United States Patent

US008689060B2

(12) (10) Patent No.: US 8.689.060 B2
Balko 45) Date of Patent: Apr. 1, 2014
(54) PROCESS MODEL ERROR CORRECTION 2011/0307405 Al1* 12/2011 Hammeretal. 705/331
2012/0066662 Al1* 3/2012 Chaoetal.c..oovtl. 717/104
(75) Inventor: Soeren Balko. Weinheim (DE) 2012/0078677 Al* 3/2012 Greenetal.c.oooo..... 705/7.26
(73) Assignee: SAP AG, Walldort (DE) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this OMG, “Business Process Model and Notation (BPMN)” Version 2.0,
patent iS extended or adjusted under 35 dated Jan. 2011, OMG Document No. formal/Jan. 33 20113 538
U.S.C. 154(b) by 226 days. pages.
Balko, Soren, SAP, Workflow Pattern Coverage in SAP Netweaver
(21) Appl. No.: 13/296,858 BPM 7.11, Created May 28, 2009, 46 pages.

(22)

(65)

(1)
(52)

(58)

Filed: Nov. 15, 2011

Prior Publication Data

US 2013/0124927 Al May 16, 2013

Int. Cl.
GO6F 11/00 (2006.01)

U.S. CL
USPC 714/48; 705/7.27

Field of Classification Search
USPC e e, 714/48: 705/7.27

See application file for complete search history.

* cited by examiner

Primary Examiner — Yolanda L. Wilson
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

A method for providing corrections for semantic errors in a
process model can be implemented on a computer. The
method can include identifying a change in the process
model, the process model including one or more process
model elements. The method can also include identifying one

(56) References Cited or more constraint violations for at least one of the one or
U S PATENT DOCUMENTS MOre Process model elements, and 1@ent1fy1ng one or more
correction proposals for each constraint violation 1dentified.
7.467,371 Bl1* 12/2008 Meredithetal. 717/104
2009/0112663 Al* 4/2009 Benayonetal. 705/7
2009/0113380 Al1* 4/2009 Ploesseretal. 717/104 13 Claims, 13 Drawing Sheets
500 650
¥ 4
BO2~ IDENTIFY CHANGE IN
PROCESS MODEL
T £52~.| RECEIVE CORRECTION
TERATELY CHECK FOR | SELEC TION FROM USER
BO4~.| CONSTRAINT VIOLATIONS | | §
OVER ALL PROCESS MODEL | 654\} RECALCULATE BIT STRING |
ELEMENTS __TO FORM NEW BIT STRING |
i i |
DENTIFY ONE OR MORE | 656~.| COMPARE NEW BIT STRING |
GUOG -~ CONSTRAINT VIOLATIONS | | WITH OLD BIT STRING |
FOR AT LEASTORE |
¥ T IDENTIFY K o OLD BE‘F\“\ NG
DENTIFY ONE ORMORE | SEVERITYOF "\ ERROR \STRING = NEWBIT >
| CORRECTION PROFOSALS | ™ CONSTRANT 7 > STRING? o
G081 FOREACH CONSTRAINT | ~ VICLATION o~ TR e |
% WARNING | NO) CORRECTION | _,H APPLY SELECTED DISCARD
.= | A 660" CORRECTION PROPOSAL
CALCUATEBT | ¥ ~_PROPOSAL? " 5 - o664
FROCESS MUDEL CORRECTION ~_ 520 YES ' MSCARD ¥
EROPOBAL S "y CORRECTION m————
WO S | APPLY PROPOSAL s -
STOREBTSTRINGGF | ! CORRECTION | ANAL TSI GG
512~ PROCESS MODEL PROVIDE SLOPOSAL
CORRECTION |
PROPOSALTO |)
JBERFOR | ™622 618
SELECTION/
CONFIRMATION

U.S. Patent

iy

Apr. 1,2014

Sheet 1 of 13

102
1 "E‘\’E
PROCESSOR
118 i

104~ E

iiiii

-k ko

iiiiii

!t:-:-:-:-

LR |

;;;;;;;;;
iiiiiiiiiiiiiiiiii

MGDEUNG ENVERGNMENT

US 8,689,060 B2

100

iiiiiiiiiiiiiii

SORRECTEQN
PRUPUSALS

APPLICATION ‘

117

— E/wm

MODELS

PROCESS
- CONTENT b
DIRECTORY | 100

iiiiiii
;;;;;;;;;;;
iiiiiiiiiiiiiiii

iii

CLIENT
ARPPLICATION

iiiii

aaaaaaaaaaaaaa

aaaaaaaaaaaa

NETWORK

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DISPLAY

iiiii

US 8,689,060 B2

Sheet 2 of 13

Apr. 1,2014

U.S. Patent

d¢ Dld

0 3DI0HD 0 IDI0HD
IASNTOX INSITIONS
o
L GG
V¢ DA
. N ——
¥O0IAVIA \ ALY e ey
e 6 30I0HD
© ALIALLOY Bt) ALINLOY
v S ‘
AT o
| ZAUNLOY
A e~ .
00

US 8,689,060 B2

Sheet 3 0f 13

Apr. 1,2014

U.S. Patent

Ve L

H=0HHN DA
Ofg 1+ Q4 TIOHELNOOND QdTIOHINOONN | BES

L I N

US 8,689,060 B2

Sheet 4 of 13

Apr. 1,2014

U.S. Patent

gze o
N P 1

a
-
[}
-
B
[
[
-
a a = &
+ P

2%

M SNdddViH .
NOLLYZINOAHINAS 0 MO¥T N

EALIALDY =

T ¥
4%>

00%

by
THIHANGOND

guL

dt 4

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

P ALINLIY

iiiii
S

HIOHIN 4

A3 TIOYLNODNIL A ~

~—
A%

3 ALIALLOY

mwm\, - N
S0¢

US 8,689,060 B2

Sheet So0f 13

Apr. 1,2014

U.S. Patent

¥+ N ” .
RN - &
- LA R L R RN

I
L)

7 1S
TITTYHY

MITNIA G TIONLNOINA
W 0 3DI0HD
SAISITIONS
ZeAleILeYY

JIZINOHHONAS

S 3 1S

* TV Y

< SAIELIB)Y
............. N HIOHIA 1S
Hﬁ@MEQL_«mQE%m QMQJOW“PZOUZD s.mm...ﬁsmé.@&

—/ L30I0HD O NIOT T E
JASAIONE TITIVEY] QI TIOHINOINN
GAZINOMHONAS I
10N JAISTIONS
R ZBABLISHY
QM gm”ﬂm
3 LS
. T Y
 BANBUIBHY
¢ g
MIOHIN
G TIONLNOING

(NS

HADHAA
O3 T IO LNOONT

LHYiS

iiiii

L&Vis

US 8,689,060 B2

Sheet 6 0of 13

Apr. 1,2014

U.S. Patent

LI I A I A B BEL IOE DO BOE DAL DAL IR DL AL IR BOE BOE BN)

LI N NN N NN BB BB BB EBEEEBEEEBEEEEREIEBINEEINLELE.ZS:,.

U L ds 13 T1vVedvd

L N N N N N N N N N L N N N N N N N N N N N N N N N N N N

00V

L I I]

, BAReUBlY

3 INIAS H 0 AIOHD 0INIAT Ht DA
(N TAISATIONS [HYLS

US 8,689,060 B2

& | QFTTT Y ERN JALAILIY
(N | 3 NIOT T T YYd sang | 0LIdS TITIVHVA %

_ NOILY YOS5
y— - .
- : . m
- | S e
- 0 §8II0N-ENS 0IC0IENA
3
7. L

1A
..4
y—
—
@
— 0 NIOE 13 TTvvYd 0 1F1dS T Tivavd
s
<
0 ALINLLOY
0 FOI0HD N
EHUNAES & Q1%

OL% | 2 SAIBUISYY

U.S. Patent

ke AR

US 8,689,060 B2

Sheet 8 0f 13

Apr. 1,2014

U.S. Patent

U NIOP 137 VeV d

Jv Dl

U LdS 13 T1IVeVd

0 JU0OHS
NS IIXS

7 SANBLLISHY

O NIOP 13 TIVevYd

{0 JHOHD
ARSI

(N

| sANBLISHY

o 1l
OL¥

14

| 0 11dS T3 TIVHYd

2 SABUISHY

US 8,689,060 B2

Sheet 9 0of 13

Apr. 1,2014

U.S. Patent

UNIOT 13 Hivavd)

U AOHOHD
ERRIIN) &

HY A48 §HA1LSYSI

DIOUSSIUI<IBILNGD

A
by

O NIOT TdTTYYd |

0 LHds 13 T1vRvd

1111111111111111111111111111111111

U ALIALLOY

L WALNNOD
1 | NTWTHON]

i LNNGD

3 JOI0HD
AN UK

T T

iiiiiii
L

iy

E T + 5 2 J)

¢ SAHELISHY

(v 14

]

oo

3 Ve 134

S

m JTISNIH 1SINDTY IHL ONIAOHY

I ONY ONIMILNT HIOYNYA U UN

Z INTWINYATO THL MO T1dIDNING \

SAATY STLVIOIA=— HIOVNYIA \ o
INTWLHYAIO IHL AS 0IAOHdY \ 90%
kY
\

. LSINDI

= THAYMEL e

= IAOHAY %

= i Z e ————

= g\m 1S3NDIY

AL
HIINT)

m Z2NN T .*

] - 205 /

= b \ (HIOYNYIN SINTW Y43
< \ IHL SICVIONE HOIHAM)

HIONIN ININ Y430
INOS AS GISSIN0H

- HIOYNYH =EICORD B
m SEIN0Md TYACHCAY TIAVMHL

<
> A
2 006
-

@\
= €S "O1A
NGP reeeeoeooeooeeesronconmmenmenmoencenaenannnonenenaneonaeonnenanonneoenoonaoenaoonaonaonaAEnEEONEONEONAEONCGACRCNRCN OO R EARENREAOEAEEAEAERaE PR REREEREAEEaEnE00S
<
A HOSSIN0H, 0 ONZ
It 30NIOXT
i OLNOLLMIOSH 1\
- | HOSSI00Ud IONVHD
\

%

BEE e
- THAYHL
— T
= N M
- HOSSIOOHd SHSVL
= LSHld FZONAN .\ 916
=
9
< ™,
- HOSSID0H
S
-
-«

HIADYNYIN

ii

1S3N03Y
TIAVHL
Y3INT

r
iiiii
4
- 4
-
.
L
r
.
-
-
-

IMVLS

A3A0 IdiNS

U.S. Patent

554008Hd WADMddY 19AVEL

A

LS

U.S. Patent Apr. 1,2014

IDENTIFY CHANGE IN
PROCESS MODEL

- ITERATIVELY CHECK FOR
o(d ~ | CONSTRAINT VIOLATIONS |
- OVER ALL PROCESS MODEL
- ELEMENTS f

DENTIFY ONE OR MORE
608~ CONSTRAINT VIOLATIONS
FORATLEASTONE |
| PROCESS MODEL ELEMENT |

. IDENTIFY ONE OR MORE |

| CORRECTION PROPOSALS |

60871 FOREACH CONSTRAINT |
VIOLATION

‘ CALCULATE BIT
10 STRING OF
PROCESS MODEL

iii

iii

[
-
-
Ll
- -
.i
-
- -
h]
"
[3
-
b] 1
-
-
[]
-
4 L]
-
"
-
k- -
& 1
] -
3
[]
- -
L -
"] -
i-l
L -

: .
-
-
.
- -
4 -
.
4 -
L]
"
- "
4
L]
-ii-i‘-ii -
-
LR
"

Sheet 12 of 13 US 8,689,060 B2
600
&
7 IDENTIEY XK
SEVERITY OF ERROR
CONSTRAINT

CONLY 1 K
-~ CORRECTION ™
. _PROPOSAL?

STORE
CORRECTION h_
PROPOSALS 620

APPLY
CORRECTION
PROPOSAL

ii

PROVIDE
CORREGTION
PROPOSAL TO
USER FOR
Sl ECTION
CONFIRMATION

HIG. 6A

899 518

U.S. Patent Apr. 1,2014 Sheet 13 of 13 US 8,689,060 B2

550

852~ ReCEIVE CORRECTON
SELECTION FROM USER |
o544~ RECALCULATE BIT STRING
- TO FORM NEW BIT STRING

iii

LI

LI
-

-
-

ho~ COMPARE NEW BIT STRING
WiTH OLD B STRING

iii

4 &
LI

LI |
-
L]

+
L

L]

&
-
Iy
&
.
-
i &
-
&
-
&
-
4
L R .
+ 4
. L i
4
- L .
- .
h -
- -
-
4 -
-
4 -
i
- -
. -
d -
4 -
- 4
+ -
i i
4 -
£ -
4 -
4
- -
4 -
I
- -
- 4
hy -
- -
-
4

N

658

APPLY SELECTED
o6l CORRECTION PROPOSAL CORRECTION oy

PROPOSAL

-
-

HOUARD

-
-
LI

-
-

L]
-

DISCARD

h]
-
- -
LI}
-
-
Ll

h |

iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiii

660 CORRECTION RESTART
‘ PROPOSAL ANALYSIS 666

Fl(. 613

US 8,639,060 B2

1
PROCESS MODEL ERROR CORRECTION

TECHNICAL FIELD

This invention relates to business process modeling, and
more particularly to correction of semantic errors of process
models.

BACKGROUND

Process modeling 1s an error-prone task in which design
flaws may lead to errant runtime behavior. Such design tlaws
may result in a number of undesirable effects both 1n the
Business Process Management System (BPMS) runtime and
connected applications. For example, inconsistent applica-
tion states, security violations, service level agreements
(SLAs) and Key Performance Indicators (KPIs) not being
reached, or a failure to terminate, etc., may occur.

SUMMARY

Certain aspects of the disclosure include a computer imple-
mented method for providing corrections for semantic errors
in a process model. Implementations of the computer imple-
mented method may include identifying a change 1n the pro-
cess model, the process model including one or more process
model elements. One or more constraint violations may be
identified for at least one of the one or more process model
clements. One or more correction proposals can be identified
for each constraint violation i1dentified.

Certain aspects of the disclosure include a system for pro-
viding corrections for semantic errors in a process model.
Implementations of the system include a memory for storing
instructions and at least one hardware processor configured to
execute instructions. The mstructions may include 1dentity-
ing a change in the process model, the process model includ-
ing one or more process model elements, 1dentifying one or
more constraint violations for at least one of the one or more
process model elements, and 1dentifying one or more correc-
tion proposals for each constraint violation 1dentified.

Certain aspects of the disclosure include a computer pro-
gram product, tangibly embodied 1n an information carrier,
and include nstructions that, when executed, cause a proces-
sor to perform operations. In certain implementations, the
operations may include identifying a change in the process
model, the process model including one or more process
model elements. The operations may also include identifying,
one or more constraint violations for at least one of the one or
more process model elements and 1dentifying one or more
correction proposals for each constraint violation identified.

In certain mnstances of the implementations, a severity of
the constraint violation can be 1dentified. At least one of the
one or more correction proposals can be applied automati-
cally for constraint violation severities that indicate a run-
time error.

In certain implementations, a severity of the constraint
violation can be 1dentified, and approval of at least one of the
one or more correction proposals for constraint violation
severities that indicate that a run-time error 1s possible can be
requested.

In certain 1implementations, a bit string representative of
the at least one of the one or more process model elements for
which a constraint violation was 1dentified can be created.
The bit string may be a fingerprint of a process model frag-
ment, uniquely representing the state of the process model
fragment. In certain istances, the bit string may be a check-
sum. In certain implementations, the bit string 1s a first bat

10

15

20

25

30

35

40

45

50

55

60

65

2

string, and the method may also include receiving a user
confirmation of a correction proposal from the one or more

correction proposals, the user confirmation establishing a
selected correction, and recreating the bit string to create a
new bit string of a current version of the at least one of the one
or more process model elements for which a constraint vio-
lation was 1dentified. The bit string may be compared to the
new bit string. If the new bit string differs from the first bit
string, the selected correction may be discarded. If the new bit
string 1s the same as the first bit string, the selected correction
may be applied.

The details of one or more embodiments of the invention
are set forth 1n the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims. For example, modeling error detection
algorithms may be used as a baseline technology to (1) detect
erroneous situations, and (11) relate them to the causing pro-
cess fragments. In addition, the proposed invention generates
one or more correction proposals that it may later materialize
or implement to rectity the detected modeling error. The
systems, methods, and computer program products described
herein can (1) apply correction proposals on top of a graphical
process modeling language like Business Process Modeling
Notation (BPMN), (11) support both a single-user and a multi-
user (e.g., sequential or concurrent usage) modeling environ-
ment, and (111) rectily semantic 1ssues (such as “Deadlock’s),
as opposed to syntactical problems. Specifically, syntactical
problems can be automatically detected by checking a pro-
cess model against a meta model (such as the BPMN 2.0 meta
model as defined in the standards document).

The error correction can be used for several purposes. For
example, error correction can provide an extensible process
model correction framework that 1s integrated into a design
time environment. By early detection of erroneous situations
(1.e., at design time or before a process model 1s deployed 1nto
a runtime environment such as a Quality Assurance/test sys-
tem), the total cost of process development can be lowered.
Error correction can also automatically correct typical pro-
cess model errors such as “Deadlock,” “Lack of Synchroni-
zation,” “Cycle 1n Diverging Gateway,” and violated “Four-
Eves-Principle” Error correction may either happen
autonomously or may 1mvolve a modeling person who would
conilrm a correction before 1t 1s applied (1.¢., interactively).
Error correction of the present disclosure supports both a
single-user and multi-user modeling environment, thus, 1s
applicable to traditional check-out/submit style process mod-
cling and collaborative process modeling, where multiple
people edit a process model at the same time. Single user
applications versus multiple user applications, as well as the
check-out/submit style (e.g., traditional versioning mecha-
nisms, employed 1n source code repositories such as CVS,
Subversion, GIT, etc.) and concurrent/collaborative model-
ing are mostly orthogonal aspects.

DESCRIPTION OF DRAWINGS

FIG. 1 1s a schematic illustration of a system for providing,
a process model error correction framework.

FIG. 2A 1s a schematic of an example process model show-
ing a “Deadlock™ constraint violation.

FIG. 2B 1s a schematic representation illustrating a first
variant (Variant 1) of a correction proposal for the “Dead-
lock™ shown 1n FIG. 2A.

FIG. 2C 1s a schematic representation 1llustrating a second
variant (Variant 2) of a correction proposal for a “Deadlock™
Process errofr.

US 8,639,060 B2

3

FIG. 3A 1s a schematic of an example process model show-
ing a “Lack of Synchronization” constraint violation.

FIG. 3B 1s a schematic representation 1llustrating a first
variant (Variant 1) of a correction proposal for the “Lack of
Synchronization™ constraint violation shown in FIG. 3A.

FI1G. 3C 1s a schematic representation 1llustrating a second
variant (Variant 2) of a correction proposal for the “Lack of
Synchronization™ constraint violation.

FIG. 4A 1s a schematic representation of an example pro-
cess model 1llustrating a “Cycle in Diverging Gateway™ con-
straint violation.

FIG. 4B 1s a schematic representation of an example cor-
rection proposal (Variant 1) for the “Cycle 1n Diverging Gate-
way’~ constraint violation.

FIG. 4C 1s a schematic representation of an example cor-
rection proposal (Variant 2) for the “Cycle 1n Diverging Gate-
way’’ constraint violation.

FIG. 4D 1s a schematic representation of an example cor-
rection proposal (Variants 1 and 3) for the “Cycle 1n Diverg-
ing Gateway” constraint violation.

FIG. SA 1s a schematic representation of a process model
exhibiting a “Four-Eyes-Principle” constraint violation.

FIG. 5B 1s a schematic representation of a correction pro-
posal to the “Four-Eyes-Principle” constraint violation
shown 1n FIG. SA.

FIG. 6 A 1s a process flow chart for identifying correction
proposals.

FIG. 6B 1s a process flow chart for implementing user-
selected correction proposals.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Design flaws 1in process modeling may result 1n 1nconsis-
tent application states, security violations, service level
agreements (SLAs) and Key Performance Indicators (KPIs)
not being reached, or a failure to terminate, among other
things. These 1ssues may generally be referred to as process
errors or constraint violations. Also, process errors may ail

ect
various perspectives (e.g., control flow, data flow, conversa-
tions, message tlows, resources/roles, etc.) and elements
(e.g., gateways, activities, events, data flows, sequence tlows,
etc.) of a process model. These problems can be related to
syntactical and semantic process model errors. Syntactical
errors may include unconnected flow elements, missing con-
figuration properties, etc. Because the syntactical errors stem
from concrete, systemic issues, they may be identified by
traversing the process model logically. Syntax can be for-
mally defined (like by means of a meta model or a grammar)
and there are technical means (like a parser or schema vali-
dation tools) to validate a model against a syntax specifica-
tion. Semantic 1ssues oiten require expert skills and are also
difficult to relate to a root cause (1.e., a model fragment that
needs to be altered 1 order to fix the problem). The likelihood
of semantic model errors 1s amplified by graph-based mod-
cling languages, such as BPMN, which favor free-form mod-
cling over having many constraints (e.g., enforcing block-
structuring the model where splits and mergers of process
branches need to symmetrically pair up, thus, excluding cer-
tain semantic errors in the first place) with respect to how a
process model needs to be structured. As a result, semantic
model errors, such as “Deadlock,” “Lack of Synchroniza-
tion,” “Cycle 1 Diverging Gateway,” violated “Four-Eyes-
Principle,” and others, may occur. Semantic errors are inher-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

ently ditficult to detect by a modeling person and difficult to
fix without tampering with the process’s semantics (1.e., the
intent of the process).

In this context, this disclosure provides for automatically
fixing the constraint violations without altering the intent of
the process at hand and/or providing guidance that helps a
modeling person to rectily the constraint violation. This dis-
closure describes automatically generating model change
proposals based on generic correction patterns for the afore-
mentioned error cases. The error correction techniques
described herein apply to both traditional, single-user process
model editors working on local copies of a process model and
collaborative, multi-user model editors, where multiple
people edit the same model sequentially or concurrently.

The techniques described herein provide for a model cor-
rection framework that, upon model changes, triggers a
round-trip procedure that includes (1) an analysis stage where
the altered portion of the model 1s checked by a flexible
number of pluggable constraint check modules; (2) for each
check that reports a constraint violation, a list of correction
proposals 1s generated (before 1image/after image pairs of a
model fragment); and (3) optionally automatically material-
1zing the correction proposal, which is the after image of a
model fragment (immediate {ix); or (4) requesting confirma-
tion by a modeling person to apply the correction proposal
(1nteractive, user-chosen 1ix). The latter case 1s supported by
a fingerprint-based concurrency control mechanism that war-
rants model consistency by discarding correction proposals
that relate to a model fragment (before 1mage) that has been
concurrently altered in between. The fingerprint-based con-
currency control mechanism 1s an example technique, and
other techmques can be implemented. The bit string (finger-
print or checksum) serves as an eificient way to compare two
snapshots of the same model—one snapshot created at the
time when the correction proposal was prepared and sent to
the user, and the second snapshot created when the user has
confirmed the correction proposal to be applied. When the
two snapshots are 1dentical (i.e., the process model fragment
has not changed 1n the meanwhile and their bit-string “fin-
gerprints” are consequently identical), the (confirmed) cor-
rection proposal can be safely applied. In this way, both
single-user editing and multi-user model editing are sup-
ported. A generic framework for model correction with plug-
gable model checks and correction proposal generators for
traditional (non-collaborative) modeling environments and
for collaborative modeling environments 1s described.

The correction framework identifies various constraint vio-
lation severities, including the “error” severity level, which 1s
a severity level that indicates that the constraint violation will
lead to runtime problems, and the “warning” severity level,
which indicates that a particular constraint violation may be a
deviation from best practices and may cause runtime prob-
lems. “Warning” severity level 1s applicable 1n situations
where there 1s a lack of runtime knowledge (such as concrete
instantiations of a business process and 1ts accompanying
data) because, without runtime knowledge, there 1s little or no
ability to deduce whether or not the process (fragment) will
turn out erroneous. A correction proposal will be established
depending on the severity of the underlying constraint viola-
tion—that 1s, for “error’” severities, a correction proposal may
be established to address the constraint violation. Each con-
straint violation may result in a number of different correction
proposals. The correction proposals may be complementary
(thus, addressing different aspects of the underlying con-
straint violation) or mutually exclusive (by applying incom-
patible model fixes).

US 8,639,060 B2

S

As described above, the correction framework provides for
(1) selecting a correction proposal, or (2) offering a plurality
of correction proposals to a modeling user to let the user
choose the appropriate one (or multiple ones, 1 those are
complementary). The correction framework also provides for
ready-to-use correction proposals of frequently observed
constraint violations, including “Deadlock,” “Lack of Syn-
chronization,” “Cycle 1n Diverging Gateway,” and violated
“Four-Eyes-Principle.” Those correction proposals preserve
the intended semantics of the process fragment where the
violation occurs.

FIG. 1 1s a schematic illustration of a system 100 for
providing a process model error correction framework. The
illustrated environment 100 includes, or 1s communicably
coupled with, server 102 and one or more clients 135, at least
some of which communicate across network 112. In general,
environment 100 depicts an example configuration of a sys-
tem capable of i1dentifying constraint violations in process
models, providing correction proposals for resolving the con-
straint violations, and 1 some instances, automatically
implementing a correction depending on the severity of the
constraint violation. Certain aspects included in the server
102 may be implemented at the client 135, including the
modeling environment 116, and the memory 147 can store
data objects 104, correction proposals 107, process models
103, business objects 105, and other features stored in
memory 117.

In general, the server 102 1s any server that stores one or
more hosted applications 114, where at least a portion of the
hosted applications 114 are executed via requests and
responses sent to users or clients 135 within and communi-
cably coupled to the illustrated environment 100 of F1G. 1. In
some 1stances, the server 102 may store a plurality of various
hosted applications 114, while 1n other instances, the server
102 may be a dedicated server meant to store and execute only
a single hosted application 114. In some instances, the server
102 may comprise a web server, where the hosted applica-
tions 114 represent one or more web-based applications
accessed and executed via network 112 by the clients 135 of
the system to perform the programmed tasks or operations of
the hosted application 114. Hosted application 114 may be a
hosted process modeling environment or may be a process
execution environment 1n which processes modeled by client
135 are executed. At a high level, the server 102 comprises an
clectronic computing device operable to receive, transmit,
process, store, or manage data and information associated
with the environment 100. Specifically, the server 102 illus-
trated 1n FIG. 1 1s responsible for recerving application
requests from one or more client applications 144 associated
with the clients 135 of environment 100 and responding to the
received requests by processing said requests 1n the associ-
ated hosted application 114, and sending the appropriate
response from the hosted application 114 back to the request-
ing client application 144. In addition to requests from the
external clients 135 illustrated in FIG. 1, requests associated
with the hosted applications 114 may also be sent from 1nter-
nal users, external or third-party customers, other automated
applications, as well as any other appropriate entities, indi-
viduals, systems, or computers. As used 1n the present disclo-
sure, the term “computer” 1s mntended to encompass any suit-
able processing device. For example, although FIG. 1
illustrates a single server 102, environment 100 can be imple-
mented using two or more servers 102, as well as computers
other than servers, including a server pool. Indeed, server 102
may be any computer or processing device such as, for
example, a blade server, general-purpose personal computer

(PC), Macintosh®, workstation, UNIX®-based workstation,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

or any other suitable device. In other words, the present dis-
closure contemplates computers other than general purpose
computers, as well as computers without conventional oper-
ating systems. Further, 1llustrated server 102 may be adapted
to execute any operating system, including Linux®, UNIX®,
Windows®, Mac OS®, or any other suitable operating sys-
tem. According to one embodiment, server 102 may also
include or be communicably coupled with a mail server.

Generally, the network 112 facilitates wireless or wireline
communications between the components of the environment
100 (i.c., between the server 102 and the clients 135), as well
as with any other local or remote computer, such as additional
clients, servers, or other devices communicably coupled to
network 112 but not illustrated 1n FIG. 1. The network 112 1s
illustrated as a single network 1n FIG. 1, but may be a con-
tinuous or discontinuous network without departing from the
scope of this disclosure, so long as at least a portion of the
network 112 may facilitate communications between senders
and recipients. The network 112 may be all or a portion of an
enterprise or secured network, while 1n another instance, at
least a portion of the network 112 may represent a connection
to the Internet. In some 1nstances, a portion of the network
112 may be a virtual private network (VPN), such as, for
example, the connection between the client 135 and the server
102. Further, all or a portion of the network 112 can comprise
either a wireline or wireless link. Example wireless links may
include 802.11a/b/g/n, 802.20, WiMax, and/or any other
appropriate wireless link. In other words, the network 112
encompasses any internal or external network, networks, sub-
network, or combination thereof operable to facilitate com-
munications between various computing components inside
and outside the illustrated environment 100. The network 112
may communicate, for example, Internet Protocol (IP) pack-
ets, Frame Relay frames, Asynchronous Transfer Mode
(ATM) cells, voice, video, data, and other suitable informa-
tion between network addresses. The network 112 may also
include one or more local area networks (LANSs), radio access
networks (RANSs), metropolitan area networks (MANs), wide
area networks (WANSs), all or a portion of the Internet, and/or
any other communication system or systems at one or more
locations.

As shown 1n FIG. 1, the server 102 includes a processor
111, an interface 129, a memory 117, and one or more hosted
applications 114. The interface 129 1s used by the server 102
for communicating with other systems 1n a client-server or
other distributed environment (including within environment
100) connected to the network 112 (e.g., client 135, as well as
other systems communicably coupled to the network 112).
Generally, the iterface 129 comprises logic encoded 1n sofit-
ware and/or hardware 1n a suitable combination and operable
to communicate with the network 112. More specifically, the
interface 129 may comprise software supporting one or more
communication protocols associated with communications
such that the network 112 or interface’s hardware 1s operable
to communicate physical signals within and outside the 1llus-
trated environment 100.

As 1llustrated 1n FIG. 1, server 102 includes a processor
111. Although 1illustrated as a single processor 111 in FIG. 1,
two or more processors may be used according to particular
needs, desires, or particular embodiments of environment
100. Each processor 111 may be a central processing unit
(CPU), a blade, an application specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), or another
suitable component. Generally, the processor 111 executes
instructions and manipulates data to perform the operations
of server 102 and, specifically, the one or more plurality of
hosted applications 114. Specifically, the server’s processor

US 8,639,060 B2

7

111 executes the functionality required to receirve and
respond to requests from the client(s) 133 and their respective
client applications 144, as well as the functionality required to
perform the other operations of the hosted application 114.
Regardless of the particular implementation, “software” may
include computer-readable instructions, firmware, wired or
programmed hardware, or any combination thereof on a tan-
gible medium operable when executed to perform at least the
processes and operations described herein. Indeed, each soft-
ware component may be fully or partially written or described
in any appropriate computer language including C, C++,
Java®, Visual Basic, assembler, Perl®, any suitable version
of 4GL, as well as others. It will be understood that while
portions of the software 1illustrated in FIG. 1 are shown as
individual modules that implement the various features and
functionality through various objects, methods, or other pro-
cesses, the software may 1nstead include a number of sub-
modules, third-party services, components, libraries, and
such, as appropnate. Conversely, the features and function-
ality of various components can be combined into single
components, as appropriate. In the i1llustrated environment
100, processor 111 executes one or more hosted applications
114 on the server 102.

At a high level, each of the one or more hosted applications
114 1s any application, program, module, process, or other
software that may execute, change, delete, generate, or oth-
erwise manage mformation according to the present disclo-
sure, particularly 1n response to, and in connection with, one
or more requests recerved from the illustrated clients 135 and
their associated client applications 144. In certain cases, only
one hosted application 114 may be located at a particular
server 102. In others, a plurality of related and/or unrelated
hosted applications 114 may be stored at a single server 102,
or located across a plurality of other servers 102, as well. In
certain cases, environment 100 may implement a composite
hosted application 114. For example, portions of the compos-
ite application may be implemented as Enterprise Java™
Beans (EJBs) or design-time components may have the abil-
ity to generate run-time 1mplementations into different plat-
forms, such as J2EE™ (Java™ 2 Platiorm, Enterprise Edi-
tion), ABAP (Advanced Business Application Programming)
objects, or Microsoit’s .NET®, among others. Additionally,
the hosted applications 114 may represent web-based appli-
cations accessed and executed by remote clients 135 or client
applications 144 via the network 112 (e.g., through the Inter-
net). Further, while illustrated as internal to server 102, one or
more processes associated with a particular hosted applica-
tion 114 may be stored, referenced, or executed remotely. For
example, a portion of a particular hosted application 114 may
be a web service associated with the application that 1s
remotely called, while another portion of the hosted applica-
tion 114 may be an interface object or agent bundled for
processing at a remote client 135. Moreover, any or all of the
hosted applications 114 may be a child or sub-module of
another software module or enterprise application (not 1llus-
trated) without departing from the scope of this disclosure.
Still further, portions of the hosted application 114 may be
executed by a user working directly at server 102, as well as
at client 135. The design time environment (including the
modeling environment 116) could be part of the client instal-
lation 135 and use a server to retrieve process models 103 and,
possibly, the correlation proposals from some repository (like
memory 117). For efficiency reasons, correlation proposals
may be cached on the client side as well.

Application 114 may execute processes modeled by client
135. Similarly, application 114 may be a modeling environ-
ment through which client 135 models processes. For

10

15

20

25

30

35

40

45

50

55

60

65

8

example, application 114 may access a memory 117 that
stores process models 103, data objects 104, business objects
105, process content directory 106, and correction proposals
107.

Correction proposals 107 include correction proposals
identified from historic design-time analyses of process mod-
cls, as well as known error cases. Correction proposals 107
include corrections 1dentified as likely solutions to common
problems. For example, for “Deadlock’™ constraint violations,
a particular correction proposal may be used often. By storing
popular correction proposals, constraint violations may be
resolved quickly and without having to calculate correction
proposals for common problems at each instance, thereby
reducing the use of system resources. The algorithms associ-
ated with specific correlation proposals do need to be applied
on the specific process model (fragment); however, the logics
to perform the correlation may be hard-coded 1n an efficient
mannetr. In certain cases, there 1s some effort associated with
identifying a problem and relating 1t to some specific process
model artifact (like a specific gateway, for instance).

In general, the overall structure of the process model 103
ensures the consistency of the interfaces that are derived from
the process model 103. The derivation helps ensure that the
same business-related subject matter or concept can be rep-
resented and structured 1n the same way 1n various interfaces.
The process model 103 defines the business-related concepts
at a central location for a number of business transactions. In
other words, 1t reflects the decisions made about modeling the
business entities of the real world acting in business transac-
tions across industries and business areas. The process model
103 1s defined by the business objects 105 and their relation-
ship to each other (the overall net structure).

Each business object 105 1s thus a capsule with an internal
hierarchical structure, behavior offered by its operations, and
integrity constraints. Business objects 105 are generally
semantically disjointed, 1.¢., the same business information 1s
represented once. In some embodiments, the business objects
105 are arranged 1n an ordering framework such that they can
be arranged according to their existence dependency to each
other. For example, 1n a modeling environment, the custom-
1zing elements might be arranged on the left side of the
process model 103, the strategic elements might be arranged
in the center of the process model 103, and the operative
clements might be arranged on the right side of the process
model 103. Similarly, the business objects 105 can be
arranged 1n this model from the top to the bottom based on
defined order of the business areas, e.g., finance could be
arranged at the top of the business object model with cus-
tomer relationship management (CRM) below finance, and
supplier relationship management (SRM) below CRM. To
help ensure the consistency of interfaces, the business object
model may be built using standardized data types, as well as
packages, to group related elements together, and package
templates and entity templates to specily the arrangement of
packages and entities within the structure.

A business object may be defined such that 1t contains
multiple layers, such as in the example business object 105.
The example business object 105 contains four layers: the
kernel layer, the mtegrity layer, the interface layer, and the
access layer. The innermost layer of the example business
object 1s the kernel layer. The kernel layer represents the
business object’s inherent data, containing various attributes
of the defined business object. The second layer represents the
integrity layer. In the example business object 105, the integ-
rity layer contains the business logic of the object. Such logic
may include business rules for consistent embedding in the
environment 100 and the constraints regarding the values and

US 8,639,060 B2

9

domains that apply to the business object 103. Business logic
may comprise statements that define or constrain some aspect
of the business, such that they are intended to assert business
structure or to control or intluence the behavior of the busi-
ness entity. It may pertain to the facts recorded on data and
constraints on changes to that data. In effect, business logic
may determine what data may, or may not, be recorded in
business object 105, The third layer, the interface layer, may
supply the valid options for accessing the business object 105
and describe the implementation, structure, and interface of
the business object to the outside world. To do so, the inter-
face layer may contain methods, input event controls, and
output events. The fourth and outermost layer of the business
object 105 1s 1n the access layer. The access layer defines the
technologies that may be used for external access to the
business object’s data. Some examples of allowed technolo-

gies may mclude COM/DCOM (Component Object Model/
Distributed Component Object Model), CORBA (Common
Object Request Broker Architecture), RFC (Remote Function
Call), Hypertext Transier Protocol (HTTP) and Java™,
among others. Additionally, business objects 105 of this
embodiment may 1mplement object-oriented technologies
such as encapsulation, inheritance, and/or polymorphism.

Some or all of the data objects 105, models 103, and infor-
mation associated with or stored 1n the process content direc-
tory 106 may be stored or referenced 1n a local or remote
memory 117, which can be a development or metamodel
repository. This memory 117 may include parameters, point-
ers, variables, algorithms, instructions, rules, files, links, or
other data for easily providing information associated with or
to facilitate modeling of the particular object. More specifi-
cally, each memory 117 may be formatted, stored, or defined
as various data structures in eXtensible Markup Language
(XML) documents, text files, Virtual Storage Access Method
(VSAM) files, flat files, Btrieve files, comma-separated-value
(CSV) files, internal variables, one or more libraries, or any
other format capable of storing or presenting all or a portion
of the interface, process, data, and other models or modeling
domains. In short, each repository may comprise one table or
file or a plurality of tables or files stored on one computer or
across a plurality of computers in any appropriate format as
described above. Indeed, some or all of the particular reposi-
tory may be local or remote without departing from the scope
of this disclosure and store any type of appropriate data.

The server 102 also includes memory 117. Memory 117
may include any memory or database module and may take
the form of volatile or non-volatile memory including, with-
out limitation, magnetic media, optical media, random access
memory (RAM), read-only memory (ROM), removable
media, or any other suitable local or remote memory compo-
nent. Memory 117 may store various objects or data, includ-
ing classes, frameworks, applications, backup data, business
objects, jobs, web pages, web page templates, database
tables, repositories storing business and/or dynamic informa-
tion, and any other approprnate information including any
parameters, variables, algorithms, instructions, rules, con-
straints, or references thereto associated with the purposes of
the server 102 and its one or more hosted applications 114.
Additionally, memory 117 may include any other appropnate
data, such as VPN applications, firmware logs and policies,
firewall policies, a security or access log, print or other report-
ing files, as well as others.

Memory 117, whether local or distributed, can also store a
process content directory 106. The process content directory
106 can store detailed relationship and connection 1nforma-
tion defined between the models and entities designed 1n the
modeling environment 116, as well as provide the data and

5

10

15

20

25

30

35

40

45

50

55

60

65

10

other information needed to allow for the automated addition
ol model-related and model-defining information into high-
level models created by business users and technical devel-
opers. For example, the directory 106 may store detailed
information regarding additional and/or more detailed con-
nections defined for the high-level elements created or mod-
cled 1n the modeling environment 116. The process content
directory 106 can store information used to define previously-
generated models, including the connections and operations
included 1 and associated with various modeled entities.
Therefore, the information stored in the directory 106 can be
used for the automatic generation of later-developed or
updated models when one or more elements added to a par-
ticular model have previously been used or modeled 1n ear-
lier-defined models. Additionally, changes to one or more of
the models associated with the directory 106 can be retlected
in the data stored therein. Process models 103 defined or
generated using information from the directory 106 can be
automatically updated by reloading or re-analyzing the modi-
fled information stored within the directories.

In some 1nstances, the process content directory 106 can
store information defining which entities are available for a
particular process, business area, or work center, among oth-
ers. For 1nstance, where a particular component has already
been defined 1n the modeling environment 116, information
stored 1n the process content directory 106 can be used to
describe a set of entities to which that particular component
can navigate to or be associated with. Using information
retrieved from the process content directory 106, a model
describing the navigation available from a particular compo-
nent can be at least partially generated or described.

The illustrated environment of FIG. 1 also includes one or
more clients 135. Each client 135 may be any computing
device operable to connect to or communicate with at least the
server 102 and/or via the network 112 using a wireline or
wireless connection. Further, as illustrated by client 135, each
client 135 includes a processor 141, an interface 142, a
graphical user interface (GUI) 138, a client application 144,
and a memory 147. In general, each client 135 comprises an
clectronic computer device operable to receive, transmit, pro-
cess, and store any appropriate data associated with the envi-
ronment 100 of FIG. 1. It will be understood that there may be
any number of clients 135 associated with, or external to,
environment 100, even though environment 100 shows a
single client. Additionally, there may also be one or more
additional clients 135 external to the illustrated portion of
environment 100 that are capable of interacting with the envi-
ronment 100 via the network 112. Further, the term *“client”
and “user” may be used interchangeably as appropriate with-
out departing from the scope of this disclosure. Moreover,
while each client 135 1s described 1n terms of being used by a
single user, this disclosure contemplates that many users may
use one computer, or that one user may use multiple comput-
ers. As used 1n this disclosure, client 135 1s intended to
encompass a personal computer, touch screen terminal, work-
station, network computer, kiosk, wireless data port, smart
phone, personal data assistant (PDA), one or more processors
within these or other devices, or any other suitable processing
device. For example, each client 135 may comprise a com-
puter that includes an input device, such as a keypad, touch
screen, mouse, or other device that can accept user informa-
tion, and an output device that conveys mformation associ-
ated with the operation of the server 102 (and hosted appli-
cation 114) or the client 135 itself, including digital data,
visual information, the client application 144, or the GUI 138.
Both the input and output device may include fixed or remov-
able storage media such as a magnetic storage media, CD-

US 8,639,060 B2

11

ROM, or other suitable media to both receive input from and
provide output to users of the clients 135 through the display,
namely, the GUI 138. The process model error correction
techniques described herein may be implemented solely on a
client device that that hosts the modeling environment, the
process model(s), and the correction proposals/templates.
Data objects 104, business objects 105, process content direc-
tory 106, and hosted application 114 are optional.

While FIG. 1 1s described as containing or being associated
with a plurality of elements, not all elements illustrated within
environment 100 of FIG. 1 may be utilized in each alternative
implementation of the present disclosure. Additionally, one
or more ol the elements described herein may be located
external to environment 100, while in other instances, certain
clements may be included within or as a portion of one or
more of the other described elements, as well as other ele-
ments not described in the illustrated implementation. Fur-
ther, certain elements illustrated 1n FIG. 1 may be combined
with other components, as well as used for alternative or
additional purposes, i addition to those purposes described
herein.

FIG. 2A 1s a schematic of an example process model 200
showing a “Deadlock” constraint violation. The example pro-
cess model 200 includes four “activities” and two “gate-
ways.” In some 1implementations, Business Process Modeling,
Notation (BPMN) facilitates the concurrent execution of pro-
cess steps by splitting the control flow 1nto parallel branches.
BPMN is a standard for business process modeling, and pro-
vides a graphical standard notation for specitying business
processes 1n a Business Process Diagram (BPD). In general,
the objective of BPMN 1s to support business process man-
agement for both technical users and business users by pro-
viding a notation that 1s intuitive to business users, yet capable
of representing complex process semantics. Further, the
BPMN specification can provide a mapping between the
graphics ol the notation to the underlying constructs of execu-
tion languages. Because BPMN 1s understandable by both
technical and business users, networked business processes
can be described using BPMN, providing a common point of
understanding for users from different entities. The BPMN
standard provides for “Inclusive Gateways” (also referred to
as “OR” split/join), “Parallel Gateways” (also referred to as
“AND” split/join), and “Complex Gateways,” and others,
cach of which facilitate the forking (or branching) and/or
synchronization of concurrent threads of control executing
process steps on separate branches.

Process model 200 shown in FIG. 2A includes an Inclusive
Gateway 202, which 1s an XOR split, and a Parallel Gateway
204, which 1s an AND join. Activity 0 206 1s the first activity,
which resides 1n a sequential branch of the process model. An
XOR split 202 established the start of a split branch of the
process model that includes Activity 1 208 and Activity 2 210.
Theparallel branches are joined atthe AND join 204. Activity
3 212 occurs atter the parallel branches.

Process model 200 1llustrates an example constraint viola-
tion—a “Deadlock.” Here, the “Deadlock™ occurs at AND
join gateway 204. The process flow indefinitely blocks at
runtime (1.¢., the process never terminates or reaches next
stage) because the AND join gateway expects both of its
incoming branches to be triggered in order to execute the join.
This type of constraint violation 1s difficult to 1dentily and
resolve at runtime for end users. The severity ol this constraint
violation can be considered as an “error” because the process
either never terminates or does not reach the next stage, due to
the strict join condition of the AND join not being reached.

FIG. 2B 1s a schematic representation 1llustrating a first
variant (Variant 1) of a correction proposal for the “Dead-

10

15

20

25

30

35

40

45

50

55

60

65

12

lock™ shown 1n FIG. 2A. Process model 220 shows a logical
construction of a parallel branch that begins with an XOR
split 222 and terminates with an AND join 224—similar to the
parallel branch of process model 200 shown 1n FIG. 2A. The
first proposed correction (Variant 1) includes replacing the
AND j01n 224 with an Inclusive gateway (OR j01n) 228 1n the
new process model 221 (the XOR split 226 remains). By
replacing the AND join 224 with the OR join 228, the process
model constraint violation (“Deadlock™) can be corrected
without tampering with the execution semantics. The OR join
synchronizes flexible token combinations, as opposed to the
AND j01n, which mvolves single, fixed token combinations.
The OR join will essentially synchronize the upstream,
incoming flow that exists (in flexible, dynamically deter-
mined combinations).

FIG. 2C 1s a schematic representation illustrating a second
variant (Variant 2) of a correction proposal for a “Deadlock™
process error caused by a “Lack of Synchronization.” In FIG.
2C, the oniginal process model 230 includes a parallel branch
beginning with an AND split 232 and joining at an AND join
234. A second parallel branch resides on one of the branches
between the AND split 232 and AND join 234. This second
parallel branch 1s established by an AND split 236 and 1s
joined by an XOR join 238. In process model 230, a *“Dead-
lock™ may occur at the AND jo1n 234 that has an AND split
236 counterpart upstream. “Deadlock™ here may be caused by
(1) “Lack of Synchronization™ or (2) “Cycle 1in Diverging,
Gateway” situation 1n the second parallel branch (in the case
of process model 230, the constraint violation 1s a “Lack of
Synchronization” in the second parallel branch). The con-
straint violation may be corrected by applying the correction
proposals associated therewith—in this case, for “Lack of
Synchronization.” Specifically, process model 231 includes
an AND split 240 and an AND join 242 with an unbalanced
parallel split 244 upstream of the parallel join 242. The XOR
j01n 238 of process model 230 1s replaced by an OR join 246.
Variant 2 can be combined with Variant 1 as appropriate.

FIG. 3A 15 a schematic of an example process model 300
showing a “Lack of Synchronization” constraint violation.
Process model 300 shown in FIG. 3A includes a Parallel
Gateway 302, which 1s an AND split, and an uncontrolled
merge 304, which 1s an XOR jo1n. Activity 0 306 1s the first
activity, which resides in a sequential branch of the process
model. An AND split 302 established the start of a parallel
branch of the process model that includes Activity 1 308 and
Activity 2 310. The parallel branches are joined at the XOR
jo1n 304. Activity 3 312 occurs after the parallel branches.

Process model 300 illustrates a “Lack of Synchronization”
constraint violation, which occurs 1n this example at the XOR
jo1n 304. In this example, the severity of the constraint vio-
lation 1s a “warming.” The process unintentionally executes
certain model elements multiple times, though a single execu-
tion was intended (here, “Activity 3” 1s executed twice). The
process actions and side elfects are duplicated, possibly
resulting in 1nconsistent states. Process termination may be
inhibited due to “dangling tokens.” Specifically, a process
may not be designed to handle multiple incoming tokens at
end events and, thus, defer or prevent a successiul process
termination.

FIG. 3B 1s a schematic representation illustrating a first
variant (Variant 1) of a correction proposal for the “Lack of
Synchronization” constraint violation shown in FIG. 3A. Pro-
cess model 320 shows a logical construction of a parallel
branch that begins with an AND split 322 and terminates with
an uncontrolled merge 324—similar to the parallel branch of
process model 300 shown 1n FIG. 3A. The first proposed
correction (Variant 1) includes replacing the uncontrolled

US 8,639,060 B2

13

merge 324 with an OR join 328 1n the new process model 321.
By replacing the XOR join 324 with the OR join 328, the

process model constraint violation (*“Lack of Synchroniza-
tion”) can be corrected (the AND split 326 remains). The

correction, however, depends on the flow analysis. If 5

upstream tlow does not contain a “Cycle in Diverging Gate-
way’ or “Lack of Synchronization” constraint violation, the
XOR jo1n 324 may be replaced with an OR j01n 328. The OR
join 328 synchronizes the tokens from multiple ibound
edges 1nto a single outbound token.

If the upstream process contains a “Lack of Synchroniza-
tion” or “Cycle in Diverging Gateway” situation, an OR join
will still produce multiple outbound tokens 1t any imbound
edge carries multiple tokens. A so-called thread merge pattern
can be used to synchronize those tokens (Variant 2). FIG. 3C
1s a schematic representation illustrating a second variant
(Variant 2) of a correction proposal for the “Lack of Synchro-
nization’ constraint violation. In FIG. 3C, 1t 1s assumed that
the upstream process contains a “Lack of Synchronization™ or
“Cycle 1n Diverging Gateway’ situation.

A “Thread Merge” pattern 1s a process model fragment that
synchronizes multiple tokens from a single branch into a
single token. In this way, 1t may counter-act a “Lack of Syn-
chronization™ situation, which produces multiple tokens on a
single branch. BPMN does not natively (i.e., using a dedi-
cated model element) support “Thread Merge.” However, the
same effect as “Thread Merge” can be accomplished (and 1s
applied 1n FIG. 3C) using a combination of existing BPMN
artifacts.

“Discriminator” 1s another workilow pattern that provides
for just another way of synchronizing tflow (aka “tokens”)
from multiple branches. Similar to “OR joins” (“Inclusive
Gateways”), a discriminator synchronizes “unbalanced”
flows (e.g., a discriminator with 3 ingoing branches synchro-
nizes any combination of 1, 2, or 3 tokens from its ingoing
branches [no more than one token from either branch,
though]). Different from an OR join, though, 1t passes on a
single token to 1ts outgoing branch as soon as 1t has seen (at
least) one token from any of 1ts ingoing branches.

FIG. 3C rectifies the “Lack of Synchronization” situation
at the upper right XOR-merge gateway which 1s caused by
two 1ssues being (1) a cycle 1 a diverging gateway (here:

“Exclusive Choice 0”) and an unbalanced AND-split (*Par-
allel Split 0””) and XOR-merge (“Uncontrolled Merge . . .)
combination. The idea to fix these 1ssues 1s, thus, twofold: For
one, the XOR merge gateway, which causes a Lack of Syn-
chronization 1n the first place, 1s replaced by an OR merge. In
elfect, a Lack of Synchronization 1s resolved iff “Exclusive
Choice 07 directs the flow to 1ts right outbound branch (i.e.,
does NOT cycle back the flow to upstream). For the latter
case, the entire downstream process fragment implements a
flavor of the “Discriminator” pattern mixed with a “Thread
Merge” pattern, which basically forwards the first token to
exit from the newly itroduced OR merge to further down-
stream (here: ending up at the end event, other configurations
are concervable) AND synchronizing all other tokens being
emitted from the OR merge using a ““Thread Merge™ pattern.

FIG. 4A 1s a schematic representation of an example pro-
cess model 400 illustrating a “Cycle in Diverging Gateway”™
constraint violation. Process model 400 includes Activity O
404 that precedes an AND split 402. The AND split 402
diverges two edges—one proceeding to Activity 1 406 and
another proceeding to Activity 2 408. Activity 2 408 proceeds
to the end of the process. Activity 1 406, however, establishes
a loop or cycle with Activity 0 404 and the AND split 402.
This loop 1s non-terminating. The process non-deterministi-
cally spawns new flow (AND split, but can occur for OR split;

10

15

20

25

30

35

40

45

50

55

60

65

14

for XOR and OR splits, 1t redirects tlow away from a process
fragment—specifically, 1t redirects flow away back
upstream). Thus, a “Cycle in Diverging Gateway” constraint
violation occurs at the AND split 402 (in this example, the
gateway 1s an AND split, but “Cycle 1n Diverging Gateway”™
constraint violations can occur mn OR and XOR splits, as
well). The severity of this constraint violation 1s “warning’”
because part of the process may terminate after Activity 2, but
additional, unnecessary process executions may occur in the
loop. The loop possibly results 1n “lifelocks,” which are end-
less loops causing resource depletion and non-termination
issues, and may also result 1n process fragments (“Dead-
lock™s, “Lack of Synchronization™) or other erroneous sce-
narios. Other situations exists wherein processes fail to ter-
minate but are busy continuously executing process steps in
certain process fragments. In contrast, Deadlocks prevent a
process Irom completing but do not actively execute process
steps while doing so. In a sense, a lifelock may be more
harmiul than a Deadlock due to the fact that a lifelock con-
sumes system resources (notably, CPU cycles).

FIG. 4B 1s a schematic representation of an example cor-
rection proposal (Variant 1) for the “Cycle in Diverging Gate-
way’’ constraint violation. In FIG. 4B, a process model 410 1s
shown, which includes a “Cycle in Diverging Gateway,” simi-
lar to that shown 1n process model 200 of FIG. 4A. In process
model 410, an AND split 412 establishes the start of a parallel
branch, which eventually joins at an AND join 414. An XOR
split 416 establishes a loop back to Activity 0418. In this case,
entrance 1nto the loop 1s state-dependent (1.e., 1t depends on
how the XOR split (“Exclusive Choice 07) evaluates its con-
ditions), but because 1t follows immediately after an AND
split 412, the loop may be entered at each 1nstance, creating a
“Cycle mn Diverging Gateway.” But, as mentioned above,
whether or not the process really enters the cycle can be
determined at runtime. However, when the process enters the
cycle, 1t would subsequently Deadlock at “Parallel Join 0. In
that sense, the cycle 1s redundant or erroneous and should,
thus, be removed or replaced with a “sate” (Deadlock-1iree)
variant. Further, a “Deadlock™ occurs at the AND join 414 1f
the XOR split would proceed 1nto the loop.

Process model 420 1s an example correction proposal for
the constraint violation shown in process model 410. “Lack of
Synchronmization” or “Deadlock” situations can be avoided by
aborting the entire “scope’ of the gateway (including tokens
on other branches). The mnermost block (also known as
“scope”) of the gateway can be determined, and an embedded
subflow can be 1ntroduced at the block boundary. The back-
link edge can be broken up into a “Raise Signal End Event”
inside the block and “Catch Signal Boundary Event” at the
block boundary.

The technique represented in FI1G. 4B 1s to wrap the block
with the diverging gateway into a sub-process, and make use
of the implicit block termination semantics of “Boundary
Events” (a BPMN artifact). That 1s, whenever the XOR split
directs the flow to the “Escalation End” event, an “Escalation
Event” was created and sent to the outer process where 1t 1s
caught by the “Boundary Event” (the circular shape on the top
left of the sub-process bounding box). In effect, the inner
scope was entirely cancelled, including the tokens/tlow from
parallel branches. Essentially, the Deadlock at “Parallel Join
0” was resolved (the token 1s removed from 1ts lower ingoing
edge).

FIG. 4C 1s a schematic representation of an example cor-
rection proposal (Variant 2) for the “Cycle in Diverging Gate-
way’’ constraint violation. FI1G. 4C 1llustrates process model
410, which 1s the same process model 410 from FIG. 4B. In
process model 410, an AND split 412 establishes the start of

US 8,639,060 B2

15

a parallel branch, which, eventually, joins atan AND join 414.
An XOR split 416 (436 1n process model 430) establishes a

loop back to Activity 0418 (438 in process model 430). In this
case, entrance 1nto the loop 1s state-dependent, but because 1t
follows immediately after an AND split 412, the loop will be
entered at each instance, creating a “Cycle in Diverging Gate-
way.” Further, a “Deadlock” occurs at the AND join 414
because the XOR split would only proceed into the loop.

Variant 2 of the correction proposal involves correcting the
problem where 1t occurs. In this case, a “Deadlock” occurs at
the AND join 414. The correction proposal (Variant 2)
includes replacing the AND join 414 with an OR join 434.
Process model 430 shows how the inclusive gateway 434 can
be implemented. AND split 432 establishes a parallel branch.
The branch can terminate atter the OR join 434 based on the
lower token. The upper token can enter the loop, which may
be a “Cycle 1n Diverging Gateway,” but such a cycle can exist
in this process model 430 without the creation of an “error”
severity (though, while resolving the Deadlock, a “Lack of
Synchronization” situation can be generated implicitly down-
stream of the OR join, which 1s less severe than a Deadlock
and may 1n rare cases even be desired). It 1s understood that
Variant 1 and Varnant 2 correction proposals for “Cycle in
Diverging Gateway™ are mutually exclusive.

FIG. 4D 1s a schematic representation of an example cor-
rection proposal (Variants 2 and 3) for the “Cycle 1n Diverg-
ing Gateway’” constraint violation. FIG. 4D illustrates pro-
cess model 410, which 1s the same process model 410 from
FIG. 4B. In process model 410, an AND split 412 establishes
the start of a parallel branch, which, eventually, joins at an
AND j01n 414. An XOR split 416 establishes a loop back to
Activity O 418. In this case, entrance into the loop 1s state
dependent, but because it follows immediately after an AND
split 412, the loop may be entered at each 1nstance, creating a
“Cycle 1 Drverging Gateway.” (Though, as mentioned
above, whether the loop 1s entered, creating the “Cycle 1n
Diverging Gateway,” 1s determined at runtime.) Further, a
“Deadlock™ occurs at the AND join 414 because the XOR
split would only proceed 1nto the loop.

Variant 3 includes fixing the lifelock (also known as “end-
less loop™) by introducing a “disaster break™ concept. A loop
counter can abort the loop and signal a process error when a
threshold count 1s exceeded (e.g., the count may represent
how often a token has entered the cycle). In the most conser-
vative settings, that threshold may be defined as “0”” such that
the very first (attempted) entry into the loop causes the pro-
cess to abort with signaling an error. Process model 440 15 a
process model that includes an AND split 442 that establishes
a parallel branch. A disaster break 448 1s placed at the output
of the XOR split 446. An increment counter 450 can count the
loop cycles and store them 1n a counter 452. I the count
exceeds a threshold value, the error 1s signaled and the loop
terminated.

Variant 3 can be combined with variant 1 or variant 2. For
example, the AND join 414 of process model 410 1s replaced
in process model 440 with an OR join 444 that remedies a
“Deadlock” situation from the “Lifelock.”

FIG. SA 15 a schematic representation of a process model
500 exhibiting a Four-Eyes-Principle constraint violation.
The process model 500 includes a two-step approval process.
In this example, the process 1s a Travel Approval Process 500.
The first task 1s “Enter Travel Request” 502. The task may be
processed by some department member (employee 506),
which includes the department’s manager. The next task 1s
“Approve Travel Request” 504. The travel request 1s approved
by the department manager 508. If the manager 1s also the
person that enters the travel request, then the same person 1s

10

15

20

25

30

35

40

45

50

55

60

65

16

approving both tasks. The process model 500 intends for two
approvers (1.e., four eyes) to review and approve the request.
In this case, however, a single approver may perform both
approval tasks (1.e., manager 508). In other words, employee
506 1s the same person as manager 308, which 1s a violation of
the “Four-Eyes-Principle.” The severity of this violation 1s a
warning. The 1ssue 1includes a violation of company policies
or legal policies. In general, there may be no way to know
whether the task processor resolution rules configured in
conjunction with tasks “Enter Travel Request” and “Approve
Travel Request” are mutually exclusive. That 1s due to the fact
that those rules may depend on process instance data (like the
department name) which are not known at design time.

FIG. 5B 1s a schematic representation of a correction pro-
posal to the “Four-Eyes-Principle” constraint violation
shown 1n FIG. SA. The correction proposal includes making
the task role aware of the resolution context. All tasks for
which the Four-Eyes-Principle applies can be serialized into
a strict order. The processor (also known as “actual owner”) of
predecessor task(s) 1s excluded from list of potential owners
of the current task. This can be done by storing the predeces-
sor task owners, and comparing the current task owner with
the predecessor task owner. That single task owner 1s (after
the task 1s completed) stored 1n the process context (“proces-
sor’” data object) and referred to 1n the processor resolution
rule of the “Approve Travel Request” 504 task. Normally,
processor resolution rules evaluate eligible people to process
that task. For instance, the resolution rule of “Enter Travel
Request” 502 may refer to all members of a department. The
second “Approve Travel Request” 504 resolution rule may
refer to all department members granted permission to make
orders on behalf of the cost center. The latter group may be
department members who {ile their own travel requests. Due
to the four-eyes-policy, the process needs to ensure that the
second task 1s processed by a cost center owner different from
the person entering the travel request.

Process model 510 includes a task “Enter Travel Request”
512, which 1s performed by a first person. The first person 1D
1s stored 1n a data object “processor” 514. The process model
510 also includes a task “Approve Travel Request” 516,
which 1s performed by a second person. At runtime, the sec-
ond person ID 1s compared against the first person 1D stored
in “processor’” data object 514. The first person 1s excluded
from processing the task Approve Travel Request 516. In
terms of a model change to enforce the semantics, the task
owner resolution rule of the second task can be amended as
follows: potential_owners:=<department members eligible
to file orders on cost center>MINUS<processor of {irst task>.

FIG. 6 A 1s a process tlow chart 600 for identiiying correc-
tion proposals. The process may be computer-implemented.
A change in the process model can be identified (602). As
indicated before, incrementally watching for model changes
1s one option for the mvention to be triggered. Alternatively,
the modeling person may also have a process model checked
on explicit request. The process model includes one or more
process model elements, such as an activity, a gateway, efc.
The process model can be traversed. A list of constraint
checks can also be traversed iteratively over all process model
clements (604). One or more constraint violations for at least
one of the one or more process model elements can be 1den-
tified (606). If the check results 1n the detection of a constraint
violation, matching correction proposals can be rendered
(608) (1.c., 1dentified and prepared). A fingerprint, checksum,
or other bit string of the model portion that 1s to be altered can
be computed (610) and stored (612).

The severity of the constraint violations can be identified
(614). A determination can be made as to whether the severity

US 8,639,060 B2

17

1s “error’” or “warmng.” If the severity 1s “error,” a determi-
nation can be made as to whether there 1s only one correction
proposal (616). I the severity 1s “error” and there 1s only one
correction proposal, the correction proposal can be applied
without further input (1.e., the process model can be altered to
rectily the problem) (618). Otherwise, the correction propos-
als can be stored (620) and sent to the modeler user(s) for
selection and confirmation (622).

FIG. 6B 1s a process flow chart 650 for implementing
user-selected correction proposals. A user confirmation for a
correction proposal can be received (652). IT correction pro-
posal was not yet applied (1.¢., 1t 1s still present 1n the model),
the fingerprint of the model portion can be re-calculated upon
which to apply the correction (654). The old bit string can be
compared to the newly recalculated bit string (656). A deter-
mination can be made as to whether the old bit string 1s the
same as the new bit string (1.¢., whether, during the pendency
of the user confirmation of a correction, the process model has
changed) (658). Semantically, when work 1s performed inter-
actively, a model should not be fixed by a second user (such as
another user concurrently editing the same process model)
while a first user 1s contemplating about which correction
proposal to apply. Using fingerprints 1s one way of efficiently
performing that check. Alternatives exist, ranging from lock-
ing the to-be-altered process model for the duration or inter-
actively selecting a correction proposal or comparing the
model fragment at the time the correction proposal was pre-
pared with 1ts current state by creating and storing a snapshot
of the model when the correction proposal was prepared and
plainly traversing the current model and the snapshot, search-
ing for any differences.

If a newly calculated fingerprint differs from a stored (old)
fingerprint, the correction proposal can be discarded (664).
Normally, the process described in FIG. 6 A 1s triggered again
to check whether the process model which has changed vio-
lates any other constraints. The analysis would restart to
determine whether the process model has changed, how 1thas
changed, whether there are constraint violations, and 1t so,
what they are (666). Otherwise, the correction proposal can
be applied (660) and then discarded (662).

The correction framework can be embedded 1nto different
types ol design-time environments. Such environments
include, but are not limited to, traditional, single-user sys-
tems, connected to a source code versioning system (e.g.,
NetWeaver BPM) and collaborative system, connected to
joint/Tederated model repository (like SAP Gravity).

Error situations may be ambiguous. Some situations may
(in rare cases) be intentional. Error situations can be marked
with different severities, such as “error,” which will lead to a
problem at runtime, and “warning,” which, 1n many cases,
will lead to a problem at runtime and may deviate from best
practices. Consequently, some problems may be tolerated by
the modeling environment.

Problem corrections can be unambiguous (1.e., a single fix
that rectifies the problem). The system can apply the fix, e.g.,
if severity 1s “error.” Problem fixes can be ambiguous (i.e.,
multiple different fixes that rectify the problem but lead to
different process semantics). In those cases, a user can select
the fix, e.g., for all severities. Correction proposals can be
related to “root cause™ artifact (model element that causes the
problem). Also, correction proposals can be applicable to
unchanged model fragments.

A number of embodiments of the invention have been
described. Nevertheless, 1t will be understood that various
modifications may be made without departing from the spirit
and scope of the invention. Accordingly, other embodiments
are within the scope of the following claims.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

What 1s claimed 1s:

1. A computer implemented method for providing correc-
tions for semantic errors 1 a process model, the method
comprising:

identifying a change in the process model, the process

model including one or more process model elements;
identifying one or more constraint violations associated
with at least one process model element 1n response to
identifying the change 1n the process model;
identilying one or more correction proposals for each con-
straint violation identified;

creating a first bit string representative of the at least one

process model element;

recerving a user selection of a correction proposal from the

one or more 1dentified correction proposals;

creating a second bit string of a current version of the at

least one process model element;

applying the selected correction proposal in response to

determining that the first bit string 1s the same as the
second bit string; and

discarding the selected correction proposal 1n response to

determining that the second bit string differs from the
first bit string.

2. The computer implemented method of claim 1 further
comprising;

identifying a severity of the constraint violation; and

automatically applying at least one correction proposal for

constraint violation severities that indicate a run-time
IO,

3. The computer implemented method of claim 1 further
comprising;

identilying a severity of the constraint violation; and

requesting approval of at least one correction proposal for

constraint violation severities that indicate that a run-
time error 1s possible.

4. The computer implemented method of claim 1, wherein
the bit string 1s a fingerprint of a process model fragment,
uniquely representing a state of the process model fragment.

5. The computer implemented method of claim 1, wherein
the bit string 1s a checksum.

6. A system for providing corrections for semantic errors in
a process model, the system comprising;

a memory for storing instructions; and

at least one hardware processor configured to execute

instructions, the mstructions comprising;:

identifying a change 1n the process model, the process
model including one or more process model elements;

identifying one or more constraint violations associated
with at least one process model element in response to
identifying the change 1n the process model;

identilying one or more correction proposals for each con-

straint violation identified;

creating a {irst bit string representative of the at least one

process model element;

recerving a user selection of a correction proposal from the

one or more 1dentified correction proposals;

creating a second bit string of a current version of the at

least one process model element;

applying the selected correction proposal in response to

determining that the first bit string 1s the same as the
second bit string; and

discarding the selected correction proposal 1n response to

determining that the second bit string differs from the
first bit string.

7. The system of claim 6, wherein the 1nstructions further
comprise:

identifying a severity of the constraint violation; and

US 8,639,060 B2

19

automatically applying at least one correction proposal for
constraint violation seventies that indicate a run-time
CITOY.

8. The system of claim 6, wherein the 1nstructions further
comprise:

identifying a severity of the constraint violation; and

requesting approval of at least one correction proposal for

constraint violation seventies that indicate that a run-
time error 1s possible.

9. The system of claim 6, wherein the bit string 1s a finger-
print of a process model fragment, uniquely representing a
state of the process model fragment.

10. The system of claim 6, wherein the bit string 1s a
checksum.

11. A non-transitory, computer-readable medium storing
computer-readable instructions executable by a computer, the
istructions operable when executed to: identify one or more
constraint violations in a process model, the process model
including one or more process model elements, the one or
more constraint violations associated with at least one pro-
cess model element; 1dentily one or more correction propos-
als for each constraint violation identified; create a first bit

10

15

20

20

string representative of the at least one process model ele-
ment; receive a user selection of a correction proposal from
the one or more 1dentified correction proposals; create a sec-
ond bit string of a current version of the at least one process
model element; apply the selected correction proposal in
response to determining that the first bit string 1s the same as
the second bit string; and discard the selected correction
proposal 1n response to determining that the second bit string
differs from the first bit string.

12. The non-transitory, computer-readable medium of
claim 11, wherein the operations further comprise struc-
tions are further operable when executed to: 1dentily a sever-

ity of the constraint violation; and automatically apply at least
one correction proposal for constraint violation severities that
indicate a run-time error.

13. The non-transitory, computer-readable medium of
claim 11, wherein the instructions further comprise: identity
a severity of the constraint violation; and request approval of
at least one correction proposal for constraint violation
severities that indicate that a run-time error 1s possible.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

