US008689187B2
a2y United States Patent (10) Patent No.: US 8.689,187 B2
Esposito et al. 45) Date of Patent: Apr. 1, 2014
(54) PREDICTIVE RUN TESTING (56) References Cited
(75) Inventors: Steven G. Esposito, Westiord, MA (US); U.S. PATENT DOCUMENTS
Kiran Chhabra, New Delhi (IN); Saran 5673387 A 0/1997 Chen of al
Prasad, New Delhi (IN); D. Scott 5,926,622 A 7/1999 Hardin et al.
Baeder, Auburn, MA (US) 6,668,340 B1* 12/2003 Bakeretal.c..c...... 714/38
6,694,509 Bl 2/2004 Stoval et al.
S : 7,747,987 Bl* 6/2010 Akarteetal. 717/131
(73) Assignee: Cadence Design Systems, Inc., San 2005/0216486 Al* 9/2005 Barshefsky etal. 707/100

Jose, CA (US)
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 Primary Examiner — Wei Zhen

U.S.C. 154(b) by 1574 days. Assistant Examiner — Lanny Ung,
(74) Attorney, Agent, or Firm — Altord Law Group, Inc.;
(21) Appl. No.: 11/801,037 lob1 C. Clinton
(22) Filed: May 7, 2007 (57) ABSTRACT
A test object can be selectively included 1n a test run based on
(65) Prior Publication Data predicting the behavior of the test object. In one embodiment,

the present invention includes predicting how likely the test
object1s to produce a failure 1n a test run and deciding whether
to include the test object 1n the test run based on the predicted
likelihood. This likelihood of producing a failure may be

US 2008/0282124 Al Nov. 13, 2008

(51) Int.CL

GO6t 9/44 (2006.01) based on any number of circumstances. For example, these
(52) U.S. Cl. circumstances may include the history of prior failures and/or

USPC e, 717/124 the length of time since the test object was last included in a
(58) Field of Classification Search test run.

USPC e, 717/124

See application file for complete search history. 29 Claims, 4 Drawing Sheets

Calculate Failure Record
Metric of Test Object
122

Calculate Failure Currency
Metric of Test Object
124

Calculate Failure Behavior
Metric of Test Object
126

No Yes

Failure Behavior Metric
Above Threshold?

Exclude Selected Test Object
from Regression Run
132

Include Selected Test Object
In Regression Run

130

U.S. Patent Apr. 1,2014 Sheet 1 of 4 US 8,689,187 B2

Software
Product
25

Console

Interface
18

Network Interface 14
User Interface 16

Predictive Test
Creation and

Test

‘ Execution
Processing Module
Module 20
22

Test Object Database
24

Product Validation System 10

Figure 1

U.S. Patent Apr. 1,2014 Sheet 2 of 4 US 8,689,187 B2

Select Next Test Object

102

Predict Failure Behavior of
Test Object
104

Is the Predicted
Failure Behavior
Likely?
106

Yes

R R I T I I I T A I S R

......................
.....
e S

Include Selected Test Object

In Regression Run
108

Exclude Selected Test Object

from Regression Run
110

Figure 2

U.S. Patent

132

Apr. 1, 2014 Sheet 3 of 4

No

Exclude Selected Test Object
from Regression Run

Calculate Failure Record
Metric of Test Object
122

Calculate Failure Currency
Metric of Test Object
124

Calculate Failure Behavior
Metric of Test Object
126

Failure Behavior Metric
Above Threshold?

Yes

Include Selected Test Object
In Regression Run

130

US 8,689,187 B2

U.S. Patent Apr. 1,2014 Sheet 4 of 4 US 8,689,187 B2

400
408

Processor(s)

402

Display
410

Main Memory

404

Alphanumeric

Input Device
412

Static Memory
406

Cursor Control
414

Disk Drive
416

424

426 Network Interface
420

US 8,689,187 B2

1
PREDICTIVE RUN TESTING

BACKGROUND

Embodiments of the present invention apply to the field of
soltware testing, more specifically to run testing.

Modermn software development increasingly relies on auto-
mated software testing 1n an effort to improve software prod-
ucts without using sigmificant developer and quality assur-
ance personnel resources. Solftware development enterprises
are installing entire server farms dedicated to automated
product validation. Such product validation systems can per-
form millions of test per day.

However, there 1s a limit to the number of tests the product
validation system can physically run. Furthermore, increas-
ing the size and performance of the validation system carries
additional expense and overhead. One method for reducing
the number of tests 1s to run each test on only one member of
a product “family.” A product family could be, for example,
the different versions of the product designed for related
operations systems.

While this method reduces the number of tests, 1t does not
improve the efficiency of the testing, and 1t lowers the depend-
ability of the tested product. Therefore, 1t would be desirable
to improve the elliciency of a product validation system by
having the system run higher-value tests more frequently than
lower-value tests, thereby decreasing the number of tests run
without compromising the effectiveness of the product vali-
dation system.

SUMMARY

In one embodiment of the present invention, test objects are
selectively included 1n a test run that 1s being created for
execution on a soltware product based on predicting the fail-
ure behavior of the test object when included 1n the test run. In
one embodiment, the present invention includes predicting
how likely the test object 1s to produce a failure 1n a test run
and deciding whether to include the test object in the test run
based on the predicted likelihood. This likelihood of produc-
ing a failure may be based on any number of circumstances.
For example, these circumstances may include the history of
prior failures and/or the length of time since the test object
was last included 1n a test run.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by
way of example, and not by way of limitation, 1n the figures of
the accompanying drawings and in which like reference
numerals refer to similar elements and 1n which:

FIG. 1 1s a block diagram illustrating a product validation
system according to one embodiment of the present inven-
tion;

FIG. 2 1s a flow diagram illustrating predictive test run
creation according to one embodiment of the present mven-
tion;

FIG. 3 1s a flow diagram illustrating predictive test run

creation according to another embodiment of the present
invention; and

FI1G. 4 1s a block diagram illustrating an example computer
system according to one embodiment of the present inven-
tion.

5

10

15

20

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION

Product Validation System

One embodiment of the invention 1s now described with
reference to FIG. 1. FIG. 1 shows a product validation system
10. The product validation system 10 1s used to test various
soltware products 25. One type of testing 1s referred to as a
regression run. A test run 1s a group of tests performed to
determine whether changes to existing features or the addi-
tion of new features have introduced failures mto a previously
working software product 25. While much of this description
will address test run testing of a single software product 25,
embodiments of this invention are equally applicable to other
types of testing on multiple software products 25.

In one embodiment, the product validation system 10
includes a network interface 14 to allow the product valida-
tion system 10 to be connected to a network 12. The product
validation system 10 recerves the software product 25 to be
tested via the network 12 and can send test results via the
network 12 as well. Such results can be accessed via console
interface 18, which can be implemented as a browser inter-
face, or other such interface that can access the product vali-
dation system 10 through 1ts user interface 16.

The user mterface 16 allows a human operator (or opera-
tors)—via console interface 18 (or other remote consoles)—
to configure the product validation system 10 and to 1ssue
command to the product validation system 10. In response to
the commands, the test execution module 20 of the product
validation system 10 performs a testrun, e.g., atestrun, on the
soltware product 25—or portion of the software product
25—provided to the product validation system 10 for testing.

The test execution module 20 provides the results of the
test run to the user interface 16. In one embodiment, the
results of the test run 1s a list ol tests that were submitted along
with the status of the run tests. Status categories may include
failed (including a crash), user specified ignored, passed, etc.
The user 1interface 16 can create a test run report to deliver to
the console intertace 1n a format usable by the human operator
to direct action to remedy the test failures.

The product validation system 10 also includes a test object
database 24 that stores all the test objects available to the
product validation system 10. A “test object” 1s a generic term
to cover a collection of tests organized on any level. A test
object can be a single test, a test case on a single port, a test
group, a test bank, or any other association of tests that suc-
ceed or fail as one entity. When a test object 1s executed (or
“run’’) as part of a test run 1t either passes or fails. An example
test objects could be a singular test focused on a singular
function point, such as a language construct in Verilog, or
focused on an environment such as a particular operating
system like Solaris or Linux.

When a test object passes, the results are stored and pro-
cessed to reduce priority/importance and for resampling
when applicable. However, when a test object fails, usetul
information about what needs to be done to the software
product 25 1s being produced. Thus, 11 not all the tests objects
can be run in every test run, it 1s efficient to run only the test

objects that are likely to fail.
Predictive Test Run Creation

In one embodiment, the product validation system 10
includes a predictive test creation and processing module 22
to create test runs mncluding only tests with a requisite likeli-
hood to produce a failure. One embodiment for the operation
of the predictive test creation and processing module 22 1s

now described with reference to FIG. 2. In block 102, the

US 8,689,187 B2

3

predictive test creation and processing module 22 selects the
next test object for consideration from the test object database
24.

In block 104, the predictive test creation and processing,
module 22 predicts the failure behavior of the test object
under consideration. The failure behavior of a test object
characterizes the likelihood that the test object will produce a
failure 11 included 1n the test run being assembled for execu-
tion.

In block 106 a determination 1s made as to whether the
predicted failure behavior of the test object 1s likely, 1n other
words, 1f the test object 1s sufficiently likely to produce a
failure. IT 1n block 106 the predicted failure behavior 1s found
likely, then 1n block 108 the selected test object1s added to the
test run being assembled. If, on the other hand, in block 106
the predicted failure behavior 1s found not to be likely, then in
block 110 the selected test object 1s excluded from the test
run. Processing then continues at block 102 with the selection
ol the next test object in the test object database 24 until all
test objects 1n the test object database have been considered.

One embodiment of implementing the prediction and
evaluation of the predicted failure behavior of the selected test
object 1s now described 1n more detail with reference to FIG.
3. In block 122, the predictive test creation and processing
module 22 calculates a failure record metric of the test object.
The failure record metric 1s a value that retlects with what
frequency a test object fails.

In one embodiment, the failure record metric 1s calculated
by dividing the total number of failures (the failure number)
produced by a test object by the number of times the test
object has been executed. If a test object contains multiple
tests, the number of failures or other failure statistics can be
averaged to determine the failure record metric of the test
object.

In one embodiment, the record for the test object 1n the test
object database 24 includes an associated failure number and
run number. The failure number 1s incremented every time the
test object produces a failure, while the run number 1s 1ncre-
mented every time the test object is executed, regardless of the
result produced. Thus, the failure record metric can be calcu-
lated from these statistics associated with each test object by
the test object database 24. Other similar metrics and statis-
tical figures may also be used to retlect the failure record of
test objects.

In block 124, a failure currency metric of the test object 1s
calculated by the predictive test creation and processing mod-
ule 22. In software testing, a recent failure 1s more relevant
than a more distant failure, since the code may have changed
since the distant failure. Thus, when evaluating the failure
behavior of a test object, priority 1s given to test objects that
have failed more recently. How recently a test failed 1s
reflected 1n the failure currency metric.

In one embodiment, the failure currency metric 1s a tem-
poral metric that compares the current time kept by the prod-
uct validation system 10 with a timestamp showing the last
failure of the test object. Such a timestamp can be associated
with each test object by the test object database 24 and can be
updated by the predictive test creation and processing module
22 after each test object failure. In one embodiment, tests
objects are not executed 1n every test run (e.g., for a user
specified 1gnored status). For example, iI 1gnored status
occurs, the time may not be increased for the 1gnored test
object for that specific run.

In another embodiment, the failure currency metric 1s a
“failure distance” of the test object. A failure distance 1s the
number of times the test object has been executed without
failure. In other words, the failure distance 1s the number of

10

15

20

25

30

35

40

45

50

55

60

65

4

test runs 1including the test object since the last failure of the
test object. For example, 1n one embodiment, 11 the test object
falled on the previous occasion when 1t was executed, its
failure distance can be defined as zero (0). Then, 11 the test
object 1s executed without producing a failure the next three
times 1t 1s included 1n a test run, the failure distance of the test

object would be three (3).

In another embodiment, the failure distance can be 1nitial-
ized at one (1), meaning a failure distance of one (1) would
mean that the test object failed in the previous test run in
which the test object was included. Then, 1 the test object 1s
executed without producing a failure the next three times 1t 1s
included 1n a test run, the failure distance of the test object
would be four (4). Other such value defimition schemes may
be created for the failure currency metric. When a test object
includes multiple tests, the failure distance for the test object
can be defined conservatively as the minimum of all the test
tailure distances, or as the average of such failure distances, or
in some other combined manner.

The failure distance can also be associated with each test
object by the test object database 24. In block 126, the pre-
dictive test creation and processing module 22 calculates the
tailure behavior metric of the test object. The failure behavior
metric represents the predicted likelihood that the selected
test object will produce a failure 11 1t 1s included 1n the test run
being assembled for execution. The failure behavior metric
combines the information included 1n both the failure record
metric determined 1n block 122 and the failure currency met-
ric determined 1n 124.

In one embodiment, the failure behavior metric 1s calcu-
lated by dividing the failure record metric by the failure
currency metric. Since the failure record metric 1s larger the
more relevant a test object 1s, and the failure currency metric
1s smaller the more relevant a test object 1s (1.e., the more
likely 1t 1s to produce a failure), dividing the two quantities
results 1n a relatively larger failure behavior metric if the test
object 1s more relevant, and a relatively smaller failure behav-
1or metric 11 the test object 1s less relevant. Other definitions
and metrics can produce different scales.

IT a tests object failure on the previous occasion 1s defined
to be a failure distance of zero (0) for the test object, then
dividing by such a failure currency metric would produce an
error. To address such a situation, 1n one embodiment, 1f the
failure distance of a test object 1s zero (0)—the test object
failed on the previous execution—then the test object 1s auto-
matically included in the current test run.

In block 128, a determination 1s made by the predictive test
creation and processing module 22 as the whether the failure
behavior metric 1s above a threshold value. I, in block 128 1t
1s determined that the failure behavior metric 1s above the
threshold value, then 1 block 130 the selected test object 1s
included 1n the current test run being created. If, on the other
hand, 1n block 128 it 1s determined that the failure behavior
metric 1s not above the threshold value, then 1n block 132 the
selected test object 1s excluded from the current test run being
created.

In one embodiment, the threshold value 1s user-config-
urable. The threshold value can be maintained by the predic-
tive test creation and processing module 22 and exposed to a
human operator via the user interface 16. The user interface
16 may expose the actual numerical value, or some English
(or other) language classification such as Moderate Test
Exclusion, Aggressive Test Exclusion, and so on. Alterna-
tively the user can be provided some graphical tool, such as a
thermostat, to control the threshold value for the failure
behavior metric of test objects.

US 8,689,187 B2

S

In another embodiment of the present invention, several
thresholds can be used. For example 11 the failure behavior
metric of a test objectis below a first lower threshold, then the
test object 1s excluded from the test or 1s scheduled to be
executed on an inifrequent rotating basis. However, 1 the
tailure behavior metric of a test object 1s above the first lower
threshold but still below a second higher threshold, then the
test object 1s scheduled to be executed on a more frequent
rotating basis.

For example, 11 test objects with failure behavior metrics
below the lower threshold are scheduled to be included in
every 307" test run, then test objects with failure behavior
metrics between the lower threshold and the higher threshold
could be scheduled to be included in every 107 test run.
Furthermore, test objects with failure behavior metrics above
the higher threshold could be scheduled to be included in
every test run, or some other number less than 10 for so long
as their failure behavior metrics remain above the higher
threshold.

The above two-threshold description 1s only an example.
Similar schemes can be implemented with any number of
thresholds. Furthermore, the specific numbers of 1terations
between test inclusions are provided merely for illustration,
and any other numbers can be used.

Scheduling the execution of a test object for every some
number of test runs—that 1s, including the test object in every
x™” test run—can be implemented by associating such a num-
ber with the test object 1n the test object database. Another
counter can be imitialized and incremented with every missed
test run. When the counter reaches the x™ test, the test object
1s added to the test run and the counter 1s re-initialized. This
number can be updated as the failure behavior metric of the
test object changes and rises above or falls below the certain
thresholds described above.

The predictive test creation and processing module 22 can
use various other means of determining whether to include or
exclude test object from a particular test run. For example, if
a test object 1s excluded from every test run scheduled for a
product family based on 1ts failure behavior, the predictive
test creation and processing module 22 can override the
exclusion to make sure each test object 1s executed during the
testing of at least one member of the product family. In
another example, the user can set a test object to always be
executed or manually mark it to be executed in the next test
run.

Furthermore, to ensure that the failure behavior metric
accounts for changes 1n the software, test suite, environment
and the like, 1 a test object 1s excluded from a threshold
number of test runs, the predictive test creation and process-
ing module 22 “re-samples” by including the test objectin the
next test run regardless of the failure behavior metric associ-
ated with the test object. Such re-sampling can be 1mple-
mented using the counter explained further above. Thus, peri-
odic re-sampling along with other techniques may be used to
attempt to capture undiscovered failures.

For simplicity, in the description above, each test object 1s
described as having only one associated failure behavior met-
ric, along with other metrics used to calculate the failure
behavior metric. However, 1n a real-world product validation
system, the test object may have several failure behavior
metrics, each of which can be tied to a particular section of
code.

Example Computer System

Various embodiments of the present invention have been
described 1n the context of a server that performs product
validation functionalities and a browser/console interface
operable to access and view those functionalities. An example

10

15

20

25

30

35

40

45

50

55

60

65

6

computer system on which such server and/or console inter-
face can be implemented 1n now described with reference to
FIG. 4. Numerous features described with reference to FI1G. 4
can be omitted, e.g., a server will generally not include video
display umit 410. Computer system 400 may be used to per-
form one or more of the operations described herein. In alter-
native embodiments, the computer system environment may
comprise a network router, a network switch, a network
bridge, Personal Digital Assistant (PDA), a cellular tele-
phone, a web appliance or any other machine capable of
executing a sequence of instructions that specify actions to be
taken by that machine.

The computer system 400 includes a processor 402, a main
memory 404 and a static memory 406, which communicate
with each other via a bus 408. The computer system 400 may
turther include a video display unit 410 (e.g., a liquid crystal
display (LCD) or a cathode ray tube (CRT)). The computer
system 400 also includes an alpha-numeric input device 412
(e.g., akeyboard), a cursor control device 414 (e.g., a mouse),
a disk drive unit 416, and a network interface device 420.

The disk drive unit 416 includes a machine-readable
medium 424 on which is stored a set of istructions (1.e.,
software) 426 embodying any one, or all, of the methodolo-
gies described above. The software 426 1s also shown to
reside, completely or at least partially, within the main
memory 404 and/or within the processor 402. The software
426 may further be transmitted or received via the network
interface device 422. For the purposes of this specification,
the term “machine-readable medium” shall be taken to
include any medium that i1s capable of storing or encoding a
sequence of instructions for execution by the computer and
that cause the computer to perform any one of the method-
ologies of the present invention. The term “machine-readable
medium™ shall accordingly be taken to include, but not be
limited to, solid-state memories, optical and magnetic disks,
and carrier wave signals.

In the description above, for the purposes of explanation,
numerous specific details have been set forth. However, 1t 1s
understood that embodiments of the mvention may be prac-
ticed without these specific details. In other instances, well-
known circuits, structures and techniques have not been
shown 1n detail 1 order not to obscure the understanding of
this description.

Embodiments of the present invention include various pro-
cesses. The processes may be performed by hardware com-
ponents or may be embodied 1n machine-executable mnstruc-
tions, which may be used to cause one or more processors
programmed with the 1nstructions to perform the processes.
Alternatively, the processes may be performed by a combi-
nation of hardware and software.

Embodiments of the present invention may be provided as
a computer program product that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer (or other electronic
device) to perform a process according to one or more
embodiments of the present invention. The machine-readable
medium may include, but 1s not limited to, floppy diskettes,
optical disks, compact disc read-only memories (CD-ROMs),
and magneto-optical disks, read-only memories (ROMs),
random access memories (RAMs), erasable programmable
read-only memories (EPROMs), electrically erasable pro-
grammable read-only memornes (EEPROMSs), magnetic or
optical cards, flash memory, or other type of media/machine-
readable medium suitable for storing instructions. Moreover,
embodiments of the present invention may also be down-
loaded as a computer program product, wherein the program
may be transferred from a remote computer to a requesting

US 8,689,187 B2

7

computer by way of data signals embodied 1n a carrier wave
or other propagation medium via a communication link (e.g.,
a modem or network connection).
While the invention has been described in terms of several
embodiments, those skilled 1n the art will recognize that the
invention 1s not limited to the embodiments described, but can
be practiced with modification and alteration within the spirit
and scope of the appended claims. The description 1s thus to
be regarded as illustrative mstead of limiting.
What is claimed 1s:
1. A method for predicting a test run for a software product,
comprising;
calculating a failure currency metric of a test object asso-
ciated with one or more software products, wherein the
failure currency includes a temporal metric generated by
a product validation system, and wherein the temporal
metric 1s associated with a time the test object failed
execution on the one or more soitware products;

predicting a failure behavior of a test object based on the
failure currency metric, the predicted failure behavior
being an indication of how likely the test object 1s to
produce a failure when executed on the software prod-
uct, wherein the product validation system does not
include the software product; and

determining whether the test object 1s to be included 1n a

test run for execution on the software product, the deter-
mining using the predicted failure behavior of the test
object.

2. The method of claim 1, further comprising

calculating a failure record metric of the test object,

wherein the failure behavior of the test object 1s further
based on the failure record metric.

3. The method of claim 2, wherein

the failure record metric of the test object 1s determined by

dividing a number of failures produced by the test object
by a total number of past test runs on the one or more
software products that included the test object.

4. The method of claim 1, wherein calculating the failure
currency metric comprises

generating the temporal metric by comparing a current

time of the product validation system with a timestamp
that shows a last failure time of the test object.

5. The method of claim 1, wherein

the failure currency metric further includes a failure dis-

tance of the test object.

6. The method of claim 5, wherein

the failure distance of the test object comprises

a value indicating a number of times the test object
executed without a failure on the one or more software
products.

7. The method of claim 1, further comprising

calculating a failure behavior metric of the test object,

wherein the failure behavior of the test object 1s further
based on the failure behavior metric.

8. The method of claim 7, wherein

predicting the failure behavior of the test object comprises

determining a failure record metric of the test object on
a plurality of previous software products; and

dividing the failure record metric of the test object by the
failure currency metric of the test object.

9. The method of claim 8, wherein

determining whether the test object 1s to be included 1n a

test run for execution on the soitware product comprises
comparing the failure behavior metric against a {first
threshold.

10. The method of claim 9, wherein

the first threshold 1s user-configurable.

10

15

20

25

30

35

40

45

50

55

60

65

8

11. The method of claim 9, wherein

determining whether the test object 1s to be included 1n a
test run for execution on the software product further
COMPrises
comparing calculated failure behavior metric against

both the first threshold and a second threshold differ-
ing from the first threshold.
12. The method of claim 1, wherein
one or more portions of the software product have yet to be
tested with a test run including the test object.
13. The method of claim 12, wherein
the software product 1s a new software product with the
new software product being associated with a product
famaily of software products or having new features over
a previously working software product.
14. The method of claim 12, wherein
the software product 1s a revised software product dertved
from a previously working software product having
changes to features therein.
15. A product validation system for predicting a test run for

a soltware product, comprising:

a processor to execute one or more 1nstructions to provide
a test object database on the product validation system to
store at least one test object associated with one or
more soltware products;
a test execution module to execute test objects stored 1n
the test object database; and
a predictive test creation and processing module 1n com-
munication with the test object database and the test
execution module, the predictive test creation and
processing module being configured to
calculate a failure currency metric of a test object
associated with one or more software products,
wherein the failure currency includes a temporal
metric generated by the product validation system,
and wherein the temporal metric 1s associated with
a time the test object failed execution on the one or
more software products,
predict a failure behavior of the test object based on
the failure currency metric, the predicted failure
behavior being an indication of how likely the test
object 1s to produce a failure when executed on the
soltware product, wherein the product validation
system does not include the software product, and
determine whether the test object 1s to be included 1n
a test run for execution by the test execution mod-
ule on the software product, the determining using
the predicted failure behavior of the test object.
16. The product validation system of claim 15, wherein
the predictive test creation and processing module 1s fur-
ther configured to calculate a failure record metric of the
test object, wherein the failure behavior of the test object
1s Turther based on the failure record metric.
17. The product validation system of claim 16, wherein
the failure record metric of the test object 1s determined by
the predictive test creation and processing module being
further configured to divide a number of failures pro-
duced by the test object by a total number of past test
runs on the one or more software products that included
the test object.
18. The product validation system of claim 15, wherein
the predictive test creation and processing module 1s fur-
ther configured to generate the temporal metric by com-
paring a current time of the product validation system
with a timestamp that shows a last failure time of the test
object.

US 8,689,187 B2

9

19. The product validation system of claim 15 wherein

the failure currency metric further includes a failure dis-

tance of the test object.

20. The product validation system of claim 19, wherein

the failure distance of the test object comprises a value

indicating a number of times the test object executed
without a failure on the one or more software products.

21. The product validation system of claim 15, wherein

one or more portions of the software product have yet to be

tested with a test run including the at least one test
object.

22. The product validation system of claim 21, wherein

the software product 1s a new software product with the

new soitware product being associated with a product
family of software products or having new features over
a previously working software product.

23. The product validation system of claim 21, wherein

the software product 1s a revised soltware product derived

from a previously working software product having
changes to features therein.

24. A non-transitory machine-readable storage medium
having stored thereon data representing instructions that,
when executed by a processor, cause the processor to perform
operations comprising:

calculating a failure currency metric of a test object asso-

ciated with one or more software products, wherein the
failure currency includes a temporal metric generated by
a product validation system, and wherein the temporal
metric 1s associated with a time the test object failed
execution on the one or more soitware products;
predicting a failure behavior of a test object based on the

failure currency metric, the predicted failure behavior
being an indication of how likely the test object 1s to

10

15

20

25

30

10

produce a failure when executed on a software product,
wherein the product validation system does not include
the soitware product; and
determining whether the test object 1s to be mcluded 1n a
test run for execution on the software product, the deter-
mining using the predicted failure behavior of the test
object.
25. The non-transitory machine-readable storage medium
of claim 24, the operations further comprising
calculating a failure behavior metric of the test object,
wherein the failure behavior of the test object 1s further
based on the failure behavior metric.
26. The non-transitory machine-readable storage medium
of claim 25, wherein
predicting the failure behavior of the test object comprises
determining a failure record metric of the test object on
a plurality of previous software products; and
dividing the failure record metric of the test object by the
failure currency metric of the test object.
2’7. The non-transitory machine-readable storage medium
of claim 24, wherein
one or more portions of the software product have yet to be
tested with a test run including the test object.
28. The non-transitory machine-readable storage medium
of claim 27, wherein
the software product 1s a new software product with the
new solftware product being associated with a product
famaily of software products or having new features over
a previously working soitware product.
29. The non-transitory machine-readable storage medium
of claim 27, wherein
the software product 1s a revised soitware product dertved
from a previously working software product having

changes to features therein.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

