US008706727B2
a2y United States Patent (10) Patent No.: US 8,706,727 B2
Yang et al. 45) Date of Patent: Apr. 22,2014
(54) DATA COMPRESSION FOR REDUCING 2008/0133562 Al1* 6/2008 Cheongetal. 707/999.101
STORAGE REQUIREMENTS IN A DATABASE 2008/0288678 Al : 11/2008 Nakagawa et al. 710/68
SYSTEM 2009/0187673 AT 7/2009 Ramyeeetal. 709/247
2009/0193006 Al1l* 7/2009 Herrnstadt 707/999.005
2009/0217181 Al* 8/2009 Kumarc...oeevvvennenen, 715/762
(75) Inventors: Xinjun Yang, Dublin, CA (US); Xudong
Qian, Shanghai (CN) OTHER PUBLICATIONS
(73) Assignee: Sybase, Inc., Dublin, CA (US) International Search Report and Written Opinion, dated Jan. 27,
2011, for PCT Appl. No. PCT/US2010/038994, 9 pages.
(*) Notice: Subject to any disclaimer, the term of this | |
patent 1s extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 321 days.
Primary Examiner — Etienne Leroux
(21) Appl. No.: 12/488,022 14) Attorney, Agent, or Firm — Sterne, Kessler, Gold-
ey, Ag
stein & Fox P.L.L.C.
(22) Filed: Jun. 19, 2009
(37) ABSTRACT
(65) Prior Publication Data
A system, method, and computer program product for reduc-
US 2010/0325094 Al Dec. 23, 2010 ing data storage requirements 1 a database system are
51 Tut. Cl described herein. An embodiment includes 1dentifying at
(51) (;’1(;6 = 1 220 500601 least one data candidate of fixed length data type 1n at least
Y US. Cl (01) one row ol database data for compression based upon a pre-
(52) USP c ' 207/736 determined threshold level and a boundary of compression,
SPC e e e providing at least one bit within the at least one row for an
(58) Field of Classification Search identified data candidate according to the boundary of com-
ISJ:ePaC hcatlon ﬁle forcozlozfaigigé;fc% ﬁ?si);m’ /36 pression, and storing the at least one row as compressed data
PP P t- in the database system. For compression based on a row
(56) References Cited Poundary, the 1dentified data capdidates for compression
include fixed length columns having lengths that do not fall
U.S. PATENT DOCUMENTS below the predetermined threshold level 1n a row of data and
. the at least one bit comprises a bitmap for a length of the
2’2%’8% i N i (lﬁgg; gléuetéi “““““““““““““““ 73%16/311’; identified data candidates following compression. For com-
6,567,546 B1* 5/2003 Eguchietal. 382/181 pression based on a page boundary, the identified data candi-
6,661,845 B1 12/2003 Herath dates for compression include redundant byte string data in a
6,721,753 B1* 4/2004 Kataoka etal. 707/999.01 page of data, the redundant byte string data including match-
g:ggg:%% Ez ggggg gﬁ??;%ﬁlet n ing data across columns having lengths that do not exceed the
8,126,900 Bl * 2/2012 Kostamaaetal. ... 707/756 ~ Predetermined threshold level.
2002/0138509 Al1* 9/2002 Burrowsetal. 715/205
2005/0240398 Al* 10/2005 Chenetal.c........ 704/222 32 Claims, 7 Drawing Sheets
200
CLIENT(S) NETWORK SERVER
210 . 220 . 230
5 ! 240
DATABASE SERVER
260 SYSTEM
261 l PARSER]
E SOLSTM{S)E. : 263 l NORMAUZER
oo E 265 g GGMP&LER
- g | 286 OPTIMIZER
l TE?,E,?,?;ESS) | <———/\/ B 267 i' CODE GENERATDR *
“QUER,,, : 269 l EXECUTION UNT 250
. RESULT(S)
: 270 ACCESS METHUL‘ls | -

L

US 8,706,727 B2

Sheet 1 of 7

Apr. 22,2014

U.S. Patent

S3I V.IVJ

SNOILYOIMddY
SH3IAIRJ

SO

oLl

dOVHOLS
a3x|d

JOVHOLS
F18YAOWIY

Gl

00}

801

ONILNIOd

10l

(LY HOId)

40IA3a

} Ol

S INIHd
L

{Ndd)
(s)LINN

0l +0L

901
QHVOdAIN

ASQWIIN
O34IA

GOL

d31ldVvay
O4dIA

ONISS330dd TVH.LNID

€0l

¢ol

Oi}
SOV44ALNI
¥ WAQO
LLT

SOVAHILN]
MHOMLIN

NIQON

il

US 8,706,727 B2

Sheet 2 of 7

Apr. 22,2014

U.S. Patent

G6¢C

06¢e

-
{S)318vL

e el

2L

WALSAS

H3AM3S 3SYEVLVYA

0ve

SUOHL3W SSI0V
)

JINN NOLLNOIX3

NO1VHINIO 300D
MIZIWILJO L.

MFSHOD

Ap
HFZIMYWMON
438¥VYd

SNIONS

XA
HINYSS

¢ i

0LC

69¢

L9C
99¢

$9¢

t8l

L9¢
Q8

e e g omk moam J EE P B e g A Gy PN ale sk W T oWy A g o EE W gy B A e my r wk gy o A W A W ke & A -w

(8} INSTY

Ad3N0
— N

D
(SILS DS

HAA
HEOMLIN

_— e B g i e o g B R B A e e e o b R T PR W R T Ny B e S g

- ml R e P e ek et B A G W B R S T B o R s e R - e

Hr o - ey gl

(S)TYNIANMIL
4O (S)0d

0Lg
(SLNIIID

U.S. Patent

Apr. 22,2014 Sheet 3 of 7

US 8,706,727 B2

P ——————————— ———— —— _

Identify compression candidate based on a
| predetermined threshold level and boundary ot
compression

300

4

Provide at least one bit for an 1dentified data candidate
according to the boundary of compression

302

_ — —_— — — - — _—

I SR

Store compressed data |/

FIG. 3

304

U.S. Patent Apr. 22, 2014 Sheet 4 of 7 US 8,706,727 B2

—
Fow offset
coll col2 | col3 row length colS table
header
| for col5
6 bytes 1byte 50 bytes 1 byte 4 bytes 2 bytes 2 bytes

F1G. 4 400

rOwW row \
header[length | coll col3

—
col2'col4‘ col5 |padding li- (:ll;; | li(:;lt; l ;::éﬂsl |

6 bytes 2byte 1 byte 1 byte 3 bits 5 bits 2 bits 6 bits
FI1G. 5 500
row | | | offset

header ‘a’ “aaaaa ” 1 100 row length | “bbbbb” table |

| for col5
| _ — _ 1
60 bytes 1byte 30 bytes 1 byte 4 bytes 2 bytes 5 bytes 2 bytes
FIG. 6 600

“bbbbb” | 000 | 00101 00 000100

—

row row ”) . |
header | length aj 1—[aaaaa” [100
1 |

6 bytes 2byte 1 byte >

5 bytes 5bits 2 bits 6 bits

JBYS te bits

byte

FIG. 7 700

U.S. Patent

FIG. & 800

row row
header | Iength

™S

Apr. 22,2014 Sheet S of 7

Page Header (44 bytes)

——------__--__-—_

Page Dictionary

NCFS (noncontiguous free space)
(interlaced with data/index rows)

C¥S (contiguous free space)

6 bytes 2 bytes

the index of
page | o
dictionary| coll _ PaS
dictionary
chart
' of col2

1 byte 1 byte 1 byte

FIG. 9 900

US 8,706,727 B2

]
offset
table for

colS

2 bytes

row |ol o |old |ol w ol number | ol i id ol_supply | ol deliv | ol qu | ol am | ol _dist

header | id | id | _id | " - | _w_id ery d | antity | ount | info |

6 bytes 4 1 2 1 byte 4 bytes 2 bytes 8 bytes) 24
bytes byte bytes bytes bytes bytes

FI1G. 10 1000

U.S. Patent Apr. 22,2014 Sheet 6 of 7 US 8,706,727 B2
ol o od o | ool | ol id ol_supply | ol _delivery_ | ol_quantity ol _amount ol dist info
11| _w_id d
31w
Tt
d | df er
682 17 1 (30000 |7 Dec 1|5 0.00000 | 9VxkRgF143mVHwSaeSVYN3
1 2008 0 Oq
4:05PM
682 1171193193 |7 Dec 1 5 0.00000 | MztKSoTbHLcrdICX7Hxuo7dB
2 2008 0
4:05PM
62 1171150383 | 7 Dec 1 5 0.00000 | HVOdvo6YpBbZocOMPDz4s0w
3 2008 0 U
4:05PM
682 117 170901 |7 Dec 1 5 0.00000 | rbINenw7E6WGuD)y6tobkWV
4 2008 0 T
4:05PM
683 1171|3459 |7 Dec 1 5 0.00000 | LyKi1gaQDThbdTya8EDdzpRS{t
2008 0
4:05PM
683 1172 (1232 7 Dec 1 5 0.00000 | Y3EDkalNY3RQtkqcQo6DUmKI
2008 0 HI
4:05PM
683 1|73]55341 |7 Dec 1 5 0.00000 [AYh11WBabQM3Sw4516Xh1FC
2008 0 Yq
4:05PM
683 1174 | 98313 |7 Dec 1 5 0.00000 | §)C8RaCoastN6WqtO3IMQusb
2008 0
4:05PM
683 1175|1347 7 Dec 1 5 0.00000 | 89WegdWaQcFGzsS41zsVYUuyt
2008 0
4.05PM
683 117651276 |7 Dec 1 5 0.00000 | TSmC26cSUwu6ICGepHKIEmMn
2008 0 E
4:05PM
684 11711 | 18089 |7 Dec 1 5 0.00000 | FV0oIthLdloX11cWVvCTJZB
2008 0
4.05PM
684 117238396 |7 Dec 1 S 0.00000 | NKHS3mkzOnEXu7p0tWuZH?2
2008 0 Q
4:05PM
684 117351067 |7 Dec 1 5 0.00000
2008 0
4:05PM
FIG. 11 1100

U.S. Patent Apr. 22,2014 Sheet 7 of 7 US 8,706,727 B2

FIG. 12 1200 Page Header (44 bytes)

Page Dictionary

Page Index

NCFS (noncontiguous free space)
(interlaced with data/index rows)

CFS (contiguous free space)

— ——— ———— —]'_
row ol o id | ol number |ol i id | ol _delivery_d | ol _amount | ol_dist_info
header -~ l

6 bytes 4 bytes 1 byte 4 bytes 8 bytes 4 bytes 24 bytes

FIG. 13 1300

| fixed length fixed length
page : :
row row dictionar column column with variable | compressed
header | length chart y without compression column | offset table
compression

FIG. 14 1400

US 8,706,727 B2

1

DATA COMPRESSION FOR REDUCING
STORAGE REQUIREMENTS IN A DATABASE
SYSTEM

FIELD OF THE INVENTION

The present invention relates generally to database systems
and, more particularly, to data compression 1n database sys-
tems.

BACKGROUND OF THE INVENTION

Computers are very powertul tools for storing and provid-
ing access to vast amounts of information. Relational data-
bases are a common mechanism for storing information on
computer systems while providing easy access to users. A
typical relational database 1s an organized collection of
related information stored as “records” having “fields” of
information. As an example, a database of employees may
have a record for each employee where each record contains
ficlds designating specifics about the employee, such as
name, home address, salary, and the like.

Between the actual physical database 1tself (1.e., the data
actually stored on a storage device) and the users of the
system, a relational database management system or RDBMS
1s typically provided as a software cushion or layer. In
essence, the RDBMS shields the database user from knowing
or even caring about the underlying hardware-level details.
Typically, all requests from users for access to the data are
processed by the RDBMS. For example, information may be
added or removed from data files, information retrieved from
or updated 1n such files, and so forth, all without user knowl-
edge of the underlying system implementation. In this man-
ner, the RDBMS provides users with a conceptual view of the
database that 1s removed from the hardware level. The general
construction and operation of database management systems
1s well known 1n the art. See e.g., Date, C., “An Introduction
to Database Systems, Seventh Edition™, Part I (especially
Chapters 1-4), Addison Wesley, 2000.

Efficient data access 1s one of the properties provided by a
database management system. A key challenge faced by rela-
tional database systems 1s the ever-growing database size.
With increasing use of digital devices and ease of data flow on
ubiquitous networks, the data explosion has accelerated in
recent years. As regular database and table size has grown
tremendously 1n recent years, data compression becomes
increasing important even for databases. While row level
compression and page level compression for databases have
been introduced, a need remains for improved compression
techniques to overcome deficiencies 1n these approaches
without introducing new overhead. The present invention
addresses this need.

SUMMARY OF THE INVENTION

The mvention includes methods, systems, and computer
program products for reducing data storage requirements in a
database system. An embodiment includes identitying at least
one data candidate of fixed length data type 1n at least one row
of database data for compression based upon a predetermined
threshold level and a boundary of compression, providing at
least one bit within the at least one row for an i1dentified data
candidate according to the boundary of compression, and
storing the at least one row as compressed data in the database
system. For compression based on a row boundary, the 1den-
tified data candidates for compression include fixed length
columns having lengths that do not fall below the predeter-

10

15

20

25

30

35

40

45

50

55

60

65

2

mined threshold level 1n a row of data and the at least one bit
comprises a bitmap for a length of the 1dentified data candi-

dates following compression. For compression based on a
page boundary, the identified data candidates for compres-
s1on 1nclude redundant byte string data 1n a page of data, the
redundant byte string data including matching data across
columns having lengths that do not exceed the predetermined
threshold level.

Further features and advantages of the invention, as well as
the structure and operation of various embodiments of the
invention, are described 1n detail below with reference to the
accompanying drawings. It 1s noted that the invention 1s not
limited to the specific embodiments described herein. Such
embodiments are presented herein for illustrative purposes
only. Additional embodiments will be apparent to persons

skilled 1n the relevant art(s) based on the teachings contained
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and form a part of the specification, illustrate the
present ivention and, together with the description, further
serve to explain the principles of the mvention and to enable
a person skilled in the relevant art to make and use the mnven-
tion.

FIG. 1 1llustrates a general block diagram of a computer
system 1n which software-implemented processes of the
present invention may be embodied

FIG. 2 1illustrates the general structure of a client/server
database system 200 suitable for implementing the present
invention.

FIG. 3 illustrates an overall flow diagram for reducing data
storage requirements in a database system 1n accordance with
an embodiment of the present invention.

FIG. 4 depicts a row format before compression for an
example table.

FIG. 5 depicts an altered row format for the example table
when compressed 1n accordance with an embodiment of the
present invention

FIG. 6 depicts an input row of sample data with the uncom-
pressed row format for the example of FIG. 4.

FIG. 7 depicts a row resulting after utilizing an embodi-
ment of the compression approach of the present invention on
the same 1nput data used for FIG. 6.

FIG. 8 depicts a page representation that includes a page
dictionary 1n accordance with an embodiment of the present
invention.

FIG. 9 depicts a row format using the page dictionary
results based on example table data after the page dictionary
compression 1n accordance with an embodiment of the
present invention.

FIG. 10 depicts a standard row format for a sample table.

FIG. 11 depicts sample data for the sample table of FIG. 10.

FIG. 12 depicts a page representation resulting when using,
both page dictionary compression and page index compres-
s10n 1n accordance with an embodiment of the present inven-
tion.

FIG. 13 depicts a row format for the sample data of FIG. 11
for a row with page index compression 1n accordance with an
embodiment of the present invention.

FIG. 14 depicts a row format when applying compression
techniques on both a page and row boundary 1n accordance
with an embodiment of the present invention.

The present invention will now be described with reference
to the accompanying drawings. In the drawings, generally,
like reference numbers indicate identical or functionally

US 8,706,727 B2

3

similar elements. Additionally, generally, the left-most
digit(s) of a reference number 1dentifies the drawing in which
the reference number first appears.

DETAILED DESCRIPTION

The following detailed description of the present invention
refers to the accompanying drawings that illustrate exemplary
embodiments consistent with this invention. Other embodi-
ments are possible, and modifications can be made to the
embodiments within the spirit and scope of the ivention.
Therefore, the detailed description 1s not meant to limait the
invention. Rather, the scope of the invention 1s defined by the
appended claims.

It would be apparent to one of skill in the art that the present
invention, as described below, can be implemented 1n many
different embodiments of software, hardware, firmware, and/
or the entities 1llustrated in the figures. Any actual software
code with the specialized control of hardware to implement
the present invention 1s not limiting of the present mnvention.
Thus, the operational behavior of the present invention will be
described with the understanding that modifications and
variations of the embodiments are possible, given the level of
detail presented herein.

Referring to the figures, exemplary embodiments of the
invention will now be described. The following description
will focus on the presently preferred embodiment of the
present mvention, which 1s implemented 1n desktop and/or
server software (e.g., driver, application, or the like) operating
in an Internet-connected environment running under an oper-
ating system, such as the Microsoit Windows operating sys-
tem. The present invention, however, 1s not limited to any one
particular application or any particular environment. Instead,
those skilled in the art will find that the system and methods
of the present invention may be advantageously embodied on
a variety of different platiforms, including Linux, Solaris,
UNIX, IBM AIX, and the like. Theretfore, the description of
the exemplary embodiments that follows 1s for purposes of
illustration and not limitation. The exemplary embodiments
are primarily described with reference to block diagrams or
flowcharts. As to the flowcharts, each block within the flow-
charts represents both a method act and an apparatus element
for performing the method act. Depending upon the imple-
mentation, the corresponding apparatus element may be con-
figured 1in hardware, software, firmware, or combinations
thereol.

The present invention may be implemented on a conven-
tional or general-purpose computer system, such as an IBM-
compatible personal computer (PC) or server computer. FIG.
1 illustrates a general block diagram of a computer system
(e.g., an IBM-compatible system) in which software-imple-
mented processes of the present invention may be embodied.
As shown, system 100 comprises a central processing unit(s)
(CPU) or processor(s) 101 coupled to a random-access
memory (RAM) 102, a read-only memory (ROM) 103, a
keyboard 106, a printer 107, a pointing device 108, a display
or video adapter 104 connected to a display device 105, a
removable (mass) storage device 115 (e.g., floppy disk, CD-
ROM, CD-R, CD-RW, DVD, or the like), a fixed (mass)
storage device 116 (e.g., hard disk), a communication
(COMM) port(s) or iterface(s) 110, a modem 112, and a
network interface card (NIC) or controller 111 (e.g., Ether-
net). Although not shown separately, a real time system clock
1s included with the system 100, in a conventional manner.

CPU 101 comprises any suitable processor, such as a pro-
cessor of the Intel Pentium family of microprocessors, for
implementing the present mvention. The CPU 101 commu-

10

15

20

25

30

35

40

45

50

55

60

65

4

nicates with other components of the system via a bi-direc-
tional system bus (including any necessary input/output (I/O)
controller circuitry and other “glue” logic). The bus, which
includes address lines for addressing system memory, pro-
vides data transfer between and among the various compo-
nents, as 1s well understood i1n the art. Random-access
memory 102 serves as the working memory for the CPU 101.
In a typical configuration, RAM of multiple megabytes or
gigabytes 1s employed. More or less memory may be used
without departing from the scope of the present invention.
The read-only memory (ROM) 103 contains the basic mnput/
output system code (BIOS)—-a set of low-level routines 1n
the ROM that application programs and the operating systems
can use to mteract with the hardware, including reading char-
acters from the keyboard, outputting characters to printers,
and so forth.

Mass storage devices 115, 116 provide persistent storage
on fixed and removable media, such as magnetic, optical or
magnetic-optical storage systems, flash memory, or any other
available mass storage technology. The mass storage may be
shared on a network, or it may be a dedicated mass storage. As
shown 1n FIG. 1, fixed storage 116 stores a body of program
and data for directing operation of the computer system,
including an operating system, user application programs,
driver and other support files, as well as other data files of all
sorts. Typically, the fixed storage 116 serves as the main hard
disk for the system.

In basic operation, program logic (including that which
implements methodology of the present invention described
below) 1s loaded from the removable storage 115 or fixed
storage 116 into the main (RAM) memory 102, for execution
by the CPU 101. During operation of the program logic, the
system 100 accepts user mput from a keyboard 106 and
pointing device 108, as well as speech-based input from a
voice recognition system (not shown). The keyboard 106
permits selection of application programs, entry of keyboard-
based input or data, and selection and manipulation of indi-
vidual data objects displayed on the screen or display device
105. Likewise, the pointing device 108, such as a mouse, track
ball, pen device, or the like, permits selection and manipula-
tion of objects on the display device. In this manner, these
input devices support manual user input for any process run-
ning on the system.

The computer system 100 displays text and/or graphic
images and other data on the display device 105. The video
adapter 104, which 1s iterposed between the display device
105 and the system’s bus, drives the display device 105. The
video adapter 104, which includes video memory accessible
to the CPU 101, provides circuitry that converts pixel data
stored 1n the video memory to a raster signal suitable for use
by a cathode ray tube (CRT) raster or liquid crystal display
(LCD) monitor. A hard copy of the displayed information, or
other information within the system 100, may be obtained
from the printer 107, or other output device. Printer 107 may
include, for instance, a HP Laserlet printer (available from
Hewlett Packard of Palo Alto, Calif.), for creating hard copy
images of output of the system.

The system itself communicates with other devices (e.g.,
other computers) via the network interface card (NIC) 111
connected to a network (e.g., Ethernet network, Bluetooth
wireless network, or the like), and/or modem 112 (e.g., 56K
baud, ISDN, DSL, or cable modem), examples of which are
available from 3Com of Santa Clara, Calif. The system 100
may also communicate with local occasionally-connected
devices (e.g., serial cable-linked devices) via the communi-
cation (COMM) interface 110, which may include a RS-232

serial port, a Universal Serial Bus (USB) interface, or the like.

US 8,706,727 B2

S

Devices that will be commonly connected locally to the inter-
face 110 include laptop computers, handheld organizers,
digital cameras, and the like.

IBM-compatible personal computers and server comput-
ers are available from a variety of vendors. Representative
vendors 1nclude Dell Computers of Round Rock, Tex.,
Hewlett-Packard of Palo Alto, Calif., and IBM of Armonk,
N.Y. Other suitable computers include Apple-compatible
computers (e.g., Macintosh), which are available from Apple
Computer of Cupertino, Calif., and Sun Solaris workstations,
which are available from Sun Microsystems of Mountain
View, Calif.

A software system 1s typically provided for controlling the
operation of the computer system 100. The software system,
which 1s usually stored 1n system memory (RAM) 102 and on
fixed storage (e.g., hard disk) 116, includes a kernel or oper-
ating system (OS) which manages low-level aspects of com-
puter operation, including managing execution of processes,
memory allocation, file mput and output (I/0), and device

I/0. The OS can be provided by a conventional operating
system, Microsoit Windows N'T, Microsoit Windows 2000,

Microsoit Windows XP, or Microsoit Windows Vista (Mi-
crosoit Corporation of Redmond, Wash.) or an alternative
operating system, such as the previously mentioned operating
systems. Typically, the OS operates 1n conjunction with
device drivers (e.g., “Winsock” driver—Windows’ 1imple-
mentation of a TCP/IP stack) and the system BIOS microcode
(1.e., ROM-based microcode), particularly when interfacing
with peripheral devices. One or more application(s), such as
client application soitware or “programs” (i.€., set of proces-
sor-executable mstructions), may also be provided for execu-
tion by the computer system 100. The application(s) or other
soltware intended for use on the computer system may be
“loaded” into memory 102 from fixed storage 116 or may be
downloaded from an Internet location (e.g., Web server). A
graphical user iterface (GUI) 1s generally provided for
receiving user commands and data 1n a graphical (e.g., “point-
and-click™) fashion. These inputs, 1n turn, may be acted upon
by the computer system 1n accordance with instructions from
OS and/or application(s). The graphical user iterface also
serves to display the results of operation from the OS and
application(s).

While the present invention may operate within a single
(standalone) computer (e.g., system 100 of FIG. 1), the
present invention 1s preferably embodied 1n a multi-user com-
puter system, such as a client/server system. FIG. 2 illustrates
the general structure of a client/server database system 200
suitable for implementing the present invention. (Specific
modifications to the system 200 for implementing method-
ologies of the present mnvention are described in subsequent
sections below.) As shown, the system 200 comprises one or
more client(s) 210 connected to a server 230 via a network
220. Specifically, the client(s) 210 comprise one or more
standalone terminals 211 connected to a database server sys-
tem 240 using a conventional network. In an exemplary
embodiment, the terminals 211 may themselves comprise a
plurality of standalone workstations, dumb terminals, or the
like, or comprise personal computers (PCs) such as the above-
described system 100. Typically, such units would operate
under a client operating system, such as a Microsoft® Win-
dows client operating system (e.g., Microsoft® Windows
95/98, Windows 2000, or Windows XP).

The database server system 240, which comprises
Sybase® Adaptive Server® Enterprise (ASE) (available from
Sybase, Inc. of Dublin, Calif.) 1n an exemplary embodiment,
generally operates as an independent process (1.e., indepen-
dently of the clients), running under a server operating system

10

15

20

25

30

35

40

45

50

55

60

65

6

such as Microsoft® Windows NT, Windows 2000, or Win-
dows XP (all from Microsoft Corporation of Redmond,
Wash.), UNIX (Novell), Solaris (Sun), or Linux (Red Hat).
Thenetwork 220 may be any one of a number of conventional
network systems, including a Local Area Network (LAN) or
Wide Area Network (WAN), as 1s known in the art (e.g., using
Ethernet, IBM Token Ring, or the like). The network 220
includes functionality for packaging client calls in the well-
known Structured Query Language (SQL) together with any
parameter information into a format (of one or more packets)
suitable for transmission to the database server system 240.
The described computer hardware and software are presented
for purposes of 1llustrating the basic underlying desktop and
server computer components that may be employed for
implementing the present invention. For purposes of discus-
sion, the following description will present examples 1n
which 1t will be assumed that there exist multiple server
instances (e.g., database server nodes) 1n a cluster that com-
municate with one or more “clients” (e.g., personal comput-
ers or mobile devices). The present invention, however, 1s not
limited to any particular environment or device configuration.
Instead, the present invention may be implemented in any
type of system architecture or processing environment
capable of supporting the methodologies of the present inven-
tion presented 1n detail below.

Client/server environments, database servers, and net-
works are well documented 1n the technical, trade, and patent
literature. In operation, the client(s) 210 store data in, or
retrieve data from, one or more database tables 250, as shown
at F1G. 2. Data 1n a relational database 1s stored as a series of
tables, also called relations. Typically resident on the server
230, cach table itself comprises one or more “rows” or
“records” (tuples) (e.g., row 2535 as shown at FIG. 2). A
typical database will contain many tables, each of which
stores information about a particular type of entity. A table 1n
a typical relational database may contain anywhere from a
tew rows to millions of rows. A row 1s divided into fields or
columns; each field represents one particular attribute of the
given row. A row corresponding to an employee record, for
example, may include information about the employee’s 1D
Number, Last Name and First Initial, Position, Date Hired,
Social Security Number (SSN), and Salary. Each of these
categories, 1n turn, represents a database field. In the forego-
ing employee table, for example, Position 1s one field, Date
Hired 1s another, and so on. With this format, tables are easy
for users to understand and use. Moreover, the flexibility of
tables permits a user to define relationships between various
items ol data, as needed. Thus, a typical record includes
several categories of information about an individual person,
place, or thing. Each row 1n a table 1s uniquely 1dentified by a
record ID (RID), which can be used as a pointer to a given
row.

Most relational databases implement a variant of the Struc-
tured Query Language (SQL), which 1s a language allowing
users and administrators to create, manipulate, and access
data stored 1n the database. The syntax of SQL 1s well docu-
mented; see, e.g., the above-mentioned “An Introduction to
Database Systems™. SQL statements may be divided 1nto two
categories: data manipulation language (DML), used to read
and write data; and data definition language (DDL), used to
describe data and maintain the database. DML statements are
also called queries. In operation, for example, the clients 210
1ssue one or more SQL commands to the server 230. SQL
commands may specily, for instance, a query for retrieving
particular data (i.e., data records meeting the query condition)
from the database table(s) 250. In addition to retrieving the
data from database server table(s) 250, the clients 210 also

US 8,706,727 B2

7

have the ability to 1ssue commands to 1insert new rows of data
records 1nto the table(s), or to update and/or delete existing
records 1n the table(s).

SQL statements or simply “queries” must be parsed to
determine an access plan (also known as “execution plan™ or
“query plan”) to satisly a given query. In operation, the SQL
statements received from the client(s) 210 (via network 220)
are processed by the engine 260 of the database server system
240. The engine 260 1tself comprises a parser 261, a normal-
1zer 263, a compiler 265, an execution unit 269, and an access
method 270. Specifically, the SQL statements are passed to
the parser 261 which employs conventional parsing method-
ology (e.g., recursive descent parsing). The parsed query 1s
then normalized by the normalizer 263. Normalization
includes, for example, the elimination of redundant data.
Additionally, the normalizer 263 performs error checking,
such as confirming that table names and column names which
appear 1n the query are valid (e.g., are available and belong
together). Finally, the normalizer 263 can also look-up any
referential integrity constraints which exist and add those to
the query.

After normalization, the query 1s passed to the compiler
265, which includes a query optimizer 266 and a code gen-
erator 267. The query optimizer 266 performs a cost-based
analysis for formulating a query execution plan that 1s rea-
sonably close to an optimal plan. The code generator 267
translates the query execution plan selected by the query
optimizer 266 into executable form for execution by the
execution unit 269 using the access methods 270.

All data 1n a typical relational database system 1s stored 1n
pages on a secondary storage device, usually a hard disk.
Typically, these pages may range 1n size from 1 Kb to 32 Kb,
with the most common page sizes being 2 Kb and 4 Kb. All
input/output operations (I/0) against secondary storage are
done 1n page-sized units—that 1s, the entire page 1s read/
written at once. Pages are also allocated for one purpose at a
time: a database page may be used to store table data or used
for virtual memory, but 1t will not be used for both. The
memory 1n which pages that have been read from disk reside
1s called the cache or butfer pool.

I/O to and from the disk tends to be the most costly opera-
tion 1n executing a query. This 1s due to the latency associated
with the physical media, in comparison with the relatively
low latency of main memory (e.g., RAM). Query pertor-
mance can thus be increased by reducing the number of I/O
eperatlens that must be completed. This can be done by using
data structures and algorithms that maximize the use of pages
that are known to reside 1n the cache. Alternatively, 1t can be
done by being more selective about what pages are loaded
into the cache 1n the first place. An additional consideration
with respect to 1/0 1s whether 1t 1s sequential or random. Due
to the construction of hard disks, sequential I/O 1s much faster
then random access I/O. Data structures and algorithms
encouraging the use of sequential I/O can realize greater
performance.

The present invention improves /O performance for more
eificient query processing and database operation by utilizing
compression techniques that reduce data storage require-
ments. As will be described 1n further detail herein below,
embodiments of the present invention address both row level
boundary compression and page level boundary compres-
sion. FIG. 3 illustrates an overall flow diagram for reducing
data storage requirements in a database system by these com-
pression techniques. The process includes 1identiiying at least
one data candidate of fixed length data type 1n at least one row
of database data for compression based upon a predetermined
threshold level and a boundary of compression (block 300).

10

15

20

25

30

35

40

45

50

55

60

65

8

At least one bit 1s provided within the at least one row for an
identified data candidate according to the boundary of com-
pression (block 302). The at least one row 1s then stored as
compressed data 1n the database system (block 304).

In performing data compression at a row boundary, row
level compression 1s performed by recognizing the possible
waste of storage for fixed length data types. For example, ASE
has a full set of fixed length data types, such as “int”, “char”,
“double” etc., that can be used to define data columns. In most
cases, the data actually stored 1n a fixed length data column
does not need the fall length as defined. By way of example,
n ASE, 4 bytes are used as a default size for the data type

t”. If the data to be stored 1s 100, not all 4 bytes are
needed since 1 byte covers up to 28 (256), making the other
3 bytes redundant. Instead of wasting the space resulting from
such a redundancy scenario, the row compression of the
present invention icludes storing the value of certain fixed
length data types as needed and in variable length format.
Some fixed length data types are not included 1n the row
compression, since there would not be any benefit from the
compression. For example, the data type “tinyint” uses only 1
byte. So, columns having such data types are not changed to
variable length and remain as fixed length column format. In
this way, those fixed data type column lengths that do not fall
below a predetermined threshold level (e.g., 4 bytes) are
considered for row compression.

In compressing row data by changing certain fixed length
data types to variable length, offset data 1s used to indicate the
variable length column. Prior approaches allow a fixed num-
ber of bytes, such as 2 bytes, for the column offset. In accor-
dance with the present invention, further space savings is
achieved by compressing the offset data in conjunction with
changing more fixed length column to variable length.
Instead of using a fixed number of bytes for each column
offset, a bitmap 1s used to map out all the lengths for the
variable length columns 1n a row. By using an ofiset bitmap,
several bits indicate the length of the column after compres-
s10n, where the number of bits used depends upon the maxi-
mum length of the column.

By way of example, suppose a table 1s created as indicated
below:

create table t1 (coll char(1),
col2 char(50),
col3 tinyint,
col4 int,
col5 varchar(20)) lock datapages

FIG. 4 1llustrates the row format 400 before compression
for this table. As can be recognized, the row format generally
has a row header, followed by fixed length columns, followed
by a row length, followed by variable length columns, and
ending with an offset table. In order to reduce the storage
requirements for the row, row based compression of a table
can be used and normally occurs as a result of explicit speci-
fication 1n the create table statement. To compress the row 1n
accordance with an embodiment of the invention, 1t 1s seen
that column 1 1s specified as one byte of “char” data type and
column 3 1s specified as “tinyint” data type (also one byte by
default), so these columns do not meet the predefined thresh-
old and therefore are not considered candidates for row level
compression. Columns 2 and 4 are recognized to be poten-
tially compressible, since they are of fixed data type with 50
bytes specified (column 2) and a default 4 bytes specified

US 8,706,727 B2

9

(column 4). Accordingly, column 2 and column 4 are changed
to variable length columns as part of the row boundary com-
pression.

As 1llustrated 1n FIG. 5, an altered row format 500 for the
example table when compressed in accordance with an
embodiment of the present invention includes positioning the
row length after the row header and ahead of the fixed length
columns that are not compressed. The compressed columns
tollow the uncompressed fixed columns, which are followed
by the variable length columns that may also be compressed.
The end columns of the row format provide the “offset bit-
map”” which indicates the length of each of the compressed
columns and variable length columns. For example, the maxi-
mum length of the column 2 1s 50, so 6 bits are used 1n the
offset bitmap to indicate the column length (2°=50). For
column 4, 2 bits are used to indicate its length (2°z4). 5 bits
are used to indicate the length of column 5 (2°=(20+1)) by
similar reasoning (the addition of 1 to the row length of the
column will be explained below). Padding 1s included as
needed 1n the offset bitmap to make the row align with a byte
boundary. In this example, the bit padding comprises 3 bits.

In FIG. 6, an mput row 600 of sample data 1s illustrated
with the uncompressed row format for the example of FI1G. 4.
As shown, with the sample data, the total length 1s 71 bytes.
FIG. 7 illustrates the row 700 after utilizing the compression
approach of the present invention on the same input data. As
shown, the total length of the compressed row 1s 23 bytes.

The reduced storage needed results from row level com-
pressing. Referring to column 2, based on the example input
data, the value 1s 5 ‘a’ followed by 45 blanks. After compres-
s10n, the compressed value of column 2 1s the 5 ‘a’ data and
the length of the compressed column 2 1s 5. For column 4
(int), the value 1s 100, so only one byte 1s needed to represent
this value. Based on the data for column 3 (varchar(20)), only
five bytes are needed to store the value of column 5 and the
trailing blanks are truncated.

In providing an oifset bitmap to represent the compressed
lengths, preferably the lack of a NULL value 1n the fixed
length columns 1s recognized such that a *0’ value can be used
for a column with a length of 1, a 1’ value can be used to
represent a column with length 2, and so on. Accordingly, for
the length of 5 for the compressed column 2 1n the example,
the bit string of 000100(0x2°+0x2*+0x2°+1x2°+0x2" +0x
2°=0) capably represents the length of 5. For column 4, the bit
string 00(0x2'+0x2°=0) capably represents the length of 1.

For column 5, since 1t 1s a variable data type, 1t could have
a NULL value and thus the ‘0’ value in the bit string cannot be
used 1n the same manner as for the fixed data type columns
being compressed. Accordingly, for the compressed column
5, the bit string 00101(0x2*+0x2°+1x2°+0x2" +1x2°=5) is
used to represent 1ts length and the bit string 00000 would be
used to represent a NULL value.

As has been described, some fixed length columns are not
compressed since they do not have any redundancy (tinyint or
bit, for example), while other fixed length columns (int or
char for example) can be compressed to reduce redundancy. A
number of bits are used 1n a compressed offset table to indi-
cate the column’s length following its compression. Further,
variable length columns can be compressed 1n a similar man-
ner. In addition, the ofiset table utilized provides storage
savings since instead of using a set 2 bytes to indicate the
offset of the variable length column, several bits 1n an offset
bitmap indicate the column lengths after compression

Further, when access to a compressed row 1s sought, such
as through index or table scan, the row will be decompressed
and the decompressed row will be transterred to other mod-
ules that need this row 1n the database system. In so doing, the

10

15

20

25

30

35

40

45

50

55

60

65

10

row stays in uncompressed state in the memory unless 1t 1s
needed. Significant disk 10 savings are realized, since there
are more rows 1n one page. Log space savings are realized
also, since only the compressed iformation needs to be
stored 1n the log, as 1s well appreciated by those skilled 1n the
art.

In accordance with an embodiment of the present inven-
tion, data compression techniques address potential data
redundancy on a page boundary with minimization of the data
redundancy in columns 1n one or more rows on a given page.
Under page compression, common ‘byte’ patterns at the
beginning of all columns on the page are sought, where ‘byte’
patterns do not distinguish according to the column data type
but instead all columns are treated as a byte string. Based on
data redundancy found, a page dictionary 1s created and
included 1n the page right after the existing page header, as
shown 1n the page representation 800 of FIG. 8. Commonly,
a page dictionary 1s created by extracting single column
duplicates as dictionary entries and utilizing a symbol refer-
ence to the dictionary entry 1n the column data. In this manner,
the single column extraction process looks for the common
values 1n all the columns on that page.

The process begins by extracting all the columns that
exceed a predetermined length, such as 4 bytes, and are used
as a page dictionary entry. Preferably, two arrays are used to
indicate all of the extracted columns, e.g., BY TE*colptr|]
(column pointer) and unit 16 collen| | (column length). A
sorting of the extracted columns follows, such as using a
quick sort, where the pointers, rather than the original col-
umns, are exchanged for better performance. Through the
sorting, the columns indicated by the array colptr| | are sorted
on byte order, 1.¢., coll(aaa) appears ahead of col2(aab).

Next, an array ofiset|] 1s utilized to sort the column indi-
cated by the colptr[]| to indicate the length of the common
prefix byte string. For example, starting from the first column
indicated by the colptr[0], suppose colptr[O](aaaaa), colptr[1]
(aaaaa), colptr[2](aaaac), colptr[3](aaaad), colptr[4]
(abc) Accordingly, based on the common prefix byte
string data, the resulting ofiset| | values are offset[0]=3, oflset
[1]=5, offset[2]=4, oflset|3]|=4, oflset[4]=1. The values
this array are descending and generation of the array 1s ended
1f offset[1]<4.

A cost evaluation function 1s utilized to choose the optimal
dictionary value, taking mto account the row format of DOL
table. In the example case, “aaaaa” will become the page
dictionary entry. This process 1s repeated to generate all of the
page dictionary entries.

Once the page dictionary entries are generated, they are
reordered to compress the column as much as possible. For
example, suppose two page dictionary entries have been gen-
erated, entry[0](aaaa) and entry|1](aaaaaaaaaa). Because of
the byte order property of the colptr[], the entry[1] will be
generated after entry[0]. However, if a column col
(aaaaaaaaaaaaa) 1s the input of the compression function, then
it 1s preferred to compress 1t as much as possible, which would
result from use of entry[l]. Accordingly, the reordering
places entry[1] ahead of entry[0] in order to allow for more
space savings.

Based on these entries, the row 1n the page 1s compressed
where the redundant portion of the row has only one copy in
the page (becomes the page dictionary entry), and its old
position will be substituted by a symbol with much smaller
s1ize. One bit/column 1n the page dictionary chart suitably
indicates whether the corresponding column has the page
dictionary entry. If the specified column does have the page
dictionary information, the first byte of the specified column
1s the index of the page dictionary row. If the row length after

US 8,706,727 B2

11

page-dictionary-compression exceeds the original row
length, the original row 1s saved instead of the page-com-
pressed one.

By way of example, using the same example table data as
in FIG. 3, after the page dictionary compression, suppose the
col2(char(50)) has the page dictionary information, so that
the row format using the page dictionary results 1n the format
900 as shown 1n FIG. 9. As can be recognized, the row format

includes a row header, followed by a row length, followed by
a page dictionary chart, followed by fixed length columns,
then variable length columns, and ending with an offset table.
The first byte 1n col2 suitably indicates the page dictionary
index with one bit 1n the status of the row header used to
indicate whether the row has page dictionary information.
Using one bit 1n the page dictionary chart can indicate
whether the corresponding column has the page dictionary
information. If the row doesn’t have page dictionary infor-
mation, the row has the ordinary row format (FIG. 4).

As described, this extraction process based on single col-
umns has few steps to reduce the overhead caused by the page
dictionary compression of the row and to reduce the CPU cost
of the creation of the page dictionary.

In accordance with the present invention, compressionon a
page boundary 1s improved by extracting multiple column
duplicates as well. As described above, 1f the column’s length
1s short (1.e., does not exceed a predetermined threshold),
there will not be any page dictionary entry generated from 1t.
But in actual practice, there are often many duplicates 1n the
page from such a short column. By way of example the
tollowing provides a table from the TPCC (Transaction Pro-
cessing Performance Council C) benchmark.

create table order_ line (

ol _o_id int,
ol_d_id tinyint,
ol w_id smallint,
ol__number tinyint,
ol 1 1d 1nt,
ol__supply_ w__id smallint,
ol__delivery_ d datetime,
ol__quantity smallint,
ol__amount foat,
ol__dist _info char(24)
) lock datapages

20

FI1G. 10 1llustrates a standard row format 1000 for the table.
FIG. 11 illustrates sample data 1100 for this table. As shown,
in this example, there are many duplicates in the columns
ol_d_id, ol_w_id, ol_supply_w_id, and ol_quantity. These
columns have the same properties: their length 1s short and
they are fixed length columns. So, 1n the process of the single
column page dictionary generation, there will not be any
entries from these columns, because they are less than the
predetermined threshold for single page column extraction,
¢.g., 4 bytes. But, as can be seen from the example data, the
information in these columns 1s redundant. So, another page
compression method 1s introduced 1n an embodiment of the
present invention to compress the page further.

The multiple column compression 1s performed in con-
junction with the single column compression and simply
checks for duplicates 1n the same column in the page. If one
particular column has a large numbers of duplicates, the value
of the duplicate will become the entry of a page index. For
example, 11 1t 1s found that column 1 has 40% duplicates, and
column 2 has 50% duplicates, then there are about 20%
cross-column duplicates (0.4x0.5=20% duplicates).

10

15

20

25

30

35

40

45

50

55

60

65

12

By way of example, based on the sample table 1n FIG. 11,
the values are the same across the rows 1n each of columns
ol_d_id, ol_w_id, ol_supply_w_id and ol_quantity. The
lengths of these columns are all below the defined threshold.
Under the approach of the present invention, these values are
extracted out to format the page index row. The page index 1s
formed as one row with all the page index entries and prefer-
ably 1s placed behind the page dictionary row. FI1G. 12 shows
the page layout 1200 by using both page dictionary compres-
s1on and page mdex compression.

When considering a page for compression, 1 one row’s
corresponding columns have all the same values as the page
index row, one bit in the row status 1s used to indicate that this
row can be page-index compressed, and the corresponding
columns will not occupy any storage. For example, referring
again to the sample table 1100, if the values of the four
columns ol_d_1d, ol_w_id, ol_supply_w_id and ol_quantity
in one specified row are all the same with the page index row,
one status bit 1s set 1n the row header to indicate that this row
can be page-index compressed, and none of the contents of
the four columns are stored 1n this row. For such a row, the row
format would be changed to the row format 1300 shown 1n
FIG. 13. As can be seen from comparing the row formats 1n
FIG. 10 and FIG. 13, use of the page index row can provide an
advantageous compression in the row format. Also, with the
generation of the page index row occurring in the generation
of page dictionary, there 1s no ntroduction of any new con-
tention or any overhead, making 1t efficient to 1mplement.

While the embodiments describe compression on a row
basis and a page basis separately, combining the techniques
on a given page can achieve a high compression rate. FI1G. 14
illustrates a resultant row format 1400 when applying both
techniques 1n accordance with an embodiment of the mnven-
tion. When to apply both techniques 1s dependent upon the
needs of a particular system and indicated upon table cre-
ation, as 1s well appreciated by those skilled 1n the art. It can
be recognized that when most operations on a table are
SELECT operations, the combined, comprehensive compres-
sion realizes even better gain 1n space savings along with
performance by reducing I/O and by reducing the metadata
resources used to manage the data. In addition, the compres-
s10n techniques of the present invention, whether used sepa-
rately or together, can improve distributed database (or clus-
ters) performance by reducing network data traific. Also,
memory utilization 1s improved by a reduced data footprint
along with a reduction in the amount of data to log.

While various embodiments of the present invention have
been described above, 1t should be understood that they have
been presented by way of example only, and not limitation. It
will be understood by those skilled 1n the relevant art(s) that
various changes 1n form and details may be made therein
without departing from the spirit and scope of the invention as
defined 1n the appended claims. It should be understood that
the invention 1s not limited to these examples. The invention
1s applicable to any elements operating as described herein.
Accordingly, the breadth and scope of the present invention
should not be limited by any of the above-described exem-
plary embodiments, but should be defined only 1n accordance
with the following claims and their equivalents.

What 1s claimed 1s:

1. A method for reducing data storage requirements 1n a
database system, comprising:

identitying, by a computing device, a data candidate of

column data specified to be of a fixed length data type
property for compression 1n a row ol data having an
uncompressed row format of column positioning based
on:

US 8,706,727 B2

13

a predetermined threshold configured to i1dentify com-
pressible column data of fixed length data types
according to data type properties; and

a boundary of compression;

providing, by the computing device, an offset bitmap for
the 1dentified data candidate within the row, according to
the boundary of compression, wherein the offset bitmap
indicates lengths of compressed columns of the row
following compression and variable length columns of
the row; and

storing, by a computing device, the row containing the
offset bitmap for the i1dentified data candidate and the
identified data candidate as compressed data with a com-
pressed row format of column positioning within a data-
base system, wherein the compressed row format of the
row 1s repositioned from the uncompressed row format
based on the 1dentified data candidate.

2. The method of claim 1, wherein the data candidate

identified for compression comprise fixed length columns
having lengths that do not fall below the predetermined
threshold 1n a row of data for compression based on a row
boundary.

3. The method of claim 2, wherein the ofiset bitmap
includes at least one bit indicating a length of the identified
data candidate following compression.

4. The method of claim 1, wherein the data candidate
identified for compression comprise redundant byte string
data 1n a page of data for compression based on a page
boundary.

5. The method of claim 4, wherein the redundant byte
string data comprises matching data across columns having
lengths that do not exceed the predetermined threshold.

6. The method of claim 5, wherein the at least one bit
includes at least one bit 1n a row status to indicate compres-
sion of the 1dentified data candidate.

7. The method of claim 4, further comprising extracting the
redundant byte string data into a page imndex.

8. The method of claim 7, wherein the page index supple-
ments a page dictionary for the page of data.

9. The method of claim 1, wherein the boundary of com-
pression comprises a row boundary and a page boundary.

10. The method of claim 1, wherein the predetermined
threshold comprises a column length.

11. The method of claim 1, wherein the predetermined
threshold sets opposing limits depending upon the boundary
of compression.

12. The method of claim 1, wherein the at least one bit
provided for the 1dentified data candidate indicates length of
the 1dentified data candidate after compression.

13. The method of claim 1 further comprising:

receiving, from a requesting module, a request to access the

at least one row;

decompressing the at least one row based on the request;

and

transferring, to the requesting module, the decompressed at

least one row based on the request, wherein the at least
one row remains 1n a decompressed state.

14. The method of claim 1, wherein the offset bitmap
includes additional bits indicating lengths of variable length
columns of the at least one row following compression.

15. A system configured to reduce data storage require-
ments 1 a database system, comprising:

one or more processors; and

a data management module configured to:

identify, using the one or more processors, a data candi-
date of column data specified to be of a fixed length

5

10

15

20

25

30

35

40

45

50

55

60

65

14

data type property for compression in a row of data

having an uncompressed row format of column posi-

tioming based on:

a predetermined threshold configured to identify
compressible column data of fixed length data
types according to data type properties; and

a boundary of compression;

provide, using the one or more processors, an offset
bitmap for the identified data candidate within the
row, according to the boundary of compression,
wherein the oflset bitmap indicates lengths of com-
pressed columns of the row following compression
and variable length columns of the row; and
store, using the one or more processors, the row containing
the offset bitmap for the 1dentified data candidate and the
identified data candidate as compressed data with a com-
pressed row format of column positioning within a data-
base system, wherein the compressed row format of the

row 1s repositioned from the uncompressed row format

based on the 1dentified data candidate.

16. The system of claim 15, wherein the data candidate
identified for compression comprise fixed length columns
having lengths that do not fall below the predetermined
threshold 1n a row of data for compression based on a row
boundary.

17. The system of claim 16, wherein the offset bitmap
includes at least one bit indicating a length of the identified
data candidate following compression.

18. The system of claim 15, wherein the data candidate
identified for compression comprise redundant byte string
data 1n a page of data for compression based on a page
boundary.

19. The system of claim 18, wherein the redundant byte
string data comprises matching data across columns having
lengths that do not exceed the predetermined threshold.

20. The system of claim 19, wherein the at least one bit
includes at least one bit 1n a row status to indicate compres-
s1on of the 1dentified data candidate.

21. The system of claim 15, wherein the predetermined
threshold comprises a column length.

22. The system of claim 15, wherein the predetermined
threshold sets opposing limits depending upon the boundary
ol compression.

23. A computer-readable storage device having instruc-
tions stored thereon that when executed by a processor,
causes the processor to perform operations comprising;:

identifying a data candidate of column data specified to be

of a fixed length data type property for compressionin a

row of data having an uncompressed row format of

column positioning based on:

a predetermined threshold configured to i1dentily com-
pressible column data of fixed length data types
according to data type properties, and a boundary of
compression;

providing an oifset bitmap for the identified data candidate

within the row, according to the boundary of compres-

sion, wherein the offset bitmap indicates lengths of com-
pressed columns of the row following compression and
variable length columns of the row; and

storing the row contaiming the offset bitmap for the identi-

fied data candidate and the identified data candidate as

compressed data with a compressed row format of col-
umn positioning within a database system, wherein the
compressed row format of the row 1s repositioned from
the uncompressed row format based on the i1dentified

data candidate.

US 8,706,727 B2

15

24. The storage device of claim 23, wherein the data can-
didate 1dentified for compression comprise fixed length col-
umns having lengths that do not fall below the predetermined
threshold in a row of data for compression based on a row
boundary.

25. The storage device of claim 23, wherein the offset
bitmap includes at least one bit indicating a length of the
identified data candidate following compression.

26. The storage device of claim 23, wherein the redundant
byte string data comprises matching data across columns
having lengths that do not exceed the predetermined thresh-
old.

27. The storage device of claim 26, further comprising
extracting the redundant byte string data into a page index.

28. The storage device of claim 27, wherein the page index
supplements a page dictionary for the page of data.

29. The storage device of claim 23, wherein the at least one
bit imncludes at least one bit 1n a row status to indicate com-
pression of the identified data candidate.

30. The storage device of claim 23, wherein the boundary
of compression comprises a row boundary and a page bound-
ary.

31. The storage device of claim 23, wherein the predeter-
mined threshold comprises a column length.

32. The storage device of claim 23, wherein the predeter-
mined threshold sets opposing limits depending upon the
boundary of compression.

¥ H H ¥ ¥

10

15

20

25

16

	Front Page
	Drawings
	Specification
	Claims

