US008667418B2
a2 United States Patent (10) Patent No.: US 8,667,418 B2
Chaudhri et al. 45) Date of Patent: Mar. 4, 2014
(54) OBJECT STACK 5.678,015 A 10/1997 Goh
5,745,109 A 4/1998 N_akano et al.
(75) Inventors: Imran A. Chaudhri, San Fran'ciscof CA g:;gi:;ég i g%ggg gacllf(?;er et al.
(US); John O. Louch, San Lus Obispo, 5.767.854 A 6/19908 Anwar
CA (US); Christopher Hynes, Santa 5,767,855 A 6/1998 Bardon et al.
CI'UZ,, CA (US),, Timothy Wayne 5,801,699 A 9/1998 Hocker et al.
: : 5,825,361 A 10/1998 Rubin et al.
Bumgarner, Sharpsburg, MD (US); Eric 5,835,094 A 11/1998 Ermel et al.
Steven Peyton, Lisle, IL (US) 5.847.707 A 12/1998 Hayashida
_ _ 5,880,733 A 3/1999 Horvitz et al.
(73) Assignee: Apple Inc., Cupertino, CA (US) 6,002,403 A 12/1999 Sugiyama et al.
6,005,579 A 12/1999 Sugiyama et al.
(*) Notice: Subject to any disclaimer, the term of this gag éga g; i é//{ 3888 goﬁ“tiett ":111*
- - 025, ullock et al.
patent 1s extended or adjusted under 35 6.025.839 A 22000 Schell of al
U.S.C. 154(b) by 1252 days. 6,043,817 A 3/2000 Bolnick et al.
6,043,818 A 3/2000 Nakano et al.
(21) Appl. No.: 11/760,695 6,054,989 A 4/2000 Robertson et al.
6,088,032 A 7/2000 Mackinlay
(22) Filed: Jun. 8. 2007 6,160,553 A 12/2000 Robertson et al.
’ 6,166,738 A 12/2000 Robertson et al.
(65) Prior Publication Data 6,188,405 Bl 2/2001 Czerwinsk et al.
(Continued)
US 2008/0307335 Al Dec. 11, 2008
OTHER PUBLICATIONS

(1)
(52)

(58)

(56)

Int. Cl.

GOol 3/048 (2013.01)

U.S. CL

USPC 715/835; 715/790; 715/793; 715/815
Field of Classification Search

USPC e, 715/835, 790, 793, 815

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
5,317,687 A 5/1994 Torres
5,339,390 A 8/1994 Robertson et al.
5452414 A 9/1995 Rosendahl et al.
5,461,710 A 10/1995 Bloomfield et al.
5,515,486 A 5/1996 Amro et al.
5,565,657 A 10/1996 Merz
5,657,049 A 8/1997 Ludolph et al.
5,673,377 A 9/1997 Berkaloff

709 709b

o 710 701

"
‘-
o ™
n
»

<

709a

Finder File Edit View GoWindow Help

Three-Dimensional Desktop—Google Search [on-line], [retrieved
Nov. 9, 2006]. Retrieved from the Internet URL: http://www.google.

com/search?sourceid=navclient&ie--U...L1LJ:2006-42,GGLJ:en
&q=%22three+dimensional+desktop%22.

(Continued)

Primary Examiner — Stephen Hong

H11

Assistant Examiner — Matthew |

(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Stack elements corresponding to system object are associated

with a stack item and aggregated

in the stack item. A context

engine provides contextual control of the stack 1tem and stack

elements.

47 Claims, 31 Drawing Sheets

700 711b

702 703

Fii 340 PM @

769

711

™
ar
[]
-
[
-

E - 1 T
AT 718= 700> 70> 724> 728> 78> 730

732 = 734 > 736 738 = 740 742 714

US 8,667,418 B2

Page 2
(56) References Cited 2003/0189602 A1 10/2003 Dalton et al.
2003/0222902 A1 12/2003 Chupin et al.
U.S. PATENT DOCUMENTS 2004/0030741 Al 2/2004 Wolton et al.
2004/0066411 Al 4/2004 Fung et al.
6,229,542 Bl 5/2001 Miller 2004/0066414 Al 4/2004 Czerwinski et al.
6,243,093 Bl 6/2001 Czerwinski et al. 2004/0090472 Al 5/2004 Rusch et al.
6,243,724 Bl 6/2001 Manderetal. ..ooviin., 715/273 2004/0109025 Al 6/2004 Hullotetal. 345/764
6,262,732 Bl 7/2001 Coleman et al. 2004/0109031 Al 6/2004 Deaton et al.
6,271,842 Bl /2001 Bardon et al. 2004/0135820 Al 7/2004 Deaton et al.
6,275,829 Bl * 82001 Angiulo et al.cococvvrvnr..... 1/1 2004/0155909 Al 82004 Wagner
6,281,898 Bl /2001 Nikolovska et al. 2004/0179519 Al 9/2004 Basso et al.
6,313,855 Bl 11/2001 Shuping et al. 2004/0212640 Al 10/2004 Mann et al.
6,363,404 Bl 3/2002 Dalal et al. 2005/0010876 Al 1/2005 Robertson etal. 715/782
6,388,181 B2 5/2002 Moe 2005/0022139 Al 1/2005 Gettman et al.
6,414,677 Bl 7/2002 Robertson et al. 2005/0066292 Al 3/2005 Harrington
6,426,761 Bl 7/2002 Kanevsky et al. 2005/0091596 Al 4/2005 Anthony et al.
6,480,210 B1 11/2002 Martino et al. 2005/0183009 Al 8/2005 Hannebauer et al.
6,542,168 B2 4/2003 Negishi et al. 2005/0204306 Al 9/2005 Kawahara et al.
6,570,597 Bl 5/2003 Seki et al. 2005/0240880 Al 10/2005 Banks et al.
6,577,304 Bl 6/2003 Yablonski et al. 2005/0243373 Al 11/2005 Silverbrook et al.
6,577,330 Bl 6/2003 Tsuda et al. 2005/0283742 Al* 12/2005 Gusmorino etal. 715/839
6,590,593 Bl 7/2003 Robertson et al. 2006/0015818 Al 1/2006 Chaudhrn et al.
6,597,358 B2 7/2003 Miller 2006/0107229 Al 5/2006 Matthews et al.
6,727,924 Bl 4/2004 Anderson 2006/0136840 Al 6/2006 Keely et al.
6,734,884 Bl 5/2004 Berry et al. 2006/0161861 Al 7/2006 Holecek et al.
6,765,567 Bl 7/2004 Roberson et al. 2006/0161868 Al 7/2006 Van Dok etal. 715/835
6,886,138 B2 4/2005 Laffey et al. 2006/0174211 Al 8/2006 Hoellerer et al.
6,922.815 B2 7/2005 Rosen 2006/0212833 Al 9/2006 Gallagher et al.
6,938,218 Bl 8/2005 Rosen 2006/0224986 Al* 10/2006 Lindsayetal. 715/766
6,983,424 Bl 1/2006 Dutta 2007/0011617 Al 1/2007 Akagawa et al.
7,028,050 Bl 4/2006 Rose 2007/0055947 Al 3/2007 Ostojic et al.
7,043,701 B2 5/2006 Gordon 2007/0124699 Al 5/2007 Michaels
7.107.549 B2 0/2006 Deaton et al. 2007/0164989 Al 7/2007 Rochford et al.
7:; 19:319 Bl 10/2006 Robertson et al. 2007/0192727 Al 8/2007 Finley et al.
7.134,095 B1 11/2006 Smith et al. 2007/0214431 Al 9/2007 Amadio et al.
7.137,075 B2 11/2006 Hoshino et al. 2007/0226652 Al 9/2007 Kikuchi et al.
7,146,576 B2 12/2006 Chang et al. 2007/0261003 Al 11/2007 Reissmueller
7,148,892 B2 12/2006 Robertson et al. 2008/0059893 Al 3/2008 Byrne et al.
7,168,051 B2 1/2007 Robinson et al. 2008/0072252 Al 3/2008 Morris et al.
7.178.111 B2 /2007 Glein et al. 2008/0134086 Al 6/2008 Liao et al.
7,216,305 Bl 5/2007 Jaeger 2008/0220747 Al 9/2008 Ashkenazi et al.
7,222,309 B2 5/2007 Chupin et al. 2008/0222295 Al 9/2008 Robinson et al.
7.249327 B2 7/2007 Nelson et al. 2008/0270946 Al 10/2008 Risch et al.
7.263.667 Bl /2007 Hoellerer et al. 2008/0307303 Al 12/2008 Louch et al.
7,266,768 B2 0/2007 Ferlitsch et al. 2008/0307330 Al 12/2008 Louch et al.
7.292.243 Bl 11/2007 Burke 2008/0307360 Al 12/2008 Chaudhr et al.
7.299.418 B2* 11/2007 Diebergerc.......... 715/732 2008/0307364 Al 12/2008 Chaudhri et al.
7.441,201 Bl 10/2008 Printezis 2009/0228827 Al 9/2009 Robertson et al.
7.478.326 B2 1/2009 Holecek et al. 2009/0307623 Al 12/2009 Agarawala et al.
7,480,873 B2 1/2009 Kawahara
7,512,902 B2 3/2009 Robertson et al. OTHER PUBLICATIONS
7,536,650 Bl 5/2009 Robertson et al. | | |
7,543,245 B2 6/2009 Irimajiri 3DNA Desktop [online], [retrieved Nov. 9, 2006]. Retrieved from the
7,546,538 B2 6/2009 Shuping et al. Internet URL: http://www.3dna.net/products/desktop.htm.
7,562,312 B2 7/2009 Rochford et al. Metisse—Screenshots [on-line], [retrieved Nov. 9, 2006]. Retrieved
7,587,681 B2 9/2009 Kake et al from the Internet URL: http:/insitu.lr.fr/~chapuis/metisse/
7,665,033 B2 2/2010 Byrmne et al. <creenshots
;:gg?ﬁg g% %82 Eill?l eettail: Spatial Research [on-line], [retrieved Nov. 9, 2006]. Retrieved from
8.473.859 B2 6/2013 Chaudhri et al. the Internet URL: http://www.spatialresearch.com/spaces.
2001/0028369 A1l 10/2001 Gallo et al. The TaskGallery [on-line], [retrieved Nov. 9, 2006]. Retrieved from
2002/0010718 Al 1/2002 Miller the Internet URL: http://research.microsoft.com/ui/TaskGaller.
2002/0033848 Al 3/2002 Sciammarella et al. Rotate Widow, Java Technology Powers Vodafone Mobile Games
2002/0080180 Al 6/2002 Mander et al. Worldwide. Copyright 1994-2006 Sun Microsystems, Inc. [on-line],
2002/0091739 A 7/2002 Ferli_tsch et al. [retrieved Nov. 9, 2006], Retrieved from the Internet URL: http://
2002/0113820 Al 8/2002 Robinson et al. www.sun.com/jsp__utils/ScreenShotPopup.jsp?title=R...ss/
2002/0135538 Al 9/2002 Rosen &im=md_ 1 jpg
20020140746 Al 1072002 Gargl &alt=Generic%20Screen%20Shot %20 Alt%20 Text.
2002/0167546 Al 11/2002 Kimbell et al. . . .
2003/0007017 Al 1/2003 Laffey et al. Swﬁch Dez:;ktops, Copyright 1994-2006 Sun Microsystems, Inc. [on-
2003/0090510 Al 5/2003 Shuping et al. line], [retrieved Nov. 9, 2006], Retrieved from the internet URL:
2003/0128242 Al 7/2003 Gordon http://www.sun.com/jsp__utils/ScreenShotPopup.jsp?title=Sw.../
2003/0142143 A1 7/2003 Brown et al. &im=pan-r_3.jpg&alt-
2003/0146927 Al 8/2003 Crow et al. Generic%20Screen%020Shot%20Al1t%20Text1 1/9/2006.
2003/0160815 Al {/2003 Muschetto Stanford Panorama, Copyright 1994-2006 Sun Microsystems, Inc.
2003/0169303 Al 9/2003 Islam et al. [on-line], [retrieved Nov. 9, 2006], Retrieved from the internet URL.:
2003/0179234 Al 9/2003 Nelson et al. http://www.sun.com/jsp__utils/ScreenShotPopup.jsp?title=St.../
2003/0179237 Al 9/2003 Nelson et al. &im=pan_ 2.jpg
2003/0179240 Al 9/2003 Gest &alt=Generic%20Screen%620Shot%020Al1t%20Text1 1/9/2006.

US 8,667,418 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Java Solaris Communities Partners My Sun Sun [on-line], [retrieved
Nov. 9, 2006], Retrieved from the internet URL: http://www.sun.

com/software/looking glass/details.xml.

3D Desktop Project by Sun MicroSystems: A Revolutionary Evolu-
tion of Today’s Desktop [on-line]. [retrieved Nov. 9, 2006], Retrieved

from the internet URL: http://www.lg3d.dev.java.net.

Agarawala A. and Balakrishnan R. (2006). “Keepin’ It Real: Pushing
the Desktop Metaphor with Physics, Piles and the Pen”. [on-line],
[retrieved May 14, 2008]. Retrieved from the internet URL: http://

bumptop.com/BumpTop. Montreal, Quebec, Canada.

BumpTop 3D Desktop Prototype—www.bumptop.com. (2008). [on-
line], [retrieved May 14, 2008]. Retrieved from the internet URL:
http://www.youtube.com/watch?v=M0OODskdEPnQ).

Notification Concerning Transmittal of International Preliminary
Report on Patentability (Chapter 1 of the Patent Cooperation Treaty),
Dec. 23, 2009, 6 pages.

Hideya Kawahara and Paul Byrne, Project Looking Glass Cool
LG3D Apps and How to Write Them Powerpoint, 2005 JavaOne
Conference Session 7992, 32 slides.

Dana Nourie and Hideya Kawahara, Project Looking Glass: Its

Architecture and a Sneak Preview of the API, Nov. 2004.

Notification of Transmittal of the International Search Report and the
Written Opinion of the International Searching Authority, or the
Declaration, Oct. 14, 2008, 11 pages.

Examiner’s first report on patent for AU Patent Application No.

2008262075, mailed Jul. 27, 2011, 2 Pages.
Notification of the First Office Action (PCT Application 1n the
National Phase) for China Patent Application No. 200880102053.7,

maliled Mar. 28, 2012, 1 page.
Schultz, Greg, “Windows Aero—Vista’s Premium User Interface,”

Nov. 30, 2000, 5 pages.

* cited by examiner

U.S. Patent

118

220

102

PROCESSING

DEVICE

VISUALIZATION
OBJECT

Mar. 4, 2014

Sheet 1 of 31 US 8.667.418 B2

‘)— 100

104 106 108

MEMORY

NETWORK

INTERFACE

114

UI ENGINE

210

MULTIDIMENSIONAL
DESKTQOP

VISUALIZATION
OBJECT
RECEPTACLE

222

D> GRAPHICS

DATA STORE DEVICE

116

INFUT QUTPUT
DEVICES DEVICES

110 112

FIG. 1

)’ 200
202 204

SYSTEM
OBJECTS

212

MULTIDIMENSIONAL
APPLICATION

ENVIRONMENT

224
STACK ITEMS

FIG. 2

U.S. Patent Mar. 4, 2014 Sheet 2 of 31 US 8,667,418 B2

418

416 400
Y h)

g R e N R A R R R R R A S R R
\ ; -

‘;‘1‘;‘;‘;‘-‘-["u‘-‘J"u‘-‘-l"'uHHHHH‘;‘;‘;‘;‘H‘E‘J&HH‘&HHKHHHH‘H‘J‘H‘;‘H‘%
"'-I";"‘-1"-2";"‘I‘I“I‘I’i“g""I'i"‘g"‘?1“2‘2‘:%"‘2‘:%"‘2';‘%"‘;“:‘2&‘&“;‘&‘&“2&‘&“I‘I‘I‘I‘I‘I‘I‘Iﬂ“:‘:‘:‘ﬁﬁ"‘ﬁﬁ“‘%

412 5 k .

408

VeR RS f’f.ﬂ‘f‘.ﬁ‘.ﬂ‘f’f.ﬂ‘f’f.ﬂ‘.ﬂ‘.ﬂ‘.ﬂ‘.ﬂ’f.ﬂ‘.ﬂ’ﬁ.ﬂ‘

R o o A

406

A A A A A

" 404
i 402
_ ' .L
410
FIG. 4
202)- 500
502 506

INTERACTION AND

VISUALIZATION MODEL PRYSIGS

CONTEXT

ENGINE

FIG. 5

ENGINE ENGINE

504

-)- 600
| ENGINE

GRAPRICS IMAGE AP VIDEO AP
AP 606

GRAPHICS LIBRARY
DRIVERS/HARDWARE

FIG. 6

0
0 [Dl
y—
4.-.._.,,
= acL . vl — OFL 8EL 9L VEL —TEL ~08L 8L 9L 8L | p
./Dn., ., | S S | SE———— S ——— S—— SS— SE—— A —— S———— ,
> W -~ S5 ny
7P N, | b4 | I
U_.. 0/ _ ..w----------.. . .’
S, $peojumod s L0,
m_\N __._......... — -m-. ...__.__-
aphdl e
ecl/
2/(/
- oalL VSl 291
— 09!
-
3 ——
= 501
s
=
)
-+ 4Vl
y—
—
gl
.4-.._....
o
o~
> b0/
260!
e/ W.
~ — e Iﬂﬂ & Ad Op€ 1 d[oH MOPUIAA 0D MBIA 1IPT 9l Jopuld — — - .
m €0. 20! 10! v
m -’ “ey
; Lalls
= & 004 460! 0,
/)

3 Ol

US 8,667,418 B2

ﬂ. J

BUolelUSSald

47

Sheet 4 of 31

474

Mar. 4, 2014

@ Wd 0¥€ N4 dloH MOpPUIAp 09 M3IA JIPF Bl Jopuld g

o
. LY
[L
. »
’ L
‘.‘ _"_
o [

w L
. -
E L™
- L
. L
I‘ fl
[L

U.S. Patent

US 8,667,418 B2

Sheet 5 of 31

Mar. 4, 2014

U.S. Patent

-
"
L
-
-
&«
-
.
L
"
a”
-

§peojuMOQ:

38/

S WdOovg U4

081

V8.

6 Ol

4%y

CLL

084

djsH MOpUIpM 09 MBIA 1P 8|14 JBpuld s

L
-
L]
»
»
»
-
L
-
L
™
™
L

US 8,667,418 B2

Sheet 6 of 31

Mar. 4, 2014

U.S. Patent

*
o
-
[
-
-
o
[
=
‘_‘_
ol

& Wd Oy 14

9001

0L 9I3

dloH MOpUIpm 09 MBIA)IPT 3lld Jepuld s

-
L ™
-
~
L
»
L
-
-
L
-
iy
-
-
“u
oy

Sheet 7 of 31

Mar. 4, 2014

U.S. Patent

US 8,667,418 B2

POLI

L1 Ol

PLLL LOLL

0tll

8¢l 9cll 747" cell

0cll

0S)1 _4‘———5-—— “ -~ | 0L
— |
2 B
I
m 2911 L} m 0L11
Q) Wd Oric 1 disH MOPUIM 09 MSIA JIPT 3lid Jspuld g 8oLt
€0 204 27 04

US 8,667,418 B2

Sheet 8 of 31

Mar. 4, 2014

U.S. Patent

“
“
e

cthl

0t 1

8Cll

ol
L
.
L
L
_I__I_
L

cOLl

-
—
—
—

dieH MOpuIp 09 MSIA 1P l4 Japuld

»
-
L
»
|
L
-
-
l_'
i

US 8,667,418 B2

Sheet 9 of 31

Mar. 4, 2014

U.S. Patent

d13H
1104

34

0ttl

90¢l

1Nl4d
JAVS
350710
O

g0t}

ctel

PLLL

Fetl

ol Ol

ctll 0EL1 8Ll Gl 4% ccll

|
_ @O__\ H....
|
1] | LA
_.... Ol
pze) - -
725 - -
0ZE - -
gLE} - -
918} - -
oLel pLE .
| 2iel
20

7l Ol

cell OtLl BCL1 9%l 147’ cChl

US 8,667,418 B2

|
|
| viLl —
|
|

— OvPl
er,
e 8crl
&
—
= 9crl
L
7

JIZINOLSNH 17474

1104

.4
m T4 cevl
o 0t
-+ h«
M. 071 | G

N
Olvl araid) .-

dioH mopuip 09 MeIA 1IP3 8|l Jspuld

o 2011

U.S. Patent

0t ll 8CL1 9¢ll /4%

¢0Gl
<+
P0GL

dilsH MOPUIM 09 MeIA JIPT alld Jepuld

cchl

US 8,667,418 B2

Sheet 11 of 31

Mar. 4, 2014

L
-
.
-
o
-
‘_‘
o

.... 2011

U.S. Patent

U.S. Patent Mar. 4, 2014 Sheet 12 of 31 US 8,667,418 B2

h
16
1604

1632
1614
1616

1602

FIG. 16A

1630

US 8,667,418 B2

Sheet 13 of 31

Mar. 4, 2014

U.S. Patent

& Wd O0¥¢ U

d9l 9Ol

9t bel — Ctl 0t 8CL 9¢L Vel

1474 eyl OvL — 8L cél —~ 0CL 901

1111*1‘ (I N N W Wy /7
OO O<FOOUOV

SPEOJUMO(] SUOIBIUSSAl d sjuswnoo (
961
8G/ be
djdH MOPUIA 0D MBIA 1IPT
03l

Bll4 19pUl]

US 8,667,418 B2

Sheet 14 of 31

Mar. 4, 2014

U.S. Patent

QH YSOjuIoey

L

& Wd OF€ U4

2.9l — 0/9] 8991 P91 — 9991 __ 799|

2691
lgpul] Ul MOUS Jpd-spau|
¢89l y.m__s?_o AOIN BdwABp A0
691 m 991
vL91

JIoH MORUIM 0D MIIA JIpq 9l4 Joplld &

0691

dsi 9l

0,91 8991 6991 9991 P91 — 9991 _ 799]

Y . 7 e
¢99l o |

JapUIS Ul MOYS

¢891 Iﬂ

¢L9l

US 8,667,418 B2

0G9|
e
B 080T Ipd eyay abed s Buneyd
=
Te
o 8GOl
k>
@ .@.Nw.ﬂ By
ﬁl\nu Ciine 10 .wSOE
J 691
9Zor
m .émmmmacom
I~ .SD“_\
-+ Jr
o 1191

-
=

dH YSOJUIDEN

S Wd OpE 1 dleH MOPUIA 09 MBIA 11T 8|14 Jepuld

0G91

U.S. Patent

U.S. Patent Mar. 4, 2014 Sheet 16 of 31 US 8,667,418 B2

5 1703 1702
1714 1712
Ly g)

Macintosh HD

Fri 3.40 PM G

My LAN 1710 Folder 2
L@ 1704 @
Folder 3
1708 Folder 1
Folder 4
1720 1722

1703 1 1730

@ Finder File Edit View Go Window Helg Fri3:40 PM €N
R 1712 : :‘:‘
T Macintosh HD

My LAN
1732

1804 1806 1808 1810 1812 1814

1802

U.S. Patent Mar. 4, 2014 Sheet 17 of 31 US 8,667,418 B2

1804 1306 1810 1812 1814

1802

1804 1806 — 1808 1810 C 1812 1814
YH Y

FIG. 18C

1802

1804 1806 1808 1810 1812 1814

I .i....i.."'.-"":..""'.l-) N A A T I
1834 1832

835 1831 1830

1802

1833

F1G. 18D

1902
1804 é 1806 ¢ 1808 1810 € 1812 1814

—L 1802

AOATFINDOTH

190 1900

1802

1804 1806 — 1808 1810 € 1812 1814

OREAv 05 NER"

1802

2001 0002 5003 2005

FIG. 20

U.S. Patent Mar. 4, 2014 Sheet 18 of 31 US 8,667,418 B2

g -lm . —
oy 'l.".l- y '-'.‘ . .‘hl ' .
BT, 1 Tl P L}
' P e
="l B L
L} 0 DT B N) ‘ * ll‘ 0
R e 21 2
l::“llll N .":h-i"i'-.'.'l"-'-.-' o
e e T T, by
P el
e R R
VAT Ll
. . om P .. -
9 0 i'-:':n.:lz'l - -l'rl_l;l .'-:- .:-1 .t 1|.:_l1i
- ' e -
r -\l:l_ [l.:r:-i-: _ll_-l:l_: "'l"-_
."'l. =l '.' '.:-;- 'r-' ll:l.::l:.l.::l
Ry Zroaee,

Maps

2111 2110 th;to 2119 Clock 2114
OO,
@® 108 74 73

Calculator otocks Weather

1802

1804 1808 1810 1812 1814

FIG. 21A

2110 Photos Clock

2112 2114
2102
108 74 73

Calculator 2120 Stocks Weather

1802

1804 1808 1810 1812 1814

FIG. 21B

® Finder File Edit View Go Window Help Fri 3:40 PM Q)

Unselected Window

U.S. Patent Mar. 4, 2014 Sheet 19 of 31 US 8,667,418 B2

2304

</—

----.-------* --

2314

2322 2324 2326 2328 2330 2332

FIG. 23

w07 -1111

DOCUMENT ICON (DI
UNIQUE INDICIUM (IND) 2506

APPLICATION ICON
2610

DOCUMENT ICON (DI) I
(IND}

UNIQUE INDICIUM (IND

2606
2604

FIG. 27

U.S. Patent Mar. 4, 2014 Sheet 20 of 31 US 8,667,418 B2

STACK ELEMENT

TODAY LAST WEEK | AST MONTH

FIG. 28A

2842 R
8807 ok Rl
2832 iszz‘:‘m'--imEtEMEHT*“
2624 2 K
2822

2620

=i
llllllll

‘)_ 2810

. ‘STACK,ELEMEN‘F , }}Eff:;’f:

'1:#::::*:::":#:::::-::::#:'1::%::_ }#:, .=¢., ,.:-=._ :::-::”;:-

NN ,:#c:”:n:h:re::,;:-:;::«:: :

STACK ELEMENT

F1G. 288

2910

APPLICATION

2912 2916

% % -

STACK ELEMENT II STACK ELEMENT

(DISPLAYED) (MINIMIZED)

STACK ELEMENT

(HIDDEN/
DEALLOCATED)

2900 2900

FIG. 29

U.S. Patent Mar. 4, 2014 Sheet 21 of 31 US 8,667,418 B2

3010
)— 3000 3008
3010 2006
3022
3004
3004
3002 STACK ELEMENT

4+—)>

STACK ELEMENT 3007
STACK ELEMENT

3020

3108

3104
3102
STACK ELEMENT

)’ 3100
3102 3104

b E—

o =T [T s

FIG. 31A

3122 3128

3132

-y
X

STACKELEMENT] | (€ """ S124 3126

FIG. 31B

U.S. Patent Mar. 4, 2014 Sheet 22 of 31 US 8,667,418 B2

3210
STACK ELEMENT :.“

3208 STACK ELEMENT
3200 1‘ :
3206 STACK ELEMENT | 5 3220
3208 ;
E 3226

3202

STACK ELEMENT —
3204 STACK ELEMENT

3202

STACKELEMENT |
<4

FIG. 32

3300

)’ 3310
3318 l 3302

3316
3314
APPLICATION
3312
MULTIPLE LAUNCH/
STACK ELEMENT SYNCHRONIZATION/
RECONCILIATION
APPLICATION
3304
3360 3350 3302
DOCUMENT
APPLICATION
3362
MULTIPLE LAUNCH/
DOCUMENT SYNCHRONIZATION/ 3304

RECONCILIATION

3364
APPLICATION
DOCUMENT

FIG. 33B

U.S. Patent Mar. 4, 2014 Sheet 23 of 31 US 8,667,418 B2

‘)_ 3400
3402
DEPTH TRANSITION A TWO-DIMENSIONAL DESKTOP FROM A VIEWING
SURFACE TO A BACK SURFACE

3404

GENERATE ONE OR MORE SIDE SURFACES EXTENDING FROM THE BACK

SURFACE TO THE VIEWING SURFACE

3406

GENERATE A VISUALIZATION OBJECT RECEPTACLE ON THE ONE OR MORE

SIDE SURFACES

3408

DISPOSE ONE OR MORE VISUALIZATION OBJECTS WITHIN THE VISUALIZATION
OBJECT RECEPTACLE, THE ONE OR MORE VISUALIZATION OBJECTS

CORRESPONDING TO DESKTOP ITEMS

FIG. 34

‘)_ 3500

3502
IDENTIFY TWO-DIMENSIONAL DESKTOP ITEMS IN A TWO-DIMENSIONAL
DESKTOP ENVIRONMENT
3504
GENERATE THREE-DIMENSIONAL DESKTOP ITEMS BASED ON THE IDENTIFIED
TWO-DIMENSIONAL DESKTOP ITEMS
3206
ELIMINATE THE TWO-DIMENSIONAL DESKTOP ITEMS FROM VIEW
3508

GENERATE THE THREE-DIMENSIONAL DESKTOP ITEMS ON AT LEAST ONE

SURFACE

FIG. 35

U.S. Patent Mar. 4, 2014 Sheet 24 of 31 US 8,667,418 B2

‘)_ 3600

3602
AXIALLY DISPOSE A BACK SURFACE FROM A VIEWING SURFACE
3604
EXTEND ONE OR MORE SIDE SURFACES FROM THE BACK SURFACE TO THE
VIEWING SURFACE
3606
GENERATE A VISUALIZATION OBJECT RECEPTACLE ON ONE OR MORE OF THE
SIDE SURFACES
GENERATE WITHIN THE VISUALIZATION OBJECT RECEPTACLE ONE OR MORE 3008
VISUALIZATION OBJECTS CORRESPONDING TO ONE OR MORE SYSTEM
OBJECTS
FIG. 36 g
3702
GENERATE STACK [TEMS ON A SIDE SURFACE
3704
RENDER A SURFACE TEXTURE ON THE SIDE SURFACE
FIG. 37 5o
3802
SCROLL THE SIDE SURFACE IN RESPONSE TO A SCROLL COMMAND
33804
SCROLL THE STACKS ITEMS IN A SCROLL DIRECTION
3306
DISPLACE A STACK ITEM FROM THE SIDE SURFACE AT A SCROLL EGRESS
3308
EMPLACE A STACK ITEM ON THE SIDE SURFACE AT A SCROLL INGRESS

FIG. 38

U.S. Patent Mar. 4, 2014 Sheet 25 of 31 US 8,667,418 B2

)‘ 3900

3902

GENERATE AN UNDER LIGHTING EFFECT AS THE SELECTION INDICATOR

3904
GENERATE AN ENLARGEMENT EFFECT AS THE SELECTION INDICATOR

FlG 39 ‘)— 4000

4002

GENERATE STACK ITEMS ON A FIRST SIDE SURFACE CORRESPONDING TO A

PLURALITY OF DESKTOP ITEMS
4004
GENERATE UNITARY [CONS CORRESFONDING PROGRAM ITEMS ON A SECOND
SIDE SURFACE

4006

GENERATE UNITARY ICONS CORRESPONDING FILE ITEMS ON A THIRD SIDE

SURFACE
FIG. 40 g
4102
AXIALLY DISPOSE A BACK SURFACE FROM A VIEWING SURFACE

4104

EXTEND ONE OR MORE SIDE SURFACES FROM THE BACK SURFACE TO THE

VIEWING SURFACE

4106

GENERATE AN APPLICATION CONTENT FRAME FOR AN APPLICATION ON THE

BACK SURFACE

4108

GENERATE ONE OR MORE APPLICATION CONTROL ELEMENTS FOR THE
APPLICATION ON THE ONE OR MORE SIDE SURFACES

FIG. 41

U.S. Patent Mar. 4, 2014 Sheet 26 of 31 US 8,667,418 B2

)‘ 4200

4202
GENERATE AN APPLICATION PORTAL ON ONE OF THE SIDE SURFACES

4204

TRANSITION FROM A FIRST APPLICATION ENVIRONMENT TO A SECOND
APPLICATION ENVIRONMENT IN RESPONSE TO A SELECTION OF THE

APPLICATION PORTAL

|)- 4300
4302
GENERATE A VISUALIZATION OBJECT RECEPTACLE DISPOSED ALONG A DEPTH
ASPECT
4304
GENERATE ONE OR MORE VISUALIZATION OBJECT DISPOSED WITHIN THE
VISUALIZATION OBJECT RECEPTACLE
4306
PREEMINENTLY DISPLAY THE VISUALIZATION OBJECT RECEPTACLE
4308
GENERATE AT LEAST ONE OF THE VISUALIZATION OBJECTS AS A STACK ITEM
FIG. 43 ‘)— 4400
4402
ASSOCIATE A FIRST COLOR WITH AN EXECUTING APPLICATION
4404
ASSOCIATE A SECOND COLOR WITH A SELECTED AND EXECUTING
APPLICATION
4406

ASSOCIATE A THIRD COLOR WITH A LAUNCHING OF AN APPLICATION

FIG. 44

U.S. Patent Mar. 4, 2014 Sheet 27 of 31 US 8,667,418 B2

)‘ 4500

4502
COLOR CODE A SELECTED VISUALIZATION OBJECT DISPOSED IN THE
VISUALIZATION OBJECT RECEPTACLE

4504
APPLY A CORRESPONDING COLOR CODE TO DESKTOP ITEMS ASSOCIATED

WITH THE SELECTED VISUALIZATION OBJECT

' "(Jy'4600
4602
DEFINE VISUALIZATION OBJECT ROWS IN THE VISUALIZATION OBJECT

RECEPTACLE

4604
DEFINE VISUALIZATION OBJECT COLUMNS IN THE VISUALIZATION OBJECT

RECEPTACLE

4606

DISPOSE THE VISUALIZATION OBJECTS WITHIN THE VISUALIZATION OBJECT
RECEPTACLE ACCORDING TO THE VISUALIZATION OBJECT ROWS AND
VISUALIZATION OBJECT COLUMNS

4702

GENERATE A PLURALITY OF STACK ELEMENTS CORRESPONDING TO A
COMPUTER SYSTEM OBJECTS

4704
ASSOCIATE THE PLURALITY OF STACK ELEMENTS WITH A STACK ITEM

4706

AGGREGATE THE STACK ELEMENTS INTO THE STACK ITEM
4708
PROVIDE CONTEXT CONTROL OF THE STACK ITEM

FIG. 47

U.S. Patent Mar. 4, 2014

Sheet 28 of 31

DISPLAY THE STACK ELEMENTS IN A SUBSTANTIAL OVERLAPPING
ARRANGEMENT IN A FIRST MODAL STATE

DISPLAY THE STACK ELEMENTS IN A BROWSING ARRANGEMENT IN THE

SECOND MODAL STATE

ENABLE SELECTION OF A STACK ELEMENT IN THE SECOND MODAL STATE

FIG. 43

IDENTIFY A CHARACTERISTIC OF STACK E
STACK ITEM

IDENTIFY INTERACTION AND/OR VISUALIZATION MODELS BASED ON THE

CHARACTERISTIC

SELECT AN INTERACTION MODEL AND/OR VISUALIZATION MODEL BASED ON

THE CHARACTERISTICS OF THE STACK ELEMENTS

FIG. 49

DEFINING DATE RANGES FOR A TEMPORAL CONTEXT

ASSOCIATE CORRESPONDING STACK |

DETERMINE FOR EACH STACK ELEMENT A DATE ASSOCIATED WITH EACH

EMS W

ASSOCIATED SYSTEM OBJECT

ASSOCIATE THE STACK ELEMENTS WIT
DATE RANGES ASSOCIATED WITH THE STACK ITEMS AND THE DATES
ASSOCIATED WITH EACH SYSTEM OBJECT

FIG. 50

| Tl

E STACK ITEMS BASED ON T

LEMENTS ASSOCIATED WITH A

H EACH DATE RANGE

US 8,667,418 B2

)— 4300

4802

4804

4306

‘)— 4900

4902

4904

4906

‘; 5000

5002

5004

5006

5008

U.S. Patent

Mar. 4, 2014 Sheet 29 of 31 US 8.667.418 B2

)‘ 5100

5102

ASSOCIATING A STACK ITEM WITH AN APPLICATION SYSTEM OBJECT

5104

ASSOCIATE STACK ELEMENTS ASSOCIATED WITH THE APPLICATION SYSTEM

OBJECTWITHT

E STACK ITEM ASSOCIATED WITI

OBJECT

T

E APPLICATION SYSTEM

5106

DISPLAY THE STACK ITEM ASSOCIATED WITH THE APPLICATION SYSTEM
OBJECT DURING AN EXECUTING CONTEXT

FIG. 51

)‘ 5200

5202

ASSOCIATE A PLURALITY OF STACK ELEMENTS WITH AN APPLICATION

5204

IDENTIFY STACK FILE ELEMENTS AND STACK APPLICATION ELEMENT

52006

ASSOCIATE STACK ITEM WITH THE PLURALITY OF STACK ELEMENTS

5203

AGGREGATE STACK ELEMENTS TO GENERATE STACK ITEM

PREEMINENTLY DISPOSE THE APPLICATION ELEMENT

FIG. 52

5201

U.S. Patent Mar. 4, 2014 Sheet 30 of 31 US 8,667,418 B2

5302
ASSOCIATE VISUALIZATIONS OF SYSTEM OBJECTS
5304
IDENTIFY ONE OR MORE ASSOCIATION CHARACTERISTICS OF THE
ASSOCIATED VISUALIZATIONS
- 5306
AUTOMATICALLY SELECT AN INTERACTION MODEL FROM A PLURALITY OF
INTERACTION MODELS BASED ON THE IDENTIFIED ONE OR MORE
ASSOCIATION CHARACTERISTIC
5308
APPLY THE SELECTED INTERACTION MODEL TO THE ASSOCIATED
VISUALIZATIONS
FIG. 53 5 5400
5402
DENTIFY A QUANTITY OF VISUALIZATIONS IN THE STACK ASSOCIATION
5404

SELECT THE INTERACTION MODEL FROM THE PLURALITY OF INTERACTION
MODELS BASED ON THE QUANTITY

FIG. 54

_ h

SELECT THE INTERACTION MODEL FROM THE PLURALITY OF INTERACTION 9004
MODELS BASED ON THE TYPE
FIG. 55 5
5602
IDENTIFY A GROUP ASSOCIATION OF STACK ELEMENTS IN THE STACK
ASSOCIATION
5604

IDENTIFY A TYPE OF STACK ELEMENTS IN THE STACK ASSOCIATION

SELECT THE INTERACTION MODEL FROM THE PLURALITY OF INTERACTION
MODELS BASED ON THE GROUP ASSCQCIATION

FIG. 56

U.S. Patent Mar. 4, 2014 Sheet 31 of 31 US 8,667,418 B2

5702
GENERATE A VISUALIZATION OBJECT RECEPTACLE DISPOSED ALONG A DEPTH
ASPECT
5704
GENERATE ONE OR MORE VISUALIZATION OBJECTS DISPOSED WITHIN THE
VISUALIZATION OBJECT RECEPTACLE
5700
IDENTIFY AN ACTIONABLE STATE ASSOCIATED WITH ONE OF THE
VISUALIZATION OBJECTS
5708
GENERATE A DIVET DISPLAYED PROXIMATE TO THE VISUALIZATION OBJECT
TO INDICATE AN ACTIONABLE STATE ASSOCIATED WITH THE VISUALIZATION
OBJECT
‘j_ 5800
5802
RECEIVE A SELECTION OF A DIVET
5804

GENERATE A CONTEXTUAL MENU PROXIMATE TO THE VISUALIZATION OBJECT
IN RESPONSE TO RECEIVING THE SELECTION OF THE DIVET

FIG. 58

US 8,067,418 B2

1
OBJECT STACK

BACKGROUND

A graphical user interface allows a large number of graphi-
cal objects or 1tems to be displayed on a display screen at the
same time. Leading personal computer operating systems,
such as the Apple Mac OS®, provide user interfaces 1n which
a number of graphical representations of system objects can
be displayed according to the needs of the user. Example
system objects include system functions, alerts, windows,
peripherals, files, and applications. Taskbars, menus, virtual
buttons, a mouse, a keyboard, and other user interface ele-
ments provide mechanisms for accessing and/or activating,
the system objects corresponding to the displayed represen-
tations.

The graphical objects and access to the corresponding sys-
tem objects and related functions, however, should be pre-
sented 1n a manner that facilitates an intuitive user experience.
The use of metaphors that represent concrete, familiar 1deas
facilitate such an intuitive user experience. For example, the
metaphor of file folders can be used for storing documents;
the metaphor of a file cabinet can be used for storing infor-
mation on a hard disk; and the metaphor of the desktop can be
used for an operating system interface.

As the capabilities of processing devices progress, how-

ever, so do the demands on the graphical user interface to
convey mnformation to the users 1n an intuitive manner.

SUMMARY

Disclosed herein systems, apparatus and methods for
graphical user interface object stacks. In one implementation,
graphical user interface includes a plurality of stack elements,
and each stack element corresponds to an application. The
stack elements include file elements associated with applica-
tion document files and an application element associated an
application executable. A stack item 1s associated with the
plurality of stack elements. The stack item 1includes an aggre-
gation of the stack elements 1n which the application element
1s 1n preeminent disposition.

In another implementation, a plurality of stack elements
are generated, and each stack element corresponds to a com-
puter system object. The plurality of stack elements are asso-
ciated with a stack item, and the stack elements are aggre-
gated 1nto the stack item. Context control of the stack 1tem 1s
provided.

In another implementation, a computer readable medium
stores instructions that are executable by a processing device,
and upon such execution cause the processing device to gen-
erate a graphical user interface on a display device. The
graphical user interface includes a plurality of stack elements,
cach stack element corresponding to a system object, and a
stack 1tem associated with the plurality of stack elements. The
stack 1tem 1ncludes an aggregation of the stack elements. The
instructions also include a context engine that upon execution
by the processing device provides contextual control of the
stack 1tem.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a block diagram of an example system that can be
utilized to implement the systems and methods described
herein.

FIG. 2 1s a block diagram of an example user interface
architecture.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 1s an 1mage of an example visualization object
receptacle.

FIG. 4 1s an image of an example stack item.

FIG. § 1s a block diagram of an example user interface
engine architecture.

FIG. 6 1s a block diagram of an example system layer

structure that can be utilized to implement the systems and
methods described herein.

FIG. 7 1s a block diagram of an example multidimensional
desktop environment.

FIG. 8 1s another block diagram of the example multidi-
mensional desktop environment.

FIG. 9 1s another block diagram of the example multidi-
mensional desktop environment.

FIG. 10 1s another block diagram of the example multidi-
mensional desktop environment.

FIG. 11 1s a block diagram of another example multidi-
mensional desktop environment.

FIG. 12 1s a block diagram of another example multidi-
mensional desktop environment.

FIG. 13 1s a block diagram of another example multidi-
mensional desktop environment.

FIG. 14 1s a block diagram of another example multidi-
mensional desktop environment.

FIG. 15 1s a block diagram of another example multidi-
mensional desktop environment.

FIGS. 16 A-D are block diagrams of other example multi-
dimensional desktop environments.

FIG. 17 1s a block diagram of an example desktop transi-
tion.

FIGS. 18 A-18D are block diagrams of example visualiza-
tion object receptacle indicators.

FIGS. 19A and 19B are block diagrams of an example
contextual menu for a visualization object receptacle.

FIG. 20 1s a block diagram of an example visualization
object receptacle including type-ahead indications.

FIGS. 21A and 21B are block diagrams of example selec-
tion indicators for a visualization model.

FIG. 22 1s a block diagram of another example multidi-
mensional desktop environment.

FIG. 23 1s a block diagram of another example visualiza-
tion object receptacle.

FIG. 24 15 a block dlagram of an example stack item.

FIG. 25 1s a block ¢ 1agram of another example stack 1tem.

FIG. 26 1s a block ¢ 1agram of another example stack 1tem.

FIG. 27 1s a block diagram of another example stack 1tem.

FIGS. 28A and 28B are block diagrams of example stack
items that are color-coded.

FIG. 29 1s a block diagram illustrating an example contex-
tual control scheme applied to an example stack item.

FIG. 30 1s a block diagram 1llustrating the application of an
example visualization model to an example stack item.

FIGS. 31A and 31B are block diagrams illustrating the
application of another example visualization model to an
example stack item.

FIG. 32 1s a block diagram 1llustrating the application of
another example visualization model to an example stack
item.

FIG. 33A 15 a block diagram of an example group associa-
tion of an example stack item.

FIG. 33B 15 a block diagram of an example group associa-
tion of system objects.

FIG. 34 1s a tlow diagram of an example process for tran-
sitioning a desktop.

FIG. 35 15 a flow diagram of another example process for
transitioning between desktop types.

US 8,067,418 B2

3

FIG. 36 1s a flow diagram of an example process for gen-
erating a multidimensional desktop environment.

FI1G. 37 1s a tlow diagram of an example process for ren-
dering a side surface in a multidimensional desktop environ-
ment.

FI1G. 38 15 a flow diagram of an example process for scroll-
ing a side surtace 1 a multidimensional desktop environ-
ment.

FI1G. 39 1s a flow diagram of an example process for gen-
erating a selection indicator.

FIG. 40 1s a flow diagram of an example process for ren-
dering desktop items.

FIG. 41 1s a flow diagram of an example process for gen-
crating an example application environment in a multidimen-
sional desktop environment.

FI1G. 42 1s a flow diagram of an example process for tran-
sitioning between application environments.

FI1G. 43 1s a flow diagram of an example process for gen-
erating a visualization object receptacle.

FI1G. 44 15 a tlow diagram of an example process for color
coding visualization objects.

FIG. 45 1s a flow diagram of an example process for color
coding visualization objects of related system objects.

FIG. 46 15 a flow diagram of another example process for
generating a visualization object receptacle.

FI1G. 47 15 a flow diagram of an example process for gen-
crating a stack item.

FIG. 48 1s a flow diagram of an example process for dis-
playing stack elements according to modal states.

FI1G. 49 15 a flow diagram of an example process for select-
ing interaction models and/or visualization models.

FI1G. 50 1s a flow diagram of another example process for
generating a stack item.

FIG. 51 1s a flow diagram of an example process for dis-
playing a stack item according to an execution context.

FIG. 52 15 a flow diagram of an example process for gen-
erating and displaying a stack item.

FIG. 53 1s a flow diagram of an example process for auto-
matically selecting and applying an interaction model to a
stack 1tem.

FI1G. 54 1s a flow diagram of another example process for
automatically selecting and applying an interaction model to
a stack item.

FIG. 35 1s a flow diagram of another example process for
automatically selecting and applying an interaction model to
a stack item.

FIG. 56 1s a flow diagram of another example process for
automatically selecting and applying an interaction model to
a stack 1tem.

FIG. 57 1s a flow diagram of an example process for gen-
erating a divet.

FIG. 58 15 a flow diagram of an example process for gen-
crating a divet contextual menu.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram of an example system 100 that
can be utilized to implement the systems and methods
described herein. The system 100 can, for example, be imple-
mented 1n a computer device, such as any one of the personal
computer devices available from Apple Inc., or other elec-
tronic devices. Other example implementations can also
include video processing devices, multimedia processing
devices, portable computing devices, portable communica-
tion devices, set top boxes, and other electronic devices.

The example system 100 includes a processing device 102,
a first data store 104, a second data store 106, a graphics

10

15

20

25

30

35

40

45

50

55

60

65

4

device 108, input devices 110, output devices 112, and a
network device 114. A bus system 116, such as a data bus and
a motherboard, can be used to establish and control data
communication between the components 102, 104, 106, 108,
110, 112 and 114. Other example system architectures, how-
ever, can also be used.

The processing device 102 can, for example, include one or
more microprocessors. The first data store 104 can, for
example, include a random access memory storage device,
such as a dynamic random access memory, where the
dynamic random access memory includes computer-readable
medium. The second data store 106 can, for example, include
one or more hard drives, a flash memory, and/or a read only
memory, each ol which includes computer-readable medium.

The graphics device 108 can, for example, include a video
card, a graphics accelerator card, or a display adapter, and 1s
configured to generate and output images to a display device.
In one implementation, the graphics device 108 can be real-
1zed 1n a dedicated hardware card connected to the bus system
116. In another implementation, the graphics device 108 can
be realized 1n a graphics controller integrated into a chipset of
the bus system 116. Other implementations can also be used.

Example mput devices 110 can include a keyboard, a
mouse, a stylus, a video camera, a multi-touch surface, etc.,
and example output devices 112 can include a display device,
an audio device, etc.

The network interface 114 can, for example, include a
wired or wireless network device operable to communicate
data to and from a network 118. The network 118 can include
one or more local areca networks (LANs) or a wide area
network (WAN), such as the Internet.

In an 1implementation, the system 100 includes instructions
defining an operating system stored in the first data store 104
and/or the second data store 106. Example operating systems
can include the MAC OS® X series operating system, the
WINDOWS® based operating system, or other operating
systems. Upon execution of the operating system instruc-
tions, access to various system objects 1s enabled. Example
system objects include data files, applications, functions,
windows, etc. To facilitate an intuitive user experience, the
system 100 includes a graphical user interface that provides
the user access to the various system objects and conveys
information about the system 100 to the user in an mtuitive
mannet.

FIG. 2 1s a block diagram of an example user interface
architecture 200. The user mterface archutecture 200 includes
a user iterface (Ul) engine 202 that provides the user access
to the various system objects 204 and conveys information
about the system 100 to the user.

Upon execution, the Ul engine 202 can cause the graphics
device 108 to generate a graphical user interface on an output
device 112, such as a display device. In one implementation,
the graphical user interface can include a multidimensional
desktop 210 and a multidimensional application environment
212. In an implementation, the multidimensional desktop 210
and the multidimensional application environment 212
include x-, y- and z-axis aspects, e.g., a height, width and
depth aspect. The x-, y- and z-axis aspects may define a
three-dimensional environment, e.g., a “3D” or “2.5D” envi-
ronment that includes a z-axis, e.g., depth, aspect.

In an implementation, the multidimensional desktop 210
can include use interface elements, such as visualization
objects 220, a visualization object receptacle 222, and stack
items 224. In some implementations, the visualization objects
220, the visualization object receptacle 222 and the stack
items 224 can be presented in a pseudo-three dimensional

US 8,067,418 B2

S

(1.e., ©“2.5D”) or a three-dimensional environment as graphi-
cal objects having a depth aspect.

A visualization object 220 can, for example, be a visual
representation of a system object. In some implementations,
the visualization objects 220 are 1cons. Other visualization
objects can also be used, e.g., alert notification windows,
menu command bars, windows, or other visual representa-
tions of system objects.

In an implementation, the multidimensional application
environment 212 can include an application environment dis-
tributed along a depth aspect. For example, a content frame,
¢.g., an application window, can be presented on a first sur-
face, and control elements, e.g., toolbar commands, can be
presented on a second suriace.

FIG. 3 1s an 1mage of an example visualization object
receptacle 300. In one implementation, the visualization
object receptacle 300 can include x-, y- and z-axis aspects,
¢.g., a height, width and depth. In another implementation,
the visualization object receptacle 300 can have only a y- and
Z-axis aspect, e.g., a width and depth. In another implemen-
tation, the visualization object receptacle 300 can have only
an X- and y-axis aspect, e.g., aheight and a width. An example
implementation of a visualization object receptacle 300 1s the
“Dock” user interface in the MAC OS® X Leopard operating
system. Other implementations can also be used.

In some 1mplementations, or more visualization objects,
e.g., 1icons 304, 306, 308 and 310 can be disposed within the
visualization object receptacle 300, e.g., an 1con receptacle
300. In one implementation, a lighting and shading effect 1s
applied to emphasize the depth aspect of the visualization

object receptacle 300, as illustrated by the corresponding
shadows 305, 307, 309 and 311 and retlections 312, 314, 316

and 318 beneath each of the 1cons 304, 306, 308 and 310.

In some implementations, the visualization object recep-
tacle 300 can include front surface 319 to generate a height
aspect. In some implementations, a notch 320 can be included
in the visualization object receptacle 300. The notch 320 can,
for example, be utilized to arrange visualization objects
related to particular programs or functions, e.g., files and
folders can be disposed on a first side of the notch 320 and
applications can be disposed on a second side of the notch
320; or auser may define arrangements according to the notch
320, etc.

In some implementations, the visualization object recep-
tacle 300 can include status indicators, e¢.g., 330 and 332,
disposed on the front surface 319. The status indicators 330
and 332 can, for example, appear as illuminations to indicate
a status of a system object or function associated with a
corresponding visualization object. In some i1mplementa-
tions, the status indicators can be color coded based on an
identified status. For example, the status indicator 330 may be
illuminate 1n a yellow color to indicate that the folder 304 1s
receiving a file download, and the status indicator 332 may be
illuminate 1n a green color to indicate that a program associ-
ated with the visualization object 308 1s running.

In some 1implementations, the visualization object recep-
tacle 300 may only define a depth aspect, e.g., the visualiza-
tion object receptacle 300 may not include a front surface
319. In some implementations, the top surface of the visual-
1zation object receptacle 300 can be modeled as a liqud for
addition and removal of visualization objects. For example,
when a visualization object 1s added to the visualization
object receptacle 300, the adjacent visualization objects may
move apart to define an open space, and the added visualiza-
tion object may emerge from the surface into the open space.
Surface perturbations, e.g., ripples, can be generated to

10

15

20

25

30

35

40

45

50

55

60

65

6

enhance the visual effect of the addition of the visualization
object. Visualization objects can be removed by a substan-
tially reversed visual effect.

In another implementation, when a visualization object 1s
added to the visualization object receptacle 300, the adjacent
visualization objects may move apart to define an open space,
and the added visualization object may fall onto the surface
into the open space. Surface perturbations, e.g., ripples and
splashes, can be generated to enhance the visual effect of the
addition of the visualization object. Visualization objects can
be removed by a substantially reversed visual effect. Addi-
tional features of visualization object receptacles and visual-
1zation objects disposed therein are described 1n more detail
below.

FIG. 4 1s an 1mage of an example stack 1item 400. In one
implementation, the stack item 400 1s a system object that
includes a plurality of stack elements, e.g., stack elements
402, 404, 406 and 408, such as 1cons corresponding to system
objects, or other visualizations of system objects. The stack
item 400 1s associated with the stack elements 402, 404, 406
and 408 so that selection of the stack 1tem can provide access
to any of the stack elements 402, 404, 406 and 408. In one
implementation, a stack element can, for example, be realized
by a corresponding visualization object of a system object. In
another implementation, a stack element can, for example, be
realized by a corresponding thumbnail icon of a system
object. In another implementation, a stack element can, for
example, be realized by a different corresponding 1con of a
system object. In another implementation, a stack element
can, for example, be realized by a common stack element
icon. Other stack element realizations with 1cons and/or other
visualization objects can also be used.

In one implementation, a stack item identifier 410 can be
displayed on the top stack element, e.g., stack element 402. In
one 1mplementation, the stack item identifier 410 can, for
example, comprise a title describing a stack type, e.g.,
“mmages” or “documents.” In another implementation, the
stack 1tem 1dentifier 410 can, for example, comprise a visual
indicator indicating an aspect of the stack, e.g., adollar sign $
can be displayed for a stack item including system objects
related to a financial analysis tool; or a representation of a
coin can be displayed as a surface beneath the stack item, etc.
The stack 1tem 1dentifier 410 can, for example, be automati-
cally generated, or can be generated by the user. Other stack
item 1dentifiers can also be used.

In one implementation, the stack elements 402, 404, 406
and 408 are aggregated 1n an overlapping arrangement as
shown 1n FIG. 4. Other stack arrangements can also be used.
In one implementation, each stack element 402, 404, 406 and
408 displays a corresponding unique mndicium 412, 414, 416
and 418, e.g., a thumbnail preview of an 1mage associated
with the stack element or the first page of a document asso-
ciated with the stack element. Other unique ndicium or
unique indicia can also be used. For example, stack elements
corresponding to 1mages can be of the same aspect of the
image, e.g., a 4x5 aspect, and 9x12 aspect, etc. Likewise,
stack 1tems corresponding to documents can be of the same
aspect ol a paper selection, e.g., an 8.5x11 aspect, an A4
aspect, etc. Other unique indicium or 1ndicia can also be used,
¢.g., a document si1ze and/or a document date can be displayed
in each stack element, etc.

In some implementations, the stack elements 402, 404, 406
and 408 can be normalized to or 1n a similar display aspect.
For example, stack elements corresponding to images of dii-
ferent aspects, e.g., a 4x5 aspect, and 9x12 aspect, etc., can be
of the same display aspect by the addition of borders sur-
rounding a thumbnail of the thumbnail image. Such normal-

US 8,067,418 B2

7

ization can {facilitate a consistent presentation of system
objects having inconsistent characteristics, e.g., different for-
matting sizes.

The stack item 400 can include visualization objects
related to different types of system objects. For example, a
stack 1tem can include stack elements related to peripheral
devices, e.g., hard drives, unmiversal serial bus devices, etc.; or
can include stack elements related to application windows; or
can 1nclude stack elements related to system functions, e.g.,
menus, a shutdown function, a sleep function, a backup func-
tion, etc.; or can includes stack elements related to recent
system alerts; or other system objects.

In some implementations, a stack item 400 can include
visualization objects related to different system views. For
example, the stack element 402 can correspond to a work
environment; the stack element 404 can correspond to a gam-
ing environment; the stack element 406 can correspond to a
music environment; and the stack element 408 can corre-
spond to a movie environment. Selection of any of the corre-
sponding elements 402-408 can cause the user interface to
transition to the corresponding environment.

In some implementations, a stack item 400 can include
visualization objects related to multiple monitors. For
example, 11 a monitor 1n a dual monitor user environment 1s
disabled, the corresponding visualization objects displayed
on the disabled monitor can collapse into a monitor stack on
the remaining monitor.

Additional features of the stack items and corresponding
stack elements are described in more detail below.

FIG. 5 1s a block diagram of an example user interface
engine architecture 500. The Ul engine 202 can, for example,
include an 1nteraction and visualization model engine 502, a
physics engine 504, and a context engine 506. Other engines
can also be included.

In one 1implementation, the interaction and visualization
model engine 502 can identily an association characteristic of
associated visualization objects, e.g., icons. The associated
graphical elements can be collectively displayed, e.g., 1n an
object stack, or can be distributed in a desktop/folder hierar-
chy 1n which only one 1con 1s displayed. Based on the 1den-
tified characteristic, the interaction and visualization model
engine 502 can automatically select an interaction model
and/or visualization mode that defines how the user may
interact with and view the associated graphical elements. For
example, 11 an 1dentified association characteristic i1s the
quantity of associated icons, an interaction model and/or
visualization model for browsing the documents related to the
icons can be selected based on the quantity. For example, 1f
the quantity of associated icons 1s less than a first threshold,
¢.g., four, amouse-over of any one of the four associated icons
can present the associated 1cons 1n juxtaposition. Likewise, 1f
the quantity of associated 1cons 1s greater than the first thresh-
old and less than a second threshold, e.g., 16, amouse-over of
any one of the associated icons can present the associated
icons 1n an overlapping display 1n which the icons cycle from
back to tront. Additionally, 1f the quantity of associated 1cons
1s greater than the second threshold, then a mouse-over of any
one of the associated 1cons can present a scrollable list of
associated documents.

Other interaction models and visualization model selection
schemes can also be implemented. For example, the interac-
tion and visualization model engine 502 can cause related
visualization objects to move across a user interface when a
particular visualization object type 1s selected, e.g., selection
ol a word processing program 1con may cause word process-
ing document 1cons to move toward the word processing
program icons. In another implementation, selection of a

10

15

20

25

30

35

40

45

50

55

60

65

8

visualization object can cause unrelated visualization objects
to be de-emphasize (e.g., reduce 1n size), and/or related visu-
alization objects to be emphasized (e.g., increase 1n size). In
another implementation, selection of a visualization object
can cause related visualization objects to become 1llumi-
nated.

In one implementation, the physics engine 304 can apply a
physics aspect, such as Newtonian physics models based on
mass, velocity, etc., to the visual representations of system
objects, such as icons. In an implementation, the 1cons can be
modeled as rigid bodies or non-rigid bodies. For example,
placing an icon on a surface next to adjacent icons can cause
the adjacent 1cons to shift positions 1n response to a simulated
disturbance from the icon placement. In one implementation,
icon magnetism can be selectively enabled or disabled by the
user. In one implementation, icons return to their initial posi-
tions upon a disabling of the magnetism aspect. In another
implementation, a magnet icon can have a magnetism aspect
selected by the user, ¢.g., a magnetism with respect to a word
processing application, or a magnetism with respect to two or
more applications, or a magnetism with respect to the last
time a document was accessed, e.g., within the last two days,
etc.

Other physics models can also be applied. For example, an
application icon can include a magnetism aspect, and placing
the magnetic application 1con on the desktop can cause 1cons
related to the application 1con, €.g., 1cons representing appli-
cation document files, to be attracted to the magnetic 1con and
move towards the magnetic 1con. Likewise, 1cons for unre-
lated system objects, e.g., other application icons and other
document icons, can be modeled as having an opposite mag-
netic polarity from the selected magnetic 1con, and thus will
be repulsed and shift away from the selected magnetic icon.

The context engine 506 can, for example, provide contex-
tual control of a stack item based on a context. For example,
stack items, such as the stack item 400, can be defined accord-
ing to a protection context. Accordingly, system objects cor-
responding to stack elements within the stack item cannot be
deleted until dissociated from the stack item. In some 1imple-
mentations, a stack item 400 can have a locked context, and
access to the stack item 400 can be password protected. Other
contextual control can also be provided, such as contextual
control based on a temporal context, e.g., a new object stack
of recently added system objects; a download context, such as
a download stack for recently downloaded files; or an execu-
tion context, or other context types.

FIG. 6 1s block diagram of example system layers 600 that
can be utilized to implement the systems and methods
described herein. Other system layer implementations, how-
ever, can also be used.

In an implementation, a user interface engine, such as the
UI engine 202, or another Ul engine capable of generating a
three-dimensional user interface environment, operates at an
application level 602 and implements graphical functions and
features available through an application program interface
(API) layer 604. Example graphical functions and features
include graphical processing, supported by a graphics API,
image processing, support by an imaging API, and video
processing, supported by a video API.

The API layer 604, in turn, interfaces with a graphics
library layer 606. The graphics library layer 604 can, for
example, be implemented as a soitware interface to graphics
hardware, such as an implementation of the OpenGL speci-
fication. A driver/hardware layer 608 includes drivers and
associated graphics hardware, such as a graphics card and
associated drivers.

US 8,067,418 B2

9

FIG. 7 1s a block diagram 700 of an example multidimen-
sional desktop environment. In the example implementation,
the multidimensional desktop environment 700 includes a
back surface 702 axially disposed, e.g., along the z-axis, from
a viewing surface 704. In one implementation, the back sur-
face 702 can, for example, be a two-dimensional desktop
environment, including one or more menus 701 and 703. In
one 1implementation, the viewing surface 704 can be defined
by the entire 1mage on a display device, e.g., a “front pane.”
One or more side surfaces, such as side surfaces 706, 708, 710
and 712, are extended from the back surface 702 to the view-
ing surface 704. A visualization object receptacle, e.g., an
icon 714 1s generated on one or more of the side surfaces, such
as side surface 706. Although only one visualization object
receptacle 1s shown, addition 1con receptacles can also be
displayed, e.g., along the side surface 708.

In one implementation, a reflection region 716 can be gen-
crated on the side surface 706, ¢.g., the “tloor.” In an 1mple-
mentation, a reflection of the back surface 702 and of graphi-
cal items placed on the retlection region 716 can be generated,
¢.g., shapes 760 and 762 generate reflections 761 and 763 1n
the retlection region 716.

In an implementation, the visualization object receptacle
714 1s positioned at a forward terminus 718 of the retlection
region 716. In one implementation, the forward terminus 718
can be offset by an axial distance d from the viewing surface
704. In another implementation, the forward terminus 718
can terminate at the plane defined by the viewing surface 704.

In an implementation, the side surfaces 706, 708, 710 and
712 can intersect at intersections 707, 709, 711 and 713,
respectively. Although four side surfaces are shown in FIG. 7,
tewer or greater numbers of side surfaces can be defined; for
example, 1n an implementation, only side surfaces 706, 708
and 712 are defined, and there 1s an absence of a “top” side
surface 710.

In an implementation, the intersections 707, 709, 711 and
713 of the side surtaces 706, 708, 710 and 712 can occur at
different locations. For example, the multidimensional desk-
top environment can include intersections 707a, 709a, 711a
and 713a that are horizontally disposed; or intersections
7075, 709b, 7115 and 713b that are vertically disposed, or
combinations of vertical, angled, and horizontal intersec-
tions.

In an implementation, the side surfaces 706, 708, 710 and
712 are colored to emphasize the back surface 702 and reflec-
tion region 716. For example, the side surfaces 706, 708, 710
and 712 can be black 1n color, or respective patterns or colors
can be rendered on each side surface. Other differentiation
schemes 1ncluding color schemes and 1mage schemes can
also be applied.

The visualization object receptacle 714 can include a plu-
rality of visualization objects, e.g., 1cons 720, 722, 724, 726,
728, 730, 732, 734, 736, 738, 740 and 742. The icons 720,
722,724,726,728,730,732,734,736,738,740 and 742 can,
for example, corresponding to one or more system objects,
such as applications, documents, and functions. The visual-

1zation object receptacle 714 and 1cons 720, 722, 724, 726,
728, 730, 732, 734, 736, 738, 740 and 742 can include {ea-
tures as described with respect to the visualization object
receptacle 300 of FIG. 3, and as described in more detail
below.

In an implementation, stack items 750, 752, 754, 756 and
758 are interposed between the visualization object recep-
tacle 714 and the back surface 702. The stack items 750, 752,
754, 756 and 758 can include features as described with
respectto FIG. 4 above, and as described in more detail below.
In the implementation of FIG. 7, the stack items 750, 752,

10

15

20

25

30

35

40

45

50

55

60

65

10

754,756 and 758 define type associations, €.g., Images, mov-
1ies, documents, presentations, and downloads, respectively.
Other associations can also be used. The stack items 750, 752,
754,756 and 758 can generate reflections 751, 753, 755, 757,
and 759 1n the reflection region 716.

Selection of a particular stack element 1n a stack 1tem can,
for example, launch an associated application if the stack
clement represents an application document; or perform a
system function if the stack element represents a system
function; or can instantiate some other system process.

In an 1implementation, a stack item can be placed on the
visualization object receptacle 714. In another implementa-
tion, behavior of a stack 1item when 1n the visualization object
receptacle 714 1s similar to the behavior of the stack item
when placed on the reflection region 716.

In an 1implementation, representations of system objects,
¢.g., 1cons, stack items, etc., can be disposed on the side
surfaces 708, 710 and 712. For example, a window displayed
on the back surface 702 can be selected and dragged to one of
the side surfaces 708, 710, or 712. Likewise, a stack item,
such as stack 1item 750, can be dragged and disposed on one of
the side surtaces 708, 710, or 712.

In one implementation, a stack item 1s created when a
representation of a system object, e.g., an 1con, 1s placed on
the surface of the retlection region 716. For example, an 1con
related to a document can be displayed on the surface 712;
upon a selection, dragging and placement of the 1con on the
reflection region 716, a stack 1tem 1s created with at least the
icon as a stack element. In an implementation, a stack item
can also be created by a keyboard 1nput; for example, a user
can create a stack 1tem for open windows by a Ctrl-W 1nput,
or create a stack 1item for peripherals by a Ctrl-P mput, etc.
Other processes to create stack items can also be used.

In one implementation, existing stack items are displaced
to provide space for a newly created stack 1tem. In one imple-
mentation, the retlection region 716 can be defined by a
surface aspect, such as an equable texture, and the stack items
750, 752, 754, 756 and 738 are displaced according to a
physics model, e.g., a rigid-body Newtonian physics model.
In another implementation, the reflection region 716 can be
defined by a gnid aspect, and the stack items 750, 752, 754,
756 and 758 are displaced according to a grid snap.

Other textures and surface behaviors can also be used. In
one 1mplementation, a motion model 1s dependent on a
selected surface aspect. For example, an equable texture, such
as an 1mage ol a hardwood floor or a polished metallic sur-
face, can be associated with a rnigid-body Newtonian physics
model; conversely, a visible grid aspect, or a raised texture,
such as an 1image of a carpet, pebbles, etc., can be associated
with a grid snap. In another implementation, the motion mode
and textures can be selected independently.

In one implementation, a maximum number of stack items
can be displayed 1n the retlection region 716. Upon the inser-
tion or creation of a new stack 1item, one or more existing stack
items are removed from the reflection region 716. In one
implementation, a consolidated stack item can be created.
The consolidated stack 1tem can, for example, be a collection
of stack 1tems with each stack item being represented by a
corresponding stack element. Selection of a corresponding
stack element 1n a consolidated stack item will cause the
corresponding stack item to be positioned on the reflection
region, and will likewise cause another stack item to be posi-
tioned 1n the consolidated stack 1tem.

In another implementation, one or more existing stack
items can be removed from the reflection region 716 by tran-
sitioning to an edge of the retlection region 716 and fading
from view, e.g., the stack item 750 may shift towards the

US 8,067,418 B2

11

intersection 707 and fade by an atomizing effect, by a falling
elfect, or by some other effect. In another implementation,
one or more existing stack 1items are removed from the retflec-
tion region 716 by transitioning to an edge of the reflection
region 716 and moving onto one of the side surfaces, ¢.g., the
stack 1tem 750 may shift towards the imtersection 707 and
move up the side surface 708.

FIG. 8 1s another block diagram 800 of the example mul-
tidimensional desktop environment. In the block diagram of
FIG. 8, the visualization object receptacle 714 has been
adjustably disposed along a depth axis, e.g., a z-axi1s, such that
the visualization objectreceptacle 714 1s disposed on the back
surface 702. In one implementation, the visualization object
receptacle 714 can, for example, be preeminently displayed.
The visualization object receptacle 714 can, for example, be
preeminently displayed by rendering the visualization object
receptacle 714 i front of other graphical objects. For
example, the 1con 742 1n the visualization object receptacle
716 1s displayed 1n front of the stack item 750. Other methods
can be used to preeminently display the visualization object
receptacle 714, such as rendering graphical objects displayed
in front of the visualization object receptacle as translucent
objects.

FI1G. 9 1s another block diagram 900 of the example mul-
tidimensional desktop environment. The system implement-
ing the multidimensional desktop environment graphical user
interface, such as the system 100 of FIG. 1, has received a
selection command for the stack 1tem 750. A selection com-
mand for a stack item can be generated by, for example, a
mouse-over, a mouse click, a keyboard input, or by some
other 1nput.

In the implementation shown 1n FIG. 9, a visualization
model that causes the stack elements 772, 774, 776 and 778 to
be arranged 1n an overlapping fan 1s applied to the stack item
750. Thus, 1n response to a user input, €.g., a selection or a
mouse over, the first stack item 750 enters a second modal
state from a first modal state and the forward most stack
clement 772 fans upward, followed by the stack items 774 and
776. While the stack item 750 i1s selected, a user can, for
example, select and open a document related to one of the
stack elements 772, 774, 776 and 778 by positioning a cursor
on one of the stack elements 772, 774, 776 and 778 and
selecting the element (e.g., clicking on the element with a
mouse cursor). Deselection of the stack item 750, e.g., ceas-
ing the mouse over, causes the stack elements 772, 774, 776
and 778 to collapse back into the stack item 750, and the stack
item returns to the first modal state. Other selection processes
can also be used.

In one implementation, the stack elements 772, 774, 776
and 778 fan according to a fixed fanning path 780. In another
implementation, the stack elements 772, 774, 776 and 778
can fan according to a path defined by a mouse input recerved
from a user. In another implementation, a fanning can define
a path toward a central region, and thus the stack elements of
cach stack may fan according to respective fanning paths 780,
782, 784, 786, and 788.

In one implementation, one of several interaction and/or
visualization models can be automatically selected for appli-
cation to a stack 1tem, such as the stack item 750. The selec-
tion can, for example, be based on a characteristic of the stack
item 7350, e.g., the number of stack elements 772, 774, 776
and 778, the type of the stack elements 772,774, 776 and 778,
or some other characteristic. For example, 11 an 1dentified
association characteristic 1s the quantity of associated icons, a
visualization and/or interaction model for browsing and inter-
acting with the documents related to the icons can be selected
based on the quantity. If the quantity of associated 1cons 1s

10

15

20

25

30

35

40

45

50

55

60

65

12

greater than a first threshold, e.g., three, a mouse-over of any
one of the stack elements 772, 774, 776 and 778 can present

the stack elements 772, 774, 776 and 778 1n the fanming

arrangement as shown in FIG. 9.

Other iteraction and/or visualization model selection cri-
terion or criteria can also be used. For example, stack ele-
ments related to documents 1 the stack item 754 can be
displayed in an overlapping leafing mode 1n which the docu-
ment titles appear, as the user 1s more likely to discern the
relevance of a document from the title than a thumbnail image
of a first page ol a document.

FIG. 10 1s another block diagram 1000 of the example
multidimensional desktop environment. The system 1mple-
menting the multidimensional desktop environment graphi-
cal user interface, such as the system 100 of FIG. 1, has
recetved a selection command for the stack 1item 750, and a
visualization model that causes the stack elements 772, 774,
776 and 778 to be arranged as single 1nstances, e.g., single
icons, 1 a matrix display 1s automatically selected and
applied to the stack item 750. In the implementation of FIG.
10, the selection criterion can, for example, be based on a
quantity. For example, 11 the quantity of associated icons 1s
less than a first threshold, e.g., five, a selection of the stack
item 750 can present the stack elements 772,774,776 and 778
in substantial juxtaposition as shown 1n FIG. 10.

In one implementation, a selection indicator can be gener-
ated to indicate a selected stack item. For example, an under-
lighting effect 1002 can be generated to indicate selection of
the stack 1tem 7350. Other selection indicators can also be
used, such as backlighting effects, enlargement effects, out-
lining etlects, or other elfects.

Additional stack items 1004 and 1006, corresponding to
the categories of online buddies and music, are also displayed
in the block diagram 1000. In one implementation, stack
items, such as stack 1items 1004 and 1006, can be contextually
controlled. For example, 1n one implementation, the stack
item 1004 can automatically appear when the system imple-
menting the graphical user interface of FIG. 10, such as the
system 100 of FIG. 1, recetves a notification that an event
associated with another user that 1s designated as an “online
buddy” has occurred, e.g., the “online buddy™ has logged onto
a network.

In another implementation, a stack 1tem, such as the stack
item 1006, can automatically appear when an application
corresponding to the stack 1tem 1s selected or executed. For
example, selecting the icon 732, which illustratively corre-
sponds to a music application, will instantiate the stack item
1006 1n accordance with a selection and/or execution context.

Other contextual controls can also be used, such as modal
states, temporal contexts, etc.

FIG. 11 1s a block diagram of another example multidi-
mensional desktop environment. The multidimensional desk-
top environment of FIG. 11 includes a back surface 1102
axially disposed, e.g., along the z-axis, {from a viewing sur-
face 1104. In one implementation, the back surface 1102 can,
for example, be a two-dimensional desktop environment,
including one or more menus 1101 and 1103. In one 1mple-

mentation, the viewing surface can be defined by the entire
image on a display device, e.g., a “front pane.” One or more
side surfaces, such as side surfaces 1106, 1108, 1110 and
1112, are extended from the back surface to the viewing
surface. A visualization object receptacle 1114 1s generated
on one or more of the side surfaces, such as side surface 1106.

In one 1mplementation, a reflection region 1116 can be
generated on the side surface 1106, e.g., the “tloor.”” The

US 8,067,418 B2

13

reflection region 1116 can, for example, generate a reflection
of the back surface 1102 and desktop items placed on the
reflection region 1116.

In an implementation, the side surfaces 1106, 1108, 1110
and 1112 are colored to emphasize the back surface 1102 and
the reflection region 1116. For example, the side surfaces
1106,1108,1110and 1112 can be black in color, or respective
patterns, colors, or 1mages can be rendered on each side
surface. Other differentiation schemes including color
schemes and 1mage schemes can also be applied.

The visualization object receptacle 1114 can include a
plurality of visualization objects, e.g., 1cons 1120, 1122,
1124, 1126, 1128 and 1130. The icons 1120, 1122, 1124,
1126, 1128 and 1130 can, for example, include visualization
objects corresponding to one or more system objects, such as
applications, documents, and functions. For example, icons
1120, 1122 and 1124 can correspond to applications; 1cons
1126 and 1128 can correspond to stack items; and 1icon 1130
can correspond to a deletion function. Other system objects

can also be represented, such as file items, peripheral 1tems,
etc.

In an implementation, stack items 1140, 1142, 1144 and
1146 are interposed between the visualization object recep-
tacle 1114 and the back surface 1102. A selection indicator
can, for example, be generated to indicate a selected stack
item. For example, an enlargement effect can be used to
indicate a selection of the stack item 1146. Other selection
indicators can also be used.

In an 1implementation, the reflection region 1116 can be
defined by a grid aspect 1150, and the stack items 1140, 1142,
1144 and 1146 are displaced according to a grid snap. In one
implementation, the grid aspect 1150 can be visible, e.g., a
orid outline, or an association with a texture image. In another
implementation, the grid aspect can be 1nvisible.

In another implementation, stack items can be scrolled
from side-to-side and/or from 1front-to-back (or back-to-
front) on the surface 1106. For example, upon a selection of
the surface 1106, e.g., by clicking on the surface 1106, the
surface 1106 can be scrolled 1n the directions indicated by the
arrows 1152 and 1154. The tloor surface can include a scroll
ingress and a scroll egress 1n which a scroll direction transi-
tions from the scroll ingress to the scroll egress. For example,
intersections 1156 and 1158 may define a scroll ingress and a
scroll egress for a left-to-right scroll direction, or the left edge
1157 and the right edge 1159 of the retlection region 1116
may define a scroll ingress and a scroll egress for a left-to-
right scroll direction. In one implementation, stack items are
emplaced on the floor surface 1106 at the scroll ingress 1156
(or 1157), and displaced from the floor surface 1106 at the
scroll egress 1158 (or 1159). In one implementation, one or
more existing stack items are displaced from the surface 1106
by fading from view, e.g., fading by an atomizing etlect, by a
talling effect, or by some other effect.

In another implementation, one or more existing stack
items are displaced from the surface 1106 moving onto one of
the side surfaces, e.g., surtace 1112. In another implementa-
tion, one or more existing stack items are removed from the
surface 1106 by moving into a stack element that includes
displaced stacks, e.g., “anchor” stacks near the intersections
1156 and 1158.

In one implementation, windows, such as windows 1160,
1162 and 1164, can be displayed on the back surface 1102.
The windows 1160, 1162 and 1164 can, for example, be
selected and placed on one or more of the surfaces 1106,
1108, 1110 and 1112. In one implementation, placing a win-
dow on one of the surfaces, such as the reflection region 1116
of the surface 1106, generates a stack item having the selected

10

15

20

25

30

35

40

45

50

55

60

65

14

window as a stack element. Selecting the stack item can, for
example, cause the window to reappear in the original posi-
tion on the back surface 11102.

In one implementation, placing a window on one of the
surfaces, such as the surface 1108, generates a representation
of the window, e.g., a window thumbnail 1170 on surface
1108. The corresponding window can, for example, be
restored by dragging the window thumbnail onto the back
surface 1102, or by selecting and double-clicking on the
window thumbnail 1170, or by some other command invoca-
tion.

In one implementation, a lighting aspect can generate a
shadow and/or reflection for representations of system
objects placed on a side surface. For example, a lighting
aspect can generate a reflection or shadow 1172 of the win-
dow thumbnail 1170. In one implementation, a shadow and/
or reflection cast on the retlection region 1116 from the back
surface 1102 can be limited to a selected representation of a
system object. For example, 1f the window 1160 1s currently
selected, the shadow or reflection on the reflection region
1116 can be limited to the window 1160, and the remaining
windows 1162 and 1164 will not generate a reflection.

In another implementation, the lighting aspect can gener-
ate an 1llumination effect from the window thumbnail 1170
onto one or more surfaces. For example, the 1llumination
elfect can comprise a simulated sunbeam emanating from the
window 1170. In one implementation, the 1llumination etfect
can change according to local environmental states, e.g., the
sunbeam can track across the surfaces according to a local
time; the intensity of the sunbeam can be modulated accord-
ing to the local time and local weather conditions that are
received over the network 118, e.g., high intensity for sunny
days, low intensity for overcast days and during the early
evening, and/or being eliminated after a local sunset time and
generated after a local sunrise time.

In another implementation, the lighting aspect described
above can be associated with a weather widget that can be
displayed on one or more of the surfaces. Selection of the
weather widget can, for example, provide a detailed weather
summary of a selected region.

In another implementation, a stack item, such as the stack
item 1128, can be operatively associated with window
instances, such as windows 1160, 1162 and 1164. In one
implementation, the windows 1160, 1162 and 1164 are mini-
mized as stack elements 1161,1163 and 1165, respectively, in
the stack 1tem 1128 in response to a first command, and the
windows 1160, 1162 and 1164 are displayed on the back

surface 1102 from the minimized state in response to a second
command.

In an implementation, the first and second commands are
toggle commands. For example, selection of the entire stack
item 1128, e¢.g., by recerving a click command substantially
concurrently with a mouse-over on the stack item 1128, can
cause all windows associated with the stack element, e.g.,
windows 1160, 1162 and 1164, to appear on the back surtace
1102. Upon cessation of the click command, the windows
1160, 1162 and 1164 revert to the minimized state.

In another example implementation, selection of a stack
clement, such as selection of the stack element 1163 by
receiving a click command after a cursor has hovered over the
stack element 1163 1n excess of a time period, can cause the
stack element 1163 to be removed from the stack 1tem 1128.
In response, the window 1162 can reappear on the back sur-
face 1102.

In an implementation, the lighting aspect can be configured
to generate a shadow etlect for each representation of a sys-
tem object. For example, a selected window can cast shadows

US 8,067,418 B2

15

on subsequent windows to emphasize a depth aspect and an
overall user interface relationship; a stack item can cast a
shadow on adjacent representations of systems objects;
selecting an dragging an 1con can cause a shadow of the 1con
to be generated on the side and back surfaces as the 1con 1s
moved, etc.

FIG. 12 1s a block diagram of another example multidi-
mensional desktop environment. In the implementation of
FIG. 12, the reflection region 1116 i1s defined by surface
aspect having an equable texture on which stack items are
displaced 1n response to a new stack item. For example, the
stack 1tems 1202, 1204, 1206 and 1208 can move 1n response
to the addition of a new stack item 1210. As the new stack item
1210 drops onto the surface 1106, the stack items 1206 and
1208 move 1n response to the displacement induced by the
new stack 1tem 1210.

In one implementation, a maximum number of stack 1tems
can be displayed on the surface 1106. If the addition of a new
stack 1tem causes the number of displayed stack items to be
exceeded, then a stack item nearest a surface intersection can
be displaced from the surface. For example, 1f the maximum
number of stack items to be displayed is four, then the stack
item 1208 can continue to move to the edge of the surface
1106, where the stack 1tem 1208 1s displaced, e.g., fades from
view, atomizes, etc.

In one implementation, the surfaces 1108 and 1112 can, for
example, display specific types of desktop items. For
example, the surface 1108 can display a file desktop item
1220, e.g., a document 1con, and the surface 1112 can display
a program desktop item, e.g., an application icon 1222. In one
implementation, the file desktop item 1220 corresponds to an
open {ile 1 an application window 1224, and the application
icon 1222 corresponds to the executing application.

In another implementation, a plurality of file desktop 1tems
and application desktop 1items can be displayed on the respec-
tive surfaces 1108 and 1112. For example, the surface 1112
can display two icons corresponding to two executing appli-
cations. Selection of one of the application 1cons can, for
example, cause corresponding application windows to be
displayed on the back surface 1102 and corresponding docu-
ment 1cons to be displayed on the surface 1108.

FIG. 13 1s a block diagram of another example multidi-
mensional desktop environment. In this example implemen-
tation, the back surface 1302 does not include menu items,
¢.g., menus 1101 and 1103. A stack item 1304 1s utilized to
access menus corresponding to menus 1101 and 1103 by
selecting stack elements 1306 and 1308, respectively. In one
implementation, selection of the stack item 1304 and a posi-
tioming of the stack item onto the back surface 1302 can cause
corresponding menu 1tems 1101 and 1103 to reappear at the
top of the back surface 1302.

The multidimensional desktop environment of FIG. 13
can, for example, also facilitate a multidimensional applica-
tion environment. For example, an application content pre-
sentation surface 1310, e.g., an application instance display-
ing editable data, can be displayed on the back surface 1302,
and one or more application control elements can be dis-
played on one or more side surfaces. For example, a tool bar
1312 can be displayed on the surface 1108 to provide access
to toolbar function buttons 1314, 1316, 1318, 1320, 1322 and
1324.

Likewise, menu items 1330 can be displayed on the surface
1112. In one implementation, selection of a menu 1tem gen-
crates a textual menu that 1s axially disposed so that the
textual menu appears to be suspended between the back sur-
face 1302 and the viewing surface. For example, selecting the
“File” menu from the menu items 1330 can generate the

5

10

15

20

25

30

35

40

45

50

55

60

65

16

floating textual menu 1332, which can, for example, include
a shadow efiect 1334 on the back surface 1302.

FIG. 14 1s a block diagram of another example multidi-
mensional desktop environment. The multidimensional desk-
top environment of FIG. 14 also facilitates a multidimen-
sional application environment. For example, an application
content frame 1410, e.g., a window displaying editable data,
can be displayed on the back surface 1102, and one or more
application control elements can be displayed on one or more
side surfaces. For example, a three-dimensional function icon
arrangement 1420 can be displayed on the surface 1108, and
menu 1tems 1430 can be displayed on the surface 1112.

The three-dimensional function i1con arrangement 1420
can, for example, include three-dimensional tunction icons
1422, 1424, 1426 and 1428. In one implementation, each
three-dimensional function icon 1422, 1424, 1426 and 1428
includes an function command on each surface, and each
three-dimensional function icon 1422, 1424, 1426 and 1428
can be rotated, positioned, and manipulated through the use
of an 1nput device, such as a mouse.

In an 1mplementation, three-dimensional function icons
can be added to the surface 1108 by use of a menu, such as, for
example, the “Customize” menu on the surface 1112. In an
implementation, a physics model can be applied to model
rotation, movement and displacement of the three-dimen-
sional function icons 1422, 1424, 1426 and 1428. For
example, removing the three-dimensional function 1con 1428
can cause the remaining three-dimensional function icons
1422, 1424 and 1426 to “fall” 1n a downward direction on the
surtace 1108.

In an 1implementation, a three-dimensional login visualiza-
tion object 1442 can be utilized to facilitate user logins and/or
user environments. For example, three sides of the login
visualization object 1442 may correspond to login/logout
commands for users; and the remaining three sides of the cube
can correspond to user environments and/or other user-defin-
able functions for a current user session.

In an implementation, a portal 1440 can be included on a
surface, such as the back surtace 1102. The portal 1440 can be
selected to transition to another multi-dimensional environ-
ment. In one implementation, the portal 1440 can facilitate
transitioming between different application environments,
¢.g., between two applications that are currently executing. In
another implementation, the portal can facilitate transitioning
between different multi-dimensions desktop environments,
¢.g., from a first environment configured for a work environ-
ment to a second environment configured for a leisure envi-
ronment. In another implementation, the portal 1440 can
facilitate transitioning between a two-dimensional desktop
environment and a three dimensional desktop environment.
Other transitions can also be facilitated by the portal 1440.

FIG. 15 1s a block diagram of another example multidi-
mensional desktop environment. In the implementation FIG.
15, windows can be dragged or displaced across one or more
surfaces. For example, the stack item 1128 can include stack
clements 1503 and 15035 that correspond to windows 1502
and 1504, respectively. In one implementation, selection of a
stack element, such as stack element 1503, causes the corre-
sponding window 1502 to transition 1into view from the sur-
face 1108 and onto the back surface 1102. Likewise, the
window 1504, corresponding to the unselected stack element
1505, transitions out of view by sliding across the back sur-
face 1102 and the surface 1112. Other processes to displace,
hide, or otherwise deemphasize system objects, such as win-
dows, can also be used.

In an implementation, a stack item 1510 can include stack
clements 1512 and 1514 that correspond to portals. For

US 8,067,418 B2

17

example, selection of the stack element 1512 can transition
the graphical user interface to a two-dimensional desktop,
and selection of the stack element 1514 can transition to
another application environment.

Additional features can also be realized by other imple-
mentations. For example, 1n one implementation, each sur-
face in the multidimensional desktop environment can imple-
ment different behavior and/or functional characteristics. In
one 1mplementation, each surface can implement different
presentation characteristics. For example, on the bottom sur-
tace 1106, 1cons and other system object representations can
be displayed according to a large scale; on the side surface
1108, icons and other system object representations can be
displayed according to a small scale; on the back surface
1102, 1icons and other system object representations can be
displayed 1n a list format; etc. Selecting and dragging an icon
or other system object representation from one surface to
another will likewise cause the 1con and other system object
representation to be displayed according to the presentation
characteristic of the surface upon which the 1con and other
system object representation 1s finally disposed.

In another implementation, a surface can implement a dele-
tion characteristic. For example, the last access time for 1cons
and other system object representations can be monitored. If
the last access time for an icon or other system object repre-
sentation exceeds a first threshold, the 1con or other system
object representation can be automatically transitioned to the
surface implementing the deletion characteristic, e.g., surface
1112. Additionally, 11 the last access time for the 1con or other
system object representation located on the surface 1112
exceeds a second threshold, the 1con or other system object
representation can be automatically deleted from view.

In one implementation, a configuration tool can be used to
tacilitate configuration of the surface characteristic of each
surface by the user. For example, a configuration menu can
present one or more presentation characteristics for associ-
ated with one or more surfaces. The one or more presentation
characteristics can, for example, be associated by check
boxes associated with each surface. Other configuration tools
can also be used.

FIG. 16A 1s a block diagram of another example multidi-
mensional desktop environment. The multidimensional desk-
top environment of F1G. 16 A can, for example, implement the
teatures described with respect to FIGS. 2-5 and 7-15. In the
example implementation, the multidimensional desktop envi-
ronment 1600 includes an arcuate back surtace 1602 that 1s
axially disposed, e.g., along the z-axis, from a viewing sur-
face 1604. In one implementation, a retlection region 1116
can be generated on the side surface 1606, ¢.g., the “floor.”” In
an 1mplementation, the side surfaces 1606, 1608, 1610 and
1612 can be defined by arcuate regions having curvature
intersections 1607, 1609, 1611 and 1613, respectively.

A curved visualization object receptacle 1614 can include
visualization object 1620, 1622, 1624 and 1626 and can be
positioned on a reflection region 1616. Stack items 1630 and
1632 can, for example, be positioned near the curvature inter-
sections 1607 and 1609, respectively. Other arrangements can
also be used.

Other multidimensional desktop environment geometries
can also be used. For example, 1n one implementation, the
multidimensional desktop environment can conform to a tet-
rahedron-shaped environment 1n which a front surface of the
tetrahedron defines a viewing surface, and the remaiming
three surfaces define a left surface, a bottom surtface, and a
side surface. In another implementation, the multidimen-
sional desktop environment can conform to a triangular envi-
ronment, 1n which one axis of the triangle defines the viewing,

10

15

20

25

30

35

40

45

50

55

60

65

18

surface and the remaining two sides of the triangle define a
left surface and a right surface. Other geometries can also be
used.

In one implementation, a configuration tool can be used to
tacilitate configuration of the multidimensional desktop envi-
ronment by the user. For example, a configuration menu can
present one or more multidimensional desktop environment
geometries for selection by the user, such as a rectangular
geometry, an arcuate geometry, a triangular geometry, etc.
Selection of a geometry can cause the multidimensional desk-
top environment to be rendered according to the selected
geometry.

FIG. 16B i1s a block diagram of another example multidi-
mensional desktop environment. The environment of FIG.
16B 1s similar to the environments of FIGS. 2-5 and 7-15
above, except that the back surface 1640 and the floor surface
706 define the desktop environment. The features described
above with respect to the floor surface 706 1n FIGS. 2-5 can be
implemented 1n the desktop environment of FIG. 16B.

FIG. 16C 1s a block diagram of another example multidi-
mensional desktop environment. The environment of FIG.
16C 1s similar to the environment of FIG. 16B above, except
that the back surface 1650 defines the desktop environment. A
visualization object receptacle 1652 defining a depth aspect
can also be displayed near the bottom of the back surface
1650. In some 1mplementations, a depth aspect 1s further
emphasized by generating reflections on the surface of the
visualization object receptacle 1652. For example, the visu-
alization objects on the back surface 1650, e.g., the folder
icon 1656 and the application window 1658, can generate
reflections 1654 and 1656 on the surface of the visualization
object receptacle 1652.

In some 1implementations, the visualization object recep-
tacle 1652 can have a flat height aspect, e.g., the surface of the
visualization object receptacle 16352 can appear as a solid flat
plane, or a translucent or transparent plane. In other imple-
mentations, a height aspect can be generated.

Visualization objects, such as icons 1662, 1664, 1666,
1668, 1670 and 1672 can be disposed on top of the visualiza-
tion object receptacle 1652. In some implementations, a sta-
tus 1ndicator 1669 can illuminate to indicate a status. For
example, the stack 1item 1668 may correspond to recent down-
loads, e.g., system updates, documents, etc., and the 1llumi-
nation may be lit to indicate that a download 1s currently in
progress. The status indicator 1669 can, for example, 11lumi-
nate according to a color code to indicate different status
states.

In some implementations, selecting a stack 1tem causes the
stack 1item to expand to display stack elements according to a
visualization model, e.g., stack elements 1676, 1678 and
1680 are displayed according to a matrix arrangement. In
some 1mplementations, a collapse widget 1670 can be gener-
ated when the contents of a stack item, e.g., stack elements
1676,1678 and 1680, are shown according to a visualization
model, and a corresponding visualization frame 1674 that
surrounds the stack elements 1676, 1678 and 1680 can be
displayed.

In some 1implementations, selection of a “Show 1n Finder”
command object 1682 can display a Finder window for a
folder containing the stack 1tems 1676, 1678 and 1680 11 the
stack 1items 1676, 1678 and 1680 are stored in a common
folder. In another implementation, selection of a “Show 1n
Finder” command object 1682 can display a Finder window
containing the stack items 1676, 1678 and 1680 even 11 the
stack items 1676, 1678 and 1680 are not stored 1n a common

folder.

US 8,067,418 B2

19

In some 1mplementations, a stack item collection process
can 1dentily visualization objects on a desktop and collapse
the objects 1mnto a stack i1tem. For example, the application
windows 1658 and 1659 can be 1dentified and collapsed into

a stack item. In some implementations, the collapsing of 5

visualization objects includes an animation effect, e.g., a
“genie” elfect; a “tornado” effect, etc.

In some 1mplementations, textual strings associated with
the visualization objects, e.g., filenames associated with
icons, can be centrally truncated. A centrally truncated string
displays the beginning of the textual string and the end of the
textual string. In some 1implementations, a file extension can
be shown by the central truncation. In other implementations,
the file extension can be omitted. Positing a cursor on the
textual string, or on the visualization object associated with
the textual string, can cause the entire textual string to be
displayed. For example, as shown in FIG. 16C, the textual
string 1677, 1.¢., “Movie of Page’s birthday.mpg™ 1s truncated
to “Mov . . . day.mpg.” Conversely, the textual string 1679,
1.e., “Movie of Julia.mpg,” which 1s positioned beneath a
cursor, 1s Tully displayed.

FIG. 16D 1s a block diagram of another example multidi-
mensional desktop environment. The environment of FIG.
16C 1s similar to the environment of FIG. 16B above, except
that a fanning visualization model 1s displayed for the stack
items 1676, 1678 and 1680. In the implementation shown,
document titles related to the stack items 1676, 1678 and
1680 are displayed proximate to the stack items. In some
implementations, textual strings associated with visualiza-
tion objects, e.g., filenames of icons, are fully displayed 1n the
fanning visualization model.

FIG. 17 15 a block diagram of an example desktop transi-
tion. In one implementation, a computer system, such as the
system 100 of FIG. 1, can be configured to transition between
a two-dimensional desktop 1702 and a three-dimensional
desktop 1730. For example, the two dimensional desktop
1702 defines a viewing surface 1703 and includes folders
1704, 1706, 1708 and 1710, an icon 1712 corresponding to a
hard drive, and 1icon 1714 corresponding to a network, and an
icon display region 1720 that displays a plurality of icons
1722.

In response to a transition command, the system can, for
example, depth transition the two-dimensional desktop 1702
from the viewing surface 1703 to define a back surface 1732,
and one or more side surfaces, such as side surfaces 1706,
1708 and 1710, can extend from the back surface 1732 to the
viewing surface 1703. A visualization object receptacle 1730
can be generated on the surface 1706, and one or more icons
1732 corresponding to desktop 1tems can be disposed 1n the
visualization object receptacle. In the example implementa-
tion of FIG. 17, the 1cons 1732 correspond to the 1cons 1722.

In one 1mplementation, stack items, such as stack items
1742, 1744, 1746 and 1748, can be generated from two
dimensional desktop items, such as desktop folders 1704,
1706, 1708 and 1710. The two dimensional desktop items
can, for example, be eliminated from the back surface 1732.
In one implementation, two-dimensional desktop 1tems that
are not represented by a corresponding 1con after the transi-
tion to the three-dimensional desktop 1730 can, for example,
remain on the back surface 1732. For example, the 1cons 1712
and 1714 can remain on the back surface 1732. In another
implementation, the two-dimensional desktop items that are
not represented by a corresponding 1con aiter the transition to
the three-dimensional desktop 1730 can, for example, be
climinated from the back surface 1732. In another implemen-
tation, the two-dimensional desktop 1tems that are not repre-
sented by a corresponding i1con after the transition to the

10

15

20

25

30

35

40

45

50

55

60

65

20

three-dimensional desktop 1730 can, for example, be elimi-
nated from the back surface 1732 and represented by corre-
sponding stack elements 1n a “catch all” stack i1tem, such as
stack 1tem 1750.

The transition from the two-dimensional desktop 1702 to a
three-dimensional desktop 1730 can be substantially reversed
to transition from the three-dimensional desktop 1730 to the
two-dimensional desktop 1702.

FIG. 18A 1s a block diagram of an example visualization
object receptacle indicator. An example visualization object
receptacle 1802 includes visualization objects, e.g., 1cons
1804, 1806, 1808, 1810, 1812 and 1814. In an implementa-
tion, a selection indicator 1820 can be used to indicate a
selected 1con. In one implementation, the selection indicator
1820 1s generated by an under-lighting effect that illuminates
the surface of the visualization object receptacle 1802 below
a selected 1con, such as the icon 1806. Other selection 1ndi-
cators can also be used, such as selection status indicator
1821, or backlighting effects, outlining effects, or other indi-
cators.

FIG. 18B 1s a block diagram of another example visualiza-
tion object receptacle indicator. In an implementation, a
selection indicator 1822 can be used to indicate a selected
icon. In one implementation, the selection indicator 1822 1s
generated by an enlargement of a selected 1con, such as icon
1806, relative to adjacent icons, and an under-lighting effect
that illuminates the surface of the visualization object recep-
tacle 1802 below a selected 1con 1806 and adjacent icons
1804 and 1808. In an implementation that includes a selection
status 1ndicator 1821, the selection status indicator 1821 can
expand into a large selection status indicator 1823.

FIG. 18C 1s a block diagram of another example visualiza-
tion object receptacle indicator. In an implementation, a
selection indicator 1824 can be used to indicate a selected
icon. In one implementation, the selection indicator 1824 1s
generated by an enlargement of a selected icon, such as icon
1806, relative to adjacent 1cons, and a backlighting effect that
illuminates the surface of the visualization object receptacle
1802 below a selected 1icon 1806 and 1lluminates adjacent
icons 1804 and 1808.

FIG. 18D 1s a block diagram of another example visualiza-
tion object receptacle indicator. The visualization object
receptacle 1802 can, for example, include one or more status
indicators to indicate the status of a system object associated
with one or more 1cons. For example, a status indicator 1830
indicating an unselected and executing application can be
generated by an under-lighting effect of a first color; a status
indicator 1832 indicating a selected and executing applica-
tion can be generated by an under-lighting effect of a first
color; and a status indicator 1834 indicating a launching
application can be generated by an under-lighting effect of a
third color.

Other status indicator schemes can also be used. For
example, 1n one implementation, a status indicator 1834 indi-
cating a launching application can be generated by a pulsing
under-lighting effect. In another implementation, status indi-
cators can 1ndicate a status by an intensity; for example, an
icon corresponding to an open document, €.g2., a document
icon, a stack 1tem, or an application icon, can be backlit with
a relatively high intensity, and an icon corresponding to an
open and unselected document can be backlit with arelatively
low 1ntensity. For example, in implementations utilizing sta-
tus indicators 1831, 1833 and 1835, the status indicators can
be 1lluminated according to a similar color scheme.

FIGS. 19A and 19B are block diagrams of an example
contextual menu for a visualization object receptacle 1802. In
some 1mplementations, a selectable divet 1902 can be dis-

US 8,067,418 B2

21

played proximate to an icon, e.g., icon 1804, to indicate an
actionable state associated with a system object represented
by the 1con 1804. For example, 11 the icon 1804 1s represen-
tative of a system update process or program, the selectable
divet 1902 can be displayed when a system update 1s avail-
able.

The selectable divet 1902 can, for example, be a floating
orb proximate to the 1con 1804. Other shapes or visual rep-
resentations can also be used. In some implementations, the
selectable divet 1902 1s color coded according to a color code
to indicate corresponding actionable states.

FIG. 19B 1illustrates an example contextual menu 1910 that
can be displayed proximate to the icon 1804 in response to a
selection of the selectable divet 1902. The contextual menu
1910 can include one or more menu options, €.g., menu
options 1912 and 1914, related to the icon 1804. In some
implementations, the divet 1902 remains until a necessary
action 1s taken. In other implementations, the divet 1902 can
be removed by a corresponding selection of one of the menu
options 1n the contextual menu 1910. In some 1mplementa-
tions, the divet 1902 can fade from view 1t it 1s not selected
alter a period of time, e.g., 30 minutes.

FI1G. 20 1s a block diagram of a visualization object recep-
tacle including type-ahead indications. In some implementa-
tions, one or more highlight indicators 2000, 2002 and 2004,
and/or 2001, 2003 and 2005 are generated 1n response to type
input data, e.g., data generated by keyboard inputs. The one or
more highlight indicators 2000, 2002 and 2004, and/or 2001,
2003 and 2005 can be generated for 1cons having textual
descriptions corresponding to the keyboard inputs, and can be
adjusted 1n response to the type input data so that only icons
having textual descriptions defined by the type input data are
highlighted. For example, 11 the textual descriptions of the
icons 1804, 1810 and 1812 are “Clock,” “Calculator,” and
“Classics,” then the highlight indicators 2000, 2002 and 2004,
and/or 2001, 2003 and 2005 would 1lluminate 1n response to
the keyboard mput “c.”” A subsequent keyboard input “1”
would cause the highlight indicators 2002 and/or 2003 to turn
off; and a third keyboard mput “o0” would cause the highlight
indicators 2004 and/or 2005 to turn off. According, the icon
1804, corresponding to the textual description “clock” would
be selected by the type mput data ¢, 1 and o.

Other selection indications based on type input can be
used. For example, stack elements from a stack item can
disappear 1n response to type input. Thus, 1f a stack item
includes stack elements entitled “Clock,” “Calculator,”
“Classics,” “Movies,” and “Safar1,” the keyboard mput “c”
would cause the “Movies” and “Safar1” visualization object
to disappear. A subsequent keyboard iput “a” would cause
the “Clock™ and “Classics™ visualization objects to disappear.

In addition to selections based on a textual description
beginning with the type input data, selections based on the
type input data can also be based on whether the textual
description of the visualization object contains the text input
or ends with text. For example, all stack elements having .mac
extensions can be visualized by selecting an “Ends with™ type
input option and entering the type mput “m,” “a” and *“c.”

FIGS. 21 A and 21B are block diagrams of example selec-
tion 1ndicators for a visualization model. In FIG. 21A, stack
elements 2104, 2106, 2108, 2110, 2112, and 2114 are dis-
played according to a visualization model, e.g., a matrix
arrangement. One or more highlight indicators 2109 and
2111, e.g., focus rings, can be generated 1n response to key-
board input data. The focus rings 2109 and 2111 can be
adjusted 1n response to the type of input data so that only
visualization objects having textual descriptions defined by

the type input data are highlighted, as described with respect

10

15

20

25

30

35

40

45

50

55

60

65

22

to FIG. 20 above. For example, the focus rings 2109 and 2111
can be generated 1n response to the keyboard mput “c.” A
subsequent keyboard mput “1” would cause the focus ring
2111 to fade from view.

In FIG. 21B, stack elements 2104, 2106,2108,2110, 2112,
and 2114 are displayed according to a visualization model,
¢.g., a matrix arrangement. In this implementation, a high-
light indicator 1s generated based on a cursor position. For
example, 11 a mouse cursor 2120 1s first positioned over the
visualization object 2110, a first focus ring 2111 can be gen-
erated completely or partially around the visualization object
2110. However, 1 the mouse cursor 2120 1s moved to a
position over the visualization object 2108, the first focus ring
2111 will fade from view and a second focus ring 2109 will be
generated around the visualization object 2018.

In some implementations, the focus ring persists around a
visualization object until the mouse cursor 2120 1s positioned
over another visualization object. In some implementations,
the focus ring persists around a visualization object only
when the mouse cursor 2120 1s positioned over the visualiza-
tion object. Other processes for generating and removing
selection indicators can also be used.

FIG. 22 1s a block diagram of another example multidi-
mensional desktop environment. In an implementation, an
indicator can, for example, be used to indicate representations
ol system objects having an association. For example, the
icon 2206, the stack item 2208, the folder 2210 and the
window 2212 can be related by having corresponding system
objects related to, for example, an application, e.g., the icon
2206 can be the application icon; the stack item 2208 can
provide access to particular documents related to the appli-
cation; the folder 2210 can define a data store storing all
application documents; and the window 2212 can be an
instance of the executing application. In one implementation,
selection of any one of the icon 2206, stack item 2208, folder
2210 or window 2212 can generate a common selection 1ndi-
cator for all items. The common selection indicator can, for
example, be realized by a lighting effect, such as a backlight-
ing effect, by a temporary pulsing effect, or by some other
permanent or transient effect.

FIG. 23 1s a block diagram of another example visualiza-
tion object receptacle 2302. The example visualization object
receptacle 2302 includes a plurality of visualization object
rows 2312 and 2314 and a plurality of visualization object
columns 2322,2324,2326,2328,2330 and 2323. In an 1mple-
mentation, the visualization object receptacle 2302 includes a
plurality of visualization objects 2304 disposed within the
visualization object receptacle 2302 according to the visual-
ization object rows 2312 and 2314 and visualization object
columns 2322, 2324, 2326, 2328, 2330 and 2323.

Although two visualization object rows and six visualiza-
tion object columns are shown, the visualization object recep-
tacle can include additional or fewer visualization object rows
and visualization object columns. In an implementation, a
subset of the visualization object rows and visualization
object columns can, for example, be visible at any one time.

The visualization object rows and visualization object col-
umns can, for example, be traversed by shifting the rows
and/or columns 1n unmison, as indicated by the solid arrows.
For example, when a cursor 1s positioned on the visualization
object receptacle, such as the cursor 1n the position defined by
the 1intersection of the visualization object row 2312 and the
visualization object column 2332, a command (e.g., a con-
trol-click command) can cause the visualization object rows
and/or columns to shiit in unison 1n response to movement of
the cursor. In another implementation, each visualization
object row and visualization object column can, for example,

US 8,067,418 B2

23

be traversed individually by shifting a particular row or col-
umn, as indicated by the dashed arrows. For example, when
the cursor 1s positioned on the visualization object receptacle
2302, an option-click command can cause the corresponding
visualization object row 2312 and/or the corresponding col-
umn 2332 to shift individually in response to movement of the
cursor. Other wvisualization object receptacle navigation
schemes can also be used.

FI1G. 24 1s a block diagram of an example stack item 2400.
The stack 1tem 2400 includes a plurality of stack elements
2402, 2404, 2406, 2408 and 2410, each corresponding to one
or more system objects. In one implementation, a boundary
2420 defined by the stack elements 2402, 2404, 2406, 2408
and 2410 defines an 1nclusion region that i1s associated with
the stack item 2400. In one implementation, placement of an
icon within the inclusion region generates a stack element
associated with the 1con. Likewise, placement of a stack ele-
ment without the inclusion region disassociates the stack
clement with the stack item 2400. In another implementation,
the 1inclusion region can be separate from the stack item.

In some implementations, the display size of the stack 1item
2400 can change according to a state. For example, 1f a system
object corresponding to a stack element in the stack 1item 2400
requires attention, the size of the stack item 2400 1s adjusted
to be rendered at a larger display size. Likewise, positioning,
a mouse cursor over the stack 1item 2400 can cause the stack
item 2400 to be rendered at a larger display size.

In some 1mplementations, the stack item 2400 can change
orientation and or appearance according to a state. For
example, positioning a mouse cursor over the stack item 2400
can cause the stack item 2400 to rotate, or can cause stack
clements 1n the stack 1tem 2400 to randomly shufile.

FI1G. 25 1s a block diagram of another example stack 1tem
2500. The stack item 2500 includes a plurality of stack ele-
ments 2502, 2504, 2506, 2508 and 2510, each corresponding
to a document system object. In one implementation, stack
clements 2502, 2504, 2506, 2508 and 2510 display a corre-
sponding unique mndicium, e.g., a thumbnail preview of an
image associated with the stack element or the first page of a
document associated with the stack element. Other unique
indicium or unique indicia can also be used, such as corre-
spondence to an aspect ratio of an 1image, displaying of a
document size and/or a document date can be displayed 1n
each stack element 2502, 2504, 2506, 2508 and 2510, etc.

FIG. 26 1s a block diagram of another example stack item
2600. The stack 1tem 2600 includes a plurality of stack ele-
ments 2602, 2604, 2606, 2608 and 2610. The stack element
2602 corresponds to an application icon of an application
system object, and the stack element 2604, 2606, 2608 and
2610 correspond to document system objects. In one 1mple-
mentation, the stack 1tem 2602 can, for example, be preemai-
nently disposed with respect to the stack elements 2604,
2606, 2608, and 2610. For example, the stack item 2602 can
be permanently placed on the top of the aggregation of stack
clements 2604, 2606, 2608 and 2610. Thus, a shifting of a
location of a stack element within the stack item 2600, such as
by selecting the stack element 2612 and placing the stack
clement 2612 on top of the stack element 2602, or an addition
ol a new stack element, will not displace the stack element
2602 from the preeminent position.

Other methods of preeminently disposing a stack element
related to an application 1con can also be used. FI1G. 27, for
example, 1s a block diagram of another example stack 1tem
2700 1n which the stack element 2602 1s preeminently dis-
posed by enlarging the application element 2602 relative to
the stack elements 2604, 2606, 2608 and 2610. In another
implementation, the stack elements 2604, 2606, 2608 and

10

15

20

25

30

35

40

45

50

55

60

65

24

2610 can be rendered with a translucent effect, and the stack
clement 2602 can be rendered with an opaque effect so that
the entirety of the stack element 2602 1s discernable no matter
the position of the stack element 2602 1n the stack item.

FIG. 28A 1s a block diagram of example stack 1tems 2802,
2804 and 2806 that are color-coded. In the example 1mple-
mentation of F1G. 28 A, instantiation of each stack item 2802,
2804 and 2806 can be subject to a temporal context and
color-coded accordingly. For example, the temporal context
can define date rages, and the stack items 2802, 2804 and
2806 can be associated with each date range and color-coded
accordingly, e.g., green for the date range “Today,” yellow for
the date range “Last Week,” and red for the date range “Last
Month.”

In one implementation, a stack element associated with a
system object 1s further associated with a stack item 1t a
relevant date associated with the system object 1s within the
date range associated with the stack item. For example, if the
stack items 2802, 2804 and 2806 are utilized to provide
access to word processing document system objects based on
a “last modified” date, then the stack elements in the stack
item 2802 corresponds to word processing documents modi-
fied today; the stack elements 1n the stack item 2804 corre-
sponds to word processing documents modified within the
last week; and the stack elements in the stack item 2806
corresponds to word processing documents modified within
the last month.

FIG. 28B 1s a block diagram of an example stack items
2810 that 1s color-coded. In the implementation of FIG. 28B,
stack elements 2820, 2822, 2824, 2830, 2832, 2840 and 2842
are color coded according to a temporal context. For example,
the stack elements 2820, 2822 and 2824 are color-coded to
identily system objects added during a current day; the stack
clements 2830 and 2832 are color-coded to i1dentily system
objects added during the last week; and stack elements 2840
and 2840 are color-coded to 1dentily system objects added
during the last month. Other color-coding schemes can also
be used, e.g., application type, last modified, file size, or even
user defined settings.

FIG. 29 15 a block diagram 1illustrating an example contex-
tual control scheme applied to an example stack item 2900.
For example, the contextual control can be an application
context 2910 that defines an executing and selected state
2912, an executing and non selected state 2914, and a not
executing state 2916. An executing and selected state 2912
can occur, for example, when an application window of an
executing or launching application 1s selected. An executing
and not selected state 2914 can occur, for example, when
another process other than the application 1s selected. A not
executing state 2916 can occur, for example, when execution
of an application 1s terminated. In one implementation, the
stack 1tem 1s displayed during the executing and selected state
2912; 1s minimized, e.g., deemphasized, during the executing
and not selected state; and 1s suppressed, e€.g., unallocated or
hidden from view during the not executing state 2916.

Other types of contextual control can also be used. For
example, contextual control based on a user level associated
with system objects, such as a root user level or supervisor
level, can control instantiation of a stack item and/or instan-
tiation of stack elements within the stack item, and can, for
example, further control commands available to the user.

FIG. 30 1s a block diagram 1llustrating the application of an
example visualization model to an example stack item 3000.
The visualization model can, for example, be implemented
according to first and second modal states. In the first modal
state, the stack item 3000 1s displayed with the stack elements

3002, 3004, 3006, 3008 and 3010 1n a substantially overlap-

US 8,067,418 B2

25

ping arrangement. In a second modal state, the stack elements
3002, 3004, 3006, 3008 and 3010 are displayed according to
an automatically selected visualization model. The visualiza-
tion model can be selected as described above.

The example visualization model 1llustrated 1 FIG. 30
can, for example, define a multidimensional path defined by a
first terminus 3020 and a second terminus 3022, and gener-
ates a disposition of the stack elements 3002, 3004, 3006,
3008 and 3010 along the multidimensional path. For
example, the stack elements 3002, 3004, 3006,3008 and 3010
can transition in either direction between the first terminus
3020 and the second terminus 3022 1n response to a user
input.

In one implementation, an indicator can indicate a preemi-
nent disposition of a stack element. For example, the stack
item 3002 can be highlighted by a focus ring when 1n the
preeminent position defining the first terminus 3020.

FIG. 31A 1s a block diagram 1llustrating another example
visualization model for an example stack item 3100. The
visualization model can, for example, be 1mplemented
according to first and second modal states as described with
respect to FIG. 30. In the second modal state, the stack ele-
ments 3102, 3104, 3106 and 3108 are displayed according to
an automatically selected visualization model that generates
an arrangement of the stack elements 3102, 3104, 3106 and
3108 1n substantial juxtaposition. The stack elements 3002,
3004, 3006 and 3008 can, for example, transition along a
circular path defined by the circular trace common to the stack
elements 3102, 3104, 3106 and 3108.

In one implementation, an indicator can indicate a preemi-
nent disposition of a stack element. For example, the stack
item 3002 can be highlighted by a focus ring when i1n the
preeminent position defined by the upper left quadrant posi-
tion.

FI1G. 31B 1s a block diagram 1illustrating the application of
another example visualization model to an example stack
item 3120. The visualization model 1s similar to the visual-
ization model of FIG. 31A, except that the stack elements
3122, 3124, 3126, 3128, 3130 and 3132 can traverse corre-
sponding paths to be displayed 1n a display matrix. While the
paths shown 1n FIG. 31B are curved, other paths can also be
use, e.g., straight paths, corkscrew paths, sinusoidal paths, or
combinations of such paths.

FIG. 32 15 a block diagram 1llustrating the application of
another example visualization model to an example stack
item 3200. The stack item 3200 can, for example, include
dozens, hundreds or even thousands of stack items. For
example, the stack elements 3202, 3204, 3206, 3208, and
3210 may be displayed as opaque stack elements, and the
stack element 3212 can be displayed as a translucent stack
clement, or can be a final stack element near a vanishing
point.

The visualization model can, for example, be implemented
according to first and second modal states as described with
respect to FIG. 30. In the second modal state, a subset of all
the stack elements, e.g., stack elements 3202, 3204, 3206,
3208, and 3210 are displayed according to an automatically
selected visualization model that generates an arrangement of
the stack elements 1n a list view format. A navigation control
3220 can, for example, be displayed proximate to the arrange-
ment of stack elements, and a selection of either an “up”
directional portion 3222 or a “down” directional portion 3224
can cause the stack elements to traverse through the list view
format 1n an up or down direction, respectively. For example,
selecting the “down” directional portion 3224 will cause the
stack element 3202 to be removed from the list view display,

cause the stack elements 3204, 3206, 3208 and 3210 to move

10

15

20

25

30

35

40

45

50

55

60

65

26

down 1n the list view display, and cause the stack element
3212 to appear at the top of the list view display.

Selection of a navigation divet 3226 can generate a con-
textual menu that includes one or more sort commands.
Example sort commands include sorting by date added, sort-
ing by file size, sorting by file type, efc.

In the implementation of FIG. 32, the list view traverses an
actuate path as indicated by the curved arrow 3230, e.g., a
model of a curved surface that 1s normal to the viewing plane
at the central stack element, e.g., stack element 3206. Accord-
ingly, stack elements that are not normal to the viewing sur-
face, e.g., stack elements 3202, 3204, 3208 and 3210, include
a curvature distortion defined by the curved surface. Other list
view formats can also be used, e.g., a straight path in which
the stack elements are not distorted.

In some 1implementations, a user interface engine, €.g., the
Ul engine 202 of FIG. 2, can pre-cache display data for a
subset of the stack elements displayed in the list view format.
The pre-caching can be limited to stack elements that are
within a certain number of stack elements to be displayed in
the list view. For example, the stack element 3200 may
include thousands of photograph 1image files; the Ul engine
202, however, may only pre-cache thumbnail images of the
next five stack elements to be displayed by selection of the
“up” directional portion 3222 and “down” directional portion
3224, respectively.

In another implementation, a stack item, upon selection,
may rotate to a side and present the stack elements as a series
of graphical representations of book spines, e.g., such as in a
book shelf. Depending on the number of stack elements, the
book shelf may be one level, multiple levels, or may be extend
into a vanishung point and be traversed in response to a user
input. Visualization object can be “pulled” from the bookshelf
in response to a user input, €.g., a mouse command or amouse
hover, and a subsequent command, e.g., a mouse click, can
open a file associated with the visualization object. Other
visualization models can also be used.

FIG. 33A 1s a block diagram of an example group associa-
tion 3300 of an example stack 1tem 3310. The group associa-
tion 3300, can, for example, be based one or more 1dentified
association characteristics of the stack elements 3312, 3314,
3316 and 3318. For example, the group association 3300 can
comprise a project association, e.g., files associated with a
presentation developed with a first project application 3302
and which utilizes data from files associated with a second
project application 3304.

In one implementation, an interaction model can be
selected based on the project association. In an implementa-
tion, a multiple launch interaction model can be selected
when any one of the system objects related to the stack ele-
ments 3312, 3314, 3316 and 3318 1s opened. In one 1imple-
mentation, the multiple launch interaction model can, for
example, confirm a launching of both applications 3302 and
3304. In another implementation, the multiple launch inter-
action model can, for example, provide a context menu 1n
which either or both of the applications 3302 and 3304 can be
selected for launching. Other multiple launching interaction
models can also be used.

In another implementation, a synchronization interaction
model can be selected when one of the system objects related
to the stack elements 3312, 3314, 3316 and 3318 1s saved to a
data store, such as a hard disk. The synchronization interac-
tion model can, for example, provide one or more contextual
menus or other interaction aspects to prompt a user to syn-
chronize all stack elements when any one of the stack ele-
ments has been updated. Other synchronization interaction
models can also be used.

US 8,067,418 B2

27

In another implementation, a reconciliation interaction
model can be selected when one of the system objects related
to the stack elements 3312, 3314, 3316 and 3318 1s changed,
¢.g., a file association with the stack element 3312 1s replaced
by a new file. The reconciliation interaction model can, for
example, provide one or more contextual menus or other
interaction aspects to prompt a user to reconcile all stack
clements when any one of the stack elements are replaced.
Other reconciliation mteraction models can also be used.

Interaction and/or visualization models can also be applied
to other representations of system objects. For example, in
one implementation, the system objects can include window
instances in the multidimensional desktop environment, and
the association characteristics can include a quantity of non-
mimmized window instances. Accordingly, an interaction
model can be automatically selected for facilitating opera-
tions on the open windows, depending on the number of open
windows. For example, iI the number of open windows 1s
greater than five, selection of a browse command can cause
the open windows to be automatically displayed 1n an over-
lapping arrangement for browsing; and 11 the number of open
windows 1s less than five, selection of the browse command
can cause the open windows to be automatically displayed 1n
a matrix arrangement for browsing.

FI1G. 33B 15 a block diagram of an example group associa-
tion of system objects. The group association 3350, can, for
example, be based one or more 1dentified association charac-
teristics of the system objects, such as documents 3360, 3362
and 3364. The group association 3350 can, for example, be
utilized to select one or more visualization and/or 1interaction
models as described above. However, the documents 3360,
3362 and 3364 need not be associated 1n a stack item, e.g., the
documents 3360, 3362 and 3364 can each be associated with
different stack 1tems, or not associated with any stack items.

FI1G. 34 15 a flow diagram of an example process 3400 for
transitioning a desktop. The process 3400 can, for example,
be implemented in a processing device, such as the system
100 of FIG. 1, implementing user interface software and/or
hardware, such as the example implementations described
with respect to FIGS. 2, S and 6.

Stage 3402 depth transitions a two-dimensional desktop
from a viewing surface to a back surface. For example, the
system 100, implementing any one of the Ul engines
described 1n FIGS. 2, § and 6, can depth transition a two-
dimensional desktop, such as the desktop 1702 of FI1G. 17,
from a viewing surface to a back surface, such as from the
viewing surface 1703 to the back surface 1732 as shown in
FIG. 17.

Stage 3404 generates one or more side surfaces extending
from the back surface to the viewing surface. For example, the
system 100, implementing any one of the Ul engines
described 1n FIGS. 2, 5 and 6, can generate one or more side

surfaces extending from the back surface to the viewing sur-
face, such as the side surfaces 1706, 1708 and 1710 of FIG.

17.

Stage 3406 generates a visualization object receptacle,
¢.g., an 1con receptacle, on the one or more side surfaces. For
example, the system 100, implementing any one of the Ul
engines described 1 FIGS. 2, 5§ and 6, can generate an icon
receptacle on the one or more side surfaces, such as the
visualization object receptacle 1730 on the surface 1706 of
FIG. 17.

Stage 3408 disposes one or more visualization object, e.g.,
icons, corresponding to desktop items within the visualiza-
tion object receptacle. For example, the system 100, imple-
menting any one of the Ul engines described in FIGS. 2, 5 and
6, can dispose one or more 1cons corresponding to desktop

10

15

20

25

30

35

40

45

50

55

60

65

28

items within the visualization object receptacle, such as the
icons 1732 1n the visualization object receptacle 1730, which

correspond to the 1cons 1722 of FI1G. 17.

FIG. 35 1s a flow diagram of another example process 3500
for transitioning between desktop types. The process 3500
can, for example, be implemented in a processing device,
such as the system 100 of FIG. 1, implementing user interface
soltware and/or hardware, such as the example implementa-
tions described with respect to FIGS. 2, 5 and 6.

Stage 3502 1dentifies two-dimensional desktop items in a
two-dimensional desktop environment. For example, the sys-
tem 100, implementing any one of the Ul engines described in
FIGS. 2, 5 and 6, can identily two-dimensional desktop 1tems
in a two-dimensional desktop environment, such as the fold-

ers 1704, 1706, 1708 and 1710 of FIG. 17.

Stage 3504 generates three-dimensional desktop items
based on the i1dentified two-dimensional desktop items. For
example, the system 100, implementing any one of the UI
engines described i FIGS. 2, 5 and 6, can generate three-
dimensional desktop i1tems based on the identified two-di-

mensional desktop 1tems, such as the stack items 1742, 1744,
1746 and 1748 of FI1G. 17, which correspond to the folders

1704, 1706, 1708 and 1710.

Stage 3506 eliminates the two-dimensional desktop items
from view. For example, the system 100, implementing any
one of the Ul engines described m FIGS. 2, 5 and 6, can
climinate two-dimensional desktop 1tems from view, such as
the elimination of the folders 1704,1706,1708 and 1710 {from
the back surface 1732 of FIG. 17.

Stage 3508 generates the three-dimensional desktop 1tems
on at least one surface (e.g., a side surface). For example, the
system 100, implementing any one ol the Ul engines
described 1n FIGS. 2, 5 and 6, can generate the three-dimen-
sional desktop 1tems on at least one side surface, such as the
stack 1tems 1742, 1744, 1746 and 1748 on the bottom side
surface 1706 of FIG. 17.

FIG. 36 1s a flow diagram of an example process 3600 for
generating a multidimensional desktop environment. The
process 3600 can, for example, be implemented 1n a process-
ing device, such as the system 100 of FIG. 1, implementing
user interface software and/or hardware, such as the example
implementations described with respect to FIGS. 2, 5 and 6.

Stage 3602 axaally disposes a back surface from a viewing
surface. For example, the system 100, implementing any one
of the Ul engines described 1in FIGS. 2, 5 and 6, can axially
dispose a back surface from a viewing surface, such as the
back surface 1102 being axially disposed from the viewing
surface 1104, as shown 1n FIG. 11.

Stage 3604 extends one or more side surfaces from the
back surface to the viewing surface. For example, the system
100, implementing any one of the Ul engines described 1n
FIGS. 2, 5 and 6, can extend one or more side surfaces from
the back surface to the viewing surface, such as the side
surfaces 1106, 1108, 1110 and 1112, as shown in FIG. 11.

Stage 3606 generates a visualization object receptacle on
one or more of the side surfaces. For example, the system 100,
implementing any one of the Ul engines described in FIGS. 2,
5 and 6, can generate an icon receptacle on one or more of the
side surfaces, such as the visualization object receptacle 1114
on the side surtace 1106, as shown 1n FIG. 11.

Stage 3608 generates within the visualization object recep-
tacle one or more visualization objects, e.g., 1cons, corre-
sponding to one or more system objects. For example, the
system 100, implementing any one ol the Ul engines
described in FIGS. 2, § and 6, can generate within the visu-
alization object receptacle one or more 1cons corresponding

US 8,067,418 B2

29

to one or more system objects, such as the icons 1120, 1122,
1124, 1126, 1128 and 1130 as shown 1n FIG. 11.

FI1G. 37 1s a flow diagram of an example process 3700 for
rendering a side surface in a multidimensional desktop envi-
ronment. The process 3700 can, for example, be implemented
in a processing device, such as the system 100 of FIG. 1,
implementing user interface software and/or hardware, such
as the example implementations described with respect to
FIGS. 2, 5 and 6.

Stage 3702 generates stack 1items on a surface (e.g., a side
surface). For example, the system 100, implementing any one
of the UI engines described in FIGS. 2, 5 and 6, can generate

stacks 1tems on a side surtface, such as the stack items 1140,
1142, 1144 and 1146 generated on the side surtace 1106, as

shown 1n FIG. 11.

Stage 3704 renders a surface texture on the surface. For
example, the system 100, implementing any one of the Ul
engines described 1n FIGS. 2, 5 and 6, can render a surface
texture on the side surface, such as the grid texture 1150 on the
side surface 1106, as shown 1n FIG. 11.

FI1G. 38 15 a flow diagram of an example process 3800 for
scrolling a side surface 1n a multidimensional desktop envi-
ronment. The process 3800 can, for example, be implemented
in a processing device, such as the system 100 of FIG. 1,
implementing user interface software and/or hardware, such
as the example implementations described with respect to
FIGS. 2, 5 and 6.

Stage 3802 scrolls the side surface 1n response to a scroll
command. For example, the system 100, implementing any
one of the Ul engines described in FIGS. 2, 5 and 6, can scroll
the side surface in response to a scroll command, such as the
side surface 1106 1n the directions indicated by one or more of
the arrows 1152 and 1154, as shown in FIG. 11.

Stage 3804 scrolls the stack 1items 1n a scroll direction. For
example, the system 100, implementing any one of the Ul
engines described in FIGS. 2, § and 6, can scroll the stack
items 1n a scroll direction, such as the stack items 1140, 1142,
1144 and 1146 in the directions indicated by one or more of
the arrows 1152 and 1154, as shown 1n FIG. 11.

Stage 3806 displaces a stack 1item(s) from the side surface
at a scroll egress. For example, the system 100, implementing
any one of the Ul engines described 1n FIGS. 2, 5 and 6, can
displace a stack item(s) from the side surface at a scroll
egress, such as the scroll egress 1158 (or 1159), as shown 1n
FIG. 11.

Stage 3808 emplaces a stack item(s) on the side surface at
a scroll ingress. For example, the system 100, implementing
any one of the Ul engines described 1n FIGS. 2, 5 and 6, can
emplace a stack 1tems on the side surface at a scroll ingress,
such as the scroll ingress 1156 (or 1157) as shown in FIG. 11.

FI1G. 39 15 a flow diagram of an example process 3900 for
generating a selection indicator. The process 3900 can, for
example, be implemented 1n a processing device, such as the
system 100 of FIG. 1, implementing user intertace software
and/or hardware, such as the example implementations
described with respect to FIGS. 2, 5 and 6.

Stage 3902 generates an under lighting effect as the selec-
tion indicator. For example, the system 100, implementing
any one of the Ul engines described 1n FIGS. 2, 5 and 6, can
generate an under lighting effect as the selection indicator,
such as the selection indicator 1822 of FIG. 18B.

Stage 3904 generates an enlargement effect as the selection
indicator. For example, the system 100, implementing any
one of the Ul engines described in FIGS. 2, 5 and 6, can
generate an enlargement effect as the selection indicator, such
as the enlargement of the stack indicator 1806 as shown 1n

FIG. 18B.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

FIG. 40 15 a flow diagram of an example process 4000 for
rendering desktop 1tems. The process 4000 can, for example,
be implemented 1n a processing device, such as the system
100 of FIG. 1, implementing user interface software and/or
hardware, such as the example implementations described
with respect to FIGS. 2, 5 and 6.

Stage 4002 generates stack 1tems on a first side surface
corresponding to a plurality of desktop 1tems. For example,
the system 100, implementing any one of the Ul engines
described in FIGS. 2, 5 and 6, can generate stack items on a
first side surface corresponding to a plurality of desktop
items, such as the stack items 1202, 1204, 1206, 1208 and
1212, and the visualization object receptacle 1114 and 1cons
1122, 1124,1126,1128, 1130 and 1132 as shown 1n FIG. 12.

Stage 4004 generates icons corresponding to program
items on a second side surface. For example, the system 100,
implementing any one of the Ul engines described in FIGS. 2,
5 and 6, can generate 1cons corresponding to program items
on a second side surface, such as the application icon 1222 on
the surface 1112, as shown 1n FIG. 12.

Stage 4006 generates 1cons corresponding to file 1tems on
a third side surface. For example, the system 100, implement-
ing any one of the Ul engines described in FIGS. 2, 5 and 6,
can generate 1icons corresponding to file items on a third side
surface, such as the file desktop 1item 1220 on the surface 1108
of FIG. 12.

FIG. 41 15 a flow diagram of an example process 4100 for
generating an example application environment 1n a multidi-
mensional desktop environment. The process 4100 can, for
example, be implemented 1n a processing device, such as the
system 100 of FIG. 1, implementing user interface software
and/or hardware, such as the example implementations
described with respect to FIGS. 2, 5 and 6.

Stage 4102 axially disposes a back surface from a viewing
surface. For example, the system 100, implementing any one
of the Ul engines described 1n FIGS. 2, 5 and 6, can axially
dispose a back surface from a viewing surface, such as the
back surface 1102 that 1s axially disposed from the viewing
surface 1n FI1G. 14.

Stage 4104 extends one or more side surfaces from the
back surface to the viewing surface. For example, the system
100, implementing any one of the Ul engines described 1n
FIGS. 2, 5 and 6, can extend one or more side surfaces from
the back surface to the viewing surface, such as the side
surfaces 1106, 1108, and 1112, as shown 1n FIG. 14.

Stage 4106 generates an application content frame for an
application on the back surface. For example, the system 100,
implementing any one of the Ul engines described in FIGS. 2,
5 and 6, can generate an application content frame for an
application on the back surface, such as the application con-
tent frame 1410 on the back surface 1102, as shown 1n FIG.
14.

Stage 4108 generates one or more application control ele-
ments for the application on the one or more side surfaces. For
example, the system 100, implementing any one of the Ul
engines described 1 FIGS. 2, 5 and 6, can generate one or
more application control elements for the application on the
one or more side surfaces, such as the function icons 1422,
1424, 1426 and 1428, as shown in FIG. 14. The application
control elements, e.g., the function 1cons 1422, 1424, 1426
and 1428, can be used to control functions of the application,
such as editing commands for an editing environment dis-
played 1n an application content frame on the back surface.

FI1G. 42 1s a flow diagram of an example process 4200 for
transitioning between application environments. The process
4200 can, for example, be implemented 1n a processing
device, such as the system 100 of FIG. 1, implementing user

US 8,067,418 B2

31

interface software and/or hardware, such as the example
implementations described with respect to FIGS. 2, S and 6.

Stage 4202 generates an application portal on one of the
side surfaces. For example, the system 100, implementing
any one of the Ul engines described 1n FIGS. 2, 5 and 6, can
generate an application portal on one of the side surfaces,
such as the stack item 1510 that includes stack elements 1512
and 1514 that correspond to portals, as shown 1n FIG. 15.

Stage 4204 transitions from a first application environment
to a second application environment 1n response to a selection
of the application portal. For example, the system 100, imple-
menting any one of the Ul engines described in FIGS. 2, 5 and
6, can transition from a first application environment to a
second application environment in response to a selection of
the application portal. As described with respect to FIG. 15,
selection of the stack element 1514 can transition to another
application environment.

FI1G. 43 15 a flow diagram of an example process 4300 for
generating a visualization object receptacle. The process
4300 can, for example, be implemented 1 a processing
device, such as the system 100 of FIG. 1, implementing user
interface soltware and/or hardware, such as the example
implementations described with respect to FIGS. 2, 5 and 6.

Stage 4302 generates a visualization object receptacle dis-
posed along a depth aspect. For example, the system 100,
implementing any one of the Ul engines described in FIGS. 2,
5 and 6, can generate a visualization object receptacle dis-
posed along a depth aspect, such as the visualization object
receptacle 1114, as shown in FIG. 12.

Stage 4304 generates one or more visualization objects
disposed within the wvisualization object receptacle. For
example, the system 100, implementing any one of the Ul
engines described 1 FIGS. 2, 5 and 6, can generate one or
more visualization objects disposed within the visualization
object receptacle, such as the visualization objects 1122,
1124, 1126, 1128, 1130 and 1132, as shown 1n FIG. 12.

Stage 4306 preeminently displays the visualization object
receptacle. For example, the system 100, implementing any
one of the Ul engines described in FIGS. 2, § and 6, can
preeminently display the visualization object receptacle, such
as by displaying the visualization object receptacle near the
viewing surface of FIG. 12, or by displaying the visualization
object receptacle as described with respect to the visualiza-
tion object receptacle 714 of FIG. 8.

Stage 4308 generates at least one of the visualization
objects as a stack item. For example, the system 100, imple-
menting any one of the Ul engines described in FIGS. 2, 5 and
6, can generate at least one of the visualization objects as a
stack 1tem, such as the stack items 1128 and 1130 as shown 1n
FIG. 12.

FI1G. 44 15 a flow diagram of an example process 4400 for
color coding visualization objects. The process 4400 can, for
example, be implemented 1n a processing device, such as the
system 100 of FIG. 1, implementing user intertace software
and/or hardware, such as the example implementations
described with respect to FIGS. 2, 5 and 6.

Stage 4402 associates a first color with an executing appli-
cation. For example, the system 100, implementing any one
of the Ul engines described in FIGS. 2, 5 and 6, can associate
a first color with an executing application, such as the status
indicator 1830, as shown 1n FIG. 18D.

Stage 4404 associates a second color with a selected and
executing application. For example, the system 100, imple-
menting any one of the Ul engines described in FIGS. 2, 5 and
6, can associate a second color with a selected and executing
application, such as the status indicator 1832, as shown 1n

FIG. 18D.

10

15

20

25

30

35

40

45

50

55

60

65

32

Stage 4406 associates a third color with a launching of an
application. For example, the system 100, implementing any
one of the Ul engines described in FIGS. 2, § and 6, can
associate a third color with a launching of an application, such
as the status indicator 1834, as shown 1n FIG. 18D.

FIG. 45 1s a flow diagram of an example process 4500 for
color coding visualization objects of related system objects.
The process 4500 can, for example, be implemented in a
processing device, such as the system 100 of FIG. 1, imple-
menting user interface soitware and/or hardware, such as the
example implementations described with respect to FIGS. 2,
5 and 6.

Stage 4502 color codes a selected visualization object dis-
posed 1n the visualization object receptacle. For example, the
system 100, implementing any one of the Ul engines
described 1n FIGS. 2, 5 and 6, can color code a selected
visualization object disposed in the visualization object
receptacle, such as color coding the visualization object 2206,
as shown 1n FIG. 22.

Stage 4504 applies a corresponding color code to the desk-
top 1tems associated with the selected visualization object.
For example, the system 100, implementing any one ofthe Ul
engines described in FIGS. 2, 5 and 6, can apply a correspond-
ing color code to the desktop items associated with the

selected visualization object, such as color coding the stack
item 2208, the folder 2210 and the window 2212, as shown 1n

FIG. 22.

FIG. 46 15 a flow diagram of another example process 4600
for generating a visualization object receptacle. The process
4600 can, for example, be implemented 1n a processing
device, such as the system 100 of FIG. 1, implementing user
interface software and/or hardware, such as the example
implementations described with respect to FIGS. 2, 5 and 6.

Stage 4602 defines visualization object rows 1n the visual-
ization object receptacle. For example, the system 100,
implementing any one of the Ul engines described in FIGS. 2,
5 and 6, can define visualization object rows 1n the visualiza-
tion object receptacle, such as the visualization object rows
2312 and 2314, as shown 1n FI1G. 23.

Stage 4604 defines visualization object columns in the
visualization object receptacle. For example, the system 100,
implementing any one of the Ul engines described in FIGS. 2,
5 and 6, can define visualization object columns 1n the visu-

alization object receptacle, such as the visualization object
columns 2322, 2324, 2326, 2328, 2330, and 2332, as shown

in FIG. 23.

Stage 4606 disposes the visualization objects within the
visualization object receptacle according to the visualization
object rows and visualization object columns. For example,
the system 100, implementing any one of the Ul engines
described 1n FIGS. 2, 5 and 6, can dispose the visualization
objects within the visualization object receptacle according to
the visualization object rows and visualization object col-
umuns, as indicated by the solid and dashed arrows shown 1n
FIG. 23.

FIG. 47 15 a flow diagram of an example process 4700 for
generating a stack item. The process 4700 can, for example,
be implemented 1n a processing device, such as the system
100 of FIG. 1, implementing user interface software and/or
hardware, such as the example implementations described
with respect to FIGS. 2, 5 and 6.

Stage 4702 generates or 1dentifies a plurality of stack ele-
ments corresponding to computer system objects. For
example, the system 100, implementing any one of the Ul
engines described in FIGS. 2, 5 and 6, can generate a plurality
of stack elements corresponding to computer system objects,
such as the stack elements shown in FIG. 29.

US 8,067,418 B2

33

Stage 4704 associates the plurality of stack elements with
a stack 1tem. For example, the system 100, implementing any
one of the Ul engines described in FIGS. 2, 5 and 6, can
associate the plurality of stack elements with a stack item,
such as the stack item 2900, as shown 1n FIG. 29.

Stage 4706 aggregates the stack elements into the stack
item. For example, the system 100, implementing any one of
the Ul engines described in FIGS. 2, 5 and 6, can aggregate
the stack elements 1nto the stack item, such as by overlapping,
the stack elements to form the stack item 1n FIG. 29.

Stage 4708 provides context control of the stack item. For
example, the system 100, implementing any one of the Ul
engines described 1n FIGS. 2, 5 and 6, can provides context
control of the stack item, such as the application context 2910,
as shown in FIG. 29.

FIG. 48 1s a flow diagram of an example process 4800 for
displaying stack elements according to modal states. The
process 4800 can, for example, be implemented 1n a process-
ing device, such as the system 100 of FIG. 1, implementing
user 1interface software and/or hardware, such as the example
implementations described with respect to FIGS. 2, 5 and 6.

Stage 4802 displays the stack elements in a substantial
overlapping arrangement 1n a first modal state. For example,
the system 100, implementing any one of the Ul engines
described 1n FIGS. 2, 5 and 6, can display the stack elements
in a substantial overlapping arrangement 1n a first modal state,
such as the overlapping arrangement of the stack items 1n the
stack element 3000 in the first modal state, as shown 1n FIG.
30.

Stage 4804 displays the stack elements 1 a browsing
arrangement 1n the second modal state. For example, the
system 100, implementing any one of the Ul engines
described 1n FIGS. 2, 5 and 6, can display the stack elements
in a browsing arrangement in the second modal state, such as
the fanning arrangement defined by the first terminus 3020
and the second terminus 3022, as shown in FIG. 30.

Stage 4806 enables the selection of a stack element 1n the
second modal state. For example, the system 100, implement-
ing any one of the Ul engines described in FIGS. 2, 5 and 6,
can enable the selection of a stack element in the second
modal state, such as a selection of the preeminently disposed
stack element 3002, as shown 1n FIG. 30.

FIG. 49 1s a flow diagram of an example process 4900 for
selecting interaction models and/or visualization models. The
process 4900 can, for example, be implemented 1n a process-
ing device, such as the system 100 of FIG. 1, implementing
user 1iterface software and/or hardware, such as the example
implementations described with respect to FIGS. 2, 5 and 6.

Stage 4902 1dentifies a characteristic of stack elements
associated with a stack i1tem. For example, the system 100,
implementing any one o the Ul engines described in FIGS. 2,
5 and 6, can 1dentily a quantity of stack elements associated
with the stack i1tem, such as the quantity of stack elements
3002, 3004, 3006, 3008 and 3010, as shown 1n FIG. 30, ora
type associated with the stack item.

Stage 4904 1dentifies iteraction models and/or visualiza-
tion models. For example, the system 100, implementing any
one of the Ul engines described mn FIGS. 2, 5 and 6, can
identify a plurality of visualization models, e.g., browsing
arrangements, such as the browsing arrangements described
with respect to FIGS. 30 and 31, or interaction models, such
as the interaction models described with respect to FIGS. 33A
and 33B.

Stage 4906 sclects an interaction model and/or visualiza-
tion model based on the characteristic of the stack elements
(e.g., the quantity of stack elements, or the type of the stack
clements). For example, the system 100, implementing any

5

10

15

20

25

30

35

40

45

50

55

60

65

34

one of the Ul engines described 1n FIGS. 2, 5 and 6, can select
one of a plurality of browsing arrangements, such as selection
the fanning arrangement, as shown 1n FIG. 30, or select one of
a plurality of interaction modes, as described with respect to
FIGS. 33A and 33B.

FIG. 50 1s a flow diagram of another example process 5000
for generating a stack item. The process 5000 can, for
example, be implemented 1n a processing device, such as the
system 100 of FIG. 1, implementing user interface software
and/or hardware, such as the example implementations
described with respect to FIGS. 2, 5 and 6.

Stage 5002 defines the date ranges for a temporal context.
For example, the system 100, implementing any one of the Ul
engines described 1n FIGS. 2, § and 6, can define the date
ranges for a temporal context, such as the date ranges
described with respect to FIGS. 28A and 28B.

Stage 5004 associates the corresponding stack 1tems with
cach date range. For example, the system 100, implementing
any one of the Ul engines described 1n FIGS. 2, 5 and 6, can

associate the corresponding stack items with each date range,
such as the stack items 2802, 2804 and 2806 in FIGS. 28A and

28B.

Stage 5006 determines for each stack element a date asso-
ciated with each associated system object. For example, the
system 100, implementing any one of the Ul engines
described 1n FIGS. 2, 5§ and 6, can determine for each stack
clement a date associated with each associated system object,
such as a file modification date, as described with respect to
FIGS. 28A and 28B.

Stage 5008 associates the stack elements with the stack
items based on the date ranges associated with the stack 1tems
and the dates associated with each system object. For
example, the system 100, implementing any one of the UI
engines described in FIGS. 2, 5 and 6, can associate the stack
clements with the stack items based on the date ranges asso-
ciated with the stack 1tems and the dates associated with each
system object, such as the stack elements associated with the
stack items 2802, 2804 and 2806, as shown in FIG. 28.

FIG. 51 1s a flow diagram of an example process 5100 for
displaying a stack item according to an execution context.
The process 5100 can, for example, be implemented 1n a
processing device, such as the system 100 of FIG. 1, imple-
menting user itertace software and/or hardware, such as the
example implementations described with respect to FIGS. 2,
5 and 6.

Stage 5102 associates a stack item with an application
system object. For example, the system 100, implementing
any one of the Ul engines described 1n FIGS. 2, 5 and 6, can
associate a stack item with an application system object, such
as the association of the stack 1item 2900 with an application,
as shown in FI1G. 29.

Stage 5104 associates stack elements associated with the
application system object with the stack 1tem associated with
the application system object. For example, the system 100,
implementing any one of the Ul engines described in FIGS. 2,
5 and 6, can associate stack elements associated with the
application system object with the stack item associated with
the application system object, such as the stack elements of
the stack item 2900, as shown 1n FIG. 29.

Stage 5106 displays the stack item associated with the
application system object during an executing context. For
example, the system 100, implementing any one of the UI
engines described 1n FIGS. 2, 5 and 6, can display the stack
item associated with the application system object during an
executing context, such as the displaying of the stack item
2900 during an executing and selected state 2912, as shown 1n

FIG. 29.

US 8,067,418 B2

35

FIG. 52 1s a flow diagram of an example process 5200 for
generating and displaying a stack item. The process 5200 can,
for example, be implemented in a processing device, such as
the system 100 of FIG. 1, implementing user interface soft-
ware and/or hardware, such as the example implementations
described with respect to FIGS. 2, 5 and 6.

Stage 5202 associates a plurality of stack elements with an
application. For example, the system 100, implementing any
one of the Ul engines described in FIGS. 2, § and 6, can
associate a plurality of stack elements with an application,
such as the stack element 2600 with an application, as shown

in FIGS. 26 and 27.

Stage 5204 1dentifies stack file elements and stack appli-
cation elements. For example, the system 100, implementing
any one of the Ul engines described 1n FIGS. 2, 5 and 6, can
identily stack file elements and stack application elements,
such as the file elements 2604, 2606, 2608 and 2610 and the
application element 2602, as shown 1n FIGS. 26 and 27.

Stage 5206 associates a stack item with the plurality of
stack 1tems. For example, the system 100, implementing any
one of the Ul engines described in FIGS. 2, 5 and 6, can
associate a stack item with the plurality of stack elements,
such as the stack time 2600 with the stack elements 2602,
2604, 2606, 2608 and 2610, as shown 1n FIGS. 26 and 27.

Stage 5208 aggregates stack elements to generate stack
items. For example, the system 100, implementing any one of
the Ul engines described in FIGS. 2, 5 and 6, can aggregate
stack elements to generate stack 1tems, such as the aggrega-
tion shown 1 FI1G. 26 or 27.

Stage 5210 preeminently disposes the application element.
For example, the system 100, implementing any one of the Ul
engines described 1n FIGS. 2, 5 and 6, can preeminently
dispose the application element, such as the preeminently
disposed stack element 2602, as shown 1n FIG. 26 or 27.

FIG. 53 15 a flow diagram of an example process 3300 for
automatically selecting and applying an interaction model to
a stack 1tem. The process 5300 can, for example, be 1mple-
mented 1n a processing device, such as the system 100 of FIG.
1, implementing user interface software and/or hardware,
such as the example implementations described with respect

to FIGS. 2, 5 and 6.

Stage 5302 associates visualizations of system objects. For
example, the system 100, implementing any one of the Ul
engines described i FIGS. 2, 5 and 6, can associate the
visualizations of system objects, such as the visualizations
corresponding to the stack elements 3002, 3004, 3006, 3008
and 3010, as shown 1n FIG. 30.

Stage 3304 1dentifies one or more association characteris-
tics of the associated visualizations. For example, the system
100, implementing any one of the Ul engines described 1n
FIGS. 2, 5 and 6, can identily or more association character-
1stics of the associated visualizations, such s the number of
stack elements shown 1n FIG. 30.

Stage 5306 automatically selects an interaction model
from a plurality of interaction models based on the identified
one or more associated characteristics. For example, the sys-
tem 100, implementing any one of the Ul engines described in
FIGS. 2, 5 and 6, can automatically select an interaction
model from a plurality of interaction models based on the
identified one or more associated characteristics, such as
selecting one of the interaction models shown in FIGS. 30 and
31.

Stage 3308 applies the selected interaction model to the
associated visualizations. For example, the system 100,
implementing any one of the Ul engines described in FIGS. 2,

10

15

20

25

30

35

40

45

50

55

60

65

36

5 and 6, can apply the selected interaction model to the
associated visualizations, such as the fanning arrangement as
shown 1n FIG. 30.

FIG. 54 15 a flow diagram of another example process 5400
for automatically selecting and applying an interaction model
to a stack 1item. The process 5400 can, for example, be imple-
mented 1n a processing device, such as the system 100 of FIG.
1, implementing user interface software and/or hardware,
such as the example implementations described with respect
to FIGS. 2, 5 and 6.

Stage 5402 identifies a quantity of visualizations in the
stack association. For example, the system 100, implement-
ing any one of the Ul engines described 1n FIGS. 2, S and 6,
can 1dentily a quantity of visualizations in the stack associa-
tion, such as the quantity of stack elements 3102, 3104, 3106
and 3108, as shown 1n FIG. 31A.

Stage 5404 selects the interaction model from the plurality
of interaction models based on the quantity. For example, the
system 100, implementing any one ol the Ul engines
described in FIGS. 2, 5 and 6, can select the interaction model
from the plurality of interaction models based on the quantity,
such as the interaction model shown 1n FIG. 31A.

FIG. 55 15 a flow diagram of another example process 5500
for automatically selecting and applying an interaction model
to a stack 1item. The process 4000 can, for example, be imple-
mented 1n a processing device, such as the system 100 of FIG.
1, implementing user interface software and/or hardware,
such as the example implementations described with respect
to FIGS. 2, 5 and 6.

Stage 5502 1dentifies a type of stack element in the stack
association. For example, the system 100, implementing any
one of the Ul engines described in FIGS. 2, § and 6, can
identify a type of stack element in the stack association, such
as, for example, a document type.

Stage 53504 selects the interaction model from the plurality
ol interaction models based on the type. For example, the
system 100, implementing any one ol the Ul engines
described in FIGS. 2, 5 and 6, can select the interaction model
from the plurality of interaction models based on the type,
such as, for example, an interaction model designed for the
document type.

FIG. 56 1s a flow diagram of another example process 5600
for automatically selecting and applying an interaction model
to a stack item. The process 5600 can, for example, be 1imple-
mented 1n a processing device, such as the system 100 of FIG.
1, implementing user interface software and/or hardware,
such as the example implementations described with respect
to FIGS. 2, 5 and 6.

Stage 5602 1identifies a group association of stack elements
in the stack association. For example, the system 100, imple-
menting any one of the Ul engines described in FIGS. 2, 5 and
6, can 1identify a group association of stack elements 1n the
stack association, such as the project association of FIG. 33A.

Stage 5604 sclects the interaction model from the plurality
ol interaction models based on the group association. For
example, the system 100, implementing any one of the Ul
engines described 1n FIGS. 2, 5 and 6, can select the interac-
tion model from the plurality of interaction models based on
the group association, such as a multiple launch interaction
model, a synchronization interaction model, or a reconcilia-
tion interaction model.

FIG. 57 1s a flow diagram of an example process 5700 for
generating a divet. The process 5700 can, for example, be
implemented 1n a processing device, such as the system 100
of FIG. 1, implementing user interface software and/or hard-
ware, such as the example implementations described with

respect to FIGS. 2, 5 and 6.

US 8,067,418 B2

37

Stage 5702 generates a visualization object receptacle dis-
posed along a depth aspect. For example, the system 100,
implementing any one ol the Ul engines described in FIGS. 2,

5 and 6, can generate the visualization object receptacle 1802
of FIG. 19A.

Stage 5704 generates one or more visualization objects
disposed within the visualization object receptacle. For
example, the system 100, implementing any one of the Ul
engines described in FIGS. 2, 5 and 6, can generate the one or

more visualization objects 1804, 1806, 1808, 1810, 1812 and
1814 of FIG. 19A.

Stage 5706 identifies an actionable state associated with
one of the visualization objects. For example, the system 100,
implementing any one o the Ul engines described in FIGS. 2,
5 and 6, can 1dentily an actionable state, €.g., a system update

availability, associated with the visualization object 1804 of
FIG. 19A.

Stage 3708 generates a divet displayed proximate to the
visualization object to indicate an actionable state associated
with the visualization object. For example, the system 100,
implementing any one of the Ul engines described in FIGS. 2,
5 and 6, can generate the divet 1902 of FIG. 19A.

FIG. 58 1s a flow diagram of an example process 5800 for
generating a divet contextual menu. The process 5800 can, for
example, be implemented 1n a processing device, such as the
system 100 of FIG. 1, implementing user interface software
and/or hardware, such as the example implementations
described with respect to FIGS. 2, 5 and 6.

Stage 3802 recerves a selection of the divet. For example,
the system 100, implementing any one of the Ul engines
described in FIGS. 2, 5 and 6, can receive a selection, e.g., a
mouse click, of the divet 1902 of FIG. 19A.

Stage 5804 generates a contextual menu proximate to the
visualization object 1n response to receiving the selection
divet. For example, the system 100, implementing any one of
the Ul engines described 1n FIGS. 2, 5 and 6, can generate the
contextual menu 1910 of FIG. 19B.

The apparatus, methods, flow diagrams, and structure
block diagrams described 1n this patent document may be
implemented in computer processing systems 1mcluding pro-
gram code comprising program instructions that are execut-
able by the computer processing system. Other implementa-
tions may also be used. Additionally, the tlow diagrams and
structure block diagrams described 1n this patent document,
which describe particular methods and/or corresponding acts
in support of steps and corresponding functions 1n support of
disclosed structural means, may also be utilized to implement
corresponding software structures and algorithms, and
equivalents thereofl.

This written description sets forth the best mode of the
invention and provides examples to describe the invention
and to enable a person of ordinary skill 1n the art to make and
use the invention. This written description does not limit the
invention to the precise terms set forth. Thus, while the mnven-
tion has been described in detail with reference to the
examples set forth above, those of ordinary skill in the art may
effect alterations, modifications and wvariations to the
examples without departing from the scope of the invention.

What 1s claimed 1s:

1. A non-transitory computer readable medium storing
instructions that are executable by a processing device for
causing the processing device to perform operations compris-
ng:

providing for display in a graphical user interface a first

stack element corresponding to a first data item, the first

10

15

20

25

30

35

40

45

50

55

60

65

38

stack element having a first display aspect ratio, the first

display aspect ratio being determined based on an aspect

ratio of the first data item;

providing for display in the graphical user interface a sec-

ond stack element corresponding to a second data 1tem,
wherein the second stack element comprises an indi-
cium having a second display aspect ratio that 1s differ-
ent from the first display aspect ratio, where the second
display aspect ratio 1s determined based on an aspect
ratio of the second data 1tem;

normalizing the second stack element by adding one or

more borders to surround the indicium, wherein corre-
sponding areas of the added borders are determined such
that the normalized second stack element has the first
display aspect ratio, where the second display aspect
ratio of the indicium 1s preserved; and

providing for display 1n the graphical user interface a stack

item, the stack item 1including the first stack element and

the normalized second stack element.

2. The computer readable medium of claim 1, the opera-
tions further comprising providing a contextual control of the
stack 1tem, wherein:

the context control comprises a plurality of modal states

applied to the stack item.

3. The computer readable medium of claim 2, wherein:

the plurality of modal states comprises:

a first modal state in which the first stack element and the
normalized second stack element are displayed in a
substantial overlapping arrangement; and

a second modal state in which the first stack element and
the normalized second stack element are displayed as
unitary instances.

4. The computer readable medium of claim 3, wherein:

the first and second modal states are toggle states.

5. The computer readable medium of claim 3, wherein:

at least one of the first stack element and the normalized

second stack element comprises a window instance.

6. The computer readable medium of claim 3, wherein:

at least one of the first stack element and the normalized

second stack element comprises a representation of a

peripheral device, wherein the pernipheral device

includes one or more of hard drives or universal serial
bus devices.

7. The computer readable medium of claim 2, wherein:

the plurality of modal states comprises:

a first modal state in which the first stack element and the
normalized second stack element are displayed in a
substantially overlapping arrangement; and

a second modal state in which the first stack element and
the normalized second stack element are displayed
according to a visualization model.

8. The computer readable medium of claim 7, wherein:

cach displayed stack element in the second modal state 1s

selectable.

9. The computer readable medium of claim 8, wherein:

the visualization model generates an arrangement of the

first stack element and the normalized second stack ele-
ment 1 substantial juxtaposition.

10. The computer readable medium of claim 8, wherein:

the visualization model defines a multidimensional path

defined by an first terminus and a second terminus; and
the visualization model generates a disposition of the first
stack element and the normalized second stack element

along the multidimensional path.

US 8,067,418 B2

39

11. The computer readable medium of claim 10, further
comprising;
in response to a user input, transitioning the first stack
clement and the normalized second stack element along
the multidimensional path between the first terminus
and the second terminus.
12. The computer readable medium of claim 10, further
comprising:
providing for display an indicator indicating that one of the
first stack element or the normalized second stack ele-
ment 1s at a preeminent position when the stack element
1s located at the first terminus.
13. The computer readable medium of claim 7, wherein:
the visualization model 1s automatically selected based on
a quantity of stack elements.
14. The computer readable medium of claim 2, wherein:
the context control controls an instantiation of at least one
of the stack item and stack elements.
15. The computer readable medium of claim 14, wherein:
the 1nstantiation of at least one of the stack 1tem and stack
clements 1s based on a temporal context.
16. The computer readable medium of claim 15, wherein:
the temporal context defines date ranges;
a corresponding stack item 1s associated with each date
range; and
a stack element associated with a data 1tem 1s further asso-
ciated with a stack item 11 a relevant date associated with
the data 1tem 1s within the date range associated with the
stack 1tem.
17. The computer readable medium of claim 16, wherein:
cach stack item 1s color coded according to the date range.
18. The computer readable medium of claim 1, wherein:
cach stack element corresponds to a desktop menu data
item.
19. The computer readable medium of claim 1, wherein:
the data 1tems comprise 1cons;
the graphical user interface comprises an inclusion region
associated with the stack 1item; and
placement of an 1con within the inclusion region generates
a stack element associated with the icon.
20. The computer readable medium of claim 19, wherein:
the inclusion region i1s coincident with the stack element;
and

placement of a stack element without the inclusion region

disassociates the stack element with the stack item.

21. The computer readable medium of claim 1, wherein:

the graphical user interface comprises:

an under lighting effect to indicate selection of the stack
item.

22. A non-transitory computer readable medium storing
instructions that are executable by a processing device for
causing the processing device to perform operations compris-
ng:

providing for display in a graphical user interface a first

stack element corresponding to a first data 1tem, the first
stack element having a first display aspect ratio, the first
display aspect ratio being determined based on an aspect
ratio of the first data item;

identifying an indicium of a second data i1tem, the indicium
having a second display aspect ratio that 1s different
from the first display aspect ratio, where the second

display aspect ratio 1s determined based on an aspect

ratio of the second data 1tem;
adding one or more borders to surround the indicium to
form a normalized stack element, such that the normal-

10

15

20

25

30

35

40

45

50

55

60

65

40

1zed stack element has the first display aspect ratio,
where the second display aspect ratio of the indicium 1s
preserved;
providing for display in the graphical user interface a stack
item, the stack item including the first stack element and
the normalized stack element; and
providing a contextual control of the stack item,
wherein the contextual control comprises a plurality of
modal states applied to the stack item and controls an
instantiation of at least one of the stack item and stack
elements,
wherein the instantiation of at least one of the stack 1tem
and stack elements 1s based on an application context,
wherein the application context defines an executing con-
text and a non-executing context, wherein:
a corresponding stack item 1s associated with an appli-
cation system object,
corresponding stack elements associated with the stack
item are associated with application file system
objects associated with the application system object,
the corresponding stack item 1s displayed during the
executing context, and
the corresponding stack item 1s suppressed during the
non-executing context.
23. A computer-implemented method, comprising:
providing for display in a graphical user interface a first
stack element corresponding to a first data 1tem, the first
stack element having a first display aspect ratio, the first
display aspect ratio being determined based on an aspect
ratio of the first data item;
providing for display 1n the graphical user interface a sec-
ond stack element corresponding to a second data item,
wherein the second stack element comprises an indi-
cium having a second display aspect ratio that 1s differ-
ent from the first display aspect ratio, the second display
aspect ratio being determined based on an aspect ratio of
the second data item;
normalizing the second stack element by adding one or
more borders to surround the indicium, wherein corre-
sponding areas of the added borders are determined such
that the normalized second stack element has the first
display aspect ratio, where the second display aspect
ratio of the indicium 1s preserved; and
aggregating the first stack element and the normalized
second stack element into a stack 1tem; and
providing the stack item for display.
24. The method of claim 23, further comprising providing,
a contextual control of the stack item, wherein:
providing context control of the stack 1tem comprises pro-
viding context control of the stack 1item based on a plu-
rality of modal states.
25. The method of claim 24, comprising:
providing the first stack element and the normalized sec-
ond stack element for display in a substantial overlap-
ping arrangement 1n a {irst modal state; and
providing the stack element and the normalized second
stack element for display as unitary instances 1n a second
modal state.
26. The method of claim 25, wherein:
the first and second modal states are toggle states; and
the first stack element and the normalized second stack
clement comprise window 1nstances.
277. The method of claim 24, comprising:
providing the first stack element and the normalized sec-
ond stack element for display 1n a substantial overlap-
ping arrangement in a first modal state;

US 8,067,418 B2

41

providing the first stack element and the normalized sec-
ond stack element for display 1n a browsing arrangement
1n a second modal state; and
enabling selection of a stack element in the second modal
state.
28. The method of claim 27, comprising:
receiving a selection for a stack element in the second
modal state; and
generating an mstruction to launch an application associ-
ated with the selected stack element 1n response to the
selection.
29. The method of claim 23, comprising:
identifying a quantity of stack elements associated with the
stack item:
identifying a plurality of browsing arrangements; and
selecting a browsing arrangement based on the quantity of
stack elements.
30. The method of claim 27, wherein:
providing the first stack element and the normalized sec-
ond stack element for display 1n a browsing arrangement
COmprises:
defining a multi-dimensional path; and
disposing at least a subset of the stack elements along the
multi dimensional path.
31. The method of claim 26, comprising:
identifying system object data; and
displaying the indicium for each stack element based on
the system object data, the indicium being unique for the
cach stack element.
32. The method of claim 24, wherein:
providing context control of the stack 1item comprises:
controlling instantiation of at least one of the stack item
and stack elements based on a temporal context.
33. The method of claim 32, comprising:
defimng date ranges for the temporal context;
associating corresponding stack items with each date
range;
for each stack element, determining a date associated with
cach associated system object; and
associating the stack elements with the stack items based
on the date ranges associated with the stack items and the
dates associated with each system object.
34. The method of claim 33, comprising:
color coding each stack item according to a corresponding
date range.
35. The method of claim 24, wherein:
providing context control of the stack 1tem comprises:
controlling an instantiation of at least one of the stack
item and stack elements based on an application con-
text.
36. The method of claim 23, comprising:
associating the stack item with an application system
object;
further associating stack elements associated with the
application system object with the stack 1tem associated
with the application system object; and
displaying the stack item associated with the application
system object during an executing context.
37. The method of claim 23, wherein:
cach stack element corresponds to a desktop menu system

object.

38. The method of claim 23, comprising:

generating an under lighting selection indicator to indicate
a selected stack item.

10

15

20

25

30

35

40

45

50

55

60

65

42

39. The method of claim 23, wherein:
providing context control of the stack item comprises:
controlling the stack 1tem based on an automatic selection
of a visualization model from a plurality of visualization
models.
40. The method of claim 39, comprising:
identifying a quantity of stack elements associated with the
stack 1tem; and
selecting the visualization model from the plurality of visu-
alization models based on the quantity.
41. The method of claim 39, comprising:
identifying a type of stack elements associated with the
stack 1tem: and
selecting an interaction model from a plurality of interac-
tion models based on the type.
42. The method of claim 23, comprising:
applying a group association to the stack item, wherein
providing context control of the stack item comprises:
controlling the stack item based on an automatic selec-
tion of an interaction model based on the group asso-
ciation.
43. A system comprising;
one or more hardware processors; and
memory encoding instructions that, when executed by the
one or more hardware processors cause the system to
perform operations comprising:
providing a graphical user interface;
providing for display a first stack element corresponding
to a first data item, the first stack element having a first
display aspect ratio, the first display aspect ratio, the
first display aspect ratio being determined based on an
aspect ratio of the first data item:;
providing for display in the graphical user interface a
second stack element corresponding to a second data
item, wherein the second stack element comprises an
indicium having a second display aspect ratio that 1s
different from the first display aspect ratio, the second
display aspect ratio being determined based on an
aspect ratio of the second data item;
normalizing the second stack element by adding one or

more borders to surround the indicium, wherein cor-
responding areas of the added borders are determined
such that the normalized second stack element has the
first display aspect ratio, where the second display
aspect ratio of the mndicium 1s preserved; and
providing for display a stack item, the stack item com-
prising an aggregation of the first stack element and
the normalized second stack element.
44. The system of claim 43, wherein:
the aggregation comprises an overlapping display of the
first stack and the normalized second stack element.
45. The system of claim 44, wherein:
the first data item includes an application element associ-
ated with an application executable;
the second data item 1ncludes a file element associated with
an application document file;
the aggregation includes a preeminent disposition of a
stack element; and
the preeminent disposition of the stack element comprises
a display of the application element on top of the over-
lapping display.
46. The system of claim 45, wherein:
the preeminent disposition of the stack element comprises
an enlargement of the application element relative to the
file element.

US 8,067,418 B2
43

47. The system of claim 45, wherein:
the preeminent disposition of the stack element comprises:
a rendering of the file element as a translucent element;
and
a rendering the application element as an opaque ele- 5
ment.

44

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 38,667,418 B2 Page 1 of 1
APPLICATION NO.: 11/760695

DATED . March 4, 2014

INVENTOR(S) . Chaudhn et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent 1s extended or adjusted under 35 U.S.C. 154(b)
by 853 days.

Signed and Sealed this
Thirtieth Day of May, 2017

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

