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Fig.1 - Iracking process composed of prediction and confirmation steps
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Fi1g. 4 — Example of combined 3D/2D tracking model hierarchy
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MULTI-OBJECT TRACKING WITH A
KNOWLEDGE-BASED, AUTONOMOUS
ADAPTATION OF THE TRACKING
MODELING LEVEL

The present invention describes a sensor-based system for
tracking objects and object configurations that adapts the
complexity of the involved modeling level. The adaptation
occurs autonomously by a situation-dependent adjustment
and by incorporating knowledge in form of prototypical rela-
tionship graphs between tracking models.

Generally a tracking system 1n the present invention pro-
cesses sensory data and

generates control signals 1n order to make a sensor track

one or more targets 1n the mput field of the sensor(s), or
indicates the region of one or more tracked targets in the
input field of the sensor(s).

BACKGROUND OF THE INVENTION

Target tracking such as e.g. visual (video-based) target
tracking 1s a topic of major relevance to a large series of
computer vision domains imnvolving monitoring, surveillance,
guidance, obstacle avoidance and scene interpretation. The
application domains include diverse fields such as radar con-
trol, tratfic monitoring or vision-based robotics.

Tracking an object mnvolves model descriptions of 1) how
the object parameters evolve over time and as well as 2) how
the estimated state of an object can be related to a sensory
measurement. These two models have to be tailored to the
specific object that should be tracked and its dynamics, e.g. by
indicating that the object behaves in a ballistic fashion
according to Newtonian physics and e.g. a sensory measure-
ment using a characteristic, known object color.

For domain-specific applications, a single, fixed descrip-
tion of the involved models 1s suificient. In a situation 1nvolv-
ing complex visual scenes, however, a system 1s needed that
allows a dynamic switching and adaptation of the involved
models. An example 1s e.g. a situation ol a bouncing ball
target, which moves 1n a ballistic fashion while falling down
but rebounds when hitting the floor, making a different
motion model necessary.

The current way of dealing with such situations 1s by intro-
ducing mixture models [1] which are treated probabilisti-
cally, allowing the tracking system to give more weight to
those models that best fit with the sensory observations.

The drawback of currently available tracking models 1s that
all the possible single models used for the mixture have to be
directly integrated into the tracking process from the start,
and that they have to be evaluated simultaneously.

Nevertheless, 11 one considers that the complexity level of
objects that can be tracked 1s not fixed, that objects can be
arranged into trackable object configurations, and that this
may occur hierarchically by arranging object configurations
into even larger, trackable ensembles, the potential space of
tracking models becomes combinatorially large. No previ-
ously fixed mixture of tracking models can then be devised to
cover the entire range of possible tracking models.

PRIOR ART

Tracking 1s the estimation of the dynamic parameters of
objects from a sensory input. Well-known examples are posi-
tion tracking for moving objects; 1 this case, the goal 1s not to
loose an object and to accurately estimate its 2D or 3D posi-
tion, velocity, etc.
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A typical tracking process together with 1ts tracking mod-
els 1s shown 1n FIG. 1.

As shown 1n FIG. 1, an object 1 or an object configuration
2 1s sensed by a sensor device 3 generating sensory input for
the tracking system 4.

Under “object configuration™ 2 1t 1s to be understood that
objects, such as for example a car body 5 and wheels 6, 6
carrying out different movements (pure displacement 1n case
of the car body 5 and a combination of displacement and
rotation 1n case of the wheels 6, 6') are grouped together as
they carry out one common trackable movement, which 1n the
present example 1s the displacement of the car as such.

The tracking process and tracking system shown in FIG. 1
essentially comprises a confirmation module 7 as well as a
prediction model 8.

The tracking system 4 1s provided with tracking models 9.
As already explained, the tracking models 9 are descriptions
of how the object parameters evolve over time as well as how
the estimated state of an object can be related to a sensory
input.

As shown 1n FIG. 1, the tracking involves two steps, termed
in the following prediction and confirmation or measurement,
and which are defined by their corresponding prediction and
confirmation or measurement models, also shown 1n FIG. 1.
In the prediction step, the estimated parameters of the object
represented by an internal state are extrapolated into the
future by a chosen dynamical model that describes how the
state 1s expected to change 1n time, usually yielding a series of
hypothetical future states. In the confirmation step, the series
of hypothetical future states are compared for compatibility
with the sensory 1mnput, and those states that provided a good
prediction of the future state then dominate the estimation of
the current state.

In short, a tracking process 1imposes a constrained search
strategy for the dynamical state estimation of a target, where
the hypotheses are generated and confirmed according to
prior knowledge about the tracked objects in form of preset
models and the quality of the models has a large impact on the
quality of the tracking process. It 1s therefore crucial to find
the right models for a given tracking task and situation. Along
the same line of argumentation, it 1s also of importance to find
the right level of granularity and abstraction of the models. A
tracker could e.g. estimate the wheels of a car each separately.
But this 1s probably not the best level of abstraction for
describing the dynamics, since 1t 1s advantageous to have an
internal prediction model that indicates that the wheels move-
ment 15 generated by a common cause, 1n this case a moving
car to which the wheels are attached to.

No single tracking model exists that {its equally well to all
situations and all levels of granularity. Furthermore, 1n
dynamic scenes, the movement of the object varies and so do
the optimal tracking models. For optimal and efficient track-
ing, an autonomous adjustment of the description models
involved 1n the tracking process 1s therefore necessary.

The probabilistic main stream of researchers refers to
tracking on a level of dynamic Bayesian inference (e.g. [1]),
describing 1t as a stochastic state estimation problem 1n dis-
crete time. Here, a state vector x of the target contains param-
cters of the object like 1ts position, velocity and acceleration
and so on. The Bayesian methods first predict new states of
the target (1.e., the expected states at the next timestep,
together with their occurrence probability) using a state pre-
diction model. Then they use a measurement of the state of the
target to evaluate (1.e. etther confirm or reject) the predicted
states of the target.

The exemplary Bayesian formulas below describe this
two-step behavior of current tracking methods
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based on the states x (with their temporal indices) and the
sensory measurements 7 (Z with indices 1:k representing all
measurements from time-steps 1 through k, and ~ meaning
“proportional to”). The first line gives the probability of a
new, predicted state x given all past measurements (the pre-
diction step), whereas the second line expresses that the prob-
ability of the current state 1s a multiplicative (“Bayesian™)
combination of the so-called measurement likelthood with
the predicted state (the confirmation step).

There exist several ways of implementing the Bayesian
formulas, depending on the linearity nonlinearity of the
involved steps, like Kalman filtering [2], or sequential Monte
Carlo estimation using particle filters [3].

In state-oi-the-art methods, increasing the level of com-
plexity of the tracker models involves an extension of the state
vector and therefore indirectly of the related models for the
prediction and confirmation steps. An example of how this 1s
approached for object configurations 1s given 1n [4]. It also
involves a decision of what the maximal state vector can be,
incorporating the knowledge directly into it.

A further prior art approach 1s given by tracking algorithms
based on multiple switching dynamic models [5] or IMM’s
(interacting multiple models) [6]. These are hybrid filtering
methods which evaluate several tracking models (e.g. predic-
tion models and/or likelihood models) 1n parallel and include
an internal switching dynamics between the models them-
selves.

Previous tracking algorithms have also made use of a mul-
titude of adaptation methods to improve the tracking process.
E.g. 1 [7], a system 15 described that learns and adapts 1ts
internal representation to intrinsic as well as extrinsic
changes based on a time-varying Eigenbasis description of
the appearance of the tracked object. However, 1n the mnven-
tion proposed here we present as a novel aspect an adaptation
at the level of switching between different prediction resp.
confirmation models, which provides a way of incorporating
higher-level model-, object- and context knowledge 1n form
ol a corresponding hierarchical knowledge basis.

Finally, graphical representations are heavily used 1n com-
puter vision, tracking (e.g. [8]) and probabilistic modeling,
mainly for the low-level sensory decomposition of the visual.
The mvention extends them for the purpose of describing
relationships between modeling processes. In this mvention,
these mvolve nodes that represent the different models and
undirected or directed edges to describe neighborhood rela-
tions, possible transitions or dependencies between models.
Hierarchical representations deserve special consideration of
tracking models as e.g. representable by directed acyclic
graphs (DAG).

U.S. Pat. No. 6,295,367B1 (reference 8) discloses a system
and method for tracking movement of objects 1n a scene from
a stream of video frames using first and second correspon-
dence graphs. A first correspondence graph, called an object
correspondence graph, 1s formed comprising a plurality of
nodes representing region clusters in the scene which are
hypotheses of objects to be tracked, and a plurality of tracks.
Each track comprises an ordered sequence of nodes in con-
secutive video frames that represents a track segment of an
object through the scene. A second correspondence graph,
called a track correspondence graph, 1s created, comprising a
plurality of nodes, each node corresponding to at least one
track in the first correspondence graph. A track comprising an
ordered sequence of nodes 1n the second correspondence
graph represents the path of an object through the scene.
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Tracking information for objects, such as persons, in the
scene, 1s accumulated based on the first correspondence graph
and second correspondence graph.

OBJECT OF THE INVENTION

It 1s the object of the invention to at least alleviate the
introduced tracking problems. The object 1s achieved by
means of the features of the independent claims. The depen-
dent claims develop further the central 1dea of the present
invention.

The invention proposes a method for an autonomous, adap-
tive adjustment of the model complexity needed to track an
object or an object configuration. One aspect of the invention
resided in the 1dea that there 1s background knowledge 1n the
system about how the level of complexity of a tracking model
can be increased (e.g. by imposing further dynamical con-
straints, or by letting an object participate 1n a object configu-
ration) or decreased (e.g. by loosening dynamaical constraints
or by releasing an object from an object configuration), and
that, depending on the tracking success of higher-level or
lower-level tracking models, these are switched accordingly.

In summary, the mvention allows to adapt the tracking
process dynamically, during run-time, to the appropnate
abstraction level to yield a better tracking performance. It also
allows to trade off tracking model complexity, accuracy and
computational costs by choosing the appropriate modeling
level along a hierarchy of models. Adaptive configuration
tracking can exploit the hierarchical structure to adapt to the
right complexity level 1n terms of the number of properties of
parts and subparts that constitute a tracked object. In addition,
such a tracking system can adjust very effectively to extrinsic
changes 1n a tracked object’s dynamic behavior, e.g. when a
falling ball changes abruptly 1ts trajectory as soon as 1t hits a
rigid surface, demanding a different prediction model of the
object dynamics.

Further objects, advantages and features of the mvention
will now be explained with reference to the figures of the
enclosed drawings.

FIG. 1 thereby shows a typical tracking process together
with 1ts tracking models,

FIG. 2 shows a long-term memory knowledge database
about tracking models and their relationship combined with a
short-term sensory memory for the multi-object tracking sys-
tem,

FIG. 3 shows a tracking system with two working loops
according to the invention, and
FIG. 4 shows a specific example system for combined

2D/3D tracking.

DETAILED DESCRIPTION OF THE INVENTION

The present invention proposes a method and a system for
object and object configuration tracking that makes use of an
autonomous, situation-dependent adjustment of the tracker
modeling level for optimal tracking. The adjustment occurs
by means of mixed model evaluation incorporating several
tracking models from neighboring complexity levels, and the
knowledge that enables the selection of suitable tracking
models 1s given by a system-inherent graphical representation
of the tracking models and their relationships.

The mvention proposes a long-term memory knowledge
database 11 about tracking models 9 and their relationship
combined with a short-term sensory memory 12 for the multi-

object tracking system (STM, FIG. 2B).
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The long-term memory 11 1s a unit storing relationships
between tracking models 9, while the short term memory has
the data for the tracking process itsell.

The long-term memory database 11 contains, for each
tracking model 9, information of the prediction and/or con-
firmation models that should be used during the tracking
process. The multi-object tracking system 1n the short term
memory 12 contains state mformation about the currently
tracked objects or object configurations and executes the pre-
diction and confirmation steps (defined by the corresponding
tracking model from the long-term memory 11) needed for
the target state estimation. The confirmation step directly
relates the internal representations of the tracked objects with
the objects 1 1n the outer world. Furthermore, the tracking
models 9 may need additional information about the world/
context, this 1s then contained by additional short-term and
long-term context memories 10 (1n the example, only a short
term context memory 10 1s shown, although a corresponding
memory can be present also for the long term memory 11).

The tracking system has two working loop modules, 1.¢. an
inner loop module 15 and an outer loop module 14 as shown
in FI1G. 3. Both loops 14, 15 are provided with sensory input
3.

The outer loop module 14 decides on basic tracker recruit-
ment and thus comprises a basic recruitment module 16: It
detects interesting parts in the supplied sensory mnput 3 which
are not yet covered by already tracked objects (1.e., tracked
objects with representations 1n the short-term memory 12)
and 1nitializes basic trackers 17 for these parts (objects).

The basic trackers 17 are nodes 18 of the tracking model
graph representation (FIG. 2) in the long-term memory 11
which directly mvolve sensory measurements for tracking
state confirmation. It 1s also the task of the outer loop 14 to
decide on the lifetime of tracked objects in the short term
memory 12, and to release 29 the trackmg of objects that do
not recetve suilicient sensory support in the confirmation
phase any more. The reasons for tracker release 29 can be of
many kinds and may be caused by internal or external events,
such as a wrong choice of tracker models or simply the
disappearance of an object from the sensory input field 3.

The mner loop module 15 comprises an autonomous com-
plexity adjustment module 19 for the tracking models 1n the
short-term memory 12.

This 1s achieved by (1) scanning the tracking model graph
from the long-term memory 11 to select alternative tracking
model candidates related to the current ones (1n terms of
graph connectivity), (11) the performance evaluation of the
alternative tracking model candidates and (111) the decision 1f
one of the alternative models will be used to continue tracking
a given object.

The complexity adjustment 19 can be achieved by modifi-
cation of the prediction and/or confirmation models, e.g. by
using a model for 3D motion constrained to run perpendicular
to a given support surface such as it 1s the case for cars on a
street, instead of an unconstrained 3D motion model. It also
may include the combination of several, previously indepen-
dently tracked objects into an object configuration that 1s then
tracked as a single compound, imposing constraints on the
possible positions of each constituting object. A complexity
decrease of tracking models 1n the short-term memory 12
would e.g. be given by aless complex/less constrained motion
model or by the splitting up of an object configuration tracker
into several single object trackers.

For the purpose of autonomous complexity adjustment 19,
during operation each tracked object or object configuration
retains a memory link to the current and past tracking
model(s) from the long-term memory 11 (FIG. 2, links 20
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6

between LTM 11 and STM 12). This enables the exploration
of the long-term memory graph for possible alternative track-

ing models. E.g., tracking models 9 that are neighbors 1n the
graph to the currently used tracking model can be evaluated
and the tracking model(s) of an object can be changed. The
changed memory link then has consequences on the tracked
object performance (evaluated by a tracking performance
evaluation module 21), since different prediction and confir-
mation models are used during the tracking process.

During the process of tracking model complexity adjust-
ment 19, it 1s often sensible to allow tracking models to
coexist during some time. In the system according to the
invention this means that the two tracking models are
executed 1n parallel, 1n a mixed mode. In a first variant, these
run independently from each other and are evaluated sepa-
rately at each time-step, e.g. 1n terms of their probabilistic
properties such as the confidence of the object state estima-
tion. In a second variant, the two models can be mixed into a
joint probabilistic framework (see prior art mention of mul-
tiple switching dynamic models for tracking), but again lead-
ing to an evaluation of the performance of each model for
cach time-step. After a temporal integration of the evaluation,
a decision 1s then taken on which tracking model(s) to use.
However, 11 tracking performance 1s suiliciently high (as
assessed by module 21), 1t 1s often desirable to continue
tracking objects using a mixed model, since with such a
method temporal weaknesses of one model can be rapidly
compensated by other models. In this case, the long-term
memory graph of tracking models provides valuable infor-
mation on which models should be mixed (e.g. models that
are close to each other 1n terms of graph relationships).

EXAMPL.

L1

A specific example for a combined 2D/3D tracking system
1s shown 1n FIG. 4. A stereo video camera 30, 31 (being an
example for streaming sensors) supplies “binocular” 2D
video data to the tracking system and such comprises a “left”
video camera 30 and a “right” video camera 31. The tracking
system (1.e. the enftire system shown i1n FIG. 3) processes
these supplied video data 30, 31.

The long-term memory 11 contains tracking model
descriptions of trackers working 1n 2D and 1n 3D, 1.e. a 3D
tracking model 32, a left camera 2D tracking model 33 and a
right camera 2D tracking model 34. The trackers 33, 34,
working 1n 2D contain a simple, 2D ballistic prediction model
to describe the position of objects on a camera image, and also
apply their measurement models directly on these images to
coniirm the expected positions.

The 3D tracker 32 contains a ballistic prediction model
working in 3D world coordinates. Its measurement model 1s
based on the result of two lower-level 2D trackers 33, 34 resp.
their 2D positions, with each 2D tracker 33, 34 working on a
separate camera 30, 31.

The context memory (10 1n FIG. 2) 1n this case contains
information about the position and orientation of the cameras
in the world coordinate system needed by the 3D tracker. For
the sake of a simple explanation, it 1s assumed that the cam-
eras are arranged like 1 a binocular system, and call them
“lett” and “right™.

The 3D tracking model 32 then assumes that results from
the left and right 2D tracking models 33, 34 (the estimated left
and right 2D camera positions) are delwered as sensory input
and used for the higher-level tracker state confirmation step,
as can be seen 1n FIG. 4. Similarly the predicted states of the
3D tracking model 32 are projected downwards (1n the track-
ing model graph structure) towards the left and right 2D
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tracking models 33, 34, constraining the 2D regions where
these trackers 33, 34 should expect an object. Finally, the left
and right 2D trackers 33, 34 seck the confirmation of their
state by applying their measurement model on the left and
right camera images 30, 31, respectively.

During operation, at first, the basic tracker recruitment
module (16 in FIG. 3) sets the 2D trackers 33, 34 on 1denti-
fiable objects, independently for the left and right cameras 30,
31. From the long-term memory graph (11 in FIG. 2) of
tracking models, the system infers that a tracked object from
the leit camera 30 can be combined with a tracked object from
the right camera 31. It then tries to imtialize (17 1n FIG. 3) a
tracked 3D object with 1ts corresponding 3D tracking model.
The 3D tracker 32 then makes use of the result of the already
iitiated 2D trackers 33, 34, using their state estimations as
basis for 1ts own measurements and constraining the predic-
tions of the 2D trackers 33, 34. These can work 1n mixed
mode, combining their own 2D prediction model(s) with the
prediction delivered from the 3D tracker 32. In a sense, the 3D
tracker 32 1s both a configuration tracker (since 1t uses a
combination of two objects) as well as a higher level tracking
model, since it now uses a true 3D model for state prediction
and confirmation.
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We claim:
1. A method for tracking objects based on sensory input
data (3) supplied from a stereo video camera (30, 31), the
method comprising the following steps:
processing, via a processor comprising a long-term
memory and a short-term memory database, the sensory
input data (3) supplied using one or more tracking mod-
els (9), each tracking model comprising a tracker pre-
diction and a measurement process,
deciding (16) whether the sensory input data (3) contain
parts not yet covered by the tracking model (9), and in a
positive case, initializing new tracking models,

releasing (29) a tracked object i1 the tracker prediction and
the measurement process do not get sulificient sensory
support for some time, and
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adjusting an abstraction level of the tracking models used
by evaluating performance of tracking models during
run-time and using the tracking models showing an opti-
mum performance according to a performance criterion,
wherein the abstraction level of the tracking models 1s
adjusted by scanning a tracking model graph from the
long-term memory to select alternative tracking model
candidates related to current ones in terms of graph
connectivity, evaluating performance of the alternative
tracking model candidates, and deciding whether to use
one of the alternative tracking model candidates as a
tracking model based on a comparison of results of the
evaluating for each tracking model.
2. The method of claim 1, wherein the abstraction level 1s
adjusted by combining independently tracked objects of the
tracked objects into an object configuration that 1s then
tracked as a single compound, wherein the object configura-
tion comprises an object with multiple movements grouped
together.
3. The method of claim 1, comprising the steps of:
detecting parts 1n sensory input data (3) which are not yet
covered by already tracked objects and incrementally
initializing basic tracking models (17) for these parts to
continuously estimate states of not-yet tracked objects,

testing, during runtime, more complex and more simple
prediction and measurement models on the tracked
objects, and

releasing trackers from parts of the sensory input data (3)

where the tracker prediction and measurement processes
do not get suilicient sensory support for some time.

4. The method according to claim 3, wherein the testing
COmprises:

choosing new prediction and measurement model candi-

dates from a suitable, situation-dependent set of models,
and determine 1f an alternative prediction and measure-
ment model will be used for further tracking of an object
or object configuration.

5. The method of claim 4, where the choosing of the situ-
ation-dependent set of prediction and/or confirmation models
1s supported by a graph-like structure comprising the steps of:

storing a basic graph structure of tracking models that

describes the tracking models and neighborhood rela-
tionships between the tracking models, wherein the
graph structure has been created by design or acquired
by a learning system,

during object tracking, selecting prediction and measure-

ment models from the tracking models available 1n the
graph structure, each tracked object retaining a memory
of which model(s) from the graph structure 1t 1s using,
and

during tracking model complexity adjustment, using the

neighborhood relationships of the tracking models and a
position 1n the graph structure of a tracked object to
systematically reduce a set of model candidates that are
ispected.

6. The method of claim 5, where the graph structure from
the storing gets adjusted, improved and extended by evaluat-
ing statistics of the tracked objects and supervised data from
a tutoring instance.

7. The method of claim 5, where the graph structure of
prediction and measurement models 1s hierarchical and has a
form of directed acyclical graphs.

8. The method of claim 5, where parts of the graph structure
represent compositionality information, wherein several sub-
ordinate trackers can be merged by virtue of a superordinate
tracker that constrains or influences the subordinate trackers.
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9. The method of claim 5, where parts of the graph structure
represent information on how to combine different subordi-
nate trackers from different sensory modalities.

10. The method of claim 9, where a constraint or influence
ol a superordinate tracker on subordinate trackers mnvolves a
state transformation step to adjust to a state description of the
subordinate trackers.

11. The method according to claim 1, where the tracking
models are implemented by probabailistic methods.

12. The method according to claim 1, wherein the sensory
input data are data from a stereo video camera.

13. A computer software program product stored on a
non-transitory computer readable medium, implementing a
method according to claim 1 when run on a computing device.

14. A computer-based tracking system, provided with
streaming sensors and having a computing unit designed for
performing a method according to claim 1.
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15. The method of claim 9, wherein the different sensory
modalities comprise combined objects from different cam-
cras by exploiting their sensory causes as a single physical
object, represented by a superordinate tracker.

16. The method of claim 10, wherein the superordinate
tracker operates 1n 3D and constrains the subordinate tracker
working 1n 2D, thereby making a 3D to 2D coordinate trans-
formation step necessary when passing information from the
superordinate tracker operating in 3D to the subordinate
tracker working 1n 2D.

17. The method of claim 11, wherein the probabilistic
methods comprise one or more of Dynamic Bayesian Net-
works, particle filters, and multiple switching dynamic mod-
¢ls for mixing and evaluation of prediction models.

18. The method of claim 14, wherein the streaming sensors
comprise video cameras.
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