US008683483B2
®
a2 United States Patent (10) Patent No.: US 8,683,483 B2
Hohensee 45) Date of Patent: Mar. 25, 2014
(54) RESOURCE UTILIZATION MONITOR 7,831,732 B1* 11/2010 Zilistetal. ...ccccovvnen.... 709/237
2003/0005252 A1* 1/2003 Wilsonetal. 711/167
: T 2005/0086439 Al* 4/2005 Kaczynski 711/151
(75) Inventor: Paul H. Hohensee, Nashua, NH (US) 2005/0166206 AL* 7/2005 PArSOn ...oooovovvvveooores... 718/104
. . : 2005/0229179 Al* 10/2005 Ballantyne 718/100
(73) Assignee: Oracle America, Inc., Redwood City, 2006/0095908 Al* 5/2006 Nortonetal 718/100
CA (US) 2006/0136916 Al* 6/2006 Rowlandetal. 718/100
2006/0179196 Al1l* 8/2006 Graycccooeeeeereinnn, 710/240
(*) Notice: Subject to any disclaimer, the term of this 388;// 8/}2%2 ég i: 1;%88; :agaw? s ;i % é gg
: : 1 1CNC CL al. ..vvvviieienian,
%azlg lf’szxéel}jde‘i 4011'1 Eggumd under 33 2007/0300227 Al* 12/2007 Malletal, oooooovvven.... 718/102
S.C. 154(b) by ys. 2008/0104610 Al* 5/2008 Norton et al. 718/108
2008/0184233 Al1* 7/2008 Nortonetal. 718/100
(21) Appl. No.: 12/054,491 2008/0250415 Al* 10/2008 Illikkaletal. 718/103
2008/0271043 Al1* 10/2008 Kimetal.cooeenie. 718/108
(22) Filed: Mar. 25, 2008 2009/0049446 Al1l* 2/2009 Mertenetal. 718/103
2009/0070774 Al1* 3/2009 Raikinetal. 718/108
(65) Prior Publication Data * cited by examiner
US 2009/0249352 Al Oct. 1, 2009
Primary Examiner — Emerson Puente
(51) Int.CL Assistant Examiner — Hiren Patel
GO6F 9/46 (2006.01) (74) Attorney, Agent, or Firm — Meyertons Hood Kivlin
(52) U.S. CL Kowert & Goetzel, P.C.; Jefirey C. Hood; Joel L. Stevens
USPC e e 718/105; 718/104
(58) Field of Classification Search (57) ABSTRACT
None o | Load-balancing threads among a plurality of processing
See application file for complete search history. units. The method may include a first processing unit execut-
_ ing a plurality of software threads using a respective plurality
(56) References Cited of hardware strands. The plurality of hardware strands may
U S PATENT DOCUMENTS §hare :%t least one hardware resource within the ‘ﬁrs’E Process-
ing unit. The method may further include monitoring the at
3626383 A * 12/1971 Oswald et al. oovovrevooveooi. 379/0 least one hardware resource, wherein, for each respective
4,677,544 A * 6/1987 Kinoshita 713/600 hardware strand. Monitoring may include, for each respective
gagggaggg é i g;{ égg? Elﬂﬂz"ﬂl_’ eliﬂL ++++++++++++++++++ 712/15 hardware resource of the at least one hardware resource:
. . 1 al" ch * * * * * * *
6662250 BL* 122003 Marshall et al, 710/200 maintaining, 11}f0rmat10n regardmg the respective hardware
7028708 BR1* 4/2006 Foote . 718/104 strand requesting to use the respective hardware resource but
7.159.220 B2* 1/2007 Buch ..oooovovioieeeeere, 71%/104 failing to do so because the respective hardware resource 1s 1n
7,240,117 B2* 7/2007 Zatloukal etal. 709/229 use, comparing the information to a threshold, and generating
gajg}% %g g% 3? 3882 gﬁss o an 1nterrupt 1f the information exceeds the threshold. One or
401, eye et al.) . :)
7467243 B2 12/2008 Rashid et al. more load bal:-%ncmg operations may be performed 1n
7,614,056 BL* 11/2009 Saxe etal. ..ocococovvvvnn... 718/105 response to the interrupt.
7,707,366 B2* 4/2010 Tagawaccceeeeee 711/154
7,831,708 B2* 11/2010 Ansteyetal. 709/224 9 Claims, 6 Drawing Sheets

exectule a plurality of software
threads using a respective plurality of
hardware strands, where the hardware
strands share a hardware resource

202

204

maintain information regarding a respective
hardware strand requesting to use the
hardware resource but failing to do so
because the hardware resource is in use

compare the information to a threshold
206

308

generale an interrupt if the
information exceeds the threshold

210

perform one or more load-balancing
operations in response 1o the interrupt

L - mu [S9JINP 9JINIBS J00Q WOH/0 |

US 8,683,483 B2

S9N — —
jeiayduad
o0/ goeLig)ul jesaydlisd 92BLIaUI O]

o0} booF 007 POOT
/ 9 G £
& 9109 9.0 8.0 5109
S
y—
2
e
S —
0L}
18QSS0.9)
.4
o
—
gl
T ——
- 0¢}
= 908D 77
>

0¢i

(S)aaeL1o1ur Ao

Alowiaw wasAs wouyo |

U.S. Patent

091

90BLI8JUI YIOMIBN

200}

8107

] 10SS900/

YIOMJOU
Wwoij/0 |

U.S. Patent Mar. 25, 2014 Sheet 2 of 6 US 8,683,483 B2

Core 100
Instruction fetch unit 200

Fetch unit 202

Instr. cache
204

Memory
management unit

Instr. buffers 205

TG0 T

TGO
instruction pick unit
206
Decode unit
208

Execution unit 0 Execution unit 1
210a 210D

Trap logic unit

270

250

Q)

1

[oad store unit 23

Floating ‘point/

graphics unit Data cache
m

Stream Crosshar
processing unit interface
240 260

To/from crossbar

FIG. 2

U.S. Patent Mar. 25, 2014 Sheet 3 of 6 US 8,683,483 B2

execute a plurality of software
threads using a respective plurality of
hardware strands, where the hardware
strands share a hardware resource
302

maintain information regarding a respective
hardware strand requesting to use the
hardware resource but failing to do so
because the hardware resource IS in use
304

compare the information to a threshold
306

generate an interrupt if the
Information exceeds the threshold
308

perform one or more load-balancing
operations in response to the interrupt
310

FIG. 3

U.S. Patent Mar. 25, 2014 Sheet 4 of 6 US 8,683,483 B2

Reset .: n
—-I gl

\J
interrupt

FIG. 4B

System Clock HW Event
e
S
poR[__ 0
ocl o mL
=0
\/
Interrupt
FIG. 4A
System Clock HW Event
i
e
poR[__ 0 0
v o R__AITs
=0

U.S. Patent Mar. 25, 2014 Sheet 5 of 6 US 8.683.483 B2

System Clock HW Event

o
]

IDCR 100000 0
DG 100000 el 0o TR 20000
=0

Re &
— - I - - |

\/
Interrupt

FIG. 4C

System Clock HW Event

5
=

IDCR 100000 0
DC 23000 iC 19000 TR 20000
=0

il
— - I - - |

\J
Interrupt

FIG. 4D

U.S. Patent Mar. 25, 2014 Sheet 6 of 6 US 8,683,483 B2

System Clock

IDCR 100000

o

interrupt

FIG. 4E

US 8,683,483 B2

1
RESOURCE UTILIZATION MONITOR

FIELD OF THE INVENTION

The present invention relates to the field of resource moni-
toring, and more particularly to a system and method for
load-balancing threads among a plurality of processing units.

DESCRIPTION OF RELATED ART

Many conventional processor implementations attempt to
increase performance by increasing the number of mstruc-
tions the processor can concurrently execute from a single
execution thread. For example, typical superscalar processor
architectures include multiple execution units, such as load/
store units, arithmetic logic units, branch processing units,
etc. If such a superscalar processor can i1dentily sufficient
instruction-level parallelism within a given execution thread,
it may correspondingly improve performance by executing
those 1nstructions in parallel 1n the multiple execution units.

Accordingly, processing units which include a plurality of
strands (or hardware threads) each capable of executing soft-
ware threads have been developed. Such processing units are
sometimes referred to as simultaneous multithreaded (SMT)
processors. However, the strands each compete with each
other for hardware resources within the processing units. In
some cases, individual hardware resources may become satu-
rated thereby decreasing performance for various software
threads being executed by strands of the processing units.

Accordingly, improvements in load balancing in processing,
units are desired.

SUMMARY

Various embodiments are presented of a method for load-
balancing threads among a plurality of processing units.

A plurality of software threads may be executed using a
plurality of respective hardware strands of a first processing,
unit. The first processing unit may be a processor or a pro-
cessing core of a processor, among other possibilities. As also
indicated above, the plurality of hardware strands may share
at least one hardware resource within the first processing unit.
The at least one hardware resource may include one or more
memory elements, one or more integer units, one or more
floating point units, and/or one or more program execution
units, €.g., of the processing unit.

In some embodiments, the first processing umit may be
comprised 1n a computer system or other electronic device
which includes a plurality of processing units (e.g., a plurality
ol processors, one or more processors which include a plu-
rality of cores, etc.).

The at least one hardware resource being shared among the
plurality of strands may be monitored. Monitoring the at least
hardware resource may include maintaining information
regarding the respective hardware strand; comparing the
information to a threshold; and generating an iterrupt 1t the
information exceeds the threshold. Monitoring the at least
one hardware resource may include monitoring each respec-
tive hardware resource of the at least one hardware resource
for each strand. In other words, one or more hardware
resources may each be monitored according to each hardware
strand. However, alternate embodiments are envisioned
where the hardware resources are monitored individually
without respect to hardware strands, as desired.

More specifically, maintaining information may include
maintaining imformation regarding the respective hardware
strand requesting to use the respective hardware resource but

10

15

20

25

30

35

40

45

50

55

60

65

2

failing to do so because the respective hardware resource 1s 1n
use. In other words, the information may indicate how many
times the hardware resource was 1n use when the respective
hardware strand required use of the hardware resource.

Maintaining the information (or monitoring the hardware
resource) may be performed by one or more hardware ele-
ments or circuitry in the computer system/electronic device.
In some embodiments, the hardware elements may be within
the first processing unit, as desired.

In some embodiments, maintaining the information may
be performed over a first period of time. The time period may
be measured in a number of clock cycles and/or a measure of
seconds, among other units of time. In one embodiment,
maintaining the information may include, during the first
period of time, determining that a respective hardware strand
has requested use of the respective hardware resource and
adjusting a value 1n response to the determination.

In some embodiments, maintaining the information may
be performed over a first number of clock cycles and may
include storing the first number 1n a register or other memory
clement. Additionally, a second number may be adjusted each
clock cycle during which the respective hardware strand
attempts or desires to use the respective hardware resource
but cannot because the hardware resource 1s 1n use, and dec-
rementing the first number 1n the register or memory element
each clock cycle.

As mdicated above, the information may be compared to a
threshold. In some embodiments, the threshold may simply
be a specific number of times the hardware resource was busy
when requested (e.g., by the strand). As a simple example, a
memory resource may have been 1 use 10 times (e.g., as
stored 1n a counter) over the first time period (e.g., 100 clock
cycles). The threshold value may be 3. Correspondingly, 1n
this example, the memory resource may have been saturated
during the 100 clock cycles since it exceeded the threshold.

As idicated above, an interrupt may be generated 11 the
information exceeds the threshold. As indicated above, the
interrupt may indicate that the respective hardware resource
1s currently saturated, and one or more actions may need to be
performed.

One or more load-balancing operations may be performed
in response to the mterrupt. In some embodiments, the load-
balancing operations may be performed by an operating sys-
tem (or other operating software) executing on the computer
system or electronic device comprising the plurality of pro-
cessing units. However, other embodiments are envisioned
where hardware may perform some or all of the load-balanc-
ing operations.

The one or more load-balancing operations may include
moving a software thread to a diflerent one of the processing
units (e.g., one that 1s unsaturated 1n general, or unsaturated
with respect to the specific hardware resource). In one
embodiment, this may be done simply by moving one or more
soltware threads that are executing on strands of the first
processing unit to a different processing unit of the system
(e.g., a computing system comprising the first processing
unit).

The method may further include (or the load balancing
operations may include) modifying one or more parameters
of maintaining the information. For example, the specific
hardware resource being monitored may be modified, the
length of time (e.g., the cycles or seconds, among other units)
may be modified, the threshold value may be modified, and/or
other parameters may be modified. In some embodiments,
such modifications may be performed dynamically during
operation or statically, as desired. The modifications may be
performed by software (e.g., operating system software

US 8,683,483 B2

3

executing on the computer system comprising the plurality of
processing units) or by hardware, as desired. After modifica-
tion, the system may operate according to the methods
described above using the modified parameters.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the pre-
ferred embodiment 1s considered in conjunction with the
tollowing drawings, 1n which:

FI1G. 1 1s a block diagram 1llustrating one embodiment of a
multithreaded processor;

FI1G. 2 1s a block diagram 1llustrating one embodiment of a
processor core configured to perform fine-grained multi-
threading;

FIG. 3 1s a flowchart diagram illustrating an exemplary
method for load-balancing threads among a plurality of pro-
cessing units; and

FIGS. 4A-4E are diagrams 1llustrating exemplary states of
in a system operating according to the method of FIG. 3,
according to one embodiment.

While the invention 1s susceptible to various modifications
and alternative forms, specific embodiments thereol are
shown by way of example in the drawings and are herein
described 1n detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention 1s to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

L1

Incorporation by Reference:

The following references are hereby incorporated by ref-
erence 1n their entirety as though fully and completely set
torth herein:

U.S. Publication No. 2006/00049935, titled “Apparatus and
Method for Fine-Grained Multithreading 1n a Multipipelined
Processor Core,” filed on Jun. 30, 2004 and published on Jan.
S, 2006.
lerms

The following 1s a glossary of terms used 1n the present
application:

Memory Medium—Any of various types of memory
devices or storage devices. The term “memory medium”™ 1s
intended to include an installation medium, e.g., a CD-ROM,
floppy disks 104, or tape device; a computer system memory
or random access memory such as DRAM, DDR RAM,
SRAM, EDO RAM, Rambus RAM, etc.; or a non-volatile
memory such as a magnetic media, e.g., a hard drive, or
optical storage. The memory medium may comprise other
types of memory as well, or combinations thereof. In addi-
tion, the memory medium may be located 1n a first computer
in which the programs are executed, and/or may be located 1n
a second different computer which connects to the first com-
puter over a network, such as the Internet. In the latter
instance, the second computer may provide program instruc-
tions to the first computer for execution. The term “memory
medium” may include two or more memory mediums which
may reside in different locations, e.g., in different computers
that are connected over a network.

Computer System—any of various types of computing or
processing systems, mncluding a personal computer system
(PC), mainirame computer system, workstation, network

10

15

20

25

30

35

40

45

50

55

60

65

4

appliance, Internet appliance, personal digital assistant
(PDA), television system, grid computing system, or other
device or combinations of devices. In general, the term “com-
puter system”™ can be broadly defined to encompass any
device (or combination of devices) having at least one pro-
cessing unit that executes instructions from a memory
medium.

Processing Unit—any of various hardware resources
which are capable of executing instructions, e.g., received
from a memory medium, including processors, processor
cores, etc.

Overview of Multithreaded Processor Architecture

A block diagram 1illustrating one embodiment of a multi-
threaded processor 10 1s shown in FIG. 1. In the 1llustrated
embodiment, processor 10 includes a plurality of processor
cores 100a-/2, which are also designated “core 0” though
“core’/”. Each of cores 100 1s coupled to an L2 cache 120 via
a crossbar 110. L2 cache 120 1s coupled to one or more
memory nterface(s) 130, which are coupled 1n turn to one or
more banks of system memory (not shown). Additionally,
crossbar 110 couples cores 100 to input/output (I/O) interface
140, which 1s 1n turn coupled to a peripheral interface 150 and
a network interface 160. I/O interface 140, peripheral inter-
face 150 and network interface 160 may respectively couple
processor 10 to boot and/or service devices, peripheral
devices, and a network. In some embodiments, processor 10
may be implemented on a single integrated circuit.

Cores 100 may be configured to execute instructions and to
process data according to a particular instruction set architec-
ture (ISA). In one embodiment, cores 100 may be configured
to 1mplement the SPARC® V9 ISA, although in other
embodiments it 1s contemplated that any desired ISA may be
employed, such as x86, PowerPC® or MIPS®, for example.
In the illustrated embodiment, each of cores 100 may be
configured to operate independently of the others, such that
all cores 100 may execute 1n parallel. Additionally, as
described below 1n conjunction with the descriptions of FIG.
2 and FI1G. 3, in some embodiments, each of cores 100 may be
configured to execute multiple threads concurrently, where a
given thread may include a set of instructions that may
execute independently of instructions from another thread.
(For example, an individual software process, such as an
application, may comprise one or more threads that may be
scheduled for execution by an operating system.) Such a core
100 may also be referred to as a multithreaded (MT) core. In
one embodiment, each of cores 100 may be configured to
concurrently execute instructions from eight threads, for a
total of 64 threads concurrently executing across processor
10. However, in other embodiments 1t 1s contemplated that
other numbers of cores 100 may be provided, and that cores
100 may concurrently process different numbers of threads.

Each hardware thread (that i1s the hardware capable of
executing a software thread) may be referred to as a strand
herein. For example, a strand may execute a single software
thread at a time, but may be able to execute a plurality of
soltware threads 1n a time period (e.g., by alternation or time
slicing).

Crossbar 110 may be configured to manage data flow
between cores 100 and the shared L2 cache 120. In one
embodiment, crossbar 110 may include logic (such as multi-
plexers or a switch fabric, for example) that allows any core
100 to access any bank of .2 cache 120, and that conversely
allows data to be returned from any L2 bank to any core 100.
Crossbar 110 may be configured to concurrently process data
requests from cores 100 to L2 cache 120 as well as data
responses from L2 cache 120 to cores 100. In some embodi-
ments, crossbar 110 may 1nclude logic to queue data requests

US 8,683,483 B2

S

and/or responses, such that requests and responses may not
block other activity while waiting for service. Additionally, in
one embodiment crossbar 110 may be configured to arbitrate
contlicts that may occur when multiple cores 100 attempt to
access a single bank of L2 cache 120 or vice versa.

[.2 cache 120 may be configured to cache 1nstructions and
data for use by cores 100. In the 1llustrated embodiment, 1.2
cache 120 may be organized into eight separately addressable
banks that may each be independently accessed, such that in
the absence of conflicts, each bank may concurrently return
data to a respective core 100. In some embodiments, each
individual bank may be implemented using set-associative or
direct-mapped techniques. For example, 1n one embodiment,
[.2 cache 120 may be a 4 megabyte (MB) cache, where each
512 kilobyte (KB) bank 1s 16-way set associative with a
64-byte line size, although other cache sizes and geometries
are possible and contemplated. L.2 cache 120 may be imple-
mented 1n some embodiments as a writeback cache in which
written (dirty) data may not be written to system memory
until a corresponding cache line 1s evicted.

In some embodiments, .2 cache 120 may implement
queues for requests arriving from and results to be sent to
crossbar 110. Additionally, 1n some embodiments .2 cache
120 may implement a fill butfer configured to store fill data
arriving from memory interface 130, a writeback buifer con-
figured to store dirty evicted data to be written to memory,
and/or a miss buffer configured to store L2 cache accesses
that cannot be processed as simple cache hits (e.g., L2 cache
misses, cache accesses matching older misses, accesses such
as atomic operations that may require multiple cache
accesses, efc.). L2 cache 120 may variously be implemented
as single-ported or multiported (1.¢., capable of processing
multiple concurrent read and/or write accesses). In either
case, L2 cache 120 may implement arbitration logic to pri-
oritize cache access among various cache read and write
requesters.

Memory 1nterface 130 may be configured to manage the
transier of data between L2 cache 120 and system memory,
for example 1n response to L2 fill requests and data evictions.
In some embodiments, multiple instances of memory inter-
face 130 may be implemented, with each instance configured
to control a respective bank of system memory. Memory
interface 130 may be configured to interface to any suitable
type of system memory, such as Fully Buffered Dual Inline
Memory Module (FB-DIMM), Double Data Rate or Double
Data Rate 2 Synchronous Dynamic Random Access Memory
(DDR/DDR2 SDRAM), or Rambus® DRAM (RDRAM®),
for example. In some embodiments, memory interface 130
may be configured to support interfacing to multiple different
types of system memory.

In the 1llustrated embodiment, processor 10 may also be
configured to receive data from sources other than system
memory. For example, as shown, the processor 10 may com-
prise an I/O interface 140, a peripheral interface 150 and/or a
network interface 160. The I/O interface 140 may be config-
ured to provide a central interface for such sources (e.g.,
DMA logic or external boot and/or service devices) to
exchange data with cores 100 and/or L2 cache 120 via cross-
bar 110. Peripheral interface 150 may be configured to coor-
dinate data transfer between processor 10 and one or more
peripheral devices. Network interface 160 may be configured
to coordinate data transier between processor 10 and one or
more devices (e.g., other computer systems) coupled to pro-
cessor 10 via a network.

Overview of Fine-Grained Multithreading Processor Core

As mentioned above, 1n one embodiment each of cores 100
may be configured for multithreaded execution using a plu-

10

15

20

25

30

35

40

45

50

55

60

65

6

rality of strands. More specifically, 1n one embodiment each
of cores 100 may be configured to perform fine-graimned mul-
tithreading, 1n which each core may select instructions to
execute from among a pool of instructions corresponding to
multiple threads, such that instructions from different threads
may be scheduled to execute adjacently using respective
strands. For example, 1n a pipelined embodiment of core 100
employing fine-grained multithreading, instructions from
different threads may occupy adjacent pipeline stages, such
that instructions from several threads may be 1n various stages
of execution during a given core processing cycle. Further, 1n
some embodiments of core 100, multiple execution pipelines
may be configured to operate concurrently (1.e., core 100 may
be “multipipelined”).

One embodiment of core 100 configured to perform fine-
grained multithreading 1s illustrated 1n FIG. 2. In the 1llus-
trated embodiment, core 100 includes an instruction fetch

umt (IFU) 200 coupled to a memory management unit
(MMU) 250, a crossbar interface 260, a trap logic unit (TLU)

2770, and a plurality of execution units (EXU0, EXU1) 210a-
b. (Execution units 210a-b may also be referred to generically
as EXUs 210.) Each of execution units 210a-b 1s coupled to
both a tloating point/graphics unit (FGU) 220 and a load store
unmt (LSU)230. Each of the latter unaits 1s also coupled to send
data back to each of execution units 210a-6. Both FGU 220
and LSU 230 are coupled to a stream processing unit (SPU)
240. Additionally, LSU 230, SPU 240 and MMU 250 are
coupled to crossbar interface 260, which 1s 1n turn coupled to
crossbar 110 shown 1n FIG. 1. It 1s noted that any unit that
participates 1n the execution of 1nstructions (e.g., EXUs 210,
FGU 220, LSU 230 and/or SPU 240) may be generically
referred to as an execution unit. Thus, the plurality of strands
of the core 100 may be configured to share the above refer-
enced hardware resources (among other possible resources)
during execution. For more information on one embodiment
of the core 100, please see U.S. Patent Application Publica-
tion No. 2006/0004995, incorporated by reference above.
FIG. 3—Flowchart

FIG. 3 illustrates a method for load-balancing threads
among a plurality of processing units. The method shown 1n
FIG. 3 may be used in conjunction with any of the computer
systems or devices shown 1n the above Figures, among other
devices. In various embodiments, some of the method ele-
ments shown may be performed concurrently, 1n a different
order than shown, or may be omitted. Additional method
clements may also be performed as desired. As shown, the
method may operate as follows.

In 302, a plurality of software threads may be executed
using a plurality of respective hardware strands of a first
processing unit. As indicated above, the first processing unit
may be aprocessor or a processing core of a processor, among
other possibilities. As also indicated above, the plurality of
hardware strands may share at least one hardware resource
within the first processing unit; however, it may be possible to
share hardware resources outside of the first processing unit,
as desired. The at least one hardware resource may include
one or more memory elements, one or more integer units, one
or more floating point units, and/or one or more program
execution units, e.g., of the processing unit.

In some embodiments, the first processing unit may be
comprised 1n a computer system or other electronic device
which includes a plurality of processing units (e.g., a plurality
ol processors, one or more processors which include a plu-
rality of cores, etc.).

The at least one hardware resource being shared among the
plurality of strands may be monmitored. Monitoring the at least
hardware resource may include, 1n 304, maintaining informa-

US 8,683,483 B2

7

tion regarding the respective hardware strand; in 306, com-
paring the information to a threshold; and 1n 308, generating,
an mterrupt 1f the information exceeds the threshold. Moni-
toring the at least one hardware resource may include moni-
toring each respective hardware resource of the at least one
hardware resource for each strand. In other words, one or
more hardware resources may each be monitored according,
to each hardware strand. However, alternate embodiments are
envisioned where the hardware resources are monitored indi-

vidually without respect to hardware strands, as desired.

More specifically, in 304, maintaining information may
include maintaining information regarding the respective
hardware strand requesting to use the respective hardware
resource but failing to do so because the respective hardware
resource 1s 1n use. In other words, the information may indi-
cate how many times the hardware resource was 1n use when
the respective hardware strand required use of the hardware
resource.

Maintaining the information (or monitoring the hardware
resource) may be performed by one or more hardware ele-
ments or circuitry in the computer system/electronic device.
In some embodiments, the hardware elements may be within
the first processing unit, as desired. FIGS. 4A-4E provide
turther descriptions of hardware for monitoring/maintaining
information regarding respective hardware resources of the
first processing unit.

In some embodiments, maintaining the information may
be performed over a first period of time. The time period may
be measured in a number of clock cycles and/or a measure of
seconds, among other units of time. In one embodiment,
maintaining the mformation may include, during the first
period of time, determining that a respective hardware strand
has requested use of the respective hardware resource and
adjusting a value in response to the determination. For
example, adjusting the value 1n response to the determination
may include decrementing or incrementing a counter each
time the respective hardware resource 1s busy or 1n use during,
a request of the resource (e.g., by the respective hardware
strand). Thus, as one example, a first strand may be executing
a software thread that requires an execution unit that 1s 1n use.
In response to the execution unit being 1n use, a counter
corresponding to in use resource attempts may be incre-
mented.

In some embodiments, maintaining the mformation may
be performed over a first number of clock cycles and may
include storing the first number 1n a register or other memory
clement. Additionally, a second number may be adjusted each
clock cycle during which the respective hardware strand
attempts or desires to use the respective hardware resource
but cannot because the hardware resource 1s 1n use, and dec-
rementing the first number 1n the register or memory element
cach clock cycle. More specific descriptions of such an
embodiment are described below with respect to FIGS.
4A-4E.

As indicated above, 1n 306, the information of 304 may be
compared to a threshold. In some embodiments, the threshold
may simply be a specific number of times the hardware
resource was busy when requested (e.g., by the strand). As a
simple example, a memory resource may have been i use 10
times (e.g., as stored 1n a counter) over the first time period
(e.g., 100 clock cycles). The threshold value may be 5. Cor-
respondingly, 1n this example, the memory resource may have
been saturated during the 100 clock cycles since 1t exceeded
the threshold.

As indicated above, 1n 308, an interrupt may be generated
i the information exceeds the threshold 1n 306. As indicated

10

15

20

25

30

35

40

45

50

55

60

65

8

above, the interrupt may indicate that the respective hardware
resource 1s currently saturated, and one or more actions may
need to be performed.

In 310, one or more load-balancing operations may be
performed in response to the interrupt. In some embodiments,
the load-balancing operations may be performed by an oper-
ating system (or other operating soitware) executing on the
computer system or electronic device comprising the plural-
ity of processing units. However, other embodiments are
envisioned where hardware may perform some or all of the
load-balancing operations.

The one or more load-balancing operations may include
moving a soitware thread to a different one of the processing
units (e.g., one that 1s unsaturated 1n general, or unsaturated
with respect to the specific hardware resource). In one
embodiment, this may be done simply by moving one or more
software threads that are executing on strands of the first
processing unit to a different processing unit of the system
(e.g., a computing system comprising the first processing
unit).

In some embodiments, this may be performed intelligently
where a software thread that 1s causing saturation of the
hardware resource may be moved to a different processing
unmit. Additionally, or alternatively, relative amounts of hard-
ware resource usage may be monitored and used for thread
load-balancing. For example, where a first hardware resource
1s indicated as being saturated (e.g., via the interrupt of 308)
and a second hardware resource 1s not indicated as being
saturated, load-balancing may be performed according to
threads that require the first hardware resource more than the
second hardware resource (or vice versa). As a more specific
example, a first software thread may be particularly memory
intensive while a second software thread may utilize a float-
ing point unit hardware resource. In such cases, the first
software thread may be moved from a processing unit in
which the memory resource(s) are saturated. Similarly, the
second software thread may be moved from a processing unit
in which the FPU 1s saturated. Thus, software threads may be
distributed among a plurality of processing units according to
hardware resource saturation or underutilization (e.g., as indi-
cated, for example, by the absence of an interrupt). As also
indicated, particular threads may be moved to other process-
ing units 1f they are responsible for the saturation of a par-
ticular hardware resource of a processing unit. It should be
noted that the decision to make the load-balancing operations
(e.g., by the operating system) may take into account the cost
of the load balancing operations (e.g., moving a soltware
thread from one core to another i the case of a context
switch).

In some embodiments, other activities may be performed
based on the mterrupt/indication of saturation. For example,
an operating system (or other software) may maintain moving
averages ol the utilization of various hardware resources,
strands, processing units, etc. as a guide for when to revise
soltware-to-hardware thread mappings. Note that other
activities are envisioned.

In one specific example, SPECibb2005 (a Java™ bench-
mark) may be executed on a processor having a plurality of
cores each with a plurality of strands. In this benchmark, the
soltware threads may be memory intensive or not at various
times. Using one of the above described load-balancing meth-
ods, situations where many memory intensive threads that are
executing on a single processing unit (thereby saturating
shared memory resources) may be avoided by redistributed
the software threads for a more optimal performance.

The method may further include (or the load balancing
operations may include) modifying one or more parameters

US 8,683,483 B2

9

of maintaining the mmformation. For example, the specific
hardware resource being monitored may be modified, the
length of time (e.g., the cycles or seconds, among other units)
may be modified, the threshold value may be modified, and/or
other parameters may be modified. In some embodiments,
such modifications may be performed dynamically during
operation or statically, as desired. The modifications may be
performed by software (e.g., operating system software
executing on the computer system comprising the plurality of
processing units) or by hardware, as desired. After modifica-
tion, the system may operate according to the methods
described above using the modified parameters.

It should be noted that the one or more parameters may be
set or modified based on specific hardware implementations.
Similarly, load-balancing operations (or choices made
thereot) may also depend on the hardware 1n use (e.g., the
type of processing unit(s)). For example, 1n processing units
with more per-hardware-thread resources, a larger context
switch cost may exist, and load balancing operations should
take 1into account that cost. Conversely, processing units with
smaller, for example, level 1 caches, may have a lower context
switch cost. Thus, one or more of the methods/parameters
described herein may vary based on the hardware implemen-
tation/the hardware being monitored.

FIGS. 4A-4F

FIGS. 4A-4F are diagrams 1llustrating exemplary states of
in a system operating according to an embodiment of the
method of FIG. 3.

FIG. 4A 1llustrates an operational diagram of the various
registers and counters before any values are used. As shown,
a system clock may be used for the decrementing counter DC,
and an incoming hardware event may be used for the incre-
menting counter IC, which may be compared to a threshold
value stored 1n TR.. Note thatthe DC may latch at0,1.e., 1itmay
not keep counting down after 1t reaches 0 (as indicated by the
==(feedback on the diagram, which may be implemented by
inverse gating the control line that causes the DC to decre-
ment). Note that the feedback loop to the IC control line may
cause the value 1n IC to latch when the expression (IC>=1R)
&& (DC==0) 1s true. It may not be possible for IC to wrap
around, since the number of times that “HW Event” can occur
may always be less than or equal to any possible value for

IDCR. In the embodiment shown in FIGS. 4A-4E the bit
width of IDCR, DC, IC and TR may all be the same.

The 1mitial value for the decrementing counter DC may be
stored 1n IDCR. Additionally, the illustrated diagram may
assume active high for control inputs. For example, a value of
‘1’ on the control mputs to DC and IC may cause them to
decrement and increment respectively. These values and
events may be used to determine whether or not an 1nterrupt
1s generated, as indicated above in FIG. 3.

FIG. 4B illustrates an exemplary hardware reset state,
which may be the state that the hardware 1initializes to. Effec-
tively, the state machine may continuously reset itself 1n this
state. Unless software intervenes by loading alternate values
into IDCR and TR, the “Reset’” line may be always asserted 1in
this state.

FI1G. 4C 1llustrates an 1nitial state which may be loaded by
some external agent where IDCR 1s 100000, DC 1s 100000,
IC 1s 0, and TR 15 20000. In F1G. 4D, the respective hardware
resource has been busy 19000 times over the period of 77000
clock cycles (as indicated by the DC value of 23000). In FIG.
4E, the value of DC 1s O (indicating the first time period has
expired, which 1n this case, 1s 100000 clock cycles), and the
IC 1s 21000 1ndicating that the hardware resource has been
busy when requested 21000 clock cycles 1n the 100000 clock
cycles. Correspondingly, the value 1n IC 1s compared to the

10

15

20

25

30

35

40

45

50

55

60

65

10

threshold 20000 and an interrupt 1s generated and sent to the
operating system since DC 1s also 0. Additionally, the values
may be reset to the imitial values of FIG. 4C via reset state 4B.

In an alternate embodiment, the “Reset” and 1ts inputs may
be eliminated. Correspondingly, the IC may then just keep
counting until “Interrupt” 1s triggered, which would 1n turn
stop IC from incrementing further. For this implementation
the “unsigned >=" may be modified to be “unsigned > in
order to prevent an interrupt from being triggered from the
reset state.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled 1n the art once the above
disclosure 1s fully appreciated. It 1s intended that the follow-
ing claims be mterpreted to embrace all such vanations and
modifications.

I claim:

1. A method for load-balancing threads among a plurality
of processor cores, comprising:

a {irst processor core executing a plurality of software
threads using a respective plurality of hardware strands,
wherein the plurality of hardware strands share at least
one hardware resource, wherein each of the at least one
hardware resource 1s a component within the first pro-
CeSSOr core;

monitoring the at least one hardware resource, wherein, for
cach respective hardware strand, said monitoring com-
prises:
for each respective hardware resource of the at least one

hardware resource:
maintaining information for a first number of clock
cycles, wherein the first number of clock cycles 1s a
length of time for monitoring the respective hard-
ware resource, wherein said maintaining informa-
tion comprises:
storing the first number 1n a register;
decrementing the first number on each clock cycle
until the first number equals zero;
during said decrementing:
incrementing a second number 1 the respective
hardware resource was 1n use when the respec-
tive hardware strand requested use of the respec-
tive hardware, wherein the second number 1s a
number of times that the respective hardware
resource was 1n use when the respective hard-
ware strand requested use of the respective hard-
ware resource;
comparing the second number to a threshold; and
generating an interrupt 1f the second number exceeds the
threshold; and

performing one or more load-balancing operations 1n
response to the interrupt, wherein said performing the
one or more load-balancing operations comprises mov-
ing a software thread associated with the respective
strand to a different one of the plurality of processor
cores.

2. The method of claim 1, wherein the at least one hardware

resource comprises one or more of:

one or more memory elements;

one or more nteger units;

one or more floating point units; or

one or more program execution units.

3. The method of claim 1, wherein the second number
comprises a number of clock cycles during which the respec-
tive hardware thread desires to use the respective hardware
resource but cannot because the respective hardware resource
1S 1n use.

US 8,683,483 B2

11

4. The method of claim 1, wherein said maintaining 1s
performed for a first period of time and wherein the method
turther comprises modifying the first period of time.

5. The method of claim 1, further comprising:

modifying the threshold. d

6. The method of claim 1, wherein said performing is

performed by an operating system utilizing the plurality of
Processor cores.

7. The method of claim 1,

wherein the interrupt indicates that the respective hardware
resource 1s saturated.

8. A computer system which load-balances threads, the

system comprising:

a plurality ol processor cores, wherein a first processor core
of the plurality of processor cores comprises:
at least one hardware resource;
a plurality of hardware strands, wherein the plurality of

hardware strands share the at least one hardware

resource within the first processor core; 20
wherein the plurality of hardware strands are configured
to execute a plurality of software threads;
a first circuitry for momtoring the at least one hardware
resource, wherein the first circuitry 1s configured to, for
a first number of clock cycles, monitor a respective 25
hardware strand requesting to use the respective hard-
ware resource but failing to do so because the respective
hardware resource 1s 1n use, wherein the first number of
clock cycles 1s a length of time for monitoring the
respective hardware resource; 30
a memory element coupled to the first circuitry for main-
taining information regarding said monitoring, wherein
said maintaining information comprises:
storing the first number 1n a register of the memory
element: 33
decrementing the first number on each clock cycle until
the first number equals zero;
during said decrementing:
incrementing a second number if the respective hard-
ware resource was in use when the respective hard- 4Y
ware strand requested use of the respective hardware
resource, wherein the second number 1s a number of
times that the respective hardware resource was in use
when the respective hardware strand requested use of
the respective hardware resource; 45
comparing the second number to a threshold, thereby
determiming 1f the at least one hardware resource 1s
saturated; and

10

15

12

wherein the first circuitry 1s configured to generate an

interrupt 1f the information regarding said monitoring
indicates saturation of the at least one hardware
resource; and

wherein one or more load balancing operations are per-

formed 1n response to the interrupt, wherein said per-
forming the one or more load-balancing operations com-
prises moving a software thread associated with the
respective strand to a different one of the plurality of
Processor cores.

9. A method for load-balancing threads among a plurality
of processor cores, comprising:
a 1irst processor core executing a plurality of software

threads using a respective plurality of hardware strands,
wherein the plurality of hardware strands share at least
one hardware resource within the first processor core;

monitoring the atleast one hardware resource, wherein, for

cach respective hardware strand, said monitoring com-
Prises:
maintaining information for a first number of clock
cycles, wherein the first number of clock cycles 1s a
length of time for monitoring the respective hardware
resource, wherein said maintaining information com-
Prises:
storing the first number 1n a register;
decrementing the first number on each clock cycle
until the first number equals zero;
during said decrementing:
incrementing a second number 1f the respective
hardware resource was 1n use when the respec-
tive hardware strand requested use of the respec-
tive hardware;
comparing the second number to a threshold,
thereby determining if the at least one hardware
resource 1s saturated, wherein the second num-
ber 1s a number of times that the respective hard-
ware resource was 1n use when the respective
hardware strand requested use of the respective
hardware resource:; and
generating an interrupt 1f the information indicates
saturation of the at least one hardware resource;
and

performing one or more load-balancing operations 1n

response to the interrupt, wherein said performing the
one or more load-balancing operations comprises mov-
ing a soiftware thread associated with the respective
strand to a different one of the plurality of processor
cores.

	Front Page
	Drawings
	Specification
	Claims

