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(57) ABSTRACT

A first computing device 1s programmed to perform opera-
tions (1) to collect parameter data for use by a remote function,
and (11) to pass information, including the parameter data, to
a second computing device. The second computing device 1s
programmed to perform operations (1) to build a stack based
on the parameter data, (11) to use the mnformation to locate
code for the function on the second computing device, (111) to
execute the code for the function on the second computing
device, where the function uses the parameter data on the
stack, (1v) to obtain output values from execution of the code
for the function, and (v) to pass parameter data, including the
output values, to the first computing device.
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IMPLEMENTING REMOTE PROCEDURE
CALLS

TECHNICAL FIELD

This disclosure relates generally to implementing remote
procedure calls.

BACKGROUND

Automatic test equipment (ATE) plays a role 1n the manu-
facture of electronics, such as semiconductor devices and
circuit board assemblies. Manufacturers generally use auto-
matic test equipment, or “test mstruments”, to verily the
operation of devices during the manufacturing process. Such
devices are referred to as a “device under test” (DUT) or a
“unit under test” (UUT). Early detection of faults eliminates
costs that would otherwise be incurred by processing defec-
tive devices, and thus reduces the overall costs of manufac-
turing. Manufacturers also use ATE to grade various specifi-
cations. Devices can be tested and binned according to
different levels of performance in areas, such as speed.
Devices can be labeled and sold according to their actual
levels of performance.

SUMMARY

Described herein are example systems for implementing,
remote procedure calls. An example of such a system 1s a test
system that includes a first computing device programmed to
execute a test routine, where the test routine 1s written to call
a remote function; and a second computing device pro-
grammed to execute the remote function. The first computing
device 1s programmed to perform operations (1) to collect
parameter data for use by the remote function, and (11) to pass
information, including the parameter data, to the second com-
puting device. The second computing device 1s programmed
to perform operations (1) to build a stack based on the param-
cter data, (11) to use the mformation to locate code for the
function on the second computing device, (111) to execute the
code for the function on the second computing device, where
the function uses the parameter data on the stack, (1v) to
obtain output values from execution of the code for the tunc-
tion, and (v) to pass parameter data, including the output
values, to the first computing device. At least some of the
operations performed by the first computing device and the
second computing device are implemented using a program-
ming language that does not support type mtrospection. The
example test system may include one or more of the following
features, either alone or in combination.

Passing the information from the first computing device
and passing the parameter data from the second computing
device may be part of a marshaling convention. The first
computing device and the second computing device may be
programmed to recreate the marshaling convention for sub-
sequent calls to the remote function from the first computing
device.

On the second computing device, the following operations
may be implemented using a first computing language: (1) to
build a stack based on the parameter data, and (111) to execute
the code for the function on the second computing device. On
the second computing device, the following operations may
be programmed using a second computing language: (1v) to
obtain output values from execution of the code for the func-
tion, and (v) to pass parameter data, including the output
values, to the first computing device. The first computing,
language may be Assembly language and the second comput-
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2

ing language may be the C computing language. In this
example implementation, the second computing language
does not support type introspection.

The information may comprise a module i1dentifier for
identifving the second communication device and a function
identifier for 1dentifying the remote function. The module
identifier and the function identifier may be usable to obtain a
physical address in which the code for the remote function 1s
located. Using the information to locate executable code for
the function on the second computing device may comprise
resolving the physical address using the module identifier and
the function 1dentifier, and retrieving the executable code for
the function.

The first computing device may be programmed to write
data to registers on the second computing device. The second
computing device may be programmed to identily the data in
the registers and to react to the data in the registers by locating
the code for the function on the second computing device and
by executing the code. The first computing device may be
programmed to receive the parameter data, to 1dentity loca-
tions where to store return values in the parameter data, and to
store the return values 1n the locations.

The system may further comprise at least one PCI bus on a
path between the first computing device and the second com-
puting device.

Collecting the parameter data may comprise identifying, in
a parameter list, one or more parameter types, one or more
corresponding parameter values, and an end-of-list indicator.
The first computing device may be a client device and the
second computing device may be a server device.

Two or more of the features described in this disclosure,
including this summary section, may be combined to form
embodiments not specifically described herein.

The systems and techniques described herein, or portions
thereof, may be implemented as a computer program product
that includes instructions that are stored on one or more
non-transitory machine-readable storage media, and that are
executable on one or more processing devices. The systems
and techniques described herein, or portions thereof, may be
implemented as an apparatus, method, or electronic system
that may include one or more processing devices and memory
to store executable istructions to implement the stated func-
tions.

The details of one or more implementations are set forth 1n
the accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the

description and drawings, and from the claims.

DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an example block diagram of a test instrument.

FIG. 2 1s a flowchart of an example process that may be
performed by the test instrument of FIG. 1 for implementing
remote procedure calls.

FIG. 3 1s an example block diagram of software on a client
and server for implementing remote procedure calls.

FIG. 4 1s a block diagram of an example test system that
may include the test instrument of FIG. 1, or portions thereof.

FIG. 5 1s a block diagram of a portion of the test system of

FIG. 4.
[.ike reterence numerals indicate like elements.

DETAILED DESCRIPTION

In an example implementation, a test mnstrument/system
includes computers (e.g., clients) and embedded processors
(e.g., servers), either of which can execute test application
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soltware (e.g., a test routine). In such a test istrument, a
remote procedure call (RPC) 1s a function call imtiated from
a client that 1s executed on a server. As described 1n wikipe-
dia.org, “[1]Jn computer science, [an RP(] 1s an inter-process
communication that allows a computer program to cause a
subroutine or procedure to execute 1n another address space
(commonly on another computer on a shared network) with-
out the programmer explicitly coding the details for this
remote interaction. That 1s, the programmer writes essentially
the same [source] code whether the subroutine 1s local to the
executing program, or remote.” In this regard, source code 1s
usually written by humans 1n languages like C and Assembly.
Source code can also be generated by tools, such as the source
code generation tool described herein. A compiler translates
source code 1nto executable code. Executable code1s read and
executed by a computer’s CPU.

Operations to implement an RPC may include, but are not
limited to: (1) collecting RPC parameter values on the client,
(1) conveying the RPC parameter values from client to server,
(1) executing the remote function on the server, (1v) collect-
ing output parameter values and return values on the server,
and (v) conveying the output parameter values and return
value from server to client.

In this example, 1n the collection and conveying operations
(collectively referred to herein as “marshaling”), RPC logic
(e.g., the hardware and/or software on the test instrument
used to implement RPCs) 1s told, or learns about, the number
and types of output parameters and return values. The test
system described herein includes a customer-facing applica-
tion programming interface (API) to the RPC logic to obtain
the marshaling information for an RPC.

There are two common approaches to RPC—one based on
type mtrospection and one based on source code generation.
Generally, type introspection 1s the ability of a program to
determine the type or properties of a function at runtime. In
this context, the function 1s a remote function. In some
examples, a remote function can be a function that 1s not
executing on the same machine or network as the program
from which 1t 1s called. In other examples, a remote function
may execute on the same machine or network as the program
from which 1t 1s called, but the remote function 1s not fully
integrated with the calling program and, therefore, 1s handled
according to the processes described herein.

When an application developer programs 1n a computing,
language that supports type introspection (e.g., C#-“C
sharp”), generic RPC logic can use type introspection to
automatically learn about a function’s parameter and return
type information. Armed with this information, the RPClogic
can then automatically gather the values to be conveyed to the
other device (e.g., to a server). Typical implementations of
this type automatically handle the five operations outlined
above. Notably, this includes the actual call to the remote
function. This may require the RPC logic to dynamically
construct a call to the remote function on the server it the
server-side RPC logic was compiled separately from the tar-
get function.

By contrast, when an application developer programs 1n a
computing language that does not support type introspection
(e.g., C), non-custom RPC solutions heretofore have utilized
some form of source code generation. At development-time,
the application developer supplies a description of the remote
functions’ type information to a source code generation tool.
That tool generates two sets of source code—one that the
application developer compiles into their client-side program
and one to be compiled 1nto their server-side program. These
two sets of generated source code implement logic that cor-
responds to operations (1), (111) and (1v) above (namely, (1)
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collecting 1nput parameter values on the client, (111) executing
the remote function on the server, and (1v) collecting output
parameter values and return values on the server). The appli-
cation developer connects these two sets of generated code to
other source code that addresses operations (11) and (v) above
(namely, (1) conveying the input parameter values from client
to server, and (v) conveying the output parameter values and
return value from server to client).

In some examples, the processes described herein allow an
application developer to program a test routine 1n a language
that does not support type mtrospection (e.g., C), yet employ
RPCs 1n the test routine without requiring source code gen-
eration, such as that described above, and its associated
source code generation tool. In an example, the test routine
constructs a description of marshaling information at runtime
and passes that description to the test instrument RPC logic on
the client. The RPC logic implementation 1s part of an archi-
tecture comprised of complementary software modules resi-
dent on the client and the server that handles communication
between the client and the server. Accordingly, the processes
allow executable code 1n the test instrument that implements
the RPC logic noted above (e.g., the mstrument’s runtime
software) to take this marshaling information and to 1mple-
ment RPC operations automatically (e.g., without subsequent
manual or external programmatic intervention).

In an example implementation a test instrument that imple-
ments the foregoing processes includes multiple computing
devices (e.g., clients and servers, as described above). Each of
the computing devices may be a computer, an embedded
processing device, programmable logic (e.g., a field program-
mable gate array—FPGA), an application-specific integrated
circuit (ASIC), or any combination thereof. In an example
implementation, a first of the computing devices 1s pro-
grammed to execute a test routine, e.g., to testa UUT. The test
routine may be run, e.g., on a computer and call a remote
function run by a computing device embedded 1n a test instru-
ment core (as described below, a test instrument may contain
multiple cores). This calling of a remote function by the test
routine 1s a type of RPC. In this example, the test routine may
be provided by a third party, such as a customer, who does not
have control over executable code on the test instrument (e.g.,
the instrument’s runtime software).

In this example, the processing device embedded 1n the test
instrument core 1s an example of a server, which 1s pro-
grammed to execute the remote function 1n response to an
RPC from a client (e.g., the first computing device). In per-
forming the RPC, the client 1s programmed to (1) to collect
parameter data for use by the remote function, and (11) to pass
information, including the parameter data, to the server (a
second computing device). For example, the parameter data
may include values and types of parameters that are used to
execute the remote function, and the information may include
identifiers that may be used by the server to resolve the
physical address of the remote function on the server or
clsewhere.

In this example, the sever 1s programmed (1) to build a stack
based on the parameter data, (11) to use the information from
the client to locate executable code for the function on the
second computing device, (111) to execute the code for the
function on the second computing device, where the function
uses the parameter data on the stack during execution, (1v) to
obtain output values from execution of the function, (v) to
incorporate the output values into the parameter data, and (v1)
to pass parameter data, including the output values, back to
the client (first computing device). The client recerves the
parameter data, which may include return values, and stores
the return values at specified locations, e.g., on the client. The
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test routine may retrieve parameter data from the remote
function from these specified locations.

In the foregoing example, as noted above, the client and the
server are each programmed with complementary software
modules (e.g., computer programs or portions thereot). These
modules are configured to implement a marshaling conven-
tion, by which parameters, values, and other information can
be conveyed between computing devices. In this context,
“marshaling™ 1s a term that refers to passing data 1n a generic
sense, including from one machine to another, as 1s done 1n an
RPC. The test routine, 1n the above example, 1s not typically
aware ol the marshaling convention, nor need 1t be provi-
sioned by the same entity that programmed the computing
devices. For example, the computing devices may be
equipped with computer programs provided by the test instru-
ment manufacturer, whereas the test routine may be created
by, and provided by, a customer that 1s using the test instru-
ment to perform testing operations on 1ts UUTs. The RPC
process described herein may be advantageous 1n scenarios
such as this, where the test routine and test instrument pro-
grams are not fully integrated, thereby preventing the test
routine from calling a remote function directly.

The RPC processes described heremn, and variations
thereol, may be implemented on any appropriate system, with
any appropriate computing devices and computing equip-
ment. Examples elements of such a system (here, a test instru-
ment) are described below with respect to FIGS. 1 to 5. Other

systems, however, may be used to implement the RPC pro-
cesses described herein.

FI1G. 11s a block diagram of an example implementation of
a test mstrument 100 (also referred to as ATE) that may be
used to implement the RPC processes described herein. In
FIG. 1, test instrument 100 1ncludes a processing device 101.

In this example, processing device 101 controls various
features of test instrument 100, such as communication with
an external network 102, which may be a PCI (Peripheral
Component Interconnect) Express network. In addition, pro-
cessing device 101 1s programmable to perform various test-
ing operations, as described below. Processing device 101
may be a microprocessor, microcontroller, programmable
logic, or other appropriate circuitry for performing process-
ing operations. In some examples, processing device 101 may
include one or more processing devices, such as one or more
microprocessors or a single multi-core microprocessor (not
shown). Processing device 101 may also include memory
(not shown) that stores executable code to control test instru-
ment communication with the external environment, and to
perform various “housekeeping” functions to control opera-
tion of test instrument 100. For example, processing device
may be responsible for exchanging communications between
the test mnstrument and one or more external entities over an
output interface, such as a network interface, scanning the test
instrument for malware, memory management, power con-
trol, and other functions that are not specifically related to
testing a device.

Processing device 101 1s programmable to perform test
operations on a UUT (not shown) interfaced to test instrument
100, e.g., via network 102. The test operations may include,
but are not limited to, testing bus speed, reaction time, or any
other appropriate operational aspects of the UUT. In general,
the testing that 1s performed 1s dependent upon the type of
device being tested, and the information sought during test-
ing. In this regard, one or more test programs (which imple-
ment corresponding test routines) may be loaded into
memory on processing device 101, and executed by process-
ing device 101 1 order to perform testing.

10

15

20

25

30

35

40

45

50

55

60

65

6

The test programs may include one or more functions for
performing testing operations directly on an interfaced UUT.
These functions may be accessible through an RPC inmitiated,
¢.g., by system processing device 110 (described below) or
another computing device, such as a personal computer (not
shown), communicatively connected to the test instrument,
¢.g., through external network 102 or through another com-
munications medium. While performing testing, processing
device 101 may continue to perform other functions, includ-
ing those described elsewhere herein, e.g., to keep test instru-
ment 100 operational. Consequently, the test latency (e.g., the
amount of time between the start of a test and receipt of test
results) can be maintained. In different systems, numerous
factors may have an effect on test latency, such as the speed of
the processing device(s), the amount of memory available to
run the test programs, and so forth.

In the examples described herein, processing device 101 1s
part of amulti-tiered processing system. For example, the first
tier may include a system processing device 110. System
processing device 110 may 1include a microprocessor, micro-
controller, programmable logic, or other appropriate circuitry
for performing processing operations. In some examples,
system processing device 110 may include one or more pro-
cessing devices, such as one or more miCroprocessors or a
single multi-core microprocessor (not shown). System Pro-
cessing device 110 may also include memory (not shown)
that stores executable code that 1s executed to perform func-
tions, such as those described herein.

In this regard, system processing device 110 may be con-
figured to perform testing operations, such as those described
herein, on individual UUTs. System processing device 110
may also be configured to coordinate processing among vari-
ous test mstruments, including test mstrument 100. System
processing device 110 may be separate from, or incorporated
into, a test mstrument. In FIG. 1, system processing device
110 1s part of computer 112 (e.g., a personal computer),
although that need not be the case in other system implemen-
tations. In the example described herein, system processing
device 110 1s the client and 1s programmed to (1) to collect
parameter data for use by a remote function, and (11) to pass
information, including the parameter data, to processing
device 101.

A second tier in the multi-tiered system may include
embedded processing devices, such as processing device 101.
Such processing devices are embedded 1n the sense that they
are incorporated into cores of test instrument 100, and may be
dedicated to performing test functions (e.g., to testing UUTs
interfaced to test mstrument 100). Generally, a core may be
hardware (e.g., a test board) configured to perform testing
relatively independently on a UUT or set of UUTSs. So, 1n an
example, one core can test a first set of UUT's, a second core
can test a second set of UUTSs, and so forth. A computing
device, such as system processor 110 may coordinate testing
and other operations among various cores.

In this regard, FIG. 1 shows only one core 103 of the test
instrument; however multiple cores 1dentical to core 103 may
be included 1n the same test instrument. Embedded process-
ing devices need not (but may) be responsible for test instru-
ment operations. In some implementations, the embedded
processing devices may be programmed to perform one or
more such operations, or other operations not specifically
directed to testing UUTSs. In the examples described herein,
embedded processing device 101 1s programmed to execute a
remote function 1n response to an RPC (e.g., from system
processing device 110 or from another computing device). In
this example, embedded processing device 101 acts as a
server 1n the RPC process, and 1s programmed to (1) to build
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a stack based on parameter data received as part of the RPC,
(1) to use information received as part of the RPC to locate
code for the function, (1) to execute the code for the function,
where the function uses the parameter data on the stack during
execution to produce output values, (1v) to obtain the output
values from execution of the code for function, (v) to 1mcor-
porate the output values into the parameter data, and (vi) to
pass parameter data, including the output values, to the client,
e.g., system processing device 110.

The third tier may include programmable logic, e.g., field-
programmable gate arrays (FPGAs) (not shown), each of
which may be configured to act as an interface between a
UUT, or portion thereot (e.g., a UUT bus) and test instrument
100, and to facilitate testing. In some implementations, the
FPGASs, or other logic, may also be programmed to perform
test operations on UUTs. In some implementations, the
FPGAs may act as a server in the RPC process. Likewise, 1n
some 1implementations, an embedded processor may act as a
client.

In some implementations, testing may be performed by
different tiers of the architecture concurrently or 1n concert
(e.g., coordinated among the tiers). For example, programs
run on processing device 101, which may or may not be part
of distinct test programs, may service RPCs (e.g., from sys-
tem processing device 110) 1n the manner described herein. In
another example, two or more of system processing device
110, embedded processing devices 101, and FPGA(s) (not
shown) may act in coordination, at the same time or within the
same test sequence, to perform one or more test operations on
a single UUT or on multiple UUTs. To effect such coordina-
tion, appropriate programming 1s loaded into processing
devices 101 and/or 110, and/or appropriate images are loaded
into the FPGA(s). By way of example, a first test may be
performed on a UUT by system processing device 110; a
second test may be performed on the UUT by processing
device 101; and a third test may be performed on the UUT by
an FPGA (not shown). The first, second and third tests may be
separate tests, or part of the same test sequence. Data from the
first, second and third tests may be combined, e.g., 1n system
processing device 110, and processed to obtain the appropri-
ate test results. These test results may be sent to an external
computer for analysis and reporting.

In some implementations, testing may be performed exclu-
stvely by one tier or another of the architecture. For example,
processing device 101 may be programmed to run one or
more test programs to test a UUT, while devices on other tiers
of the architecture do not perform UUT tests. System pro-
cessing device 110 may be programmed to run one or more
test programs to test a UUT, while devices on other tiers of the
architecture do not perform UUT tests. FPGAs may be con-
figured to run one or more tests on the device, while devices
on other tiers of the architecture do not perform UUT tests.
Devices that are not performing tests are not necessarily
dormant during this time. For example, system processing
device 110 may continue to coordinate operations among
various cores of the test instrument and/or other test instru-
ment electronics; the FPGAs may continue to route data
to/from the UUT (1.e., to act as intertaces to the UUT); and the
embedded processing devices may continue be active 1n coor-
dination or other communication (e.g., transmitting test
results from the FPGASs to system processing device 110).

In FIG. 1, network 102 may have a PCI Express bus back-
bone 115, although other bus architectures may be used.
Generally, a PCI Express bus 1s a high-speed serial intercon-
nect bus that uses shared address/data lines. PCI Express 1s
based on point-to-point topology, with separate serial links
connecting devices to aroot complex (e.g., processing device
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101 for core 103). PCI Express communication 1s encapsu-
lated 1n packets. Conventionally, in the PCI Express protocol,
message signal interrupts (MSI) are sent from individual
hardware elements to the root complex (e.g., processing
device 101 1n core 103).

In the example system described herein, embedded pro-
cessing device 101 may be configured to receive interrupts
(e.g., MSIs) from multiple various hardware devices on test
istrument 100, including system processing device 101.

Test instrument 100 also includes electronic circuitry, e.g.,
programmable logic such as FPGA 120, that acts as an aggre-
gator to aggregate (e.g., combine) and output information
about interrupts. FPGA 120 1s configured, among other
things, to receive mterrupts bound for a processing device
(e.g., processing device 101), where the interrupts are
received from one or more devices that are configured to
communicate with the processing device, to generate data
containing information corresponding to the interrupts, and
to send the data to the processing device. In some implemen-
tations, FPGA 120 1s programmed to implement a data gen-
erator 121 to perform the operations of generating data con-
taining 1nformation corresponding to the interrupts, and
sending the data to the processing device.

FIG. 2 15 a tlow chart showing an example process 200 for
implementing RPCs 1n the manner described above. Process
200 may be performed, e.g., on the test system shown 1n
FIGS. 1 and 3 to 5 or an any appropriate hardware. In this
example, test system includes a client side 200A, which may
be implemented at least 1n part by system processing device
110, and a server side 2008, which may be implemented at
least 1 part by embedded processing device 101.

As noted above, the RPC logic implementation 1s part of a
soltware architecture comprised ol complementary software
modules resident on the client and the server that handle
communication between the client and the server. This 1s
depicted, conceptually, 1n FIG. 3. Specifically, FIG. 3 shows
a test routine 301 running on client side 302. Test routine 301
may be run, e.g., by a third party, who 1s not a purveyor of the
test system. Client side 302 also includes a software module
303, which 1s configured to communicate with a counterpart
software module 305 on server side 306. Software modules
303 and 305 implement the client side and server side opera-
tions, respectively, 1n this example implementation. Server
side 306 also includes a remote function 307. In example
process 200, remote function 307 1s called by test routine 301
using an RCP. Software modules 303 and 305 perform the
processes described herein to enable the RPC. In an example
implementation, software modules 303 and 305 are written
wholly or partly 1n a programming language that does not
support type introspection. Certain functionality of software
module 305 1s written 1n Assembly language; however, this
need not be the case 1n all implementations. That functional-

ity 1s 1dentified below.
Referring back to FIG. 2, module 303 receives (201) an

RPC from test routine 301. Module 303 collects (202) param-
cter data from the call. In an implementation, module 303
identifies the types and values of the parameters 1n the RPC
call from test routine 301. The type and value of a parameter
1s known as the parameter’s prototype. For example, the
parameter types may be real or integer, and may vary in terms
of numbers of bits, e.g., a 32-bit integer, a 16-bit real number,
and so forth. Module 303 examines a parameter list in the
RPC call to identity an end-of-list indicator (e.g., a “null”
variable). The end-of-list indicator identifies the point where
the parameter list for the current RPC ends. Module 303
determines the types and numbers of parameters by parsing
data 1n the RPC call that precedes the end-of-list indicator.
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The parameters may include return parameters, which are to
contain values returned from the remote function following
its execution.

Module 303 sends (203) the collected parameters, along,
with other information, from the client to the server. The other
information may include a function identifier (ID) and a mod-
ule ID. The module ID identifies the soitware module con-
taining the called function, and the function ID identifies the
function 1tself. This mnformation 1s used by the server, as
described below, to 1dentily the physical address of execut-
able code for the called remote function on the server.

Module 305 recerves (204) the information from module
303, including the collected parameters, the module 1D and
the function ID. This information 1s stored in a location in
memory on server side 202. Module 303 waits for an 1nstruc-
tion to implement execution of the RPC. In this implementa-
tion, module 303 writes (205) to one or more registers (not
shown) on the server. Module 305 monitors the content of the
register(s) and, upon 1dentitying appropriate data in the reg-
ister(s), begins the process for executing the RPC. When that
data1s present, module 305 wakes (206 ) and determines (207)
the target address of the function that 1s the subject of the RPC
from test routine 201. In this implementation, module 3035
determines the physical address of the remote function using
the module ID and the tunction I1D.

Module 305 builds (208) a parameter stack using the col-
lected parameters. The parameter stack 1s a data structure
from which the remote function retrieves the parameters and
their values during 1ts execution. Module 305 finds the code
for the remote function at the target address, and executes that
code (209). In this implementation, modules 303 and 303 are
implemented using the C programming language. However,
operations to build (208) the parameter stack and executing
(209) the code for the remote function are implemented 1n
Assembly language. In some implementations, only these
modules are written 1n Assembly language. In other imple-
mentations, other modules may also be written 1n Assembly
language. Other programming languages, including those
that do not support type introspection, may be used to imple-
ment modules 303 and 305.

Following execution, remote function 307 outputs param-
eters and corresponding values. The parameters and output
values may be output data produced as a result of function
execution. Module 305 collects (210) this parameter infor-
mation, and sends (211) that parameter information to mod-
ule 303. Module 303 receives (212) the parameter informa-
tion (e.g., the parameters and their values) and stores (213)
that mnformation at appropriate locations 1n memory. Test
routine 301 may retrieve the information by reading from
those locations.

The attached Appendix shows an example of an “RPC_ex-
ecute” function, and the information contained therein that 1s
passed between modules 303 and 305. The RPC_execute1s an
example of a function used 1n 1mplementing the RPC pro-
cesses described herein.

Referring now to FIG. 4, that figure shows an example of a
test system on which the architecture of FIG. 1 may be imple-
mented. Specifically, FIG. 4 shows an example test system
400 for testing a UUT 401. The test system of FIG. 4 may
include test instrument 100 or portion(s) thereof. Test system
400 1ncludes a tester 402, which may have the multi-tiered
architecture of FIG. 1. To interact with tester 402, system 400
includes a computer system 405 that interfaces with tester 402
over a network connection 406. As noted below, computer
system 4035 may incorporate the functionality of computer
112 (FIG. 1) or 1t may be an external computer that interacts
with computer 112 on the test mstrument. Typically, com-
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puter system 405 sends commands to tester 402 to mitiate
execution of routines and programs for testing UUT 401.
Such executing test programs may imtiate the generation and
transmission of test signals to the UUT 401 and collect
responses from the UUT. Various types of UUTs may be
tested by system 400. For example, UUTs may be avionics,
radar, weaponry, sesmiconductor devices, and so forth.

To provide test signals and collect responses from the UUT,
tester 402 1s connected, via an appropriate FPGA interface, to
one or more connector pins that provide an interface for the
internal circuitry of UUT 401. For illustrative purposes, 1n
this example, device tester 402 1s connected to a connector pin
of UUT 401 via a hardwire connection to deliver test signals
(to the internal circuitry of UUT 401). Tester 402 also senses
signals at UUT 401 1n response to the test signals provided by
device tester 402. For example, a voltage signal or a current
signal may be sensed at a UUT pin 1n response to a test signal.
Such single port tests may also be performed on other pins
included 1n UUT 401. For example, tester 402 may provide
test signals to other pins and collect associated signals
reflected back over conductors (that deliver the provided sig-
nals). In some examples, by collecting the reflected signals,
the input impedance of the pins may be characterized along
with other single port testing quantities. In other test sce-
narios, a digital signal may be sent to UUT 401 {for storage on
UUT 401. Once stored, UUT 401 may be accessed to retrieve
and send the stored digital value to tester 402. The retrieved
digital value may then be identified to determine if the proper
value was stored on UUT 401.

Along with performing one-port measurements, a two-port
testmay also be performed by device tester 402. For example,
a test signal may be injected to a pin on UUT 401 and a
response signal may be collected from one or more other pins
of UUT 401. This response signal 1s provided to device tester
402 to determine quantities, such as gain response, phase
response, and other throughput measurement quantities.

Referring also to FIG. 3, to send and collect test signals
from multiple connector pins of a UUT (or multiple UUTSs),
device tester 402 includes an interface card 501 that can
communicate with numerous pins. For example, interface
card 501 includes the one or more cores (€.g., root complexes)
described herein, which may be used to transmit test signals
to the UUT and to collect corresponding responses. Each
communication link to a pin on the UUT may constitute a
channel and, by providing test signals to a large number of
channels, testing time may be reduced since multiple tests
may be performed simultaneously. Along with having many
channels on an interface card, by including multiple interface
cards 1n tester 402, the overall number of channels increases,
thereby further reducing testing time. In this example, two
additional interface cards 502 and 503 are shown to demon-
strate that multiple interface cards may populate tester 402.

Each interface card may include dedicated integrated cir-
cuit circuitry, including, e.g., an FGPA and embedded pro-
cessing device (as described, e.g., FIG. 1), for performing
particular test functions. This circuitry may implement, e.g. a
pin electronics (PE) stage for performing PE tests, and a
parametric measurement unit (PMU) stage for performing
tests. Typically PMU testing involves providing a (program-
mable) DC voltage or current signal to the UUT to determine
such quantities as input and output impedance, current leak-
age, and other types ol DC performance characterizations. PE
testing involves sending DC or AC test signals, or wavelorms,
to a UUT (e.g., UUT 401) and collecting responses to further
characterize the performance of the UUT. For example, the
PE stage may transmit (to the UUT) AC test signals that
represent a vector of binary values for storage on the UUT.
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Once these binary values have been stored, the UUT may be
accessed by tester 402 to determine 1f the correct binary
values have been stored.

In some arrangements, an interface device may be used to
connect one or more conductors from tester 402 to the UUT.
For example, the UUT may connect to an Interface Test
Adapter (I'TA) which interfaces with an Interface Connection
Adapter (ICA) that connects with the tester. The UUT (e.g.,
UUT 401) may be mounted onto a device interface board
(DIB) for providing access to each UUT pin. In such an
arrangement, a UUT conductor may be connected to the DIB
for placing test signals on the appropriate pin(s) of the UUT.
Additionally, 1n some arrangements, tester 402 may connect
to two or more DIBs for interfacing the channels provided by
interface cards 501 to 503 to one or multiple UUTs.

To 1mitiate and control the testing performed by interface
cards 501 to 503, tester 402 includes a PE controller 508 (e.g.,
in a system processing device, i an embedded processing
device, or 1in programmable logic) to provide test parameters
(e.g., test signal voltage level, test signal current level, digital
values, etc.) for producing test signals and analyzing UUT
responses. Tester 402 also includes a network interface 509
that allows computer system 403 to control the operations
executed by tester 402 and also allows data (e.g., test param-
cters, UUT responses, etc.) to pass between tester 402 and to
computer system 405.

The computer system, or another processing device used
on or associated with test system 400, may be configured to
exchange communications with a test program running on
tester 402 through active communication channels with the
device tester. The computer system may be, or include, com-
puter 102 of FIG. 1. Alternatively, computer 102 may be part
of tester 402 and the computer system described with respect
to FIG. 5 may communicate with computer 102.

Testing, including those described herein, may be per-
formed using a system processing device, embedded process-
ing devices, or programmable logic. However, testing may be
performed using a combination of system processing device,
embedded processing devices, or programmable logic. For
example, each of these different elements may run on or more
test programs simultaneously to test the same device or por-
tion thereol. Likewise, these different elements may coordi-
nate testing so that, e.g., a system processing device performs
a first part of a test sequence, an embedded processing device
performs a second part of the same testing sequence, and
programmable logic performs a third part of the same testing
sequence. Any appropriate coordination may take place
between the different programmable elements of the test
instrument described herein.

In some implementations, a system processing device may
be external to the test instrument. For example, an external
computer may be employed to control operations of the test
instrument, and may interact with embedded processing
device(s) and programmable logic on the test mstrument 1n
the manner described herein. In other implementations, the
system processing device may be part of the test instrument or
remote from the test instrument (e.g., connected to the test
instrument over a network).

In some implementations, programmable logic may be
replaced with non-programmable logic. For example, rather
than using an FPGA, one or more application-specific inte-
grated circuits (ASICs) may be mncorporated into the test
instrument 1n place of, or 1n addition to, programmable logic.

The functionality described herein, or portions thereot, and
its various modifications (hereinatter “the functions™), are not
limited to the hardware described herein. All or part of the
functions can be implemented, at least in part, via a computer
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program product, e.g., a computer program tangibly embod-
1ed 1n an information carrier, such as one or more non-tran-
sitory machine-readable storage media, for execution by, or to
control the operation of, one or more data processing appa-
ratus, e.g., a programmable processor, a computer, multiple
computers, and/or programmable logic components.

A computer program can be written 1n any form of pro-
gramming language, including compiled or interpreted lan-
guages, and 1t can be deployed 1n any form, including as a
stand-alone program or as a module, component, subroutine,
or other umt suitable for use 1n a computing environment. A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a network.

Actions associated with implementing all or part of the
functions can be performed by one or more programmable
processors executing one or more computer programs o per-
form the functions of the calibration process. All or part of the
functions can be implemented as, special purpose logic cir-
cuitry, e.g., an FPGA and/or an ASIC (application-specific
integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive mstructions and data from a read-only memory or a
random access memory or both. Components of a computer
include a processor for executing instructions and one or
more memory devices for storing instructions and data.

Components of different embodiments described herein
may be combined to form other embodiments not specifically
set Torth above. Components may be left out of the circuitry
shown 1n FIGS. 1 and 3 to 5 without adversely affecting its
operation. Furthermore, various separate components may be
combined 1nto one or more individual components to perform
the functions described herein.

In this regard, while operations are depicted in the draw-
ings 1n a particular order, this should not be understood as
requiring that such operations be performed in the particular
order shown or 1n sequential order, or that all illustrated
operations be performed, to achieve desirable results. In cer-
tain circumstances, multitasking and parallel processing may
be advantageous. Moreover, the separation of various system
modules and components in the embodiments described
above should not be understood as requiring such separation
in all embodiments, and i1t should be understood that the
described program components and systems can generally be
integrated together 1n a single product or packaged into mul-
tiple products.

Other embodiments not specifically described herein are
also within the scope of the following claims.

APPENDIX

* Summary: Executes a Remote Procedure Call.
b3

*yi: [Input] A handle to a Core Instrument.

b3

* imagelype: [Input] The type of the image containing the target
* function. One of:

b3

* TERHSI_IMAGE_RTAPP

* TERHSI IMAGE_RTLIB

b

* custID: [Input] The customer ID of the image containing the target
* function.

b3

* applD: [Input] The application ID of the image containing the
b3

target function.
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APPENDIX-continued

%

o
—,
=
.
w

[Input] The function ID associated with the target function.
This value must be listed in the table returned by the
target image’s FetchRpcInfo( ) implementation.

o

[Input] Maximum time (in seconds) to wait for the remote
function to complete. A negative value disables the timeout
timer.

timeout:

[Input] The type of the target function’s return value.
Specify NULL 1f the function has no return value or
one of:

returnlype:

% % % % H X O K

TERHSI RPC_TYPE _INTS
TERHSI RPC_TYPE_INT16
TERHSI RPC_TYPE_INT32
TERHSI RPC_TYPE _INT64
TERHSI_ RPC_TYPE _REAILOG4

returnedValue:[Output] The address of the variable that receives the
target function’s return value. Specify NULL to ignore.

[Input] A variable length argument list describing the
target function’s parameters. Fach parameter is listed in
order and the list is terminated with the value NULL.

Each parameter 1s identified as either an input, output, or
both and as an array or not using the following macros:

TERHSI_RPC_PARAM_IN(type,param)
TERHSI_RPC_PARAM_OUT(type,param)
TERHSI_RPC_PARAM_INOUT(type,param)
TERHSI_RPC_PARAM_INARRAY (count,type,param)
TERHSI_RPC_PARAM_ OUTARRAY (count,type,param)
TERHSI_RPC_PARAM_INOUTARRAY (count.type,
param)
In the above macros, ‘param’ identifies the value of the
parameter. For outputs and arrays, this value is interpreted
as an address specific to this process and is converted to
an appropriate address prior to delivery to the target
function.

In the above macros, ‘type’ may be a data structure record
handle or one of:

TERHSI_ RPC_TYPE_INTX
TERHSI RPC_TYPE_INT16
TERHSI RPC_TYPE_INT32
TERHSI RPC_TYPE_INT64
TERHSI RPC_TYPE_REAILG4

In the above macros, ‘count’ identifies the number of
elements in the array. Note that *count’ 1s used by the RPC
logic and 1s not passed to the target function.

Possible return values:
VI SUCCESS
TERHSI ERROR_RPC TARGET
TERHSI ERROR_PARAM

<return-=:

% % K ¥ O H* K K K H K O HF K X HF H K K H K F X K K H K H H H H Hx K H H K H H K H H X K X K H K K H*

*

ViStatus terHsi. RPC_Execute (ViSession vi,
ViUInt32 imageType,
ViUlIntlé custID,
ViUIntl6 applD,
ViUlInt32 funclD,
ViReal64 timeout,
ViUlInt32 returnType,
ViAddr *returned Value,

L)

What 1s claimed 1s:

1. A test system comprising:

a first computing device programmed to execute a test
routine, the test routine being written to call a remote
function;

a second computing device programmed to execute the
remote function:
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wherein the first computing device 1s programmed to per-
form operations (1) to collect parameter data for use by
the remote function, and (11) to pass information, includ-
ing the parameter data, to the second computing device;
and

wherein the second computing device 1s programmed to

perform operations (1) to build a stack based on the
parameter data, (11) to use the information to locate code
for the function on the second computing device, (111) to
execute the code for the function on the second comput-
ing device, the function using the parameter data on the
stack, (1v) to obtain output values from execution of the
code for the function, and (v) to pass parameter data,
including the output values, to the first computing
device;

wherein at least some of the operations performed by the

first computing device and the second computing device
are 1mplemented using a programming language that
does not support type introspection.

2. The test system of claim 1, wherein passing the infor-
mation from the first computing device and passing the
parameter data from the second computing device are part of
a marshaling convention; and

wherein the first computing device and the second com-

puting device are programmed to recreate the marshal-
ing convention for subsequent calls to the remote func-
tion from the first computing device.

3. The test system of claim 1, wherein, on the second
computing device, the following operations are implemented
using a first computing language: (1) to build a stack based on
the parameter data, and (111) to execute the code for the func-
tion on the second computing device, and

wherein, on the second computing device, the following

operations are programmed using a second computing,
language: (1v) to obtain output values from execution of
the code for the function, and (v) to pass parameter data,
including the output values, to the first computing
device.

4. The test system of claim 3, wherein the first computing,
language 1s Assembly language and the second computing
language 1s the C computing language.

5. The test system of claim 3, wherein the second comput-
ing language does not support type introspection.

6. The test system of claim 1, wherein the information

comprises a module identifier for identifying the second com-
munication device and a function identifier for identifying the
remote function, the module 1dentifier and the function 1den-
tifier being usable to obtain a physical address 1n which the
code for the remote function 1s located.

7. The test system of claim 6, wherein using the informa-
tion to locate code for the function on the second computing
device comprises resolving the physical address using the
module 1dentifier and the function i1dentifier, and retrieving
the code for the function.

8. The test system of claim 1, wherein the first computing,
device 1s programmed to write data to registers on the second
computing device; and

wherein the second computing device 1s programmed to

identify the data in the registers and to react to the data 1n
the registers by locating the code for the function on the
second computing device and by executing the code.

9. The test system of claim 1, wherein the first computing,
device 1s programmed to receive the parameter data, to 1den-
tify locations where to store return values 1n the parameter
data, and to store the return values 1n the locations.
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10. The test system of claim 1, further comprising at least
one PCI bus on a path between the first computing device and
the second computing device.
11. The test system of claim 1, wherein collecting the
parameter data comprises identifying, in a parameter list, one
or more parameter types, one or more corresponding params-
eter values, and an end-of-list indicator.
12. The test system of claim 1, wherein the first computing
device 1s a client device and wherein the second computing
device 1s a server device.
13. A method performed on a test system, comprising:
on a first computing device, performing operations com-
prising: (1) collecting parameter data for use by a remote
function, and (11) passing information, including the
parameter data, to the second computing device; and

on second computing device, performing operations com-
prising: (1) building a stack based on the parameter data,
(1) using the information to locate code for the function
on the second computing device, (111) executing the code
for the function on the second computing device, the
function using the parameter data on the stack, (iv)
obtaining output values from execution of the code for
the function, and (v) passing parameter data, including
the output values, to the first computing device;

wherein at least some of the operations performed by the
first computing device and the second computing device
are 1implemented using a programming language that
does not support type introspection.

14. The method of claim 13, wherein passing the informa-
tion from the first computing device and passing the param-
cter data from the second computing device are part of a
marshaling convention; and

wherein the first computing device and the second com-

puting device recreate the marshaling convention for
subsequent calls to the remote function from the first
computing device.

15. The method of claim 14, wherein, on the second com-
puting device, the following operations are programmed
using a first computing language: (1) building a stack based on
the parameter data, and (111) executing the code for the func-
tion on the second computing device; and

wherein, on the second computing device, the following

operations are programmed using a second computing
language: (1v) obtaining output values from execution of
the code for the function, and (v1) passing parameter

data, including the output values, to the first computing
device.

16. The method of claim 135, wherein the first computing
language 1s Assembly language and the second computing
language 1s the C computing language.

17. The method of claim 15, wherein the second computing
language does not support type mtrospection.
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18. The method of claim 13, wherein the information com-
prises a module 1dentifier for identifying the second commu-
nication device and a function identifier for 1dentifying the
remote function, the module 1dentifier and the function 1den-
tifier being usable to obtain a physical address 1n which the
code for the remove function 1s located.

19. The method of claim 18, wherein using the information
to locate code for the function on the second computing
device comprises resolving the physical address using the
module 1dentifier and the function i1dentifier, and retrieving
the code for the function.

20. The method of claim 13, wherein the first computing
device writes data to registers on the second computing
device; and

wherein the second computing device 1dentifies the data 1n

the registers and reacts to the data 1n the registers by
locating the code for the function on the second comput-
ing device and by executing the code.
21. The method of claim 13, wherein the first computing
device recerves the parameter data, identifies locations where
to store return values in the parameter data, and stores the
return values 1n the locations.
22. The method of claim 13, further comprising at least one
PCI bus on a path between the first computing device and the
second computing device.
23. The method of claim 13, wherein collecting the param-
cter data comprises 1dentifying, 1n a parameter list, one or
more parameter types, one or more corresponding parameter
values, and an end-oi-list indicator.
24. The method of claim 13, wherein the first computing,
device 1s a client device and wherein the second computing
device 1s a server device.
25. One or more non-transitory machine-readable media
storing instructions that are executable to perform operations
comprising;
on a first computing device performing operations com-
prising: (1) collecting parameter data for use by a remote
function, and (1) passing information, including the
parameter data, to the second computing device; and

on second computing device performing operations com-
prising: (1) building a stack based on the parameter data,
(11) using the information to locate code for the function
on the second computing device, (111) executing the code
for the function on the second computing device, the
function using the parameter data on the stack, (1v)
obtaining output values from execution of the code for
function, (v) passing parameter data, including the out-
put values, to the first computing device;

wherein at least some of the operations performed by the

first computing device and the second computing device
are 1mplemented using a programming language that
does not support type introspection.
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