals. The exemplary
embodiments of the present invention describe methods and
systems for optimally implementing realtime spinlocks.

In software development, a “lock™ 1s a mechamsm for
enforcing limits on access to a resource in an environment
where there are multiple concurrent threads of execution.
Locks may be advisory, wherein each executing thread
acquires the lock before accessing the corresponding data, or
may be mandatory, wherein an attempt to make unauthorized
access 1o a locked resource will force an exception.

10

15

20

25

30

35

40

45

50

55

60

65

2

Some software locks are “binary” or “semaphore” locks,
which make no distinction between shared (1.e. read only) or
exclusive (1.e. read and write) access to locked data. Other
locks may implement a shared mode, wherein several threads
may simultaneously access a shared lock for read-only data
access. Other data access modes may also be implemented.

In addition to the above categories, locks may also be
categorized 1n terms of what happens when a lock prevents
the progress of a thread. Many locking designs block execu-
tion of a thread requesting access to a locked resource until
the thread 1s allowed to access the resource. In contrast, a
“spinlock™ 1s a lock 1n which the thread simply waits (or
“spins’’) until the locked resource becomes available. Once
acquired, a spinlock will usually be held until 1t 1s explicitly
released, although 1n some implementations 1t may be auto-
matically released 11 the thread blocks.

Spinlocks are efficient 11 threads are only likely to be pre-
vented from accessing locked resources for a short period of
time, as they avoid the processing overhead that results from
rescheduling processes. Thus, spinlocks are often used to
control access to resources within operating system kernels.
However, they may be wasteful 11 a lock remains 1n place for
a long period of time, because other threads are prevented
from running and require rescheduling. The longer a lock 1s
held, the greater the risk that 1t will be interrupted by the O/S
scheduler. I this happens, other threads that are attempting to
access the resource will continue spinming (1.e., trying to
obtain access to the locked resource), despite the fact that no
progress 1s being made towards releasing the resource. This
problem 1s exacerbated for single-processor systems,
wherein each waiting thread having the same priority for
access to the locked resource 1s likely to waste its entire
allotted time slice spinming until the thread that has access to
the locked resource 1s rescheduled.

The exemplary embodiments of the present invention pro-
vide realtime spinlocks that include policy-based access to
the resource controlled by the spinlock. Each spinning pro-
cessor 1s capable of running interrupts while spinning. Access
to an available spinlock by a third party processor 1s not
delayed while a requesting processor 1s busy running inter-
rupts.

FIG. 1 illustrates an exemplary system 100 that may imple-
ment realtime spinlocks according to the present invention.
The system 100 may include a plurality of processors 110,
120 and 130. The processors may be individual microproces-
sors that are running 1n parallel as part of a single computing
device, may be separate microprocessors that are part of
separate computing devices, may be software processes act-
Ing as processors, or may be any other similar element
capable of executing processes and requesting access to
resources. That 1s, while the term processor 1s used herein to
describe the entity that 1s attempting to gain access to a
resource, those skilled 1n the art will understand that the entity
1s not limited to a hardware processor, but may include any
number of execution threads that may request access to the
resource.

The system may also include a resource 140, access to
which 1s controlled by a spinlock 150. The resource 140 may
be any resource that has limited capacity and thus may have
its accessibility limited. Examples of shared resources that
may have their access controlled by spinlocks may include
shared memory space, peripherals (e.g., device drivers), efc.
The spinlock 150 may operate 1n accordance with the exem-
plary method 200 described below and 1llustrated 1n FI1G. 2.

FI1G. 2 1llustrates an exemplary method 200 for implement-
ing a realtime spinlock according to the present mvention.
The method 200 will be described with reference to the exem-

US 8,707,315 B2

3

plary system 100 of FIG. 1; however, those of skill 1n the art
will understand that this 1s only exemplary and that the
method 200 may be implemented by various other systems as
well.

In step 205, the spinlock 150 recerves a request for access
to the resource 140, which 1t controls. The request may be
made by, for example, the processor 110. In step 210, the
spinlock 150 determines whether the resource 140 1s avail-
able, e.g., 1s the resource 140 currently being accessed by
either one of processors 120 or 130. Those of skill in the art
will understand that since the spinlock 150 controls access to
the resource 140, the spinlock 150 1s the programming entity
that 1s aware of whether the resource 1s available. If the
resource 140 1s available, the method proceeds to step 215
where the spinlock 150 grants access to the resource 140 by
the requesting processor 110. Access may be granted for as
long as the processor 110 needs to use the resource 140, for a
fixed period of time, for a predetermined amount of time after
the spinlock 150 receives a subsequent request for access to
the resource 140, or for any other desirable period of time.
After the access has been granted, the spinlock 150 locks the
resource 1n step 220 so that additional processors (or execu-
tion threads) may not gain access to the resource 140. Thus, 1
the resource 140 1s currently available and only a single
processor has requested access to the resource 140, the spin-
lock 150 will grant the requested access.

However, referring back to step 210, 11 the resource 140 1s
not available when the processor 110 makes the access
request, the spinlock 150, in step 225, will instruct the pro-
cessor 110 to spin and/or run 1interrupts (e.g., another task the
processor 110 needs to perform that does not require access to
the resource 140). For example, 1f processor 120 already has
access to the resource 140 when the request from processor
110 1s recerved, the spinlock 150 will mstruct processor 110
that the resource 140 1s not available and that the processor
110 may run interrupts while it 1s waiting for the resource 140
to become available. In some embodiments, the spinlock 150
will only istruct the processor 110 to run interrupts 1f the
processor 110 has previously requested access to the resource
140 and been denied a number of times which 1s fewer than a
predetermined value; this may insure that the amount of time
a given processor waits for access to the resource 140 does not
become excessive. It should be noted that while this exem-
plary method refers to the processor(s) running an interrupt
task, they may also perform multiple mterrupt tasks while
waiting for access to the resource 140.

In step 230, the spinlock 150 will make a continuous deter-
mination as to whether the resource 140 has become avail-
able, e.g., has processor 120 released the resource 140. When
the spinlock 150 determines that the processor 120 has
released the resource 140, the spinlock 150 determines
whether there are multiple outstanding requests for access to
the resource 140 1n step 235.

If there 1s only a single request (e.g., the single outstanding,
request from the processor 110), the method continues to step
215 where the single outstanding request 1s granted and the
processor 110 gains access to the resource 140 and the spin-
lock 150 then locks the resource 140 1n step 220. It should be
noted that as will be described 1n more detail below, i1t the
processor 110 1s busy running an interrupt when the resource
110 becomes available, the spinlock 150 may delay granting
access 1o the processor 110 until the processor 110 becomes
available, even 11 it 1s the only outstanding request because
there may be subsequent requests received from other pro-
cessors prior to the processor 110 becoming available.

However, 11 1n step 2335 it 1s determined that there are
multiple outstanding requests for access to the resource 140,

10

15

20

25

30

35

40

45

50

55

60

65

4

¢.g., both processors 110 and 130 have an outstanding request
to access the resource 140, the method continues to step 240
where the spinlock 150 may grant access based on a desired
policy implemented 1n the spinlock 150.

For example, a first policy may be to grant access to a
processor (or execution thread) that 1s currently available
(e.g., that 1s not currently running an interrupt). As described
above, 1 the requested resource 140 1s not available, the
spinlock 150 may instruct the requesting processor that 1t 1s
able to run interrupts while the processor 1s waiting for the
resource 140. Thus, 1n the present example, where both pro-
cessors 110 and 130 are currently waiting for access to the
resource 140, the spinlock 150 may have instructed the pro-
cessors 110 and 130 that they may run interrupts while wait-
ing for access to the resource 140. However, when the
resource 140 became available (step 230), the processor 110
may still have been running an interrupt, while the processor
130 may have completed running one or more interrupts or
may not have run any interrupts. Thus, the processor 130 may
be immediately available to gain access to the resource 140. IT
such a policy for immediate access 1s set in the spinlock 150,
the spinlock 150 may grant access to the resource 140 by the
processor 130, even though the request by processor 110 may
have been recerved earlier. Thus, 1n this exemplary embodi-
ment, the policy rule 1s that a processor (or execution thread)
that 1s immediately available will be granted access to the
resource 140 when 1t becomes available.

It can be seen from the above example, that the exemplary
embodiments of the present invention allow each spinning
processor to run mterrupts while spinning, thereby allowing
the processor to be more efficient. In addition, with the
example policy described above, a processor that 1s ready to
gain access to a resource does not have to wait for access
while another requesting processor 1s busy running interrupts.

A further exemplary policy thatmay be implemented 1n the
spinlock 150 1s that 1f a requesting processor 1s skipped
because 1t was not available when the resource 140 previously
became available, that processor may be granted prionty the
next time the resource 140 becomes available. For example,
continuing with the example from above, 1f the processor 110
was skipped 1n favor of processor 130, the spinlock 150 may
include a policy that favors processor 110 the next time that
the resource 140 becomes available, e.g., 1T processor 110 1s
available the next time the resource 140 becomes available,
the processor 110 receives access because 1t was skipped last
time.

In another example, a policy may be set that if a requesting,
processor 1s skipped (e.g., processor 110 from the above
example), the outstanding request may be deleted or removed
from a request queue and the processor may be required to
resubmit a new request for access to the resource.

Those skilled 1n the art will understand that the exemplary
embodiments of the present invention allow for any number
of access policies to be implemented 1n the realtime spinlocks
depending on the needs or desires of the system in which the
spinlock 1s operating. In addition to the examples provided
above, additional examples of access policies may include
fairness (e.g., access to the resource may be provided on a
round-robin basis), priority based (e.g., processors or execu-
tion threads may have priority values and access to the
resource may be based on the priority value), or any combi-
nation thereof.

Those skilled 1n the art will understand that other exem-
plary systems of the present invention may incorporate more
clements. For example, other exemplary systems may include
multiple resources controlled by spinlocks. In such a system,
a processor may be able to wait for more than one spinlock at

US 8,707,315 B2

S

a time, or may be limited to waiting for a single spinlock.
Further, other exemplary systems may include more proces-
sors, which may be concurrently waiting for a single locked
resource. Systems including a large number of processors
may require policies beyond those described above for deter-
mimng how to handle multiple processors concurrently run-
ning interrupts while waiting for access to the same resource.

The following illustrates code in the C programming lan-

guage for implementing an exemplary realtime spinlock
according to the present invention.

#tdefine EMPTY
#define BUSY
#define INTERESTED
#define NOBODY
typedef struct
1
volatile atomic_ t flag;
unsigned misses;
unsigned nest;
unsigned nt spin;
int key;
int __ pad[3]; /* this puts each CPU entry 1n its own cache line */
} cpuState;
typedet struct
1
volatile atomic_ t owner;
unsigned maxMisses;
unsigned numCpus;
int maxSpin;
int __ pad[4]; /* this puts the CPU array on a 32 byte cache line */
cpudtate cpu|32];
} rtSpinlock ~ WRS__DATA_ALIGN__BYTES(32);
unsigned rtSpinlockMaxMisses = 3;
unsigned rtSpimlockMaxSpin = 1000;
#define RT__SPINLOCK_NUM_ CPUS 4
STATUS rtSpinlockInit(rtSpinlock *sl)
L
int 1;
sl->numCpus = RI__ SPINLOCK_NUM__ CPUS;
sl-=owner = NOBODY;
sl->maxMisses = rtSpinlockMaxMisses;
sl->maxSpin = rtSpinlockMaxSpin;
for (1 = 0; 1 <sl->numCpus; 1++)

b=

-1

/* count of nested takes by this CPU */

1
sl->cpuli].flag = EMPTY;
sl->cpu[i].misses = O;
sl->cpuli].nest = 0;
sl->cpuli].spin = 0;
h

return (OK);

h

void rtSpinlockTake

(

rtSpinlock *sl

)

i

unsigned myCpu;

myCpu = vXCpulndexGet();

if ({INT_CONTEXT())
taskCpulLock();

sl->cpu[myCpu].key = intCpulLock();

sl->cpu[myCpu].spin = 0;

if (sl->cpu[myCpu].flag == EMPTY)
sl->cpu[myCpu].misses = 0O;

++sl->cpu[myCpu].nest;

sl->cpu[myCpu].flag = INTERESTED; /* signal intent */

if (vxCas(&sl->owner, NOBODY, myCpu) == TRUE)

/* first taker */

returmn; /* CPU took sl->on 1ts own */
for (;;)
{
if (sl->owner == myCpu)
retum; /* CPU was given spimlock by other
CPU */

sl->cpu[myCpu].spin ++;
if (sl->cpu[myCpu].spin > sl->maxSpin)

{

10

15

20

25

30

35

40

45

50

55

60

65

6

-continued

sl->cpu[myCpu].tlag = BUSY; /* wave off */
intCpuUnlock (sl->cpu[myCpu].key);

/* run ISRs (they may stomp the key) */
sl->cpu[myCpu].key = intCpulock();
sl->cpu[myCpu].spin = 0;
sl->cpu[myCpu].flag = INTERESTED; /* signal intent */

/* check if the lock was freed while local CPU was 1n the

* BUSY state */

if (vxCas(&sl-=owner, NOBODY, myCpu) == TRUE)

return;

;
h

void rtSpinlockGive

(

rtSpinlock *sl

)
1

unsigned nextCpu;

unsigned myCpu;

myCpu = vxCpulndexGet();

sl->cpu[myCpu].flag = ——sl->cpu[myCpu].nest > 0 7 BUSY : EMPTY;
do

{

nextCpu = (myCpu + 1) % sl->numCpus;
if (sl->cpu[nextCpu].flag == INTERESTED)

1

sl->owner = nextCpu;
goto CLEANUP;

h

if (sl->cpu[nextCpu].flag == BUSY)

1

sl->cpu[nextCpu].misses++;
if (sl->cpu[nextCpu].misses > sl->maxMisses)

{

sl->owner = nextCpu;
goto CLEANUP;

h
h

nextCpu = (nextCpu + 1) % sl->numCpus;
} while (nextCpu != myCpu);
sl->owner = NOBODY; /* fall through into CLEANUP */
CLEANUP:
intCpuUnlock(sl->cpu[myCpu].key);
if ({INT_CONTEXT())
taskCpuUnlock();

h

Those of skill in the art will understand that this code 1s
merely exemplary, and that other programming code, 1n both
C and other programming languages, may also be written to
implement realtime spinlocks according to the present inven-
tion.

Those skilled 1n the art will understand that the above
described exemplary embodiments may be implemented 1n
any number of manners, including as a separate soltware
module, as a combination of hardware and software, etc. For
example, the method 200 may be a program containing lines
of code that, when compiled, may be executed by a processor.

It will be apparent to those skilled in the art that various
modifications may be made 1n the present invention, without
departing from the spirit or the scope of the imnvention. Thus,
it 1s intended that the present mvention cover modifications
and variations of this invention provided they come within the
scope of the appended claims and their equivalents.

What 1s claimed 1s:

1. A method, comprising:

receving a request from a requester for access to a com-
puting resource;

instructing, when the resource 1s unavailable, the requester
to wait for access to the resource, wherein the requester
1s allowed to perform other tasks while waiting;

US 8,707,315 B2

7

determining, at a subsequent availability of the resource,
whether the requester 1s one of unavailable and avail-

able;

denying access to the resource by the requester based on

the request 11 the requester 1s unavailable;
granting access to the resource by the requester based on
the request 11 the requester 1s available; and

prioritizing the requester over a further requester at a fur-
ther subsequent availability of the resource if access to
the resource by the requester was demed based on the
requester being unavailable.

2. The method of claim 1, further comprising;

locking the resource when access 1s granted to the

requester.

3. The method of claim 1, further comprising;

receiving a further request from a further requester,

wherein the further request 1s recerved while the request
remains pending;

instructing, when the resource 1s unavailable, the further

requester to wait for access to the resource, wherein the
turther requester 1s allowed to perform other tasks while
waiting; and

granting access to the resource by one of the requester and

the further requester based on an access policy.

4. The method of claim 3, wherein the access policy
includes:

determining, when the resource subsequently becomes

available, which one of the requester and the further
requester 1s available; and

granting access to the one of the requester and the further

requester that 1s available.

5. The method of claim 3, wherein the access policy
includes:

determining, when the resource subsequently becomes

available, 11 both the requester and the further requester
are available.

6. The method of claim 1, wherein the performing other
tasks includes the running of interrupts.

7. The method of claim 1, wherein the requester 1s one of a
processor of a multiprocessor arrangement and multiple
threads executing on a single processor.

8. A system, comprising:

a computing resource;

a plurality of requesters having controlled access to the

resource; and

a spinlocking hardware processor controlling access by the

plurality of requesters to the resource, the spinlocking
hardware processor recerving a request from a first
requester for access to the resource, instructing, when
the resource 1s unavailable, the first requester to wait for
access to the resource, wherein the first requester 1s
allowed to perform other tasks while waiting, determin-
ing, at a subsequent availability of the resource, whether
the first requester 1s one of unavailable and available,
denying access to the resource by the requester based on
the request if the first requester 1s unavailable, granting
access to the resource by the first requester based on the
request if the first requester 1s available, and prioritizing
the first requester over a second requester at a further
subsequent availability of the resource 1 access to the

10

15

20

25

30

35

40

45

50

55

8

resource by the first requester was denied based on the
first requester being unavailable.

9. The system of claim 8, wherein the spinlocking hard-
ware processor locks the resource when access 1s granted to
the first requester.

10. The system of claim 8, wherein the spinlocking hard-
ware processor recerves a second request from a second
requester, the second request being recerved while the request
remains pending, mstructs, when the resource 1s unavailable,
the second requester to wait for access to the resource,
wherein the second requester 1s allowed to perform other
tasks while waiting and grants access to the resource by one of
the first and second requesters based on an access policy.

11. The system of claim 10, wherein the access policy
provides that when the resource subsequently becomes avail-
able and one of the first and second requesters 1s available,
access 1s granted to the one of the first and second requesters
that 1s available.

12. The method of claim 8, wherein the performing other
tasks by the first requester includes the running of interrupts.

13. The method of claim 8, wherein the plurality of request-
ers mncludes one of processors of a multiprocessor arrange-
ment and multiple threads executing on a single processor.

14. The system of claim 10, wherein the access policy
provides that the one of the first and second requesters that 1s
skipped 1s granted access the next time the resource becomes
available.

15. A system, comprising a hardware memory storing a set
of instructions, and a hardware processor executing the set of
instructions, the set of instructions, when executed by the
hardware processor, causing the hardware processor to per-
form a method comprising:

receving a request from a requester for access to a com-

puting resource;
instructing, when the resource 1s unavailable, the requester
to wait for access to the resource, wherein the requester
1s allowed to perform other tasks while waiting;

determiming, at a subsequent availability of the resource,
whether the requester 1s one of unavailable and avail-
able;

denying access to the resource by the requester based on

the request 1f the requester 1s unavailable; and
granting access to the resource by the requester based on
the request 1f the requester 1s available; and

prioritizing the requester over a further requester at a fur-
ther subsequent availability of the resource 1f access to
the resource by the requester was denied based on the
requester being unavailable.

16. The system of claim 15, wherein the set of instructions
are Turther operable to:

recetve a further request from a further requester, wherein

the further request 1s recerved while the request remains
pending;

instruct, when the resource 1s unavailable, the further

requester to wait for access to the resource, wherein the
turther requester 1s allowed to perform other tasks while
waiting; and

grant access to the resource by one of the requester and the

further requester based on an access policy.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

