US008694918B2
a2y United States Patent (10) Patent No.: US 8.694.918 B2
Mandelstein et al. 45) Date of Patent: Apr. 8, 2014
(54) CONVEYING HIERARCHICAL ELEMENTS 2005/0007383 Al 1/2005 Potter et al.
OF A USER INTERFACE 2005/0132336 Al 6/2005 Gotwals et al.
2006/0184589 Al1l* 8/2006 Leesetal.cc..co.l. 707/201
: : _ 2006/0225028 Al 10/2006 Lau etal.
(75) Inventors: Dan J. Mandelstein, Austin, 1X (US); 2006/0288183 Al* 12/2006 Boaz et al. .ooooovvvvvvve..... 711/164
Ivan M. Milman, Austin, TX (US); 2008/0270458 Al 10/2008 Gvelesiani
Martin A. Oberhofer, Bondort (DE); 2009/0031281 Al 1/2009 Zhang et al.
Sushain Pandit, Austin, TX (US) 2010/0180230 Al 7/2010 Bogner et al.
. : : : OTHER PUBLICATIONS
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) Boukhelifa, Nadia et al., A Coordination Model for Exploratory
N Notico: Qulb fisclai h Fih Multi-View Visualization, Proceedings of the conference on Coordi-
(%) otice: ut Jeft_ to aIEy dl Sfl almeclft ffierméj ¢ 3;’ nated and Multiple Views 1n Exploratory Visualization, Jul. 15, 2003,
%a Se 1(1: 118 SZXbEIL © 3705 AGJUSTEL HHaet pp. 76-85, IEEE Computer Society, Washington, DC United States.
T (b) by 4ys. Dearman, David et al., Adding Control-Flow to a Visual Data-Flow
_ Representation, Proceedings of the 13th International Workshop on
(21) Appl. No.: 13/366,629 Program Comprehension, May 2005, pp. 297-306, IEEE Computer
S Society, Washington, DC United States.
(22) Filed: Feb. 6,2012 Hagman, Johan, An Automatic Method for Arranging Symbols and
. S Widgets to Reflect their Internal Relations, CHI 97 extended
(65) Prior Publication Data abstracts on Human factors in computing, Mar. 1997, pp. 337-338,
US 2013/0205252 Al Aug. 8, 2013 ACM, New York, New York, United States.
Jain, A.K. et al., Data Clustering: A Review, ACM Computing Sur-
(51) Int. Cl. Veys, Sep.. 1999, pp. 264-323, vol. 31, Issue 3, ACM, New York, New
G06F 3/048 (201301) YOI'I(,, United States.
(52) U.S. CL (Continued)
USPC e, 715/810
(58) Field of Classification Search Primary Examiner — William Bashore
USPC e 715/810 Assistant Examiner — Rayeez Chowdhury
See application file for complete search history. (74) Attorney, Agent, or Firm — Patterson & Sheridan, LLP
(56) References Cited (57) ABSTRACT
U.S PATENT DOCUMENTS Techniques are disclosed f:OI‘ generating a Viev.v of a data flow
model. One or more groupings of data flow objects 1n the data
6,526,399 B1* 2/2003 Coulsonetal. 1/1 flow model 1s determined, based on an ontology. At least a
7,313,761 Bl 12/2007 Mcclellan first one of the groupings 1s collapsed in the view. The view 1s
;%g?’ggg E , 3//{380(8) Iﬁ‘?‘)u ;tlal‘ output for display in a user interface configured to selectively
7885206 B2 2/2011 Sapgsford ot al. expand and collapse the first group based on user input.
7,930,678 B2 4/2011 Tian et al.
2003/0085997 Al1* 5/2003 Takagietal. ... 348/143 19 Claims, 9 Drawing Sheets
Group into a higher-order data flow object _ ,
_ Add job_1 to the grouping based on the onto ontology
B
156 < 308

310

Va2

Category 1
Term_1
Term_2
J
Y
304
Hierarchy of business terms

Distance = 1 Distance = 2

@ Semantically related to

Semantically_related to

Term_3
‘

Semantically_related to

Ontology
&

302

US 8,694,918 B2
Page 2

(56) References Cited Zhou, Dehui et al., CloudView: Describe and Maintain Resource
View 1n Cloud, Second IEEFE International Conference on Cloud
Computing Technology and Science, 2010, pp. 151-158, IEEE Com-
puter Society, Washington, DC United States.

OTHER PUBLICATIONS

Kumar, Harsha P. et al., Browsing hierarchical data with multi-level

dynamic queries and pruning, International Journal of Human-Com-
puter Studies, 1997, pp. 103-124, Academic Press Limited, Atlanta,
GA, United States. * cited by examiner

US 8,694,918 B2

Sheet 1 0of 9

Apr. 8, 2014

U.S. Patent

00l

| Ol

ol 1

40IAdd 1L.Nd1NO 142}

40IAdd LNdNI

0Ll

JOV4ddLINI AHOMLIN

 ~—>=2Cl|

S104rdo
12°L MO 14 V1VQ
¢Sl 14d0ON MO 14 V1VAd
801} 4OVH01S
oGl MAIA

1001

0G1 ONI'THAdON Yivd
901 ASONWEN
7Ol d0SS300dd
cOl d41NdNOD

V¢ Ol

US 8,694,918 B2

suoneolddy

Eo ey SORAJEUY PSOUBApY paJnjonJisun

E 022 =
= > 80¢C
— 2 @~ - _ _)
= woo_amw buign) LGS
) wtm_>_ eled mw:o:m._m>> | ﬂu
Qs 0

uonelbajy sddy oslidisju3
- ~|_ T 0z
= @
o SJOWNSUOY |G syoday olLC [euonewJojul
= m _| @ Y m
< @
AN 4

/

¢al

U.S. Patent

US 8,694,918 B2

Sheet 3 of 9

Apr. 8, 2014

U.S. Patent

suoneol|ddy
eonAjeuy

=

()

SJaWNsuo) |19

SIOWNSUO) R

N

) 74

0€C

SoljAjeuy paoueApY
&}

saoIAIag buigny

2

@=+

7 LT

w

d¢ Ol

SUBe eled asnoysiepn

-
i N

T

961

N

8¢

salo)isodal ejleqm

uoneibau|

w+

W

9€¢

paJnjonJsun

W

[euIo)xe

W
sddy esudiau3

W
[BUOI)ELLIOJUI

a

@)

_uoielbaju| eleqes

N

red

\,

$90.N0G Ble(

N

4

cvé

US 8,694,918 B2

Sheet 4 of 9

Apr. 8, 2014

U.S. Patent

/

suones||ddy

[BOBA[BUY SoljA[euy psoueApy

]

@a

0G¢

2

Wr+

¢ Ol

SJOWNSU0) | mmwmm_
R y)
 SJAWNSUODER ,_, SoNAleuy g,
o s
om_‘L

ST

1'

& Hj_
_ $32IA8S buigny

ejed asnoyalep

=N
-8

Ll

wm_._o“__woa.m._ eledm,

|

9¢c

_uoneJtbaju| eyeq g,

N

vec

$301N0Q
ejeq

US 8,694,918 B2

Sheet S of 9

Apr. 8, 2014

U.S. Patent

¢0t

£ Ol

@m@

0] pajelal Ajjesnuewsg

ABojojuQO

aw

0} pajelal Ajeonuewas

0] pajeles Ajjeonuewsas

7 = 8oUe)SI(]

D

| = 90UE)SI(

o)
z1e ~(4 a0

ABojojuo ojuo ay) uo paseq Buidnolb ay) 0) | gol ppy

SWJa) ssauisng Jo AYoJelsiH

14812
A

= ¢ WI9]

| Alobejen

90¢

| Wi

199(q0 MmOy} elep Jop.io-iaybiy e ojyul dnoio

US 8,694,918 B2

Sheet 6 of 9

Apr. 8, 2014

U.S. Patent

v Ol

L0V
A
4)

apouU uoneibauj SUON MO paulelb-asiec) waisAs WaW

S8OIAI9S
buigno ‘weysAs |g SUON MO pauleib-asieon) Jawinsuold |g

Jew
elep ‘apou uoijelbaju Jawinsuog Ig MO paulelf-asieon) WajsAs |19
apou uonelbajuj SUON MO wnipapy | uonedldde esudisiug

qol 713
‘apou uonelbaj WwalsAs |9 MO LwnIpap Jew eleq [

uonealdde asudiajus
moll gS3 ‘qol 113 (waisAs |g ‘waisAs WA ybiy AJaA 0] WNIpsN Wwnipa apou uoneibajul -
Jew
Jojesado 113 | ejep ‘epou uolelbajy Uybiy AleA o] wnips|Al LNIpa gol 713 [~
a|ge) ejeq gol 713 WNIpawW 0] MO paulelb-aul4 lojesedo 113 |~
SUON Jojesado 11 3 MO pauiesb-aul4 a|qe) eleq
SapouU PIYd plI_A sopou juaJted plleA Aouanbal} abp3 Allejnuels | aNquUNY 20/} 103140
J J J J
00V 80V 90V 14017 CcOv

5oL

S0LY

L0LY

LY

0LY

VoL

“0LY

oLy
HOLY

US 8,694,918 B2

Sheet 7 0of 9

Apr. 8, 2014

U.S. Patent

G Ol

05

A

cmm_v mmsocemz, ysiignd / peo7 wiojsuel]

EIE

@

¢0G

mc_wcmm_o Ble(]

J
buibels aquosqngoeIX3

@
~ co;m._%& Emn_

@

uoneJbaju| eleq

904

(18)) painjonisun

@

)

(Joy) |euss)xs
3

01
O

W

(18Y) sddy asldiaju

g
(Jay) [euoljewLioul

@@

U.S. Patent Apr. 8, 2014 Sheet 8 of 9 US 8,694,918 B2

600

START

!

RECEIVE A DATA FLOW MODEL THAT INCLUDES
DATA FLOW OBJECTS

610

!

DETERMINE ONE OR MORE GROUPINGS OF THE DATA | —~
FLOW OBJECTS, TO BE INCLUDED IN A VIEW OF THE
DATA FLOW MODEL

620

!

COLLAPSE AT LEAST A FIRST ONE OF THE T
GROUPINGS IN THE VIEW

630

!

OUTPUT THE VIEW FOR DISPLAY IN A USER INTERFACE |~ 640
CONFIGURED TO ALLOW THE FIRST GROUPING TO
BE SELECTIVELY EXPANDED AND COLLAPSED
RESPONSIVE TO USER INPUT

FIG. 6

U.S. Patent Apr. 8, 2014 Sheet 9 of 9 US 8,694,918 B2

700

!

DETERMINE WEIGHTS FOR EACH PREDETERMINED ~
GROUPING FACTOR FOR EACH DATA FLOW OBJECT,
BASED ON ONE OR MORE WEIGHING RULES

710

'
/ FOR EACH PREDETERMINED GROUPING FACTOR\ 790

- P W

!

DETERMINE PROPOSED GROUPINGS (IF ANY) BASED ON [™
THE RESPECTIVE GROUPING FACTOR

730

| 740

i

YES \ MORE GROUPING FACTORS REMAIN? /

NO

!

APPLY PROPOSED GROUPINGS TO THE VIEW, ~—
REVOLVING CONFLICTING GROUPINGS BASED ON THE
DETERMINED WEIGHTS

750

FIG. 7

US 8,694,918 B2

1

CONVEYING HIERARCHICAL ELEMENTS
OF A USER INTERFACE

BACKGROUND

Organizations commonly manage large-scale information
systems, which can include a very large number of both
interrelated and independent information assets. While infor-
mation assets can vary 1n nature, examples include structured
systems such as traditional relational databases as well as
unstructured systems such as content repositories and docu-
ment stores. The degree of formality with which these sys-
tems are monitored, registered and/or managed can vary
extensively within a large enterprise. It 1s not unusual for a
large enterprise to manage thousands of distinct information
repositories along with a (sometimes unknown) number of
ad-hoc data stores and local working environments, which
can themselves also number 1n the thousands. As noted, the
information assets of a given enterprise may often be inter-
dependent. For example, one information asset may store data
extracts from another information asset. Similarly, informa-
tion assets can share processing states during data integration
(or during extract, transform and load (E'TL) processes) or
provide related iformation repositories which store equiva-
lent information segmented by line of business, and so on.

SUMMARY

Embodiments of the invention provide a method, computer
program product and system for performing an operation for
generating a view of a data flow model. The operation
includes receiving the data flow model, where the data flow
model includes a plurality of data flow objects, where each
data flow object 1s distinctly identifiable via a respective data
flow object name. The operation also 1includes determining,
based on an ontology, one or more groupings of the plurality
of data flow objects, each grouping containing a respective
plurality of data flow objects, where each grouping is dis-
tinctly identifiable via a respective grouping name. The
operation also includes collapsing at least a first one of the
groupings 1n the view, such that the first grouping 1s visible in
the view while any data tlow object 1n the first grouping 1s not
visible. The operation also includes outputting the view for
display in a user interface configured to selectively expand
and collapse the first grouping based on user input.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited aspects are
attained and can be understood in detail, a more particular
description of embodiments of the invention, brietly summa-
rized above, may be had by reference to the appended draw-
Ings.

It 1s to be noted, however, that the appended drawings
illustrate only typical embodiments of this mnvention and are
therefore not to be considered limiting of its scope, for the
invention may admait to other equally effective embodiments.

FIG. 1 15 a block diagram 1llustrating a system for gener-
ating a view of a data flow model, according to one embodi-
ment of the mvention.

FIGS. 2A-2C 1illustrate the data flow model and a view
thereol, according to one embodiment of the mvention.

FI1G. 3 1llustrates an ontology for determining groupings of
data tlow objects, according to one embodiment of the mnven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1llustrates an object type specification for determin-
ing groupings of data tflow objects, according to one embodi-

ment of the imnvention.

FIG. 5 illustrates another view of a data flow model,
according to one embodiment of the mvention.

FIG. 6 1s a tlowchart depicting a method for generating a
view of a data flow model, according to one embodiment of
the mvention.

FIG. 7 1s a flowchart depicting a method for determining,
one or more groupings of the data flow objects, according to
one embodiment of the invention.

DETAILED DESCRIPTION

Embodiments of the invention provide techniques for gen-
erating a view of a data flow model representing a plurality of
information assets. As used herein, an information asset
refers to any form of information technology used by a given
organizational entity or grouping thereof, e.g., application
servers, databases and underlying tables and columns, data
models, functions, jobs, scripts, ETL tools or processes,
reports, network services, other server systems and applica-
tions, networking devices, appliance systems, etc. Each infor-
mation asset may be modeled as a data flow object in the data
flow model. In one embodiment, a viewing tool 1s provided
that 1s configured to generate a view ol a received data flow
model. In generating the view, the viewing tool programmati-
cally groups data tlow objects 1n a data flow model. The
viewing tool also collapses at least one of the groups in the
view. At least 1n some embodiments, at least one other group
remains expanded in the view. The viewing tool then outputs
the view for display to a user.

By using the techniques disclosed herein, the data model-
ing tool may generate views that are more user-friendly than
alternative approaches that do not involve programmatically
grouping and/or collapsing data flow objects. In particular,
the techniques disclosed herein may be used to generate
views for which user-friendliness better scales with complex-
ity of the views, e.g., as measured by a count of data tlow
objects in the views. Further, by using the techniques dis-
closed herein, views may be generated more efficiently 1n
some cases, at least relative to alternative approaches that
require manual user input specitying which data flow objects
to group together and/or collapse. The generated views may
also be more effective at hiding complexity than such alter-
native approaches.

In the following, reference 1s made to embodiments of the
invention. However, 1t should be understood that the inven-
tion 1s not limited to specific described embodiments. Instead,
any combination of the following features and elements,
whether related to different embodiments or not, 1s contem-
plated to implement and practice the invention. Furthermore,
although embodiments of the invention may achieve advan-
tages over other possible solutions and/or over the prior art,
whether or not a particular advantage 1s achieved by a given
embodiment 1s not limiting of the invention. Thus, the fol-
lowing aspects, features, embodiments and advantages are
merely 1llustrative and are not considered elements or limita-
tions of the appended claims except where explicitly recited
in a claim(s). Likewise, reference to “the invention™ shall not
be construed as a generalization of any inventive subject
matter disclosed herein and shall not be considered to be an
clement or limitation of the appended claims except where
explicitly recited in a claim(s).

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the

US 8,694,918 B2

3

present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or 1n connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, 1n baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an 1nstruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including,
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soiftware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart i1llustrations and/
or block diagrams, and combinations of blocks in the tlow-
chart illustrations and/or block diagrams, can be imple-

10

15

20

25

30

35

40

45

50

55

60

65

4

mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program mstructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified 1in the flowchart
and/or block diagram block or blocks.

Embodiments of the mvention may be provided to end
users through a cloud computing intrastructure. Cloud com-
puting generally refers to the provision of scalable computing
resources as a service over a network. More formally, cloud
computing may be defined as a computing capability that
provides an abstraction between the computing resource and
its underlying technical architecture (e.g., servers, storage,
networks), enabling convenient, on-demand network access
to a shared pool of configurable computing resources that can
be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. Thus, cloud com-
puting allows a user to access virtual computing resources
(e.g., storage, data, applications, and even complete virtual-
1zed computing systems) 1n “the cloud,” without regard for
the underlying physical systems (or locations of those sys-
tems) used to provide the computing resources.

Typically, cloud computing resources are provided to a
user on a pay-per-use basis, where users are charged only for
the computing resources actually used (e.g. an amount of
storage space consumed by a user or a number of virtualized
systems instantiated by the user). A user can access any of the
resources that reside 1n the cloud at any time, and from any-
where across the Internet. In context of the present invention,
the information assets and/or data flow models may be stored
in the cloud. Having the information assets and data flow
models stored in the cloud allows the user to access the
information assets and data tflow models from any computing
system attached to a network connected to the cloud (e.g., the
Internet).

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the

US 8,694,918 B2

S

blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1n the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

FIG. 1 1s a block diagram illustrating a system 100 for
generating a view ol a data tlow model, according to one
embodiment of the mvention. The networked system 100
includes a computer 102. The computer 102 may also be
connected to other computers via a network 130. In general,
the network 130 may be a telecommunications network and/
or a wide area network (WAN). In a particular embodiment,
the network 130 1s the Internet.

The computer 102 generally includes a processor 104 con-
nected via a bus 112 to a memory 106, a network interface
device 110, a storage 108, an input device 114, and an output
device 116. The computer 102 1s generally under the control
of an operating system. Examples of operating systems
include UNIX, versions of the Microsolt Windows operating
system, and distributions of the Linux operating system.
(UNIX 1s a registered trademark of The Open Group 1n the
United States and other countries. Linux 1s a registered trade-
mark of Linus Torvalds 1n the United States, other countries,
or both. Microsoft, Windows 1s a trademark of Microsoit
Corporation 1n the United States, other countries, or both.)
More generally, any operating system supporting the func-
tions disclosed herein may be used. The processor 104 1s
included to be representative of a single CPU, multiple CPUs,
a single CPU having multiple processing cores, and the like.
Similarly, the memory 106 may be a random access memory.
While the memory 106 1s shown as a single entity, 1t should be
understood that the memory 106 may comprise a plurality of
modules, and that the memory 106 may exist at multiple
levels, from high speed registers and caches to lower speed
but larger DRAM chips. The network interface device 110
may be any type of network communications device allowmg
the computer 102 to communicate with other computers via
the network 130.

The storage 108 may be a persistent storage device.
Although the storage 108 1s shown as a single unit, the storage
108 may be a combination of fixed and/or removable storage
devices, such as fixed disc drives, solid state drives, floppy
disc drives, tape drives, removable memory cards or optical
storage. The memory 106 and the storage 108 may be part of
one virtual address space spanning multiple primary and sec-
ondary storage devices.

The input device 114 may be any device for providing input
to the computer 102. For example, a keyboard and/or a mouse
may be used. The output device 116 may be any device for
providing output to a user of the computer 102. For example,
the output device 116 may be any conventional display screen
or set of speakers. Although shown separately from the input
device 114, the output device 116 and mput device 114 may
be combined. For example, a display screen with an inte-
grated touch-screen may be used.

As described above, one embodiment provides a viewing
tool configured to generate a view of a received data flow
model. One example of a viewing tool 1s a data modeling tool
such as the IBM InfoSphere Data Architect data design solu-
tion. The Data Architect 1s configured to allow users to dis-
cover, model, visualize, relate, and/or standardize enterprise
data assets. Another example of a viewing tool 1s a solution
architecting tool such as the IBM InfoSphere Blueprint

Director also available from IBM Corporation. The Blueprint

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Director 1s configured to allow users such as information
architects to define a solution architecture for an information
project such as a business 1ntelligence (BI) project, a Master
Data Management (MDM) project, or a data consolidation
project. Still another example of a viewing tool 1s a data
impact analysis tool (also referred to as a data lineage tool)
such as the IBM InfoSphere Metadata Workbench. The Meta-
data Workbench 1s configured to allow users such as ETL
developers to troubleshoot ETL data feed 1ssues by examin-
ing a specified part or all of an ETL architecture for a data
warchouse. In some cases, the E'TL architecture may contain
tens of thousands of ETL jobs for extracting, cleansing, and
transforming data from various data sources of the data ware-
house. (IBM and InfoSphere are trademarks of International
Business Machines Corporation, registered 1n many jurisdic-
tions worldwide.)

Further, although embodiments are described herein with
reference to the particular embodiment of a data modeling
tool, such 1s not mtended to be limiting of the invention.
Those skilled in the art will recognize that the techniques
disclosed herein may be employed in any viewing tool gen-
erally, including solution architecting tools, data impact
analysis tools, etc.

As shown, the memory 106 of the computer 102 includes a
data modeling tool 150 configured to generate a view 156 of
a data tlow model 152, the data flow model 152 containing
data tlow objects 154. As shown, the data flow model 152 1s
included 1n the storage 108 of the computer 102. The data
flow model 152 may also be referred to as a solution diagram,
which may pertain to various solutions such as BI, Master

Data Management (MDM) E

ETL, etc. In one embodiment, the
data modeling tool 150 1s further configured to generate the
data flow model 152 based on user input. To this end, the data
modeling tool 150 may allow a user to: add information assets
to the data flow model 152 as data flow objects 154 and/or link
the data flow objects 154 1n the data tlow model 152, etc. Once
generated, the data flow model 152 may aid the user in
addressing business needs such as information asset manage-
ment, data flow management, data impact analysis, data lin-
cage determination, etc.

FIG. 2A 1llustrates the data flow model 152, according to
one embodiment of the invention. As shown, the data flow
model 152 includes data flow objects 202, 204, 206, 208
representing i1nformational data, enterprise applications,
external data, and unstructured data, respectively. The data
flow model 152 further includes data tlow objects 210, 212,
214 representing data integration, data warehouse, and data
marts, respectively. The data flow model 152 further includes
data tflow objects 216, 218, 220, 222, 224 representing
reports, cubing services, advanced analytics, BI consumers,
and analytical applications, respectively. The data flow model
162 also contains edges connecting the data flow objects. For
example, an edge 226 connects each of the data tlow objects
202, 204, 206, 208 to the data flow object 210 representing
data integration. Similarly, the data flow object 210 represent-
ing data integration 1s connected to the data flow object 212
representing data warehouse, and so forth.

As described above, the data modeling tool 150 1s config-
ured to generate the view 156 of the data flow model 152. To
this end, 1n one embodiment, the data modeling tool 150
programmatically determines one or more groupings of the
data flow objects in the data flow model 152. In some embodi-
ments, each grouping may be distinctly identifiable via a
respective grouping name. The grouping name for a grouping
may also be programmatically generated based on the data
flow objects contained 1n the grouping. For example, data
flow object names and/or substrings thereof may be concat-

US 8,694,918 B2

7

cnated or otherwise combined to form a grouping name. In
other embodiments, the grouping name may also be gener-
ated at least 1n part based on one or more attributes associated
with the data flow objects contained in the grouping, such as
object type, object category, efc.

FIGS. 2B-2C illustrates the view 156 of the data tlow
model 152, according to one embodiment of the invention. As
shown 1 FIG. 2B, the view 156 includes data tflow objects
232, 234, 236, 238, 240 representing groupings for data
sources, data integration, data repositories, analytics, and
consumers, respectively. The grouping for data sources
includes the data tlow objects representing data integration,
data warehouse, and data marts, respectively. The grouping
for data integration includes the data flow object representing
data integration. The grouping for analytics includes the data
flow objects representing reports, cubing services, and
advanced analytics, respectively. The grouping for consum-
ers includes the data flow objects representing Bl consumers
and analytical applications, respectively.

In one embodiment, the view 156 also includes a control
242 configured to collapse/expand the data flow object 232
based on user input. For example, upon recerving user input
activating the control 242, the data modeling tool 150 may
output for display a collapsed version of the data tlow object
232, shown 1n FIG. 2C as the data tlow object 262. The
collapsed view 1s characterized by the contained data flow
objects 202, 204, 206, 208 being hidden from the view 156.
The user may again activate the control 242 to request the data
modeling tool 150 to output for display the expanded version
of the data flow object 262—1.¢., the data flow object 242 of
FIG. 2B. The expanded version 1s characterized by the con-
tained data tlow objects 202,204, 206, 208 being visible in the
view 156. In some embodiments, existing groupings may be
turther grouped 1nto higher-order groupings, thus forming a
hierarchy of groupings. Accordingly, by using the techniques
disclosed herein, the data modeling tool 150 may generate
drastically simplified views of data tlow models, especially 1n
cases where the data flow models 152 contain a vast amount
of data tlow objects to be displayed.

As described above, 1n one embodiment, the data modeling
tool 150 1s configured to programmatically determine one or
more groupings of the data flow objects 1n the data flow model
152. The groupings may be determined based on one or more
predetermined grouping factors. Examples of grouping fac-
tors include an ontology of business terms of an organization,
an object type specification for data flow objects, edge counts
of data flow objects, and user annotations for data flow
objects.

FIG. 3 illustrates the ontology of business terms 302,
according to one embodiment of the invention. As shown, the
ontology of business terms 302 stores associations between
business terms retrieved from a predefined hierarchy of busi-
ness terms 304. Depending on the embodiment, the hierarchy
ol business terms may be considered as a part of the ontology.
The hierarchy of business terms organizes and categorizes
business terms of an organization, while the ontology of
business terms 302 stores and characterizes associations
between business terms to provide descriptive iformation
about the nature of the associations. An example of an asso-
ciation between business terms 1s one where two different
business terms refer to the same concept. The ontology may
be used to determine a semantic distance between two busi-
ness terms, where the semantic distance 1s measured 1n terms
ol a count of associations between business terms.

For example, 11 the ontology indicates that a first business
term 1s semantically related to a second business term, then
the semantic distance between the business terms 1s one.

10

15

20

25

30

35

40

45

50

55

60

65

8

Alternatively, 11 the ontology indicates that the first business
term 1s semantically related to a third business term which, in
turn, 1s semantically related to a fourth business term, then the
semantic distance between the first and fourth business terms
1s two. In some embodiments, i the semantic distance
between two terms of two data tlow objects, respectively,

satisfies a predefined threshold, then the two data flow objects
are candidates for grouping into a higher-order data flow

object. For example, 11 a data tlow object 312 representing an
ETL job 1s sufficiently proximate semantically to a data flow
object 308 representing a table column (or a data flow object
310 representing a database), then the data modeling tool 150
may add the data flow object 312 to a higher-order data flow
object 306.

FIG. 4 1llustrates an object type specification 400 for data
flow objects, according to one embodiment of the invention.
As described above, 1n one embodiment, the data modeling
tool 150 may determine one or more groupings of the data
flow objects based on the object type specification 400. The
object type specification 400 describes a set of data flow
object types 410 and associated attributes 401. The attributes
401 1include granularity 402, edge frequency 404, valid parent
nodes 406, and valid child nodes 408. The object types 410
may be organized in the form of an object type hierarchy. In
some embodiments, the object type hierarchy 1s included 1n
the object type specification 400. For example, the object type
hierarchy may contain the associations shown in the follow-
ing Table., 1n a direction from a leal node to the root node of
the object type hierarchy:

TABLE 1

Example object type hierarchy

Data table — ETL operator — ETL job — integration node — BI system

The above table shows associations between object types 1n a
direction from a position proximate to a leat node 1n the object
type hierarchy to a position proximate to a root node in the
object type hierarchy. In particular, data table occupies a low
position in the object type hierarchy, while Bl system occu-
pies a high position 1n the object type hierarchy.

In one embodiment, the granularity 402 of an object type
characterizes a depth of the object type in the object type
hierarchy. For example, an object type having fine-grained
granularity may be disposed far away from the root node of
the object type hierarchy, while an object type having coarse-
grained granularity may be disposed proximate to the root
node of the object type hierarchy. The edge frequency 404 of
an object type characterizes a count of edges that a data flow
object of the object type 1s expected to have. The valid parent
nodes 406 of an object type indicate which object types are
allowed as parent nodes of the object type, according to the
object type hierarchy. The valid child nodes 408 of an object
type indicate which object types are allowed as child nodes of
the object type, according to the object type hierarchy. From
the valid parent nodes 406 and valid child nodes 408, the data
modeling tool 150 may determine a set of valid associations
between data tlow object types. For example, such a set may
include the following data flow object pairs, each pair repre-
senting a valid association: (Bl system, data mart), (BI sys-
tem, 1ntegration node), (MDM system, integration node),
(data table, ETL operator), (ETL operator, ETL job).

In one embodiment, the object types 410 include data table
410,, ETL operator 410,, ETL job 410,, integration node
410, data mart 401 ., enterprise application 410, Bl system

410-, Bl consumer 410, and MDM system 410,. As shown 1n

US 8,694,918 B2

9

FIG. 4, data flow objects of the type of data table 410, are
expected to have fine-grained granularity and low edge ire-
quency. Further, no child nodes of such data tlow objects are
valid, but an ETL operator 1s a valid parent node of such data
flow objects. Stmilarly, the object type specification 400 char-
acterizes the attributes 401 of the other object types 410 1n
FIG. 4.

As described above, 1n one embodiment, the data modeling
tool 150 may determine one or more groupings of the data
flow objects based on edge counts of data flow objects. For
example, referring again to FIG. 2A, the data modeling tool
150 may determine that the integration node 210 has four
inbound edges from four data flow objects 202, 204, 206, 208,
respectively, and that each of the four data flow objects has no
other outbound edges. Based on this determination, the data
modeling tool 150 may decide to group the four data flow
objects to form a higher-order data tlow object. Alternatively,
if each of the four data tlow objects have outbound edges to
the same set of data flow objects, then the data modeling tool
150 may group the four data flow objects to form a first
higher-order data flow object and optionally also group the set
of data flow objects to form a second higher-order data flow
object.

As described above, 1n one embodiment, the data modeling
tool 150 may determine one or more groupings of the data
flow objects based on one or more user annotations. The user
annotations may indicate whether to group, collapse, and/or
expand a given data flow object, regardless of the determina-
tion in those regards by the data modeling tool 150. In other
words, a user may specily an annotation to manually preempt
and/or override any behavior of the data modeling tool 150
that may not be desired. In some embodiments, one or more
data flow objects may be hidden completely from the gener-
ated view based on the user annotations indicating which
information assets are deemed to be unimportant to the user 1n
a given data flow model.

As described above, in one embodiment, the groupings
may be determined based on one or more predetermined
grouping factors such as the ontology, the object type speci-
fication, the edge counts, and the user annotations. Fora given
data flow object, however, the grouping suggested by a first
grouping factor may conflict with the grouping suggested by
a second grouping factor. For example, the data modeling tool
150 may determine that the data flow object should be
grouped with a first grouping based on the ontology and a
second grouping based on the object type specification. At
least 1n some embodiments, the data flow object 1s not
allowed to be grouped with both of what would otherwise be
two disjoint groupings, thus resulting in the conflict. To
resolve conflicts, the data modeling tool 150 may assign
weights to each grouping factor—or combination of grouping,
factor and data tlow object—and resolve the contlicts 1n favor
of the grouping factor having the highest weight.

In one embodiment, the weights may be determined based
on one or more predefined weighting rules. At least in some
embodiments, each grouping factor has an associated set of
one or more weighting rules. Each weight may be a numerical
value within a predefined range of valid values. In one
embodiment, the weighting rule for the ontology may specity
to determine a weight based on a measure of completeness of
the ontology. The weighting rule for the object type specifi-
cation may specily to determine a weight commensurate with
a depth of the object type 1n the object type hierarchy. In other
words, object types lower 1n the hierarchy are assigned higher
weights relative to object types higher in the lierarchy. For
instance, assume that the data modeling tool 150 stores
welghts 1n a two-dimensional array W[n][f], where W 1s a

5

10

15

20

25

30

35

40

45

50

55

60

65

10

name of the array, where n represents the total count of data
flow objects 1n the data flow model, and where { represents the
total count of distinct grouping factors. Put another way, the
two-dimensional array W[n|[1] stores a weight associated
with each weighting factor for each data flow object 1n the
data flow model. In one embodiment, an ETL job, being
disposed lower 1n the object type hierarchy, may be assigned
aweight in the range o1 [0.8, 1], while a data warchouse, being
disposed higher 1n the object type hierarchy, may be assigned
a weight 1n the range of [0.3, 0.7].

In one embodiment, the weighting rule for the edge counts
may specily to determine a weight based on one or more
attributes associated with the data flow model, such as a
scenario type that 1s being modeled. The weighting rule for
the user annotations may specily to determine a weight based
on a role of the user creating the user annotations, such that
more significant roles are assigned higher weights. For
example, the data modeling tool 150 may assign low weights
for end users, medium weights for business analysts, and high
weilghts for data stewards.

In one embodiment, after determining the weights for the
grouping factors for each data tlow object in the data flow
model, the data modeling application 150 groups data flow
objects based on the grouping factors, resolving contlicts
based on the determined weights. In some embodiments, the
data modeling application 150 may turther adjust the weights
based on user input specifying a measure of ease of use of the
generated view. The data modeling application 150 may take
into account the adjusted weights when generating subse-
quent views of the data flow model.

FIG. 5 illustrates a view 500 of a data flow model, accord-
ing to one embodiment of the invention. In one embodiment,
the data modeling tool 150 may determine whether to group
together multiple data flow objects 504 1nto a grouping 502
having an associated control 506 for collapsing/expanding
the grouping 502. In some embodiments, the data modeling
tool 150 may also determine whether to collapse or expand
the grouping 502 by default—i.e., when the grouping 502 1s
first presented to the user. These determinations may be made,
for example, based on the object type specification 400 of
FIG. 4. For instance, the data modeling tool 150 may deter-
mine to expand the grouping 502 by default upon determining
that the contained data flow objects 504 form a chain of data
flow objects having an edge count of one within the chain and
exceeding a predefined length or, alternatively, exceeding a
predefined count of levels in the object type hierarchy. The
data modeling tool 150 may determine, from the chain, that
the contained data flow objects should not be grouped
together. Alternatively, the data modeling tool 150 may deter-
mine that the contained data flow objects should be grouped
together but not collapsed. The manner 1n which the object
type specification 400 1s used 1n grouping, expanding and/or
collapsing may be tailored to suit the needs of a particular
case. For example, the determinations described above may
additionally be based upon whether the user interface of the
data modeling application 150 has suilicient room for dis-
playing a grouping in expanded fashion, where the room may
be measured 1n terms of a ratio between a count of data flow
objects visible 1n the user interface and a maximum count of
data flow objects supported by the current size of the user
interface (e.g., as measured 1n pixels).

FIG. 6 1s a flowchart depicting a method 600 for generating,
a view ol a data flow model, according to one embodiment of
the invention. As shown, the method 600 begins at step 610,
where the data modeling tool 150 recerves a data flow model
that includes data flow objects. At step 620, the data modeling
tool 150 determines one or more groupings of the data flow

US 8,694,918 B2

11

objects, to be included in the view. The step 620 1s further
described below 1n conjunction with FIG. 7. At step 630, the
data modeling tool 150 collapses at least a first one of the
groupings in the view or, alternatively, determine that the first
grouping remain expanded. Depending on the embodiment,
the collapsing step may be performed as part of step 620. At
step 640, the data modeling tool 150 outputs the view for
display 1n a user interface configured to allow the first group-
ing to be selectively expanded and collapsed responsive to
user mput. After the step 640, the method 600 terminates.

FI1G. 7 1s a flowchart depicting a method 700 for determin-
ing one or more groupings of the data tlow objects, according
to one embodiment of the mvention. The method 700 corre-
sponds to the step 620 of FIG. 6. As shown, the method 700
begins at step 710, where the data modeling tool 150 deter-
mines weights each combination of grouping factor and data
flow object, based on one or more weighting rules. At step
720, the data modeling tool 150 enters a loop to process each
grouping factor. At step 730, the data modeling tool 150
determines proposed groupings (1f any) based on the respec-
tive grouping factor. At step 740, the data modeling tool 150
determines whether additional grouping factors remain. It so,
the method 700 returns to the step 720 to process a next
grouping factor. Otherwise, the data modeling tool applies
proposed groupings to the view, resolving contlicting group-
ings based on the determined weights (step 750). After the
step 750, the method 700 terminates.

Accordingly, embodiments of the invention provide tech-
niques for generating a view of a data flow model. One
embodiment provides a viewing tool configured to determine
one or more groupings of data flow objects based on one or
more grouping factors. The viewing tool 1s further configured
to collapse at least a first grouping in the view and output the
view for display in a user interface configured to the first
grouping to be selectively expanded and collapsed responsive
to user input. By using the techniques disclosed herein, the
viewing tool may generate views that are more user-friendly
at least 1n some cases, at least relative to alternative
approaches that do not imvolve programmatically grouping
and/or collapsing data flow objects, alternative approaches
that do not consider the grouping factors disclosed herein, or
alternative approaches that group data flow objects solely
based on manual user input. Further, although embodiments
of the invention have been disclosed with reference to gener-
ating a view of a data flow model, other embodiments are
broadly contemplated. For example, the techmques disclosed
herein may generally be applied to any user interface display
of a set of hierarchically related visual elements.

While the foregoing 1s directed to embodiments of the
present mvention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof 1s determined by the
claims that follow.

What 1s claimed 1s:

1. A computer-implemented method for generating a view
of a data tlow model, comprising:

receiving the data tlow model, wherein the data flow model

includes a plurality of data tflow objects;

determining, one or more groupings of the plurality of data

flow objects and by operation of one or more computer
processors, each grouping containing a respective plu-
rality of data flow objects wherein the one or more
groupings are determined based on at least three group-
ing factors selected from: (1) an ontology; and (11) an
object type specification for the data flow objects; (i11)
counts of edges of the data tlow objects; and (1v) one or
more user annotations of the data flow objects; each of

5

10

15

20

25

30

35

40

45

50

55

60

65

12

the at least three grouping factors having a respective
weilght determined based on one or more weighting rules
and with which a grouping conflict1s resolved 1n favor of
the grouping factor having the highest weight;

collapsing at least a first one of the groupings 1n the view,
such that the first grouping 1s visible in the view while
any data flow object in the first grouping 1s not visible;
and

outputting the view for display 1n a user interface config-
ured to selectively expand and collapse the first grouping
based on user mput.

2. The computer-implemented method of claim 1, wherein
expanding the first grouping comprises rendering the first
grouping and any data flow object 1n the first grouping visible
in the view.

3. The computer-implemented method of claim 1, wherein,
the one or more groupings are determined based on the object
type specification for the data flow objects.

4. The computer-implemented method of claim 1, wherein,
the one or more groupings are determined based on the counts
of edges of each the data flow objects.

5. The computer-implemented method of claim 1, wherein,
the one or more groupings are determined based on the one or
more user annotations of the data flow objects.

6. A computer program product, comprising:

a computer-readable memory having computer-readable
program code embodied therewith for generating a view
of a data tlow model, the computer-readable program
code comprising;:
computer-readable program code configured to recerve

the data flow model, wherein the data flow model
includes a plurality of data tlow objects,

computer-readable program code configured to determine,
one or more groupings of the plurality of data flow
objects and by operation of one or more computer pro-
cessors, each grouping containing a respective plurality
of data tlow objects, wherein the one or more groupings
are determined based on at least three grouping factors
selected from: (1) an ontology; and (11) an object type
specification for the data flow objects; (111) counts of
edges of the data flow objects; and (1v) one or more user
annotations of the data flow objects; each of the at least
three grouping factors having a respective weight deter-
mined based on one or more weighting rules and with
which to resolve a grouping contlict 1n favor of the
grouping factor having the highest weight;

computer-readable program code configured to collapse at
least a first one of the groupings in the view, such that the
first grouping 1s visible 1n the view while any data tlow
object 1n the first grouping 1s not visible; and

computer-readable program code configured to output the
view for display 1n a user interface configured to selec-
tively expand and collapse the first grouping based on
user 1nput.

7. The computer program product of claim 6, wherein
expanding the first grouping comprises rendering the first
grouping and any data flow object 1n the first grouping visible
in the view.

8. The computer program product of claim 6, wherein, the
one or more groupings are determined based on the object
type specification for the data flow objects.

9. The computer program product of claim 6, wherein, the
one or more groupings are determined based on the counts of
edges of the data tlow objects.

10. The computer program product of claim 6, wherein, the
one or more groupings are determined based on the one or
more user annotations of the data flow objects.

US 8,694,918 B2

13

11. A system, comprising;:

one or more computer processors;

a memory containing a program, which when executed by
the one or more computer processors 1s configured to
perform an operation for generating a view ol a data flow
model, the operation comprising:

receiving the data flow model, wherein the data flow model
includes a plurality of data flow objects; determining,
one or more groupings of the plurality of data flow
objects, each grouping containing a respective plurality
of data tlow objects, wherein the one or more groupings
are determined based on at least three grouping factors
selected from: (1) an ontology; and (11) an object type
specification for the data flow objects; (111) counts of
edges of the data flow objects; and (1v) one or more user
annotations of the data flow objects; each of the at least
three grouping factors having a respective weight deter-
mined based on one or more weighting rules and with
which to resolve a grouping conflict 1n favor of the
grouping factor having the highest weight;

collapsing at least a first one of the groupings in the view,
such that the first grouping 1s visible in the view while
any data flow object in the first grouping 1s not visible;
and

outputting the view for display in a user interface config-
ured to selectively expand and collapse the first grouping,
based on user mput.

12. The system of claim 11, wherein expanding the first
grouping comprises rendering the first grouping and any data
flow object 1n the first grouping visible in the view.

13. The system of claim 11, wherein, the one or more
groupings are determined based on the object type specifica-
tion for the data tlow objects.

14. The system of claim 11, wherein, the one or more
groupings are determined based on the counts of edges of the
data flow objects.

15. The system of claim 11, wherein the ontology charac-
terizes associations between terms retrieved from a pre-
defined hierarchy of terms, wherein the ontology includes the
hierarchy of terms, wherein the ontology 1s usable in order to

10

15

20

25

30

35

40

14

determine a semantic distance between terms, wherein the
semantic distance 1s measured 1n terms of a count of associa-
tions between terms.

16. The system of claim 15, wherein the object type speci-
fication describes a set of data flow object types and associ-
ated attributes, wherein the attributes comprise granularity,
edge frequency, valid parent nodes, and valid child nodes,
wherein the object types are organized via an object type
hierarchy, wherein the object type hierarchy is included 1n the
object type specification.

17. The system of claim 16, wherein the granularity char-
acterizes a depth of an object type in the object type hierarchy,
wherein the edge frequency characterizes an expected count
of edges that a data tlow object of an object type.

18. The system of claim 17, wherein the one or more
groupings comprise a plurality of groupings, wherein the one
or more user annotations are generated based at least in part
on 1mput recerved from a user, wherein the one or more user
annotations comprise a plurality of user annotations includ-
ng:

a {irst user annotation specitying to group a given data flow

object;

a second user annotation specifying to collapse a first
grouping of the plurality of groupings; and

a third user annotation specilying to expand a second
grouping of the plurality of groupings.

19. The system of claim 18, wherein the one or more
welghting rules comprise a plurality of weighting rules
including;

a first weighting rule specilying to determine a weight

based on a measure of completeness of the ontology;

a second weighting rule specifying to determine a weight
commensurate with a depth of the object type 1n the
object type hierarchy;

a third weighting rule specitying to determine a weight
based on one or more attributes associated with the data

flow model; and

a Tourth weighting rule specifying to determine a weight
based on a user role associated with the user;

wherein each grouping factor has an associated, distinct set
of one or more weighting rules.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

