US008700745B2

12 United States Patent

Dittrich

US 8,700,745 B2
Apr. 15,2014

(10) Patent No.:
45) Date of Patent:

(54) LIFE-CYCLE MANAGEMENT OF FOREIGN PATENT DOCUMENTS

MULTI-TENANT SAAS APPLICATIONS

EP 2107459 Al 10/2009
(75) Inventor: Wolfgang Paul Wilhelm Dittrich,
Heidelberg (DE) OTHER PUBLICATIONS
: _ - “Systems and software engineering—Software life cycle processes,”
(73) Assignee: SAP AG, Walldorf (DE) ISO/IEC 12207, IEEE Std 12207-2008, Second Edition, Feb. I,
) - . s . 2008.
(") Notice: SubJECt- 1o any dlsclalmer,i the term of this Extended European Search Report, dated Oct. 31, 2011, from corre-
patent 1s extended or adjusted under 35 sponding EP Patent Application No. 11003284.4
U.S.C. 154(b) by 298 days. | o
*cited b '
(21) Appl. No.: 12/771,615 CieR by eRdiiE
(22) Filed: Apr. 30, 2010 Primary Examiner — Jeong S Park
(74) Attorney, Agent, or Firm — Kenyon & Kenyon LLP
(65) Prior Publication Data
US 2011/0271278 Al Nov. 3, 2011 (57) ABSTRACT
(51) Int.CL Embodiments of the present invention provide a method and
GO6F 15/177 (2006.01) system for managing life-cycles of a “software as a service”
GO6F 9/44 (2006.01) (SaaS) software application. In one embodiment, a method
(52) U.S.CL. comprises installing the SaaS software application 1n a sys-
USPC e 709/220; 717/168 tem landscape on a computer server, the system landscape
(58) TField of Classification Search containing at least an application server and a database (DB)
USPC oo 709/220, 221; 717/168-173 ~ Server;separating system data from customer data and storing
See application file for complete search history. them in different databases; creating a virtual machine (VM)
image for the system landscape, the VM 1mage to include the
(56) References Cited databases containing system data and exclude the databases
containing customer data; deploying the SaaS software appli-
U.S. PATENT DOCUMENTS cation to one or more computer servers by loading VMs based
AdT 854 BLE 119008 C 16 on the VM image; when the SaaS software application need to
76401400 BI* 122000 Stafford etal. . 7117162 ¢ upgraded to a new version, preparing a new VM image
2007/0011670 Al* 1/2007 Neguyen et al. 717/168 With the new version of the SaaS software application and
2007/0294676 Al 12/2007 Mellor et al. using the new VM image.
2010/0198730 Al* 8/2010 Ahmedetal. 705/50
2010/0205594 Al 82010 Jirkaoooeiiiii, 717/170
2011/0010394 Al 1/2011 Carewetal. 707/793 30 Claims, 7 Drawing Sheets
Data for Tenant 1 Data for Tenant 2 Data for Tenant L
| | '
D >
DB Server DB Server
6201 B20.N
System Data System Data
632.1 632N
T — A S—
pp | App
sServer Server
604.1 g04.M
VM
608
Server
602

U.S. Patent Apr. 15, 2014 Sheet 1 of 7 US 8,700,745 B2

DB Server DB Server
112 114

(Prior Art)

FIG. 1

U.S. Patent Apr. 15, 2014 Sheet 2 of 7 US 8,700,745 B2

DB Sever
220

Tenant 1's Data Tenant 2's Data
226 228

(Prior Art)

FIG. 2

U.S. Patent Apr. 15,2014 Sheet 3 of 7 US 8,700,745 B2

Data for Tenant 1 Data for Tenant 2
330.1 330.2

DB Server
320

App
Server

304

Server 302

FIG. 3

U.S. Patent Apr. 15, 2014 Sheet 4 of 7 US 8,700,745 B2

00

402

Install An SaaS Software Application As A System
Landscape On A Computer Server
404

Separate System Data From Customer Data And Storing
System Data And Customer Data In Different Databases

406

Create A VM Image For The System Landscape, The VM /
Image To Include The System Data And Exclude The
Customer Data

408

Deploy The SaaS Software Application Using The VM
Image

410

Upgrading The SaaS Software Application By Creating A
New VM Image With A New Version Of The Saa$S Software
Application

U.S. Patent Apr. 15,2014 Sheet 5 of 7 US 8,700,745 B2

502

Create A New VM Image With A New Version Of The SaaS
Software Application
504
Test The New VM Image
506
Shutdown The To Be Upgraded VM, Including Detaching
The Database Storing Customer Data Outside The VM
508

Replace The Currently Used VM Image With The Created
New VM Image
510

Restart The VM, Which Includes Starting All Servers
Running In The VM And Running A Data Migration Job That

Attaches The Databases Storing Customer Data

U.S. Patent

Data for Tenant 1

Apr. 15, 2014

630.1

DB Server
620.1

System Data
032.1

App
Server

604.1

Sheet 6 of 7

Data for Tenant 2

630.2

Server
602

DB Server
620.N

System Data
632.N

App
Server

604.M

US 8,700,745 B2

Data for Tenant L
630.L

U.S. Patent Apr. 15,2014 Sheet 7 of 7 US 8,700,745 B2

702

CPU 706

704 /o

Memory

FIG. 7

US 8,700,745 B2

1

LIFE-CYCLE MANAGEMENT OF
MULTI-TENANT SAAS APPLICATIONS

FIELD OF THE INVENTION

The disclosure relates to a system and method for upgrad-
ing soitware systems, 1n particular, upgrading solftware sys-
tems running “software as a service” (SAAS) applications.

BACKGROUND

Cloud computing 1s gaining popularity in providing infor-
mation technology (IT) services. Cloud computing 1s net-
work-based computing (e.g., Internet-based), whereby
shared resources, software and information are provided to
computers and other devices on-demand, just like electricity.
Today different technologies exist to provide IT services 1n
the cloud, e.g.: virtualization and multi-tenancy.

Server virtualization techniques allow a service provider to
operate multiple applications independently 1n different vir-
tual machines (VM) on the same physical hardware (e.g.,
different VMs for ditferent clients, and/or different VMs for
different requests from the same clients). Updates to a spe-
cific application runming 1n a VM are not visible to other VMs.
Pre-packaged VM 1mages could be used to update each VM
eificiently when all VMs run the same software. For example,
FIG. 1 shows a prior art system 100 in which VM 104 and VM
108 are hosted by a server 102. Users may access applications
running on App Server 106 or App Server 110 and save data
to DB Sever 112 or 114 respectively. The DB Servers 112 and
114 may be software database applications running on dedi-
cated hardware separate from the Server 102. An upgrade to
a software application running on the App Server 106 will not
be visible to applications on App Server 110 in VM 108.
However, 1f App Server 106 and App Server 110 run the same
soltware applications, one VM 1mage containing upgraded
soltware applications for App Server 106 may be used for
bothVM 104 and VM 108 (e.g., loading VM 104 and VM 108
in the server 102 from the same upgraded virtual machine
1mage).

Multi-tenancy architectures provide services to users of

multiple/different companies by sharing a single application
running on the same hardware resources (e.g., same system
landscape). Usually an application server hosts the front end
layer of the application to interact with customers and a
database (DB) server 1s used to store company data in sepa-
rate tenants for each customer, such as the known multi-
tenancy architecture 200 shown in FIG. 2. The multi-tenancy
architecture 200 contains an application running on applica-
tion server 204 that saves data to DB server 220. The appli-
cation server 204 may be hosted by a server 202 but the DB
server 220 may be hosted by the same or other dedicated
hardware. The DB Server 220 typically stores tenant 1°s data
226 and tenant 2’s data 228 separately. Updates to the appli-
cation in the App Server 204 and DB Server 220 are visible to
all customers because they are shared by all customers.
Many SaaS offerings (e.g., SAP Business ByDesign, SAP
eSourcing by SAP®) today employ multi-tenancy 1n order to
optimize operational costs and hardware utilization. Many

10

15

20

25

30

35

40

45

50

55

SaaS applications may be installed on more than one set of 60

hardware resources to run the same version of a multi-tenant
aware application. Each installed multi-tenant aware applica-
tion may include at least an application on an application
server and a database on a DB server. Currently, the applica-
tion server and the DB server and other software systems
required for the multi-tenant aware application are distributed
among several hardware pieces (e.g., computer servers). Over

65

2

time the total number and size of hardware resources running
the multi-tenant aware applications will grow due to
increased performance requirements. Typically, all of the
installed applications need to be upgraded at the same time to
avold maintenance of different application versions. How-
ever, each installed package of the multi-tenant aware appli-
cation 1s updated on all relevant hardware resources individu-
ally and manually. Hence costs associated with upgrading the
applications on many hardware resources will become a
determining factor that will diminish the cost advantage of
multi-tenancy architectures significantly. Accordingly, there
1s a need 1n the art for simplifying the necessary steps of a
soltware upgrade and bringing down the costs associated with
maintaining a system landscape running a SaaS multi-tenant
application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a prior art software system using VMs to provide
I'T services.

FIG. 2 1s a prior art software system using multi-tenancy to
provide IT services.

FIG. 3 1s a block diagram for a multi-tenancy software
application according to an exemplary embodiment of the
present invention.

FIG. 4 1s a flowchart for managing life-cycles of a SaaS
soltware application according to an exemplary embodiment
of the present invention.

FIG. 5 1s a flowchart for upgrading a SaaS software appli-
cation according to an exemplary embodiment of the present
invention.

FIG. 6 1s a block diagram for a multi-tenancy software
application according to an exemplary embodiment of the
present invention.

FIG. 7 shows a structure of a computer according to an
exemplary embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention provide a method
and system for managing life-cycles of a “software as a ser-
vice” (SaaS) software application. In one embodiment, a
method comprises installing the SaaS software application in
a system landscape on a computer server, the system land-
scape containing at least an application server and a database
(DB) server; separating system data from customer data and
storing them in different databases; creating a virtual machine
(VM) 1mage for the system landscape, the VM 1mage to
include the databases containing system data and exclude the
databases contaiming customer data; deploying the SaaS soft-
ware application to one or more computer servers by loading
VMs based on the VM 1mage; when the SaaS software appli-
cation need to be upgraded to a new version, preparing a new
VM 1mage with the new version of the SaaS software appli-
cation and using the new VM 1mage.

FIG. 3 1illustrates an architecture 300 for a multi-tenancy
soltware application according to an exemplary embodiment
of the present invention. The architecture 300 may comprise
a computer server 302. The computer server 302 may contain
a virtual machine (VM) 308. The VM 308 may contain a
system landscape of a SaaS software application. The system
landscape may include an application (App) server 304 and a
database (DB) server 320. The App server 304 may host a
front end layer of the SaaS software application and the DB
server 320 may manage and store data for the SaaS software
application. The DB server 320 may store system data 1n a
system data database 332. The system data may be, for

US 8,700,745 B2

3

example, technical configurations related to the system land-
scape. The SaaS software application may be a multi-tenant
aware application and may store customer data in the data-
bases, for example, Data for Tenant 1 stored in the database
330.1 and Data for Tenant 2 stored in the database 330.2. The
databases 330.1 and 330.2 may be stored outside the system
landscape and the VM 308. In one or more embodiments, the
SaaS software applications may be business applications,
consumer applications, or social applications. The system
data may be changed when the system configuration 1is
changed, and thus 1t may belong to the system landscape and
not to be treated as customer data.

As shown 1n FIG. 3, the architecture 300 may separate the
system related data from the customer related data such that
they can be stored 1in different databases (e.g., system data to
be stored 1n the database 332 and customer data to be stored
in databases 330.1 or 330.2). In one embodiment, to maintain
a separation between the system data and the customer data,
the customer users do not modily any system data. Moreover,
customer data may be kept independent from system data. For
example, customer data does not contain any copies of or
direct links to system data and 1in cases where customer data
needs to reference system data, 1t 1s decoupled by using a
system independent placeholder within the customer data that
1s replaced at runtime by the server with the correct system
specific value (for example, a concrete server URL). Indexes
for customer data may also be stored with the customer data.

In one embodiment, the databases for customer data and
system data may be stored on different files or disk drives. For
example, as shown 1n FIG. 3, the system data may be stored
with the DB server 320 and stored inside the VM 308. How-

ever, the databases 330.1 and 330.2 for the customer data may
be stored outside the VM 308 1n different files or disk drives.
In one embodiment, the databases 330.1 and 330.2 may even
be stored 1n another computer server other than the server
302.

In one embodiment, the customer data may include four
kinds of content: user data on which the application operates
on, application configuration done by the customer, customer
coding (e.g., extension to the software application) and asso-
ciated configuration, and user data associated with customer
coding. For example, customer extensions to a software
application need to be stored as customer data because 1t may
be done by a particular customer and not available 1n a generic
version of the software.

The architecture 300 may provide an efficient way to man-
age life-cycles of multi-tenancy based SaaS or on-demand
soltware applications including system (infrastructure) appli-
cations. In one embodiment, the architecture 300 according to
the present invention may provide cost reduction from several
prospects. For example, a quality assured VM 1mage may
become a pre-packed solution that contains many fixes. The
fixes may cover every software piece of the system landscape
and the VM 1mmage may be used to update multiple VM
instances without affecting the customer data. In addition, as
described below, necessary data migration for the customer
data may be performed 1n the background by the system
automatically as far as possible. Further, also as described
below, system downtime experienced by the user may be
reduced by providing partial services (e.g., for some critical
functions) during the migration.

FI1G. 4 illustrates a process 400 for managing life-cycles of
a SaaS software application according to an exemplary
embodiment of the present mvention. At step 402, a SaaS
soltware application may be installed as a system landscape
on a computer server. For example, the system landscape may
include the App server 304 and DB server 320 as shown 1n

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3. At step 404, system data may be stored separately
from the customer data 1n different databases. For example,
the system landscape may include the App server 304 and DB
server 320 shown 1n FIG. 3. Next, at step 406, a VM 1mage
may be created for the system landscape and the VM 1mage
may include the system data but exclude the customer data.
For example, the VM 308 may be created as shown 1n FIG. 3

to include the system landscape that includes the App server
304 and DB server 320. The database 332 for the system data

may be contained inside the VM 308 and the databases 330.1
and 330.2 for the customer data may be excluded from the
VM 308.

Then, at step 408, the SaaS software application may be
deployed 1n production using the VM 1mage. For example, a
plurality of identical deployment of the SaaS software appli-
cation may be accomplished by loading multiple VMs using
the same VM 1mage. In one embodiment, a fail-over support
may be provided, in which one VM may be used as a hot
standby for another VM that provides services to customers.
The services may be critical and the hot standby does not need
additional hardware resources (e.g., the standby VM may be
loaded 1n the same computer server). In another embodiment,
the system landscape may be easily migrated to another
physical server that provides more hardware resources. In yet
another embodiment, identical VMs may provide load bal-
ancing without administrative intervention.

Then, at step 410, the SaaS software application may be
upgraded to a new version by creating a new VM image with
the new version of the SaaS software application. In one
embodiment, the new VM 1mage may be tested with test data
during the preparation. The test data may include customer
data from existing databases for the customer data and new
system data.

FIG. 5 illustrates a process 500 for upgrading a SaaS soft-
ware application according to an exemplary embodiment of
the present invention. At step 502, a SaaS software applica-
tion may be upgraded to a new version by creating a new VM
image with the new version of the SaaS software application.
At step 504, the new VM 1mage may be tested during the
preparation. In one or more embodiments, the test data may
include customer data from existing databases for the cus-
tomer data and new system data. Next, at step 506, a currently
running VM may be shutdown. In one embodiment, the shut-
down process may include disconnect the databases that store
customer data outside the VM. For example, 11 the VM 308 1s
shutdown, the databases 330.1 and 330.2 may be discon-
nected from the SaaS software application. The database
disconnection mechamsm may depends DB server, for
example, the database may be detached.

Then, at step 508, a currently used VM image may be
replaced with the new VM 1mage. For example, the VM 308
may be loaded from a currently used VM 1mage and 11 the
system landscape for the VM 308 need to be updated, a new
VM 1mage may be used to replace the currently used VM
image.

Finally, at step 510, the VM 1nstance may be restarted
based on the new VM 1mage. The starting of the VM 1nstance
may include starting all services running in the VM and
starting a data migration job for customer data stored outside
of the VM. In one embodiment, the data migration may be
triggered automatically with an upgrade to an application.
The data migration job may attach any databases for the
customer data that are stored outside the VM and run as a
background job that does not block the application. The appli-
cation may become fully operational after the migration 1s
finished and, during the migration, at least partial service may
be provided. The at least partial service may include provid-

US 8,700,745 B2

S

ing full functionality for already migrated part of whole data
set and providing read access (e.g. a view) of data not yet
migrated. Thus, this migration gradually changes the data in
the background while the application 1s already providing
partial services.

In one embodiment, the migration job may migrate the at
least the four kinds of content of the customer data as
described above: user data on which the application operates
on, application configuration done by the customer, customer
coding (e.g., extension to the software application) and asso-
ciated configuration, and user data associated with customer
coding. In one embodiment, the latter usually needs not to be
migrated directly since the customer coding may not be
changed by the upgrade. However, sometimes, the way user
data associated with customer extensions 1s stored may be
changed by an upgrade, the same techniques described below
for customer coding belonging to the application may be
applied.

For the first three types of customer data, 1in order for an
application to detect a version change, a version number may
be stored 1n the customer data (e.g., databases 330.1 0r 330.2).
The version number may be compared to the version of the
application (stored as part of the system data 1n the database
332) when the application restarts with the VM. The version
number may be kept for each record storing customer data or
at least each root of a block of data that must be migrated 1n
conjunction. In addition, a global version number may be
provided for each tenant (e.g., each separate database 330.1 or
330.2) to check efliciently whether a data migration 1s neces-
sary. The version information may be updated during (for
cach record) or after (globally) the migration, respectively.

In one embodiment, the version number may indicate a
compatible version of the SaaS software application. Thus, if
the new version of the SaaS software application 1n the VM
detects that the version number associated with the customer
data 1s not compatible, a migration of the customer data may
be triggered. The version number associated with the data
record may be used to provide full functionality for already
migrated parts of the whole data set and only provide special
view Tunctionality (e.g., read access compatible with the old
data format) for parts which are not yet migrated.

In embodiments, the configuration data provided by the
customer may need to be migrated. In one embodiment, the
migration may be done automatically without customer inter-
vention. In this case, after the migration 1s done and an 1nfor-
mation note may be sent to an administrator or a customer. In
another embodiment, the migration may not be performed
automatically and an alert may be sent to the administrator or
customer. In addition, default configuration may be used that
allows the application to operate at least partially. This
approach allows the customer to fix the problem asynchro-
nously while the application may provide at least partial
SErvices.

The same strategy described above for the configuration
data may be used for customer extensions as well. However,
in case the customer extensions access part of the customer
data maintained by the application, the customer extensions
may need to be deactivated.

Further, in one embodiment, a scripting language, for
example, JavaScript, may be employed for customer coding.
In this case, some parts of the customer coded extensions may
be customer data and yet other parts of the customer coded
extensions may be system. Thus, customer coded extensions
may need to split up the coding storage into customer and
system parts. Consequently, the customer parts of the cus-
tomer coding would then remain untouched by an upgrade.

10

15

20

25

30

35

40

45

50

55

60

65

6

In embodiments, the migration job may prioritize migra-
tion of data based on priorities of the customer data. For
example, a higher priority may be given to most recent used
data based on “time of change™ timestamps associated with
cach data record respectively.

The process 500 may provide an efficient way of upgrading
a SaaS soltware application. For example, after a new VM
image 1s tested, each deployed SaaS software application
landscape may be easily upgraded, which may be much less
costly compared to the standard upgrade procedure. Further,
due to the online migration strategy, the application can pro-
vide partial services as soon as possible and potentially faster
than using an offline migration process during which the
application must be down.

FIG. 6 1illustrates an architecture 600 for a multi-tenancy
solftware application according to another exemplary
embodiment of the present invention. The architecture 600
comprises a computer server 602. The computer server 602
contains a virtual machine (VM) 608. The VM 608 contains a
system landscape of a SaaS software application. The system
landscape may include a plurality of application (App) serv-
ers 604.1 . .. 604.M and a plurality of database (DB) server
632.1...632.N. The App servers 604.1 . . . 604.M may host
the front end layer of the SaaS software application and the
DB servers 620.1 . . . 620.N may manage and stores data for
the SaaS software application. The DB server 620.1 ... 620.N
may store the system data in system data databases 632.1 . ..
632.N. The SaaS software application may be a multi-tenant
aware application and may store customer data 1n different
databases for different tenants, for example, Data for Tenant
1 stored 1n the database 630.1, Data for Tenant 2 stored in the
database 330.2, and Data for Tenant stored in the database
330.L. The databases 630.1 . . . 630.L may be stored outside
the system landscape and the VM 608.

The term database 1s used herein to refer to an indepen-
dently managed data storage unit that can be moved between
different servers, e.g. DB or Content Management Servers
(CMS servers) but not limited to them. For example, 1n some
database systems the specific unit would be a database
instance. Further, although the system landscapes 1n FIGS. 3
and 6 as described above only contain application servers and
DB servers, an SaaS software application according to the
present invention may also include system soitware, for
example, operating system, web server, SMTP server, App
server system, DB server system, and business applications,
for example, Customer Relationship Management (CRM) or
Travel and Expense Management applications. Moreover,
although the description so far mentions the elements 330.1,
330.2and 630.1...630.L as databases, on embodiment of the
present invention may implement the data storage in file
system.

In one embodiment, the DB server may be replaced with a
Content Management Server (CMS). The CMS server may
store system data as part of the system landscape but may
store customer data outside the system landscape. In a turther
embodiment, data may be stored by file systems. The system
data may be stored 1n a file system that 1s a part of the system
landscape but the customer day may be stored 1n a file system
that 1s not contained inside the system landscape.

In another embodiment, the life-cycle management and
upgrade processes may be applied to hand-held devices or
PCs. For example, system software and user specific data may
be stored separately for hand-held devices or PCs according
to the present invention, and thus system software may be
loaded from a pre-packaged image. The pre-packaged image
may be upgraded when a new version for the system software
or for any piece of the system software becomes available.

US 8,700,745 B2

7

Once the system software 1s upgraded, the customer data may
be migrated as described above. Thus, partial service may be
available during the data migration of hand-held device or
PCs.

FI1G. 7 depicts a structure of a computer server 700 accord-
ing to one embodiment of the invention. The computer server
700 1ncludes a processor 702, memory 704, and an I/O
device(s) 706. The processor 702 1s connected to the memory
704 and I/O device(s) 706. These connections are direct or via
other internal electronic circuitry or components.

The processor 702 1s a programmable processor that
executes instructions residing 1n the memory 704 to receive
and send data via the I/O device(s) 706. The instructions may
perform the operations of the application context and rule
based Ul control described herein. The term programmable
processor as used herein 1s any programmable microproces-
SOr Or processor or combination ol miCroprocessors or pro-
cessors that can operate on digital data, which may be special
or general purpose processors coupled to receive data and
instructions from, and to transmit data and instructions to, a
machine-readable medium. According to one embodiment of
the present invention processor 702 1s an Intel™© micropro-
CEeSSOor.

Memory 704 1s a machine-readable medium that stores
data that 1s processed by processor 702. The term machine-
readable medium as used herein 1s any addressable storage
device that stores digital data including any computer pro-
gram product, apparatus and/or device (e.g., a random access
memory (RAM), read only memory (ROM), magnetic disc,
optical disc, programmable logic device (PLD), tape, hard
drives, RAID storage device, flash memory or any combina-
tion of these devices). This may include external machine-
readable mediums that are connected to processor 702 viaone
or more 1/0 device(s) 706.

The I/0 device(s) 706 may be one or more mput/output
interfaces that receive and/or send digital data to and from an
external device. Interfaces as used herein are any point of
access to an external device where digital data 1s received or
sent, including ports, buifers, queues, subsets thereof, or any
other 1nterface to an external device.

It should be understood that there exist implementations of
other variations and modifications of the invention and 1ts
various aspects, as may be readily apparent to those of ordi-
nary skill in the art, and that the invention 1s not limited by
specific embodiments described hereimn. Features and
embodiments described above may be combined with and
without each other. It 1s therefore contemplated to cover any
and all modifications, variations, combinations or equivalents
that fall within the scope of the basic underlying principals
disclosed and claimed herein.

What 1s claimed 1s:
1. A method for managing life-cycles of a software as a
service soltware application, comprising;:

installing the software as a service software application in
a system landscape on a computer server, the system
landscape containing at least an application server and a
database server;

separating system data for the software as a service soit-
ware application from customer data of a plurality of
customers for the software as a service software appli-
cation and storing the system data and customer data 1n
different databases, wherein customer data 1s stored out-
side of the system landscape and customer data 1s
decoupled from system data by replacing copies or links
to system data within the customer data with one or more
system 1ndependent placeholders;

5

10

15

20

25

30

35

40

45

50

55

60

65

8

creating a virtual machine image for the system landscape,
the virtual machine 1image to include the databases con-
taining system data and exclude the databases contain-
ing the customer data;

deploying the software as a service software application to

one or more computer servers by loading virtual
machines on one or more computer servers based on the
virtual machine 1image; and

when the software as a service software application 1s to be

upgraded to a new version, preparing a new virtual
machine 1image with the new version of the software as a
service soltware application and deploying the new ver-
sion of the software as a service soitware application by
loading virtual machines on the one or more computer
servers based on the new virtual machine 1image.

2. The method of claim 1, wherein the new virtual machine
image 1s tested with test data or the customer data during the
preparation and includes new databases for the system data.

3. The method of claim 1, wherein the customer data refers
to system data by using a system imndependent placeholder 1s
replaced at runtime with a correct system specific value.

4. The method of claim 1, wherein deploying the new
version ol the software as a service software application
includes shutting down a currently running virtual machine
and restarting a virtual machine using the new virtual
machine image, the shutdown process includes detaching any
databases storing the customer data, and the restart process
includes starting all applications running in the virtual
machine and starting a data migration job.

5. The method of claim 4, wherein the migration job 1s a
background job that does not block the application and at least
partial service 1s provided before the migration job 1s fully
completed.

6. The method of claim 5, wherein the at least partial
service 1ncludes providing full functionality for already
migrated part of whole data set and providing read access to
data not yet migrated.

7. The method of claim 6, wherein the read access 1s pro-
vided by a view to the data not yet migrated.

8. The method of claim 4, wherein the migration job
migrate data based on priority and a higher priority 1s given to
most recent used data based on time of change timestamps
associated with each data record respectively.

9. The method of claim 1, the each record has an associated
version number, the version number 1indicates a compatible
version of the software as a service software application.

10. The method of claim 1, wherein the customer data
includes one or more of: user data on which the application
operates on, application configuration done by a customer,
customer coded extension to the application and associated
configuration, and user data associated with customer coding.

11. The method of claim 10, wherein when the customer
data includes application configuration, the application con-
figuration 1s migrated automatically or replaced with a default
value 11 1t 1s no longer valid for the new version of software as
a service soltware application.

12. The method of claim 10, wherein when the customer
data includes a customer coded extension, the application
coded extension 1s migrated automatically or replaced with a
default value 1t it 1s no longer valid for the new version of
soltware as a service software application.

13. A method for upgrading a computing device, compris-
ng:

separating customer data from system soiftware on the

computing device, wherein customer data 1s stored out-
side of a system landscape and customer data 1s
decoupled from system data by replacing copies or links

US 8,700,745 B2

9

to system data within the customer data with one or more
system 1ndependent placeholders;

creating a pre-packaged 1mage with a new version of the
system software;

testing the pre-packaged image with test data;

shutting down the computing device;

installing the new version of the solftware as a service
system soltware using the pre-packaged image; and

restarting the computing device, the restart including trig-
gering a data migration job for the customer data,
wherein the data migration job 1s a background job that
does not block the computing device and at least partial
service 1s provided before the migration job 1s fully
completed, the atleast partial service includes providing

tull functionality for already migrated part of whole data
set and providing read access to data not yet migrated.

14. The method of claim 13, wherein the test data includes
customer data.

15. The method of claim 13, wherein the customer data
includes one or more of:

user data on which the application operates on, application
configuration done by a customer, customer coded
extension to the application and associated configura-
tion, and user data associated with customer coding.

16. The method of claim 13, wherein the customer data
refers to system data by using a system 1independent place-
holder that 1s replaced at runtime with a correct system spe-
cific value.

17. The method of claim 13, wherein the read access 1s
provided by a view to the data not yet migrated.

18. The method of claim 13, wherein the migration job
migrate data based on priority and a higher priority 1s given to
most recent used data based on time of change timestamps
associated with each data record respectively.

19. The method of claim 13, wherein unit of data record for
migration or each data record has an associated version num-
ber, the version number indicates a compatible version of the
soltware as a service system software.

20. The method of claim 13, wherein the computing device
1s a computer server or PC.

21. The method of claim 13, wherein when the customer
data includes application configuration, the application con-
figuration 1s migrated automatically or replaced with a default
value 11 1t 1s no longer valid for the new version of software as
a service system software.

22. A system comprising:

a computing device configured to run a virtual machine
(VM), the VM to host a system landscape for a software
as a service software application, the system landscape
comprising;

an application server; and

a database server;

10

15

20

25

30

35

40

45

50

10

wherein the database server stores system data and cus-
tomer data of a plurality of customers for the software as
a service software application in different databases, and
the databases for the system data are contained in the
virtual machine and the databases for the customer data
are outside of the virtual machine, customer data being,
decoupled from system data by replacing copies or links
to system data within the customer data with one or more

system independent placeholders, and
when the software as a service software application 1s to be

upgraded to a new version, the computing device 1s
configured to: detach the databases for the customer data

from the database server;
shut down the database server and application server;

reloading a new virtual machine from a new virtual
machine 1image containing the new version of the sofit-
ware as a service software application;

attach the databases for the customer data; and

start a migration job for the customer data.

23. The system of claim 22, wherein the new virtual
machine image 1s tested using test data that includes customer
data.

24. The system of claim 22, wherein the customer data
includes one or more of: user data on which the application
operates on, application configuration done by a customer,
customer coded extension to the application and associated
configuration, and user data associated with customer coding.

25. The system of claim 22, wherein the customer data
refers to system data by using a system independent place-
holder that 1s replaced at runtime with a correct system spe-
cific value.

26. The system of claim 22, wherein the migration job 1s a
background job that does not block the application and at least
partial service 1s provided before the migration job 1s fully
completed, the at least partial service includes providing full
functionality for already migrated part of whole data set and
providing read access to data not yet migrated.

277. The system of claim 26, wherein the read access 1s
provided by a view to the data not yet migrated.

28. The system of claim 22, wherein the migration job
migrate data based on priority and a higher priority 1s given to
most recent used data based on time of change timestamps
associated with each data record respectively.

29. The system of claim 22, wherein each unit of data
record for migration or each data record has an associated
version number, the version number indicates a compatible
version of the software as a service software application.

30. The system of claim 22, wherein when the customer
data includes application configuration, the application con-
figuration 1s migrated automatically or replaced with a default
value 11 1t 1s no longer valid for the new version of software as
a service soltware application.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

