

US008658764B2

(12) United States Patent

Harris et al.

PEPTIDE FRAGMENTS FOR INDUCING SYNTHESIS OF EXTRACELLULAR MATRIX **PROTEINS**

Inventors: Scott M. Harris, Seattle, WA (US);

Timothy J. Falla, Woodinville, WA (US); Lijuan Zhang, Kenmore, WA

(US)

(73) Assignee: Helix Biomedix, Inc., Bothell, WA (US)

Subject to any disclaimer, the term of this Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 124 days.

Appl. No.: 13/339,606 (21)

Dec. 29, 2011 (22)Filed:

(65)**Prior Publication Data**

US 2012/0093740 A1 Apr. 19, 2012

Related U.S. Application Data

- Continuation of application No. 11/811,876, filed on (63)Jun. 12, 2007, now Pat. No. 8,110,658.
- Provisional application No. 60/813,284, filed on Jun. (60)13, 2006.
- (51)Int. Cl. C07K 5/10 (2006.01)

U.S. Cl. (52)

USPC **530/330**; 514/21.9

Field of Classification Search (58)See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

5,763,576	\mathbf{A}	6/1998	Powers	530/330
6,492,326	B1	12/2002	Robinson et al	514/2
7,041,506	B2	5/2006	Campbell et al	435/402
2003/0175745	$\mathbf{A}1$	9/2003	Dean et al	435/6
2004/0009911	$\mathbf{A}1$	1/2004	Harris et al	. 514/12
2005/0085422	$\mathbf{A}1$	4/2005	Georgiades et al	. 514/13
2005/0288229	$\mathbf{A}1$	12/2005	Sindrey et al	. 514/16
2006/0046271	$\mathbf{A}1$	3/2006	Hallahan	435/7.1
2006/0159659	$\mathbf{A}1$	7/2006	Hallenbeck et al.	
2007/0021347	$\mathbf{A}1$	1/2007	Khan et al	. 514/16
2007/0166267	$\mathbf{A}1$	7/2007	Majewski et al 4	24/70.14
2007/0183970	$\mathbf{A}1$	8/2007	Goldenberg et al	424/1.49
2007/0224150	A1	9/2007	Chung 4	24/70.14

FOREIGN PATENT DOCUMENTS

CA	2276542		12/2000	A61K 38/04
EP	0858808	A2	8/1998	A61K 38/07
EP	1004595	A2	5/2000	C07K 7/08
EP	1074620	$\mathbf{A}1$	2/2001	
WO	WO 89/10099	$\mathbf{A}1$	11/1989	A61F 2/02
WO	WO 95/28832	$\mathbf{A}1$	11/1995	A01N 1/02
WO	WO 02/079408	A2	10/2002	

Feb. 25, 2014

US 8,658,764 B2

(45) **Date of Patent:**

(10) Patent No.:

OTHER PUBLICATIONS

Partial European Search Report dated Dec. 6, 2011, issued in European Patent Application 11175263.0.

Kessler, E. et al., "A Novel Aminopeptidase From Clostridium-Histolyticum," Biochemical and Biophysical Research Communications, 1973, 405-412, vol. 50, No. 2, Academic Press, Inc.

Chemical Abstracts Accession, vol. 88, 1978; pp. 687-688.

Patent Examination Report No. 1 from the Australian Patent Office for related Australian Patent Application No. 2012216555 dated Jun. 12, 2013.

Partial European Search Report dated Dec. 2, 2011, issued in European Patent Application 11175264.8.

Katayama, E. A.K., "A Pentapeptide from Type 1 Procollagen Promotes Extracellular Matrix Production," Journal of Biological Chemistry, May 15, 1993, vol. 268, No. 14, 9941-9944, American Society of Biolochemical Biologists, Birmingham, US.

European Search Report and Search Opinion dated Mar. 22, 2012, issued in European Patent Application 11175264.8.

Gautier, Moroy et al., "Structural Characterization of Human Elastin Derived Peptides Containing the GXXP Sequence", Biopolymers, Jul. 1, 2005, pp. 206-220, XP55022638.

Umezawa, Yukiko et al., "Novel Prolyl Tri/Tetra-Peptidyl Aminopeptidase From Streptomyces Mobaraensis: Substrate Specificity and Enzyme Gene Cloning", Journal of Biochemistry (Tokyo), Sep. 2004, pp. 293-300, vol. 136, No. 3, XP002672088.

Hollosi, M. et al., "Studies on Proline-Containing Tetrapeptide Models of (beta)-turns", Biopolymers, Jan. 1, 1985, pp. 211-242, vol. 24, No. 1, XP55022642.

Odake et al., "Vertebrate Collagenase Inhibitor. II. Tetrapeptidyl Hydroxamic Acids", Jan. 1, 1991, pp. 1489-1494, vol. 39, No. 6, XP002155190.

European Search Report and Search Opinion dated Nov. 29, 2011, issued in European Patent Application 11175263.

Schultz et al., Extracellular matrix: review of its roles in acute and chronic wounds, World Wide Wounds (www.worldwidewounds.com) (Aug. 2005).

Katayama et al., A pentapeptide from type I procollagen promotes extracellular matrix production, Journal of Biological Chemistry 268:9941-9944 (1993).

Greenbaum et al., Chemical approaches for functionally probing the proteome, Molecular and Cellular Proteomics 1:60-68 (2002).

Krstenansky et al., Probing proteinase active sites using oriented peptide mixture libraries—ADAM-10, Letters in Drug Design and Discovery 1:6-13 (2004).

Tran et al., Extracellular matrix signaling through growth factor receptors during wound healing, Wound Repair and Regeneration 12:262-268 (2004).

Maquart et al., [Regulation of cell activity by the extracellular matrix: the concept of matrikines], Journal de la Société de biologie 193:423-428 (1999) Abstract Only.

Duca et al., Elastin as a matrikine, Critical Reviews in Oncology/ Hematology 49:235-244(2004).

(Continued)

Primary Examiner — David Lukton

(74) Attorney, Agent, or Firm — Novak Druce Connolly Bove + Quigg LLP

ABSTRACT (57)

Short biologically active tetrapeptides are disclosed that are comprised of the sequences GxxG and PxxP where G (glycine) and P (proline) are maintained and x is a variable amino acid. The peptides can be used singly or in combination to stimulate production of extracellular matrix proteins in skin. A rapid, low-cost method of producing heterogenous formulations of tetrapeptides is disclosed.

14 Claims, 3 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Arul et al., Biotinylated GHK peptide incorporated collagenous matrix: a novel biomaterial for dermal wound healing in rats, *Journal of Biomedical Materials Research Part B: Applied Biomaterials* 73:383-391 (2005).

Tran et al., Matrikines and matricryptins: implications for cutaneous cancers and skin repair, *Journal of Dermatological Science* 40:11-20 (2005).

Heilborn et al., The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking chronic ulcer epithelium, *Journal of Investigative Dermatology* 120:379-389 (2003).

Bessalle et al. (1993), Structure-function studies of amphiphilic antibacterial peptides, *J. Med. Chem.* 36:1203-1209.

Oh et al. (1999), Design, synthesis and characterization of antimicrobial pseudopeptides corresponding to membrane-active peptide, *J. Peptide Res.* 54:129-136.

Lee Pha et al. (2004), HB-107, a nonbacteriostatic fragment of the antimicrobial peptide cecropin B, accelerates murine wound repair, *Wound Rep. Reg.* 12:351-358.

Reed Wa et al. (1992), Enhanced in vitro growth of murine fibroblast cells and preimplantation embryos cultured in medium supplemented with an amphipathic peptide, *Mol. Rep. Develop.* 31:106-113.

Andreu D et al. (1985), N-terminal analogues of cecropin A: synthesis, antibacterial activity, and conformational properties, *Biochemistry* 24:1683-1688.

Morgan K et al. (1992), Identification of an immunodominant B-cell epitope in bovine type II collagen and production of antibodies to type II collagen by immunization with a synthetic peptide representing this epitope, *Immunology* 77:609-616.

Degryse B et al. (2005), Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity, *J Biol. Chem.* 280:24792-24803.

Wu W-J and Raleigh DP (1998), Local control of peptide conformation: stabilization of *cis* proline peptide bonds by aromatic proline interactions, *Biopolymers* 45:381-394.

Kessler E and Yaron A (1973), A novel aminopeptidase from Clostridium histolyticum, Biochem. Biophys. Res. Comm. 50:405-412.

Wunsch E et al. (1971), Zur spezifitat der kollagenase, Hoppe-Seyler's Zeitschrift Fuer Physiologische Chemie 352:1568-1579.

MGPRLSVWLL	LLPAALLLHE	EHSRAAAKGG	CAGSGCGKCD	CHGVKGQKGE
R glpg LQGVI	<u>GFPG</u> MQGPE <u>G</u>	PQGPPG QKGD	TGEPGLPGTK	GTR GPPG ASG
YPGNPGLPGI	PGQD GPPGPP	GIPG CNGTKG	ERGPL GPPGL	PG FAGNP GPP
<u>GLPG</u> MKGDPG	EILGHVPGML	LKGER GFPGI	PGTPGPPGLP	G LQGPV GPPG
FTGPPGPPGP	PGPPGEKGQM	GLSFQ GPKG D	KGDQGVS GPP	<u>GVPG</u> QAQVQE
KGDFATK GEK	G QK GEPG FQG	MPGV GEKGEP	G KPGPRGKPG	KDGDK GEKGS
PGFPGEPGYP	GLIGRQGPQ G	EKGEAGPPGP	PG IVIGTGPL	GEKG ERGYPG
TPGPR GEPGP	KGFPGLPGQP	GPPG LPVPGQ	AGAP GFPG ER	GEKGDRGFPG
TSLPGPSGRD	GLP GPPG SP G	PPG QPGYTNG	IVECQP GPPG	DQGPPGIPGQ
PGFIGEIGEK	G QKGESCLIC	DIDGYRGPPG	PQGPPGEIGF	PGQPG AKGDR
GLPGRDGVAG	VPGPQGTPGL	IGQPGAKGEP	GEFYFDLRLK	GDKGDP GFP
QPG MPGRAGS	PGRDGHP GLP	GPKGSPG SVG	LKGER GPPG G	V GFPG SRGDT
GPPGPPG YGP	AGPIGDKGQA	<u>GFPGGPGSPG</u>	LP GPKGEPG K	IVPLP GPPG A
EGLP GSPGFP	G PQGDR GFPG	TPGRP GLPGE	KGAVGQPGIG	FPGPPGPKGV
DGLPGDMGPP	GTPGRPGFNG	LPG NPGVQGQ	KGEPGV GLPG	LK glp Glp Gi
PGTPGEKGSI	GVPGVPG EHG	AI GPPG LQGI	RGEP GPPG LP	GSV GSPGVPG
IGPPGARGPP	G GQ GPPG LSG	PPGIK GEKGF	PGFPG LDMPG	PKGDKGAQ GL
PGITGQSGLP	<u>GLPG</u> QQGAPG	IPGFPGSKGE	MGVMGTP GQP	<u>GSPGPVGAPG</u>
<u>LPGEKG</u> DHGF	PG SSGPRGDP	GLKGDKGDV G	LPG KPGSMDK	VDMGSMKGQK
GDQ GEKG QIG	PI GEKG SRGD	PGTP GVPG KD	GQAGQPGQPG	
PGAPGLPGPK	G SVGGMGLPG	TPGEKGVPGI	PGPQGSPGLP	<u>G</u> DKGAK <u>GEKG</u>
QAGPPGIGIP	G LR GEKG DQG	IAGFPGSPGE	K <u>GEKG</u> SIGIP	GMPGSPGLKG
SPG SVGYPGS	P GLPGEKG DK	<u>GLPGLDGIPG</u>	VKGEA GLPG T	PGPTGPAGQK
<u>GEPGSDGIPG</u>	SAGEKGEPGL	PG RGFP GFPG	AKGDKGSKGE	VGFPGLAGSP
<u>GIPG</u> SKGEQG	FMGPPGPQGQ	PGLPGSPGHA	TEGPKGDRGP	QGQPGLPGLP
			G PKGDPGFQG	
			QGDQ GVPG AK	**************************************
PYDIIK GEPG	LPGPE GPPG L	KGLQ GLPGPK	<u>G</u> QQGVTGLV <u>G</u>	IPGPPGIPGF
DGAPGQKGEM	GPAGPTGPR G	FPGPPGPDGL	PGSMGPPGTP	SVDHGFLVTR
HSQTIDDPQC	PSGTKILYHG	YSLLYVQGNE	RAHGQDLGTA	GSCLRKFSTM
PFLFCNINNV	CNFASRNDYS	YWLSTPEPMP	MSMAPITGEN	IRPFISRCAV
CEAPAMVMAV	HSQTIQIPPC	PSGWSSLWIG	YSFVMHTSAG	AEGSGQALAS
PGSCLEEFRS	APFIECHGRG	TCNYYANAYS	FWLATIERSE	MFKKPTPSTL
KAGELRTHVS	RCQVCMRRT			

MMSFVQKGSW	LLLALLHPTI	ILAQQEAVEG	GCSHLGQSYA	DRDVWKPEPC
QICVCDSGSV	LCDDIICDDQ	ELDCPNPEIP	FGECCAVCPQ	PPTAPTRPPN
GQGPQGPKGD	PGPPGIPGRN	GDPGIPGQPG	SPGSPGPPGI	CESCPTGPQN
YSPQYDSYDV	KSGVAVGGLA	GYPGPAGPPG	PPGPPGTSGH	PGSPGSPGYQ
GPPGEPGQAG	PSGPPGPPGA	IGPSGPAGKD	GESGRPGRPG	ERGLPGPPGI
KGPAGIPGFP	GMKGHRGFDG	RNGEKGETGA	PGLKGENGLP	GENGAPGPMG
PRGAPGERGR	PGLPGAAGAR	GNDGARGSDG	QPGPPGPPGT	AGFPGSPGAK
GEVGPAGSPG	SNGAPGQRGE	PGPQGHAGAQ	GPPGPPGING	SPGGKGEMGP
AGIPGAPGLM	GARGPPGPAG	ANGAPGLRGG	AGEPGKNGAK	GE PGPR GERG
EAGIPGVPGA	KGEDGKDGSP	GEPGANGLPG	AAGERGAPGF	RGPAGPNGIP
GEKGPAGERG	APGPAGPRGA	AGEPGRDGVP	GGPGMRGMPG	SPGGPGSDGK
PGPPGSQGES	GRPGPPGPSG	PRGQPGVMGF	PGPKGNDGAP	GKNGERGGPG
GPGPQGPPGK	NGETGPQGPP	GPTGPGGDKG	DTGPPGPQGL	QGLPGTGGPP
GENGKPGEPG	PKGDAGAPGA	PGGKGDAGAP	GERGPPGLAG	APGLRGGAGP
PGPEGGKGAA	GPPGPPGAAG	TPGLQGMPGE	RGGLGSPGPK	GDKGEPGGPG
ADGVPGKDGP	RGPTGPIGPP	GPAGQPGDKG	EGGAPGLPGI	AGPRGSPGER
GETGPPGPAG	FPGAPGQNGE	PGGKGERGAP	GEKGEGGPPG	VAGPPGGSGP
AGPPGPQGVK	GERGSPGGPG	AAGFPGARGL	PGPPGSNGNP	GPPGPSGSPG
KDGPPGPAGN	TGAPGSPGVS	GPKGDAGQPG	EKGSPGAQGP	PGAPGPLGIA
GITGARGLAG	PPGM PGPR GS	PGPQGVKGES	GKPGANGLSG	ERGPPGPQGL
PGLAGTAGEP	GRDGNPGSDG	LPGRDGSPGG	KGDRGENGSP	GAPGAPGHPG
PPGPVGPAGK	SGDRGESGPA	GPAGAPGPAG	SRGAPGPQGP	RGDKGETGER
GAAGIKGHRG	FPGNPGAPGS	PGPAGQQGAI	GSPGPAGPRG	PVGPSGPPGK
DGTSGHPGPI	GP PGPR GNRG	ERGSEGSPGH	PGQPGPPGPP	GAPGPCCGGV
GAAAIAGIGG	EKAGGFAPYY	GDEPMDFKIN	TDEIMTSLKS	VNGQIESLIS
PDGSRKNPAR	NCRDLKFCHP	ELKSGEYWVD	PNQGCKLDAI	KVFCNMETGE
TCISANPLNV	PRKHWWTDSS	AEKKHVWFGE	SMDGGFQFSY	GNPELPEDVL
DVQLAFLRLL	SSRASQNITY	HCKNSIAYMD	QASGNVKKAL	KLMGSNEGEF
KAEGNSKFTY	TVLEDGCTKH	TGEWSKTVFE	YRTRKAVRLP	IVDIAPYDIG
GPDQEFGVDV	GPVCFL			

MGPRLSVWLL	LLPAALLLHE	EHSRAAKGG	CAGSGCGKCD	CHGVKGQKGE
RGLPGLQGVI	GFPGMQGPEG	PQGPPGQKGD	TGEPGLPGTK	GTRGPPGASG
YPGNPGLPGI	PGQDGP PGPP	GIPGCNGTKG	ERGPLGPPGL	PGFAGN PGPP
GLPGMKGDPG	EILGHVPGML	LKGERGFPGI	PGT PGPP GLP	GLQGPVGPPG
FTGP PGPP GP	PGPP GEKGQM	GLSFQGPKGD	KGDQGVSGPP	GVPGQAQVQE
KGDFATKGEK	GQKGEPGFQG	MPGVGEKGEP	GKPGPRGKPG	KDGDKGEKGS
PGFPGEPGYP	GLIGRQGPQG	EKGEAGP PGP	P GIVIGTGPL	GEKGERGYPG
TPGPRGEPGP	KGFPGLPGQP	GPPGLPVPGQ	AGAPGFPGER	GEKGDRGFPG
TSLPGPSGRD	GL pgpp gspg	PPGQPGYTNG	IVECQ PGPP G	DQGPPGIPGQ
PGFIGEIGEK	GQKGESCLIC	DIDGYRGPPG	PQGPPGEIGF	PGQPGAKGDR
GLPGRDGVAG	VPGPQGTPGL	IGQPGAKGEP	GEFYFDLRLK	GDKGDPGFPG
QPGMPGRAGS	PGRDGHPGLP	GPKGSPGSVG	LKGERGPPGG	VGFPGSRGDT
GP PGPP GYGP	AGPIGDKGQA	GFPGGPGSPG	LPGPKGEPGK	IVPL PGPP GA
EGLPGSPGFP	GPQGDRGFPG	TPGRPGLPGE	KGAVGQPGIG	F PGPP GPKGV
DGLPGDMGPP	GTPGRPGFNG	LPGNPGVQGQ	KGEPGVGLPG	LKGLPGLPGI
PGTPGEKGSI	GVPGVPGEHG	AIGPPGLQGI	RGE PGPP GLP	GSVGSPGVPG
IGPPGARGPP	GGQGPPGLSG	PPGIKGEKGF	PGFPGLDMPG	PKGDKGAQGL
PGITGQSGLP	GLPGQQGAPG	IPGFPGSKGE	MGVMGTPGQP	GSPGPVGAPG
LPGEKGDHGF	PGSSGPRGDP	GLKGDKGDVG	LPGKPGSMDK	VDMGSMKGQK
GDQGEKGQIG	PIGEKGSRGD	PGTPGVPGKD	GQAGQPGQPG	PKGDPGISGT
PGAPGLPGPK	GSVGGMGLPG	TPGEKGVPGI	PGPQGSPGLP	GDKGAKGEKG
QAGPPGIGIP	GLRGEKGDQG	IAGFPGSPGE	KGEKGSIGIP	GMPGSPGLKG
SPGSVGYPGS	PGLPGEKGDK	GLPGLDGIPG	VKGEAGLPGT	PGPTGPAGQK
GEPGSDGIPG	SAGEKGEPGL	PGRGFPGFPG	AKGDKGSKGE	VGFPGLAGSP
GIPGSKGEQG	FMGPPGPQGQ	PGLPGSPGHA	TEGPKGDRGP	QGQPGLPGLP
GPMGPPGLPG	IDGVKGDKGN	PGWPGAPGVP	GPKGDPGFQG	MPGIGGSPGI
	GVPGFQGPKG			
	LPGPEGPPGL	· -	7.7. 7.7	
	GPAGPTGPRG	, , , , , , , , , , , , , , , , , , , ,		
HSQTIDDPQC	PSGTKILYHG	YSLLYVQGNE	RAHGQDLGTA	GSCLRKFSTM
PFLFCNINNV	CNFASRNDYS	YWLSTPEPMP	MSMAPITGEN	IRPFISRCAV
CEAPAMVMAV	HSQTIQIPPC	PSGWSSLWIG	YSFVMHTSAG	AEGSGQALAS
PGSCLEEFRS	APFIECHGRG	TCNYYANAYS	FWLATIERSE	MFKKPTPSTL
KAGELRTHVS	RCQVCMRRT			

PEPTIDE FRAGMENTS FOR INDUCING SYNTHESIS OF EXTRACELLULAR MATRIX PROTEINS

This application is a continuation of application Ser. No. 5 11/811,876 filed Jun. 12, 2007, now U.S. Pat. No. 8,110,658, which claims benefit of priority to U.S. 60/813,284 filed Jun. 13, 2006, each of which is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The invention relates to tetrapeptides with the amino acid motif GxxG or PxxP, where G (glycine) and P (proline) are maintained and x is a variable amino acid. The invention also relates to frame shift active tetrapeptides which are tetrapeptide sequences shifted one frame from a GxxG or PxxP tetrapeptide in an ECM protein. In particular, the invention relates to GxxG, PxxP, or frame shift active peptides that stimulate production of extracellular matrix proteins and enhance wound closure of the epithelial cell monolayer of scratch-wounded human skin. The peptide compositions may be used in formulations for repairing damaged skin or maintaining healthy skin.

BACKGROUND OF THE INVENTION

Skin aging is commonly viewed as wrinkle formation and impaired wound healing. A wound is defined as a break in the epithelial integrity of the skin. Normal wound healing 30 involves a complex and dynamic but superbly orchestrated series of events leading to the repair of injured tissues. The largest component of normal skin is the extracellular matrix (ECM), a gel-like matrix produced by the cells that it surrounds. The ECM is composed of two major classes including 35 fibrous structural proteins and proteoglycans. Changes in the composition and crosslinked state of the ECM are known to be associated with aging and a range of acquired and heritable skin disorders. It has been well documented that ECM not only provides structural support, but also influences cellular 40 behavior such as differentiation and proliferation. Also, more and more research suggests that the matrix components may be a source of cell signals to facilitate epithelial cell proliferation and migration and thus enhance wound healing.

The largest class of fibrous ECM molecules is the collagen family, which includes at least 16 different types of collagen. Collagen in the dermal matrix is composed primarily of type I (80-85%) and type III (8-11%) collagens, both of which are fibrillar, or rod-shaped, collagens. The tensile strength of skin is due predominately to these fibrillar collagen molecules, which self-assemble into microfibrils in a head-to-tail and staggered side-to-side lateral arrangement. Collagen molecules become cross-linked to adjacent collagen molecules, creating additional strength and stability in collagen fibers. Damage to the collagen network (e.g. by enzymes or physical 55 destruction), or its total collapse causes healing to take place by repair.

Various bioactive peptides that stimulate production of ECM proteins have been reported in both the scientific literature and in issued patents. Peptides historically have been 60 isolated from natural sources and have recently been the subject of structure-function relationship studies. Natural peptides have also served as starting points for the design of synthetic peptide analogs.

Specific sequences within ECM proteins can stimulate use- 65 ful elements in skin, such as type I collagen, type III collagen, and fibronectin (Katayama et. al., J. Biol. Chem. 288:9941-

2

9944 (1983)). Katayama et al. identified the pentapeptide, KTTKS (SEQ ID NO:17), within the carboxy-terminal propeptide (residues 197-241) of type I collagen. The propeptide is cleaved during production of the mature collagen protein. The cleaved propeptide may participate in regulating collagen production via a biosynthesis feedback mechanism, with the KTTKS segment playing an active role. Maquart et al. (J Soc Biol. 193:423-28 (1999)) reported that the peptides GHK and CNYYSNS also stimulate ECM synthesis. These sequences may be released during ECM turnover, thereby signaling the need for ECM repair. The short peptide sequences liberated by either mechanism are often called "matrikines" (Maquart et al., J. Soc. Biol. 193:423-28 (1999)).

While a number of natural and synthetic peptides exist, there is a need for improved biologically active peptides and methods for their use.

SUMMARY OF THE INVENTION

Tetrapeptides are disclosed that are characterized by the amino acid sequence motif GxxG or PxxP, where G (glycine) and P (proline) residues are maintained and x is a variable amino acid. The tetrapeptides are derived from sequences that occur multiple times throughout the primary sequence of the ECM protein, type IV collagen. The disclosed sequences induce production of all forms of collagen more than previously known peptide sequences, including KTTKS, sold under the trademark MATRIXYLTM by SEDERMA SAS (France). Further, a composition comprising a combination of various multiply-repeating sequences elicits an even greater collagen-producing response. Additional benefits may be expected from peptide combinations present in a variety of ECM proteins.

Producing a specific combination of tetrapeptides for ECM rebuilding can be commercially cost-prohibitive. A relatively simple and cost-effective means of producing a diverse combination of biologically active tetrapeptides is disclosed. By producing a combinatorial library of tetrapeptides with the GxxG or PxxP motif, a variety of biologically active tetrapeptides can be generated in the same manufacturing run (e.g., GEPG, GPEG, GPPG, and GEEG). The combination of tetrapeptides may induce more formation of ECM proteins than single peptides. Compositions comprising the disclosed tetrapeptides, alone or in combination, are useful in skin care markets including, but not limited to, those that address skin wrinkling, toning, firmness, or sagging. The stimulation of collagen by the disclosed tetrapeptides can significantly improve the health and appearance of damaged and aged skin.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is SEQ ID NO:45 which is the Collagen IV amino acid sequence illustrating the occurrences of GxxG tetrapeptides. All bold sequences are underlined and overlapping sequences are double-underlined.

FIG. 2 is SEQ ID NO:46 which is the Collagen III amino acid sequence illustrating the occurrences of the frame shift actives PGPR and GAGP. All frame shift active sequences are bold and underlined and the GxxG sequences occurring one frame shift away are double-underlined.

FIG. 3 is also SEQ ID NO:45, the Collagen IV amino acid sequence, illustrating the occurrences of the tetrapeptide PGPP.

DETAILED DESCRIPTION OF THE INVENTION

The invention is generally directed towards tetrapeptides that stimulate production of ECM proteins and modulate wound healing, and uses of such tetrapeptides.

Peptides

One embodiment of the invention is directed towards an isolated tetrapeptide comprising the motif GxxG or PxxP. In this embodiment G (glycine) or P (proline) is maintained and x is a variable amino acid. The peptide can generally be any peptide that falls within the above description, and more preferably is SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12. SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, or SEQ ID NO:16.

Another embodiment of the invention is directed towards an isolated tetrapeptide comprising the motif GxPG, where x is P at either variable position, or both. In this embodiment, G (glycine) and P (proline) are maintained and x is a variable amino acid. The peptide can generally be any peptide that falls within the above description, and more preferably is SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:7.

Another embodiment of the invention is directed towards 20 an isolated tetrapeptide comprising the motif GExG. In this embodiment, G (glycine) and E (glutamic acid) are maintained and x is a variable amino acid. The peptide can generally be any peptide that falls within the above description, and more preferably is SEQ ID NO:5 or SEQ ID NO:8.

Another embodiment of the invention is directed towards an isolated tetrapeptide comprising the motif PGxP. In this embodiment, P (proline) and G (glycine) are maintained and x is a variable amino acid. The peptide can generally be any peptide that falls within the above description, and more 30 preferably is SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, or SEQ ID NO:16.

Another embodiment of the invention is directed towards an isolated tetrapeptide comprising the motif PExP. In this embodiment, P (proline) and E (glutamic acid) are main- 35 tained and x is a variable amino acid. The peptide can generally be any peptide that falls within the above description, and more preferably is SEQ ID NO:1 or SEQ ID NO:9.

Another embodiment of the invention is directed towards a frame shift active tetrapeptide. In this embodiment, the tetapeptide occurs one frame shift from either a GxxG or PxxP tetrapeptide in an ECM protein. The peptide can generally be any peptide that falls within the above description, and more preferably is SEQ ID NO:4 or SEQ ID NO:6.

Each of the above-described peptides can comprise D- or L-amino acids. The peptides can comprise all D-amino acids or L-amino acids. The peptides can have an acid C-terminus (—CO₂H) or, preferably, an amide C-terminus (—CONH₂, —CONHR, or —CONR₂). The peptides may be further augmented or modified, either chemically or enzymatically. For so example, the peptides may be amidated (—NH₂) on the C-terminus, which may render the tetrapeptide less susceptible to protease degradation and increase their solubility compared to the free acid forms. The peptides may also be lipidated which may provide for enhanced skin penetration.

The above-described peptides may contain the following amino acids: R (arginine), L (leucine), P (proline), F (phenylalanine), Q (glutamine), E (glutamic acid), I (isoleucine), K (lysine), S (serine), V (valine), A (alanine), N (asparagine), D (aspartic acid), T (threonine), Y (tyrosine) and G (glycine). 60 The above-described peptides do not include the following M (methionine), C (cysteine), H (histidine) or W (tryptophan). Accordingly, in one embodiment, x is not selected from either (methionine), C (cysteine), H (histidine) or W (tryptophan). Methods of Use

An additional embodiment of the invention is directed towards methods of using the above-described peptides. The

4

methods of use may involve the use of a single peptide, or may involve the use of two or more peptides in combination.

An embodiment of the invention is a method of promoting repair of damaged skin and maintenance of healthy skin using tetrapeptides that stimulate production of ECM proteins. The method generally is directed towards contacting dermal (skin) cells with a composition containing the peptide. The compositions can be an aerosol, emulsion, liquid, lotion, 10 cream, paste, ointment, foam, or other pharmaceutically acceptable formulation. Generally, a pharmaceutically acceptable formulation would include any acceptable carrier suitable for use on human skin, e.g. cosmetically acceptable carrier and dermatological acceptable carrier. The compositions may contain other biologically active agents such as retinoids or other peptides. The compositions may contain pharmaceutically acceptable carriers or adjuvants. The contacting step can be performed in vivo, in situ, in vitro, or by any method known to those of skill in the art. Most preferably, the contacting step is to be performed topically at a concentration sufficient to elicit a stimulatory response. The concentration of the peptide in the composition can be about 0.01 25 μg/mL to about 100 μg/mL, about 0.1 μg/mL to about 50 μg/mL, and about 0.1 μg/mL to about 1 μg/mL. The contacting step can be performed on a mammal, a cat, a dog, a cow, a horse, a pig, or a human. A preferred composition for promoting ECM protein production comprises SEQ ID NO:8; more preferably, the composition comprises SEQ ID NO:8 in a heterogeneous mixture with at least one other tetrapeptide. In a most preferred embodiment, the individual tetrapeptides in the composition would cause sustained collagen production over a period of at least 48 hours.

An additional embodiment of the invention is directed towards a method for promoting wound healing of skin damaged by normal aging, disease, injury, trauma, or by surgery or other medical procedures. The method can comprise administering to the wound of an animal a composition, wherein the composition comprises any of the above-described peptides, singularly or in combination. The compositions can be a liquid, lotion, cream, paste, ointment, foam, or any other pharmaceutically acceptable formulation. The compositions may contain pharmaceutically acceptable carriers or adjuvants. The compositions may contain other biologically active agents such as antimicrobial agents or growth factors. The compositions may also be used in combination with other therapeutic agents such as tissue grafts, tissue culture products, oxygen or dressings. The concentration of the peptide in the composition can be about 0.01 µg/mL to about 100 μg/mL, about 0.1 μg/mL to about 50 μg/mL, and about 0.1 μg/mL to about 1 μg/mL. The composition can be administered to the wound topically. The animal can generally be any kind of animal, and preferably is a mammal, and more preferably is a human, cow, horse, cat, dog, pig, goat, or sheep. A preferred composition for wound healing applications in which ECM protein production is promoted comprises SEQ ID NO:8; more preferably, the composition comprises SEQ ID NO:8 in a heterogeneous mixture with at least one other tetrapeptide. In a most preferred embodiment, the individual tetrapeptides in the composition would cause sustained collagen production over a period of at least 48 hours.

An additional embodiment of the invention is directed towards a method for reducing scarring of skin damaged by normal aging, disease, injury, trauma, or by surgery or other

medical procedures. The method can comprise administering to the wound of an animal a composition, wherein the composition comprises any of the above-described peptides, singularly or in combination. The compositions can be a liquid, lotion, cream, paste, ointment, foam, or other pharmaceuti- 5 cally acceptable formulation. The compositions may contain pharmaceutically acceptable carriers or adjuvants. The compositions may contain other biologically active agents such as antimicrobial agents or growth factors. The compositions may also be used in combination with other therapeutic 10 agents such as tissue grafts, tissue culture products, oxygen or dressings. The concentration of the peptide in the composition can be about 0.01 μg/mL to about 100 μg/mL, about 0.1 $\mu g/mL$ to about 50 $\mu g/mL$, and about 0.1 $\mu g/mL$ to about 1 μg/mL. The composition can be administered to the wound topically. The animal can generally be any kind of animal, and preferably is a mammal, and more preferably is a human, cow, horse, cat, dog, pig, goat, or sheep. A preferred composition for wound healing applications in which ECM protein production is promoted comprises SEQ ID NO:8; more preferably, the composition comprises SEQ ID NO:8 in a heterogeneous mixture with at least one other tetrapeptide. In a most preferred embodiment, the individual tetrapeptides in the composition would cause sustained collagen production over a period of at least 48 hours.

A further embodiment of the invention is directed towards a method for producing the disclosed tetrapeptides in combination. The peptides may be produced using any method known to those skilled in the art such as those disclosed in 30 Merrifield, R. B., Solid Phase Peptide Synthesis I., J. Am. Снем. Soc. 85:2149-2154 (1963); Carpino, L. A. et al., [(9-Fluorenylmethyl)Oxy|Carbonyl (Fmoc) Amino Acid Chlorides: Synthesis, Characterization, And Application To The Rapid Synthesis Of Short Peptides, J. Org. Chem. 37:51:3732-3734; Merrifield, R. B. et al., Instrument For Automated Synthesis Of Peptides, Anal. Chem. 38:1905-1914 (1966); or Kent, S. B. H. et al., High Yield Chemical Synthesis Of Biologically Active Peptides On An Automated Peptide Synthesizer Of Novel Design, IN: Peptides 1984 (Ragnarsson U., ed.) Almqvist and Wiksell Int., Stockholm (Sweden), pp. 185-188, all of which are incorporated by reference herein in their entirety. Preferably, the peptides will be produced by a machine capable of sequential addition of amino acids to a growing peptide chain. However, the peptides may also be 45 manufactured using standard solution phase methodology.

It has been observed that the addition of a mixture of free amino acids instead of homogenous peptide mixtures during peptide chain synthesis results in varied incorporation of free amino acids such that a combination of peptides results from the synthesis reactions. The relative incorporation frequency of a particular amino acid included in a mixture of two or more amino acids added during synthesis may be adjusted. Adjustment is made possible by modifying the ratio of a free

6

amino acid made available during the synthesis process relative to the other amino acids in the mixture (this is termed an isokinetic mixture).

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

EXAMPLES

Example 1

Identification of Repeat Tetrapeptide Sequences in Collagen

A relatively high proportion of collagen IV tetrapeptide repeat sequences have the motif GxxG (where x is any amino acid). A number of these are shown in situ as part of the full collagen IV sequence illustrated in FIG. 1 as SEQ ID NO:45. Collagen IV was examined first due to its role of interacting with other specialized ECM components (See Gregory Schultz et al., 2005). There are eleven sequences with the GxxG motif in collagen IV that appear more than ten times (GxxG where xx is represented by: vp, ek, fp, lp, pp, sp, ep, ip, pk, qp and tp). Of these tetrapeptide sequences, eight of eleven sequences contain proline in position 3, two of eleven sequences contain P in position 2, one of eleven sequences contains proline in positions 2 and 3, and one of eleven sequences contains no proline. The disclosed sequences are referred to as REPLIKINESTM. "REPLIKINE" is defined as a short sequence within ECM proteins that occurs multiple times (i.e., is replicated). This sequence may be present in one ECM protein (e.g., collagen IV). Preferably, the sequence is present in multiple ECM proteins (e.g., all collagens, elastin, laminin, etc.). The presence of the sequence in multiple ECM proteins increases the likelihood that the fragment may be able to promote ECM synthesis or repair.

The eleven GxxG sequences appearing in collagen IV listed above are highlighted in the human collagen IV sequence illustrated in FIG. 1. In this figure, all bold sequences are underlined and overlapping sequences are double-underlined. All but one of these sequences also appears in collagens I, II, III, and V. This fact contributes to the ability of the disclosed peptides to stimulate the production of all collagen types, particularly when the peptides are used in combination. Table 1 shows the frequency of several tetrapeptide repeats in ECM proteins. Bold sequences in Table 1 are those that appear in collagen IV ten or more times.

TABLE 1

		Freque	ency of te	etrapepti	des in E	CM prot	eins		
SEQ. ID NO	SEQ. Collagen Collagen Collagen Collagen Collagen Elastin ID NO Sequence I II III IV V Elastin Precursor								
19	GAAG	10	5	7		2	4	5	
20	GAKG	3	4	3	5	5			
21	GAPG	13	21	25	6	9			

TABLE 1-continued

Frequency of tetrapeptides in ECM proteins									
SEQ. ID NO	Sequence	_	Collagen II	Collagen III	Collagen IV	Collagen V		Elastin Precursor	
22	GDKG	2	2	4	9	3			
23	GDRG	2	5	2	4	1			
8	GEKG	3	5	4	22	15			
5	GEPG	11	15	10	11	4			
24	GERG	10	11	14	6	7			
2	GFPG	4	8	6	22	5	1	1	
25	GIPG	2	2	6	14	6	5	5	
26	GKDG	1	4	5	2	2			
27	GKPG	2	3	3	4	1			
28	GLKG	2	1	1	5	4			
29	GLPG	15	10	9	42	15	1	1	
30	GNPG	3	5	3	2	1			
31	GPAG	16	20	20	3	6			
32	GPKG	3	11	4	12	9			
7	GPPG	33	40	40	46	43			
33	GPQG	7	11	9	7	5			
34	GPRG	11	13	10	4	7			
35	GPSG	10	11	5	1	5			
36	GPTG	4	3	2	2	6			
37	GPVG	9	3	3	2	5			
38	GQPG	3	4	6	12	7			
39	GRDG	4	2	3	3				
40	GRPG	3	3	4	2	5			
3	GSPG	4	6	21	16	3			
41	GTPG	3	4	2	11	2			
42	GVKG	1	3	2	3	1			
43	GVPG		1	3	10	1	14	15	
44	GYPG	1	1	1	4	2			

As also evident from a review of the collagen IV sequence, SEQ ID NO:45, there are also many occurrences of sequences 55 having the PxxP motif For example, the sequence PGPP occurs no less than fifteen times as illustrated in FIG. 3. Therefore, this disclosed sequence is also referred to as a REPLIKINETM. Preferably, this sequence is present in multiple ECM proteins (e.g., all collagens, elastin, laminin, etc.) 60 tetrapeptide sequences occurring one amino acid frame shift as the presence of this sequence in multiple ECM proteins increases the likelihood that the fragment may be able to promote ECM synthesis or repair. The fifteen PGPP sequences appearing in collagen IV listed above are high- 65 lighted and underlined in the human collagen IV sequence illustrated in FIG. 3.

Example 2

Identification of Frame Shift Actives

In addition to the relatively high proportion of collagen IV tetrapeptide repeat sequences with the motif GxxG, other away from a GxxG or PxxP tetrapeptide sequence have been identified. These sequences may repeat or occur only once within an ECM protein and may be located one amino acid position away from either a GxxG or PxxP tetrapeptide sequence as described herein. These tetrapeptide sequences are referred to as frame shift actives. Such frame shift actives may accordingly contain either a G or a P in either the second

or third position depending on the direction of frame shift. It has been further recognized that frame shift actives may be combined with other tetrapeptide sequences disclosed in this application forming a combikine. An example of such a combikine is H06 and H15.

One example of a frame shift active is GAGP or H12 (SEQ) ID NO:6). H12 (GAGP) appears one residue (or frame) shift from the GxxG tetrapeptide GGAG in Collagen III (SEQ ID NO:46) as illustrated in FIG. 2. In this figure, all frame shift active sequences are bold and underlined and the GxxG 10 sequences occurring one frame shift away are double-underlined. Furthermore, as shown in Table 5, this tetrapeptide (GAGP) achieves good results for collagen production at 48 hours. Another example is the sequence PGPR, which is H10 $_{15}$ (SEQ ID NO:4) which occurs eleven times in Collagens I-IV. As it appears multiple times in an individual ECM protein, this tetrapeptide would further be considered a REPLIKINE. FIG. 2 (SEQ ID NO:46) illustrates several instances of this tetrapeptide with each occurring one frame shift from the 20 GxxG tetrapeptide GPRG. This particular frame shift active appears in multiple ECM proteins and therefore increases the likelihood that the fragment may be able to promote ECM synthesis or repair.

Example 3

Identification of Repeat Sequences that Stimulate Collagen Production

Several sequences identified in Examples 1 and 2 were synthesized using standard peptide chemistry and assayed for the stimulation of collagen from dermal fibroblasts. The syn- 35 thesized peptides were amidated at the C-terminus, which rendered the tetrapeptides less susceptible to protease degradation and increased their solubility compared to the free acid forms. Human dermal fibroblasts were incubated in 96-well plates at 37° C. and 5% CO₂ for 24 and 48 hours in 150 μL 40 complete cell culture media (Cascade Biologics, Portland, Oreg.; Cat. No. M-106-500), supplemented with Low Serum Growth Supplement (Cascade Biologics, Portland, Oreg.; Cat. No. S-003-10) containing sample peptides at a final peptide concentration of 50 µg/mL. Each well was seeded 45 with 10,000 cells. Following the incubation, 100-μL medium samples were recovered from each well and assayed for collagen production

The assays were performed by Tebu-bio Laboratories (France) using the SIRCOLTM Collagen Assay Kit (Biocolor 50 Assays, UK) following the manufacturer's protocol. The SIRCOLTM Collagen Assay is a quantitative dye-binding method designed for the analysis of soluble collagens released into culture medium by mammalian cells during in vitro culture. The collagen of the tested samples binds to the 55 anionic SIRCOLTM dye. The collagen-dye complexes precipitate out of solution and are pelleted by centrifugation. The recovered collagen-dye pellet was dissolved in an alkaline solution prior to absorbance measurements. Duplicate measurements were taken at the 24 and 48 hour times from two 60 separate samples. The four measurements for each sample were averaged. The absorbance of reagent blanks, collagen standards, and samples were measured at 560 nm. The reagent blank absorbance was subtracted from the absorbance from each sample at 24 and 48 hours.

Two separate data sets were used to generate two collagen standard calibration curves. The first calibration curve was

10

generated for purposes of calculating the quantity of collagen in samples H6 (combination of SEQ ID NOs:1-4), H7-H14 (SEQ ID NOs:1-8, respectively) and H15 (combination of SEQ ID NOs:5-8). The second calibration curve was generated for calculating the quantity of collagen in samples H16 (SEQ ID NO:9), H21-23 (SEQ ID NOs:10-12, respectively), H25-26 (SEQ ID NOs:13-14, respectively), or H29-30 (SEQ ID NOs:15-16, respectively), H32 (SEQ ID NO:17), H33 (combination of SEQ ID NOs:9-12), H34 (combination of SEQ ID NOs:11-14), H35 (combination of SEQ ID NOs:13-16), H36 (combination of SEQ ID NOs:1, 6, 5, 8), H37 (SEQ ID NO:17) and H38 (SEQ ID NO:8) from the absorbance measurements was created by plotting the Abs_{560 nm} of the known collagen standards versus the respective concentrations of the collagen standards (in micrograms) each time a series of assays were performed. With respect to each data set, the same calibration curve was used for samples taken at the 24 and 48 hour times (Tables 2A and 2B). Accordingly, different standard curves were prepared immediately prior to performing each series of assays.

TABLE 2A

25 _	Calibration curve for assaying collagen 5										
	Collagen standards (µg)	A _{560 nm} 24 h test	A _{560 nm} 48 h test								
30	0 5 10 25 50	0.00 0.08 0.11 0.32 0.66	0.00 0.10 0.15 0.35 0.65								

TABLE 2B

Calibration curve for assaying collagen production by peptides H16, H21-23, H25-26, and H29-38								
Collagen Standards (µg)	A _{560 nm} Assay date 1	A _{560 nm} Assay date 2						
0	0.00	0.00						
5	0.12	0.09						
10	0.14	0.15						
25	0.48	0.42						
50	0.88	0.80						

A linear regression was performed from plotting the Abs_{560 nm} values versus concentrations of the respective collagen standards using MICROSOFT EXCELTM. The regression resulted in a lines described by the formula y=0.013x for both incubation times noted in Table 2A. As the results were identical, only the 24-hour time period was used for the second series calibration curves. The formula of the line obtained on assay date 1 and assay date 2 of the second series of samples was y=0.0178x and y=0.0162x, respectively. The peptide LL-37 (SEQ ID NO:18) was used as a positive control as it has been widely reported to have an impact upon wound healing in man (Heilborn et al., The Cathelicidin Anti-Microbial Peptide LL-37 Is Involved In The Re-Epithelialization Of Human Skin Wounds And Is Lacking In Chronic Ulcer Epithelium, *J. Invest. Dermato.* 120:379-89 (2003)). The assay detection limit defined by the manufacturer is 2.5 µg.

The total amount of collagen produced in samples containing peptides was calculated from the averaged absorbance values taken at 24 hours (Table 3A) and 48 hours (Table 3B)

using the linear equation derived from the standard curve. The total amount of collagen produced in samples containing peptides H16 (SEQ ID NO:9), H21-23 (SEQ ID NOs:10-12, respectively), H25-26 (SEQ ID NOs:13-14, respectively), or H29-30 (SEQ ID NOs:15-16, respectively), H32 (SEQ ID NO:17), H33 (combination of SEQ ID NOs:9-12), H34 (combination of SEQ ID NOs:11-14), H35 (combination of SEQ ID NOs:13-16), H36 (combination of SEQ ID NO:1, 6, 5, 8), H37 (SEQ ID NO:17) and H38 (SEQ ID NO:8) was calculated from the absorbance values taken at 24 hours (Table 4A) and 48 hours (Table 4B) using the linear equation derived from the standard curve. These values were compared with peptide LL37 (SEQ ID NO:18), a peptide known to stimulate collagen. In each table, samples marked by an asterisk (*) may not be significant as the assay detection limit is 2.5 μg .

TABLE 3A

Absorbance measurements and quantification of collagen in test samples H6-H15 at 24 hours.												
SEQ ID NO	Peptides	A_{560}) nm	Average	Average minus blank	Collagen (µg)						
18	LL37	0.102	0.136	0.12	0.04	3.0						
	H6	0.084	0.140	0.11	0.03	2.5						
1	H7	0.098	0.063	0.08	0.00	0.0*						
2	H8	0.122	0.078	0.10	0.02	1.5*						
3	Н9	0.147	0.104	0.13	0.05	3.5						
4	H10	0.103	0.146	0.12	0.04	3.4						
5	H11	0.110	0.168	0.14	0.06	4.5						
6	H12	0.063	0.101	0.08	0.00	0.2*						
7	H13	0.114	0.093	0.10	0.02	1.8*						
8	H14	0.115	0.122	0.12	0.04	3.0						
	H15	0.132	0.093	0.11	0.03	2.5						
	Blank	0.074	0.076	0.08	0.00	0.0						

TABLE 3B

	Collagen (μg)	Average minus blank	Average) nm	A_{560}	Peptides	SEQ ID NO
•	5.2	0.07	0.19	0.113	0.262	LL37	18
	1.3*	0.02	0.14	0.189	0.086	H6	
	5.4	0.07	0.19	0.189	0.192	H7	1
	0.9*	0.01	0.13	0.126	0.137	H8	2
	0.0 *	0.00	0.09	0.061	0.117	H9	3
	0.0*	0.00	0.11	0.085	0.136	H10	4
	2.1*	0.03	0.15	0.181	0.113	H11	5
	3.7	0.05	0.17	0.231	0.106	H12	6
	0.2*	0.00	0.12	0.145	0.100	H13	7
	2.6	0.03	0.15	0.176	0.132	H14	8
	4.3	0.06	0.18	0.174	0.177	H15	
	0.0	0.00	0.12	0.115	0.120	Blank	

TABLE 4A

Absorbance measurements and quantification of collagen in test samples H16, H21-23, H25-26, or H29-38 at 24 hours.

SEQ ID NO) Peptides	A_{560}) nm	Average	Average minus blank	Collagen (µg)
9	H16	0.133	0.137	0.14	0.06	3.1
10	H21	0.129	0.119	0.12	0.04	2.5
11	H22	0.192	0.085	0.14	0.06	3.3
12	H23	0.090	0.073	0.08	0.00	0.1*
13	H25	0.129	0.076	0.10	0.02	1.3*

12
TABLE 4A-continued

Absorbance measurements and quantification of collagen in test samples H16, H21-23, H25-26, or H29-38 at 24 hours.

	SEQ ID NO	Peptides	A_{560}) nm	Average	Average minus blank	Collagen (µg)
0	14	H26	0.114	0.149	0.13	0.05	2.9
	15	H29	0.111	0.063	0.09	0.01	0.4*
	16	H30	0.099	0.092	0.10	0.02	0.9*
_	17	H32	0.087	0.055	0.07	-0.01	-0.5*
5		(crystals and cell					
		toxicity)					
		H33	0.086	0.125	0.11	0.03	1.4*
0		H34	0.117	0.120	0.12	0.04	2.2*
		H35	0.103	0.090	0.10	0.02	0.9*
		H36	0.105	0.128	0.12	0.04	2.1*
	17	H37 0.099 0.1		0.100	0.10	0.02	1.1*
5	8	H38	0.103	0.159	0.13	0.05	2.9
		Blank	0.072	0.086	0.08	0.00	0.0

TABLE 4B

Absorbance measurements and quantification of collagen in test samples H16, H21-23, H25-26, or H29-38 at 48 hours.

5	SEQ ID) Peptides	A_5	60 nm	Average	Average minus blank	Collagen (µg)
	9	H16	0.065	0.064	0.06	0.00	0.3*
0	10	H21	0.089	0.126	0.11	0.05	2.9
	11	H22	0.102	0.087	0.09	0.03	2.1*
	12	H23	0.093	0.082	0.09	0.03	1.7*
	13	H25	0.059	0.084	0.07	0.01	0.7*
5	14	H26	0.081	0.153	0.12	0.06	3.5
	15	H29	0.086	0.094	0.09	0.03	1.9*
	16	H30	0.083	0.101	0.09	0.03	2.0*
	17	H32	0.088	0.072	0.08	0.02	1.2*
0		(crystals and cell toxicity)					
		H33	0.096	0.092	0.09	0.03	2.1*
		H34	0.076	0.155	0.12	0.06	3.4
5		H35	0.120	0.074	0.10	0.04	2.3*
		H36	0.154	0.082	0.12	0.06	3.6
	17	H37	0.078	0.114	0.10	0.04	2.2*
	8	H38	0.123	0.089	0.11	0.05	2.8
)		Blank	0.106	0.0106	0.06	0.00	0.0

Because sample sizes were 100 µL, the concentration of collagen produced in each sample in micrograms per milliliter is determined by multiplying the amount of collagen detected by ten. The results of all samples tested are summarized in Table 5.

TABLE 5

		Collagen synthesis induced by peptides			
SEQ			[Peptide]		produced mL)
ID NO	Name	Primary sequence	(μg/mL).	24 hrs	48 hrs
1	H07	PEGP	50	0	54
2	H08	GFPG	50	15	9
3	H09	GSPG	50	35	0
4	H10	PGPR	50	34	0
	H06	H7, H8, H9, H10 (SEQ ID NOs: 1, 2, 3, 4)	50	25	13
5	H11	GEPG	50	45	21
6	H12	GAGP	50	2	37
7	H13	GPPG	50	18	2
8	H14	GEKG	50	30	26
8	H38	GEKG	0.3	29	28
	H15	H11, H12, H13, H14 (SEQ ID NOs: 5, 6, 7, 8)	50	25	43
9	H16	PEKP	50	31	3
10	H21	PKGP	50	25	29
11	H22	PGQP	50	33	21
12	H23	PGTP	50	1	17
13	H25	PMGP	50	13	7
14	H26	PGPP	50	29	35
15	H29	PQGP	50	4	19
16	H30	PGNP	50	9	20
17	H32	KTTKS (SEDERMA TM peptide)	50	na	12
17	H37	KTTKS (SEDERMA TM peptide)	0.3	11	22
	H33	H16, H21, H22, H23 (SEQ ID NOs: 9, 10, 11, 12)	50	14	21
	H34	H22, H23, H25, H26 (SEQ ID NOs: 11, 12, 13, 14)	50	22	34
	H35	H25, H26, H29, H30 (SEQ ID NOs: 13, 14, 15, 16)	50	9	23
	H36	H7, H12, H11, H14 (SEQ ID NOs: 1, 6, 5, 8)	50	21	36
18	LL37	LLGDFFRKSKEKIGKEFKRIVQRIDFLRNLVPRTES	50	30	52

All tetrapeptides tested stimulated the production of soluble collagen. Of the sequences tested, GxxG tetrapeptides with a glutamic acid in position 2 best stimulate collagen at both 24 and 48 hour time-points. These sequences are H11 (GEPG; SEQ ID NO:5), H14 (GEKG; SEQ ID NO:8) and H38 (GEKG; SEQ ID NO:8). The peptides were initially 40 screened using a peptide concentration of 50 μ g/mL. To survey the concentration effective for stimulating collagen production, H14 (SEQ ID NO:8) was also tested at 0.3 μ g/mL as H38. As shown in Table 5, H38-induced collagen stimulation 45 was not diminished at the lower concentration, indicating that the maximal stimulating concentration of SEQ ID NO:8 is at or below 0.3 μ g/mL.

To test its efficacy, SEQ ID NO:8 (H14 and H38) was compared to the peptide, LL37, (SEQ ID NO:18) which is known to stimulate collagen production. Based on the amount of collagen released by fibroblasts in response to LL37, 25 μg/mL was considered a significant amount of collagen released due to contact with a tetrapeptide. SEQ ID NO:8 55 induced about the same amount of collagen as LL37 (SEQ ID NO:18) at 24 hours. Importantly, collagen produced as a result of contact with SEQ ID NO:8 was substantially maintained for at least 48 hours. SEQ ID NO:8 was also compared to a leading skin care peptide known to stimulate collagen 60 production, KTTKS (SEQ ID NO:17) (Katayama et. al., J. BIOL. CHEM. 288:9941-9944 (1983)). KTTKS is an ingredient in the product MATRIXYLTM (SEDERMA SAS, France). SEQ ID NO:8 stimulated more collagen production than the 65 KTTKS (SEQ ID NO:17) peptide (Table 5) at 24 and 48 hours.

Example 4

Identification of Peptide Combinations that Synergistically Enhance Collagen Stimulation—COMBIKINES

Heterogeneous populations of active tetrapeptides may stimulate collagen production at a higher level than homogenous samples of tetrapeptides. The components of the heterogeneous composition are called COMBIKINESTM. COM-BIKINES are a group of REPLIKINES combined to produce a greater or broader effect upon one or more target cell types. The peptides H11 (SEQ ID NO:5), H12 (SEQ ID NO:6), H13 (SEQ ID NO:7), and H14 (SEQ ID NO:8) were combined to a final concentration of 50 μg/mL and assayed using the same protocol as for the individual peptides. As expected, the result obtained at the 24 hour time point equaled the mean of the individual induction scores. The combination of peptides at 48 hours, however, induced collagen to a level of 43 μg/mL. Surprisingly, this amount was far in excess of the anticipated mean (21 μg/mL) of the four individual peptides (see Table 5). Thus, specific combinations of peptides may stimulate collagen production to a greater degree than the individual peptides at the same concentration. Further, tetrapeptides from a variety of ECM sources such as collagen, laminin, and elastin may produce enhanced induction of a variety of ECM proteins (see Tables 1 and 5).

Example 5

Cost-Effective COMBIKINE Manufacturing for Enhancing Stimulation of Collagen Production

The high cost of peptide synthesis limits the feasibility of producing of heterogeneous compositions of bioactive peptides. The present invention greatly mitigates this limitation.

Because the presently disclosed sequences have a commonality (e.g., a glycine or proline at both termini), a range of tetrapeptides varied at positions 2 and 3 can be synthesized in a single manufacturing run. The synthetic peptides can be made by any method known in the art. (Benoiton, N., *Chemistry of Peptide Synthesis*, CRC (2005)). During manufacture

16

such that more collagen is produced by 48 hours than at 24 hours. Although within the scope of the current invention, tetrapeptides that promote production of ECM proteins at 24 hours, but show diminished production at 48 hours, are less favored. In this regard, Table 6 shows the results of the currently disclosed peptides. Preferred peptides are in bold.

TABLE 6

	Disclosed pentides													
	Disclosed peptides Released Released Significant Increase Decrease													
SEQ II NO) Peptides	Released collagen (µg/mL) 24 h	Released collagen (µg/mL) 48 h	Significant release of collagen at 24 h and 48 h	Increase in collagen release at 48 h v. 24 h	Decrease in collagen release at 48 h v. 24 h								
18	LL37	30	52	✓	✓									
	H6	25	13											
1	H7	0	54		✓									
2	H8	15	9											
3	H9	35	0			✓								
4	H10	34	0			✓								
5	H11	45	21			✓								
6	H12	2	37		✓									
7	H13	18	2											
8	H14	30	26	✓										
8	H38	29	28	✓										
	H15	25	43	✓	✓									
9	H16	31	3			✓								
10	H21	25	29	✓										
11	H22	33	21			✓								
12	H23	1	17		✓									
13	H25	13	7			✓								
14	H26	29	35	✓										
15	H29	4	19		✓									
16	H30	9	20		✓									
17	H32	NA	12											
	(crystals and cell toxicity)													
17	H37	11	22		✓									
	H33 14		21		✓									
	— H34 22		34		✓									
	H35	9	23		✓									
	H36	21	36		✓									

of the peptides, amino acid mixtures are added instead of homogenous samples. The chemistry for determining the correct ratios of amino acid concentrations added at the mixed positions to gain the desired ratio of resulting peptides has been described previously (Greenbaum et al., *Molecular and Cellular Proteomics* 1:60-68, 2002; Krstenansky et al., *Letters in Drug Design and Discovery* 1:6-13, 2004; both of which references are incorporated herein in their entirety). Using this methodology, a library of heterogeneous peptides can be made for nearly the same cost of synthesizing one peptide.

The application of this manufacturing process enables the cost-effective production of bioactive combikines. This is made possible by the unique composition of the disclosed tetrapeptides. The tetrapeptide mixtures are better suited for 55 incorporation into topical use formulations than longer peptides. Because of their length, tetrapeptides have practical and chemical advantages over longer peptides, including the following: easier incorporation and dissolution into formulations, higher skin and pore permeability, and higher production yields with easier methods of manufacturing combinations of peptides. Although not required, the ideal formulations of tetrapeptides, singly or in combination, are formulations that maintain significant collagen production at 24 hours for up to 48 hours. More preferably, the formulations would induce synthesis of ECM for the entire 48 hour period

Example 6

Collagen Stimulators Also Serve as Multi-Effector Molecules Enhancing Skin Epithelial Cell Wound Closer

Collagens are key components of all phases of wound healing. Stimulation of collagen production reflects that damage has occurred to the collagen network (e.g. by enzymes or physical destruction). Indeed, the total collapse of the collagen network in fact causes healing to take place. Therefore a collagen stimulator may also serve as a multi-effector molecule orchestrating certain matrix remodeling and enhancing wound healing.

Wound healing experiments were performed on monolayers of human skin epithelial cells (CRL-2592) plated onto 12-well plates. Cells were serum-starved for 24 hours before experimentation. Confluent monolayers of CRL-2592 were wounded using a P200 (200-µL) pipette tip. The wounds were washed and picture-documented prior to peptide treatment. Peptides were added to a final concentration from 20 to 40 µg/ml. Cells were kept in an incubator at 37° C., 5% CO₂, and 92% humidity, except when images were being captured for a short period at room temperature. Wound closure was followed at 6-hour and 10-hour time points. PBS-treated wounds were used as negative controls for comparison purposes.

Effect of peptides on human skin epithelial wound closure in vitro

	0 hr	(6 hr	1	0 hr
Compound	W-size*	W-size	% closure	W-size	% closure
PBS-1 PBS-2 SEQ ID NO: 14 SEQ ID NO: 5	36 52 25 48	29 42 12 39	19.40% 19.20% 52% 19%	21 30 2.75 30	41.70% 42.30% 89% 37.50%

*W-size: wound size (arbitrary)

In vitro monolayer wound closure is a result of cell migration, which is important in many biological processes such as embryogenesis, angiogenesis, inflammatory reactions and 15 wound repair. These processes are thought to be regulated by interactions with other cells, cytokines and ECM proteins. As shown in Table 7, SEQ ID NO:14 significantly induces wound closure compared to the effects of PBS alone. Such activity is peptide-specific as well as cell type-specific since 20 SEQ ID NO:14 does not induce wound closure in a human skin fibroblast monolayer (data not shown). SEQ ID NO:5 is also a collagen inducer, but does not enhance wound closure

18

or epithelial cell migration to any great extent compared to the effects of PBS alone. The fact that SEQ ID NO:14 induced cell migration or wound closure in a manner specific to skin epithelial cells (i.e. does not recruit fibroblasts) may add an advantage to using this peptide for skin care, since it is believed that the recruitment of large numbers of active fibroblasts to a wound site results in excess deposition and contraction of tissue resulting in scarring.

All of the compositions or methods disclosed and claimed
herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 46
<210> SEQ ID NO 1
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H7
<400> SEQUENCE: 1
Pro Glu Gly Pro
<210> SEQ ID NO 2
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H8
<400> SEQUENCE: 2
Gly Phe Pro Gly
<210> SEQ ID NO 3
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H9
<400> SEQUENCE: 3
Gly Ser Pro Gly
<210> SEQ ID NO 4
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H10
```

```
-continued -continued <400> SEQUENCE: 4
```

```
Pro Gly Pro Arg
<210> SEQ ID NO 5
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H11
<400> SEQUENCE: 5
Gly Glu Pro Gly
<210> SEQ ID NO 6
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H12
<400> SEQUENCE: 6
Gly Ala Gly Pro
<210> SEQ ID NO 7
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Peptide H13
<400> SEQUENCE: 7
Gly Pro Pro Gly
<210> SEQ ID NO 8
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H14
<400> SEQUENCE: 8
Gly Glu Lys Gly
<210> SEQ ID NO 9
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H16
<400> SEQUENCE: 9
Pro Glu Lys Pro
<210> SEQ ID NO 10
<211> LENGTH: 4
<212> TYPE: PRT
<213 > ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H21
<400> SEQUENCE: 10
```

-continued

```
Pro Lys Gly Pro
<210> SEQ ID NO 11
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H22
<400> SEQUENCE: 11
Pro Gly Gln Pro
<210> SEQ ID NO 12
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H23
<400> SEQUENCE: 12
Pro Gly Thr Pro
<210> SEQ ID NO 13
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H25
<400> SEQUENCE: 13
Pro Met Gly Pro
<210> SEQ ID NO 14
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H26
<400> SEQUENCE: 14
Pro Gly Pro Pro
<210> SEQ ID NO 15
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H29
<400> SEQUENCE: 15
Pro Gln Gly Pro
<210> SEQ ID NO 16
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide H30
<400> SEQUENCE: 16
Pro Gly Asn Pro
```

-continued

23

<210> SEQ ID NO 17 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic Peptide H32 <400> SEQUENCE: 17 Lys Thr Thr Lys Ser <210> SEQ ID NO 18 <211> LENGTH: 36 <212> TYPE: PRT <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Peptide LL37 <400> SEQUENCE: 18 Leu Leu Gly Asp Phe Phe Arg Lys Ser Lys Glu Lys Ile Gly Lys Glu 10 Phe Lys Arg Ile Val Gln Arg Ile Asp Phe Leu Arg Asn Leu Val Pro Arg Thr Glu Ser 35 <210> SEQ ID NO 19 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic Peptide <400> SEQUENCE: 19 Gly Ala Ala Gly <210> SEQ ID NO 20 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic Peptide <400> SEQUENCE: 20 Gly Ala Lys Gly <210> SEQ ID NO 21 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic Peptide <400> SEQUENCE: 21 Gly Ala Pro Gly <210> SEQ ID NO 22 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic Peptide

```
<400> SEQUENCE: 22
Gly Asp Lys Gly
<210> SEQ ID NO 23
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 23
Gly Asp Arg Gly
<210> SEQ ID NO 24
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 24
Gly Glu Arg Gly
<210> SEQ ID NO 25
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 25
Gly Ile Pro Gly
<210> SEQ ID NO 26
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 26
Gly Lys Asp Gly
<210> SEQ ID NO 27
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 27
Gly Lys Pro Gly
<210> SEQ ID NO 28
<211> LENGTH: 4
<212> TYPE: PRT
<213 > ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 28
```

```
Gly Leu Lys Gly
<210> SEQ ID NO 29
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 29
Gly Leu Pro Gly
<210> SEQ ID NO 30
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 30
Gly Asn Pro Gly
<210> SEQ ID NO 31
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 31
Gly Pro Ala Gly
<210> SEQ ID NO 32
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 32
Gly Pro Lys Gly
<210> SEQ ID NO 33
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 33
Gly Pro Gln Gly
<210> SEQ ID NO 34
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 34
Gly Pro Arg Gly
```

```
<210> SEQ ID NO 35
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 35
Gly Pro Ser Gly
<210> SEQ ID NO 36
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 36
Gly Pro Thr Gly
<210> SEQ ID NO 37
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 37
Gly Pro Val Gly
<210> SEQ ID NO 38
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 38
Gly Gln Pro Gly
<210> SEQ ID NO 39
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 39
Gly Arg Asp Gly
<210> SEQ ID NO 40
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 40
Gly Arg Pro Gly
```

```
<210> SEQ ID NO 41
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 41
Gly Thr Pro Gly
<210> SEQ ID NO 42
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 42
Gly Val Lys Gly
<210> SEQ ID NO 43
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 43
Gly Val Pro Gly
<210> SEQ ID NO 44
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide
<400> SEQUENCE: 44
Gly Tyr Pro Gly
<210> SEQ ID NO 45
<211> LENGTH: 1669
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 45
Met Gly Pro Arg Leu Ser Val Trp Leu Leu Leu Leu Pro Ala Ala Leu
                                    10
                                                        15
Leu Leu His Glu Glu His Ser Arg Ala Ala Ala Lys Gly Gly Cys Ala
                                25
Gly Ser Gly Cys Gly Lys Cys Asp Cys His Gly Val Lys Gly Gln Lys
        35
                            40
Gly Glu Arg Gly Leu Pro Gly Leu Gln Gly Val Ile Gly Phe Pro Gly
    50
                        55
Met Gln Gly Pro Glu Gly Pro Gln Gly Pro Pro Gly Gln Lys Gly Asp
65
Thr Gly Glu Pro Gly Leu Pro Gly Thr Lys Gly Thr Arg Gly Pro Pro
                                                        95
                85
                                    90
Gly Ala Ser Gly Tyr Pro Gly Asn Pro Gly Leu Pro Gly Ile Pro Gly
            100
                                105
```

						33									
											_	con	tin	ued	
Gln	Asp	Gly 115	Pro	Pro	Gly	Pro	Pro 120	Gly	Ile	Pro	Gly	Сув 125	Asn	Gly	Thr
Lys	Gly 130	Glu	Arg	Gly	Pro	Leu 135	Gly	Pro	Pro	Gly	Leu 140	Pro	Gly	Phe	Ala
Gly 145	Asn	Pro	Gly	Pro	Pro 150	Gly	Leu	Pro	Gly	Met 155	Lys	Gly	Asp	Pro	Gly 160
Glu	Ile	Leu	Gly	His 165	Val	Pro	Gly	Met	Leu 170	Leu	Lys	Gly	Glu	Arg 175	Gly
Phe	Pro	Gly	Ile 180	Pro	Gly	Thr	Pro	Gly 185		Pro	Gly	Leu	Pro 190	Gly	Leu
Gln	Gly	Pro 195	Val	Gly	Pro	Pro	Gly 200	Phe	Thr	Gly	Pro	Pro 205	Gly	Pro	Pro
Gly	Pro 210	Pro	Gly	Pro	Pro	Gly 215	Glu	Lys	Gly	Gln	Met 220	Gly	Leu	Ser	Phe
Gln 225	Gly	Pro	Lys	Gly	_	_	Gly	_		Gly 235	Val	Ser	Gly	Pro	Pro 240
Gly	Val	Pro	Gly	Gln 245	Ala	Gln	Val	Gln	Glu 250	ГÀЗ	Gly	Asp	Phe	Ala 255	Thr
Lys	Gly	Glu	Lув 260	Gly	Gln	Lys	Gly	Glu 265	Pro	Gly	Phe	Gln	Gly 270	Met	Pro
Gly	Val	Gly 275	Glu	ГÀЗ	Gly	Glu	Pro 280	Gly	Lys	Pro	Gly	Pro 285	Arg	Gly	Lys
	Gly 290			_		295	_		_		300		_		
305			_	_	310	_			_	315		_			Gly 320
	_	_		325	_			_	330		_			335	Gly -
Thr	Gly	Pro	Leu 340	GIY	GIu	гла	GIY		Arg	_	Tyr	Pro	G1y 350	Thr	Pro
Gly	Pro	Arg 355	-	Glu	Pro	Gly	Pro 360	Lys	Gly	Phe	Pro	Gly 365	Leu	Pro	Gly
Gln		_			Gly			Val	Pro	Gly	Gln 380		Gly	Ala	Pro
Gly 385	Phe	Pro	Gly	Glu	Arg 390	Gly	Glu	Lys	Gly	Asp 395	Arg	Gly	Phe	Pro	Gly 400
	Ser			405			_	_	410	_			_	415	
-	Ser		420			-		425	-	-			430		
	Сув	435		_			440	_		_		445	_		
-	450		-			455			-		460	-		-	Gly
465					470					475					Gly 480
				485					490		_			495	Ala
			500					505					510		Pro
Gly	Pro		_		Pro	_			_			_		Lys	Gly

Glu Pro Gly Glu Phe Tyr Phe Asp Leu Arg Leu Lys Gly Asp Lys Gly

												COII	C III	ueu	
	530					535					540				
Asp 545	Pro	Gly	Phe	Pro	Gly 550	Gln	Pro	Gly	Met	Pro 555	Gly	Arg	Ala	Gly	Ser 560
Pro	Gly	Arg	Asp	Gly 565	His	Pro	Gly	Leu	Pro 570	Gly	Pro	ГÀа	Gly	Ser 575	Pro
Gly	Ser	Val	Gly 580	Leu	Lys	Gly	Glu	Arg 585	Gly	Pro	Pro	Gly	Gly 590	Val	Gly
Phe	Pro	Gly 595	Ser	Arg	Gly	Asp	Thr 600	Gly	Pro	Pro	Gly	Pro 605	Pro	Gly	Tyr
Gly	Pro 610	Ala	Gly	Pro	Ile	Gly 615	Asp	Lys	Gly	Gln	Ala 620	Gly	Phe	Pro	Gly
Gly 625	Pro	Gly	Ser	Pro	Gly 630	Leu	Pro	Gly	Pro	Lув 635	Gly	Glu	Pro	Gly	Lys 640
Ile	Val	Pro	Leu	Pro 645	Gly	Pro	Pro	Gly	Ala 650	Glu	Gly	Leu	Pro	Gly 655	Ser
Pro	Gly	Phe	Pro 660	Gly	Pro	Gln	Gly	Asp 665	Arg	Gly	Phe	Pro	Gly 670	Thr	Pro
Gly	Arg	Pro 675	Gly	Leu	Pro	Gly	Glu 680	Lys	Gly	Ala	Val	Gly 685	Gln	Pro	Gly
Ile	Gly 690	Phe	Pro	Gly	Pro	Pro 695	Gly	Pro	Lys	Gly	Val 700	Asp	Gly	Leu	Pro
Gly 705	Asp	Met	Gly	Pro	Pro 710	Gly	Thr	Pro	Gly	Arg 715	Pro	Gly	Phe	Asn	Gly 720
Leu	Pro	Gly	Asn	Pro 725	Gly	Val	Gln	Gly	Gln 730	Lys	Gly	Glu	Pro	Gly 735	Val
Gly	Leu	Pro	Gly 740	Leu	Lys	Gly	Leu	Pro 745	Gly	Leu	Pro	Gly	Ile 750	Pro	Gly
Thr	Pro	Gly 755	Glu	ГÀЗ	Gly	Ser	Ile 760	Gly	Val	Pro	Gly	Val 765	Pro	Gly	Glu
His	Gly 770	Ala	Ile	Gly	Pro	Pro 775	Gly	Leu	Gln	Gly	Ile 780	Arg	Gly	Glu	Pro
Gly 785	Pro	Pro	Gly	Leu	Pro 790	Gly	Ser	Val	Gly	Ser 795	Pro	Gly	Val	Pro	Gly 800
Ile	Gly	Pro	Pro	Gly 805	Ala	Arg	Gly	Pro	Pro 810	Gly	Gly	Gln	Gly	Pro 815	Pro
Gly	Leu	Ser	Gly 820	Pro	Pro	Gly	Ile	Lys 825	_	Glu	ГÀЗ	Gly	Phe 830	Pro	Gly
Phe	Pro	Gly 835	Leu	Asp	Met	Pro	Gly 840	Pro	Lys	Gly	Asp	Lys 845	Gly	Ala	Gln
Gly	Leu 850	Pro	Gly	Ile	Thr	Gly 855	Gln	Ser	Gly	Leu	Pro 860	Gly	Leu	Pro	Gly
Gln 865	Gln	Gly	Ala	Pro	Gly 870	Ile	Pro	Gly	Phe	Pro 875	Gly	Ser	Lys	Gly	Glu 880
Met	Gly	Val	Met	Gly 885	Thr	Pro	Gly	Gln	Pro 890	Gly	Ser	Pro	Gly	Pro 895	Val
Gly	Ala	Pro	Gly 900	Leu	Pro	Gly	Glu	Lys 905	Gly	Asp	His	Gly	Phe 910	Pro	Gly
Ser	Ser	Gly 915	Pro	Arg	Gly	Asp	Pro 920	Gly	Leu	Lys	Gly	Asp 925	Lys	Gly	Asp
Val	Gly 930	Leu	Pro	Gly	Lys	Pro 935	Gly	Ser	Met	Asp	Lys 940	Val	Asp	Met	Gly
Ser 945	Met	Lys	Gly	Gln	Lуs 950	Gly	Asp	Gln	Gly	Glu 955	Lys	Gly	Gln	Ile	Gly 960

						3/											
												- (con	tin	ued	1	
Pro	Ile	Gly	Glu	Lys 965	Gly	Ser	Arg	Gly	As <u>r</u> 970		co G	ly	Thr	Pro	975	/ Val	
Pro	Gly	Lys	Asp 980	Gly	Gln	Ala	Gly	Gln 985		o G]	Ly G	ln	Pro	Gl _y 990) Lys	
Gly	Asp	Pro 995	Gly	Ile	Ser	Gly	Thr 100		o GI	Ly Z	Ala	Pro		у I 05	eu I	Pro G	1у
Pro	Lys 1010	_	y Sei	r Val	. Gl	/ Gly	-	et G	ly I	Leu	Pro		У 20	Thr	Pro	Gly	
Glu	Lys 1025	-	y Val	l Pro	Gl	/ Ile 103		ro G	ly I	?ro	Gln		У 35	Ser	Pro	Gly	
Leu	Pro 1040	_	y Asr	p Lys	Gl	/ Ala 104	-	ys G	ly (3lu	Lys		У 50	Gln	Ala	Gly	
Pro	Pro 1055		y Ile	e Gly	⁄ Il∈	e Pro		ly L	eu A	4rg	Gly		.u 165	Lys	Gly	Asp	
Gln	Gly 1070		e Ala	a Gly	7 Ph€	e Pro		ly S	er I	?ro	Gly		u 80	Lys	Gly	Glu	
Lys	Gly 1085		r Ile	e Gly	⁄ Il∈	e Pro 109		ly M	et I	?ro	Gly		r 95	Pro	Gly	Leu	
Lys	Gly 1100		r Pro	o Gly	z Sei	r Vai		ly T	yr I	?ro	Gly		r .10	Pro	Gly	Leu	
Pro	Gly 1115		а Ьуя	s Gly	/ Asp) Ly: 112		ly L	eu I	?ro	Gly		eu .25	Asp	Gly	Ile	
Pro	Gly 1130		l Lys	s Gly	⁄ Glu	ı Ala 113		ly L	eu I	Pro	Gly		ır .40	Pro	Gly	Pro	
Thr	Gly 1145		o Ala	a Gly	⁄ Glr	n Ly: 11!		ly G	lu I	?ro	Gly		er .55	Asp	Gly	Ile	
Pro	Gly 1160		r Ala	a Gly	⁄ Glu	ı Ly: 116		ly G	lu I	?ro	Gly		u .70	Pro	Gly	Arg	
Gly	Phe 1175		o Gly	/ Phe	e Pro	Gl ₃	-	la L	уs (3ly	Asp	_	ន .85	Gly	Ser	ГÀв	
Gly	Glu 1190		l Gl	/ Phe	e Pro	O Gly	•	∋u A	la (3ly	Ser		00	Gly	Ile	Pro	
Gly	Ser 1205	_	s Gly	/ Glu	ı Glr	n Gly 123	_	ne M	et (3ly	Pro		o 15	Gly	Pro	Gln	
Gly	Gln 1220		o Gly	/ Leu	ı Pro	Gly 122	•	er P	ro (3ly	His		.a 30	Thr	Glu	Gly	
Pro	Lys 1235	_	y Asr	Arg	g Gl	/ Pro		ln G	ly (Gln	Pro		У 45	Leu	Pro	Gly	
Leu	Pro 1250	_	y Pro) Met	: Gl	7 Pro		ro G	ly I	Leu	Pro		У 60	Ile	Asp	Gly	
Val	Lys 1265	_	y Asr	Lys	s Gly	/ Ası 12'		ro G	ly T	Гrр	Pro		У 75	Ala	Pro	Gly	
Val	Pro 1280	_	y Pro) Lys	Gl	/ Asj 120	_	ro G	ly I	Phe	Gln		У 90	Met	Pro	Gly	
Ile	Gly 1295	-	y Sei	r Pro	Gl _y	/ Ile		ar G	ly s	Ser	Lys		У 05	Asp	Met	Gly	
Pro	Pro 1310	_	y Val	l Pro	Gly	/ Phe		ln G	ly I	Pro	Lys		У 20	Leu	Pro	Gly	
Leu	Gln 1325	_	y Ile	e Lys	Gl	/ Asj 133		ln G	ly A	4ap	Gln		У 35	Val	Pro	Gly	
Ala	Lys 1340	-	y Leu	ı Pro	Gl	/ Pro		ro G	ly I	Pro	Pro		У 50	Pro	Tyr	Asp	
Ile	Ile 1355	_	s Gly	/ Glu	ı Pro	o Gly	•	eu P	ro (Gly	Pro		u 65	Gly	Pro	Pro	

-continued

39

Gly Leu Lys Gly Leu Gln Gly Leu Pro Gly Pro Lys Gly Gln Gln

Gly	Leu 1370	_	Gly	Leu	Gln	Gly 1375		Pro	Gly	Pro	Lys 1380	Gly	Gln	Gln
Gly	Val 1385		Gly	Leu	Val	Gly 1390	Ile	Pro	Gly	Pro	Pro 1395	Gly	Ile	Pro
Gly	Phe 1400	_	Gly	Ala	Pro	Gly 1405	Gln	Lys	Gly	Glu	Met 1410	Gly	Pro	Ala
Gly	Pro 1415		Gly	Pro	Arg	Gly 1420	Phe	Pro	Gly	Pro	Pro 1425	Gly	Pro	Asp
Gly	Leu 1430		_			Gly 1435			-		Pro 1440	Ser	Val	Asp
His	Gly 1445		Leu	Val	Thr	Arg 1450	His	Ser	Gln	Thr	Ile 1455	Asp	Asp	Pro
Gln	Cys 1460		Ser	Gly	Thr	Lys 1465	Ile	Leu	Tyr	His	Gly 1470	Tyr	Ser	Leu
Leu	Tyr 1475		Gln	Gly	Asn	Glu 1480	Arg	Ala	His	Gly	Gln 1485	Asp	Leu	Gly
Thr	Ala 1490		Ser	Сув	Leu	Arg 1495		Phe	Ser	Thr	Met 1500	Pro	Phe	Leu
Phe	Cys 1505		Ile	Asn	Asn	Val 1510	_	Asn	Phe	Ala	Ser 1515	Arg	Asn	Asp
Tyr	Ser 1520	_	_	Leu	Ser	Thr 1525		Glu	Pro	Met	Pro 1530	Met	Ser	Met
Ala	Pro 1535		Thr	Gly	Glu	Asn 1540	Ile	Arg	Pro	Phe	Ile 1545	Ser	Arg	Cys
Ala	Val 1550	Cys	Glu	Ala	Pro	Ala 1555		Val	Met	Ala	Val 1560	His	Ser	Gln
Thr	Ile 1565					Cys 1570			_	Trp	Ser 1575	Ser	Leu	Trp
Ile	Gly 1580	_	Ser	Phe	Val	Met 1585		Thr	Ser	Ala	Gly 1590	Ala	Glu	Gly
Ser	Gly 1595		Ala	Leu	Ala	Ser 1600		Gly	Ser	Cys	Leu 1605	Glu	Glu	Phe
Arg	Ser 1610		Pro	Phe	Ile	Glu 1615	_		Gly	Arg	Gly 1620	Thr	Cys	Asn
Tyr	Tyr 1625		Asn	Ala	Tyr	Ser 1630	Phe	Trp	Leu	Ala	Thr 1635	Ile	Glu	Arg
Ser	Glu 1640	Met	Phe	Lys	Lys	Pro 1645	Thr	Pro	Ser	Thr	Leu 1650	Lys	Ala	Gly
Glu	Leu 1655	Arg	Thr	His	Val	Ser 1660	Arg	Сув	Gln	Val	Cys 1665	Met	Arg	Arg
Thr														
<211 <212	0> SE(L> LE) 2> TY(3> OR(NGTH PE: 1	: 146 PRT	56	sapi	iens								
< 400)> SE	QUEN	CE: 4	16										
Met 1	Met	Ser 1		/al (3ln I	Lys G	ly Se	er Ti 10	_	eu Le	eu Lei	ı Ala	a Lei 15	ı Leu
His	Pro		Ile I 20	Ile I	Jeu A	Ala G	ln G] 25		lu Al	la Va	al Glu	ı Gly 30	/ Gl	y Cys
Ser		Leu (35	Gly (Gln S	Ger :	Гуг А. 40		sp Ai	rg As	sp Va	al Trp 45) Ly:	s Pro	Glu

											_	con	tin	ued	
Pro	Сув 50	Gln	Ile	Сув	Val	Сув 55	_	Ser	Gly	Ser	Val 60	Leu	Сув	Asp	Asp
Ile 65	Ile	Cys	Asp	Asp	Gln 70	Glu	Leu	Asp	Cys	Pro 75	Asn	Pro	Glu	Ile	Pro 80
Phe	Gly	Glu	Сув	Сув 85	Ala	Val	Сув	Pro	Gln 90	Pro	Pro	Thr	Ala	Pro 95	Thr
Arg	Pro	Pro		_	Gln	_			_		_	_	_	Pro	Gly
Pro	Pro	Gly 115	Ile	Pro	Gly	Arg	Asn 120	Gly	Asp	Pro	Gly	Ile 125	Pro	Gly	Gln
Pro	Gly 130	Ser	Pro	Gly	Ser	Pro 135	Gly	Pro	Pro	Gly	Ile 140	Сув	Glu	Ser	Сув
Pro 145	Thr	Gly	Pro	Gln	Asn 150	Tyr	Ser	Pro	Gln	Tyr 155	Asp	Ser	Tyr	Asp	Val 160
Lys	Ser	Gly	Val	Ala 165	Val	Gly	Gly	Leu	Ala 170	Gly	Tyr	Pro	Gly	Pro 175	Ala
Gly	Pro	Pro	Gly 180	Pro	Pro	Gly	Pro	Pro 185	Gly	Thr	Ser	Gly	His 190	Pro	Gly
Ser	Pro	Gly 195		Pro	Gly	Tyr	Gln 200	Gly	Pro	Pro	Gly	Glu 205	Pro	Gly	Gln
Ala	Gly 210	Pro	Ser	Gly	Pro		Gly		Pro	Gly	Ala 220	Ile	Gly	Pro	Ser
Gly 225	Pro	Ala	Gly	Lys	Asp 230	Gly	Glu	Ser	Gly	Arg 235		Gly	Arg	Pro	Gly 240
Glu	Arg	Gly	Leu		Gly			_		-	_			_	Ile
Pro	Gly	Phe	Pro 260	Gly	Met	Lys	Gly	His 265	Arg	Gly	Phe	Asp	Gly 270	Arg	Asn
Gly	Glu	Lys 275	Gly	Glu	Thr	Gly	Ala 280	Pro	Gly	Leu	Lys	Gly 285	Glu	Asn	Gly
Leu	Pro 290	Gly	Glu	Asn	Gly	Ala 295	Pro	Gly	Pro	Met	Gly 300	Pro	Arg	Gly	Ala
Pro 305	Gly	Glu	Arg	Gly	Arg 310	Pro	Gly	Leu	Pro	Gly 315	Ala	Ala	Gly	Ala	Arg 320
Gly	Asn	Asp	Gly	Ala 325	Arg	Gly	Ser	Asp	Gly 330	Gln	Pro	Gly	Pro	Pro 335	Gly
Pro	Pro	Gly	Thr 340	Ala	Gly	Phe	Pro	Gly 345		Pro	Gly	Ala	Lys 350	Gly	Glu
Val	Gly	Pro 355	Ala	Gly	Ser	Pro	Gly 360	Ser	Asn	Gly	Ala	Pro 365	Gly	Gln	Arg
Gly	Glu 370	Pro	Gly	Pro	Gln	Gly 375		Ala	Gly	Ala	Gln 380	Gly	Pro	Pro	Gly
Pro 385		Gly	Ile	Asn	Gly 390		Pro	Gly	Gly	_	_	Glu		_	Pro 400
Ala	Gly	Ile	Pro	Gly 405	Ala	Pro	Gly	Leu	Met 410	Gly	Ala	Arg	Gly	Pro 415	Pro
Gly	Pro	Ala	Gly 420	Ala	Asn	Gly	Ala	Pro 425	_	Leu	Arg	Gly	Gly 430	Ala	Gly
Glu	Pro	Gly 435	Lys	Asn	Gly	Ala	Lys 440	Gly	Glu	Pro	Gly	Pro 445	Arg	Gly	Glu
Arg	Gly 450	Glu	Ala	Gly	Ile	Pro 455	Gly	Val	Pro	Gly	Ala 460	Lys	Gly	Glu	Asp
Gly 465	Lys	Asp	Gly	Ser	Pro 470	Gly	Glu	Pro	Gly	Ala 475	Asn	Gly	Leu	Pro	Gly 480

-continue
-0011.11110

Ala Ala Gly Glu Arg Gly Ala Pro Gly Phe Arg Gly Pro Ala Gly Pro Asn Gly Ile Pro Gly Glu Lys Gly Pro Ala Gly Glu Arg Gly Ala Pro Gly Pro Ala Gly Pro Arg Gly Ala Ala Gly Glu Pro Gly Arg Asp Gly Val Pro Gly Gly Pro Gly Met Arg Gly Met Pro Gly Ser Pro Gly Gly Pro Gly Ser Asp Gly Lys Pro Gly Pro Pro Gly Ser Gln Gly Glu Ser Gly Arg Pro Gly Pro Gly Pro Ser Gly Pro Arg Gly Gln Pro Gly Val Met Gly Phe Pro Gly Pro Lys Gly Asn Asp Gly Ala Pro Gly Lys Asn Gly Glu Arg Gly Gly Pro Gly Gly Pro Gly Pro Gln Gly Pro Pro Gly Lys Asn Gly Glu Thr Gly Pro Gln Gly Pro Pro Gly Pro Thr Gly Pro Gly Gly Asp Lys Gly Asp Thr Gly Pro Pro Gly Pro Gln Gly Leu Gln Gly Leu Pro Gly Thr Gly Gly Pro Pro Gly Glu Asn Gly Lys Pro Gly Glu Pro Gly Pro Lys Gly Asp Ala Gly Ala Pro Gly Ala Pro Gly Gly Lys Gly Asp Ala Gly Ala Pro Gly Glu Arg Gly Pro Pro Gly Leu Ala Gly Ala Pro Gly Leu Arg Gly Gly Ala Gly Pro Pro Gly Pro Glu Gly Gly Lys Gly Ala Ala Gly Pro Pro Gly Pro Pro Gly Ala Ala Gly Thr Pro Gly Leu Gln Gly Met Pro Gly Glu Arg Gly Gly Leu Gly Ser Pro Gly Pro Lys Gly Asp Lys Gly Glu Pro Gly Gly Pro Gly Ala Asp Gly Val Pro Gly Lys Asp Gly Pro Arg Gly Pro Thr Gly Pro Ile Gly Pro Pro Gly Pro Ala Gly Gln Pro Gly Asp Lys Gly Glu Gly Gly Ala Pro Gly Leu Pro Gly Ile Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg Gly Glu Thr Gly Pro Pro Gly Pro Ala Gly Phe Pro Gly Ala Pro Gly Gln Asn Gly Glu Pro Gly Gly Lys Gly Glu Arg Gly Ala Pro Gly Glu Lys Gly Glu Gly Gly Pro Pro Gly Val Ala Gly Pro Pro Gly Gly Ser 835 840 845 Gly Pro Ala Gly Pro Pro Gly Pro Gln Gly Val Lys Gly Glu Arg Gly Ser Pro Gly Gly Pro Gly Ala Ala Gly Phe Pro Gly Ala Arg Gly Leu Pro Gly Pro Pro Gly Ser Asn Gly Asn Pro Gly Pro Pro Gly Pro Ser Gly Ser Pro Gly Lys Asp Gly Pro Pro Gly Pro Ala Gly Asn Thr Gly

						10											
												_	cor	ntir	iued	<u>1</u>	
			900					90)5					910)		
Ala	Pro	Gly 915	Ser	Pro	Gly	Val	Ser 920		.у Р	ro L	ys (Gly	Asp 925		a Gly	/ Gln	
Pro	Gly 930	Glu	Lys	Gly	Ser	Pro 935	Gly	/ Al	.a G	ln G	_	Pro 940	Pro	Gl _y	/ Ala	a Pro	
Gly 945	Pro	Leu	Gly	Ile	Ala 950	Gly	Ile	e Th	ır G	-	la 2 55	Arg	Gly	z Lei	ı Ala	a Gly 960	
Pro	Pro	Gly	Met	Pro 965	Gly	Pro	Arg	g Gl	-	er P 70	ro (Gly	Pro	Glr	n Gly 979	y Val	
Lys	Gly	Glu	Ser 980	Gly	ГÀз	Pro	Gly	7 Al 98		sn G	ly :	Leu	Ser	Gl _y	•	ı Arg	
Gly	Pro	Pro 995	Gly	Pro	Gln	Gly	Leu 100		ro (Gly	Leu	Ala		y 7	Chr A	Ala Gl	У
Glu	Pro 1010	_	/ Arg	y Asr	Gly	7 Ası 101		ro	Gly	Ser	As _]	_	Ly 020	Leu	Pro	Gly	
Arg	Asp 1025	_	/ Ser	r Pro	o Gly	7 Gly 103		'ns	Gly	Asp	Ar	_	Ly 035	Glu	Asn	Gly	
Ser	Pro 1040	_	⁄ Ala	a Pro	Gly	7 Ala 104		ro	Gly	His	Pro		Ly 050	Pro	Pro	Gly	
Pro	Val 1055	_	/ Pro	> Ala	a Gly	7 Ly: 106		er	Gly	Asp	Ar	_	Ly 065	Glu	Ser	Gly	
Pro	Ala 1070	_	/ Pro	> Ala	a Gly	7 Ala 10		ro	Gly	Pro	Al		Ly 080	Ser	Arg	Gly	
Ala	Pro 1085	_	7 Pro	Glr	n Gly	7 Pro		arg	Gly	Asp	Lу		Ly 095	Glu	Thr	Gly	
Glu	Arg 1100	_	/ Ala	a Ala	a Gly	7 Ile 110		ıХа	Gly	His	Ar	_	ly L10	Phe	Pro	Gly	
Asn	Pro 1115	_	/ Ala	a Pro	Gly	7 Set 112		ro	Gly	Pro	Al		ly 125	Gln	Gln	Gly	
Ala	Ile 1130	_	/ Ser	Pro	Gly	7 Pro		Ala	Gly	Pro	Arg	_	Ly L40	Pro	Val	Gly	
Pro	Ser 1145	_	/ Pro	Pro	Gly	и Буя 115		ap	Gly	Thr	Se:		Ly L55	His	Pro	Gly	
Pro	Ile 1160	_	7 Pro) Pro	o Gly	7 Pro		arg	Gly	Asn	Ar	_	Ly L70	Glu	Arg	Gly	
Ser	Glu 1175	_	/ Ser	Pro	Gly	7 His		ro	Gly	Gln	Pro		ly 185	Pro	Pro	Gly	
Pro	Pro 1190	_	/ Ala	a Pro	Gly	7 Pro		Àa	Cys	Gly	Gl	_	al 200	Gly	Ala	Ala	
Ala	Ile 1205		a Gly	⁄ Il∈	e Gly	7 Gly 121	•	lu	Lys	Ala	Gl	_	Ly 215	Phe	Ala	Pro	
Tyr	Tyr 1220	_	/ Asp	Glu	ı Pro	Met 122		ap	Phe	Lys	Il		sn 230	Thr	Asp	Glu	
Ile	Met 1235		s Ser	: Lei	ı Lys	Sei 124		al	Asn	Gly	Gl		Le 245	Glu	Ser	Leu	
Ile	Ser 1250) Asp	Gl _y	/ Ser	125	_	īÀa	Asn	Pro	Al		rg 260	Asn	Cys	Arg	
Asp	Leu 1265	-	B Ph∈	е Суя	s His	Pro 127		Hu	Leu	Lys	Se:		Ly 275	Glu	Tyr	Trp	
Val	Asp 1280) Asn	n Glr	n Gly	Cy:		'ns	Leu	Asp	Al		Le 290	Lys	Val	Phe	
Cys	Asn 1295		: Glu	ı Thi	Gly	7 Glu 130		hr.	Cys	Ile	Se:		La 305	Asn	Pro	Leu	

-continued

Asn Val Pro Arg Lys His Trp Trp Thr Asp Ser Ser Ala Glu Lys 1310 1315 1320 Lys His Val Trp Phe Gly Glu Ser Met Asp Gly Gly Phe Gln Phe 1325 1330 1335 Ser Tyr Gly Asn Pro Glu Leu Pro Glu Asp Val Leu Asp Val Gln 1340 1345 1350 Leu Ala Phe Leu Arg Leu Leu Ser Ser Arg Ala Ser Gln Asn Ile 1355 1360 1365 Thr Tyr His Cys Lys Asn Ser Ile Ala Tyr Met Asp Gln Ala Ser 1370 1375 1380 Gly Asn Val Lys Lys Ala Leu Lys Leu Met Gly Ser Asn Glu Gly 1385 1390 1395 Glu Phe Lys Ala Glu Gly Asn Ser Lys Phe Thr Tyr Thr Val Leu 1400 1405 1410 Glu Asp Gly Cys Thr Lys His Thr Gly Glu Trp Ser Lys Thr Val 1415 1420 1425 Phe Glu Tyr Arg Thr Arg Lys Ala Val Arg Leu Pro Ile Val Asp 1430 1435 1440 Ile Ala Pro Tyr Asp Ile Gly Gly Pro Asp Gln Glu Phe Gly Val 1445 1450 1455 Asp Val Gly Pro Val Cys Phe Leu 1460 1465

30

What is claimed is:

- 1. A tetrapeptide capable of inducing production of extracellular matrix proteins, wherein the amino acid sequence of the tetrapeptide consists of SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, or SEQ ID NO:16 having an acid or amidated carboxy-terminus.
- 2. A composition comprising at least one tetrapeptide of claim 1 and a pharmaceutically acceptable carrier.
- 3. The composition of claim 2, wherein the tetrapeptide is present in a concentration ranging from about 0.1 μ g/mL to about 50 μ g/mL.
- 4. The composition of claim 2, wherein the composition is in the form of an aerosol, emulsion, liquid, lotion, cream, paste, ointment, or foam.
- 5. A method for stimulating the production of collagen in a human in need thereof, the method comprising administering 45 to said human a therapeutically effective amount of the composition of claim 2.
- 6. The method of claim 5, wherein the therapeutically effective concentration is in the range of about 0.1 μ g/mL to about 50 μ g/mL of tetrapeptide.

- 7. The method of claim 5, wherein the administering to said human a therapeutically effective amount of the composition promotes wound healing of damaged skin.
- **8**. The tetrapeptide of claim **1**, wherein the tetrapeptide is SEQ ID NO:10.
- 9. The tetrapeptide of claim 1, wherein the tetrapeptide is SEQ ID NO:9.
- 10. The method of claim 7, wherein said damaged skin is a result of aging, disease, injury, trauma, or surgery.
- 11. The composition of claim 2 which further comprises a retinoid.
- 12. The method of claim 7 wherein the composition is administered topically to a site of damaged skin.
- 13. A skincare composition comprising at least one tetrapeptide of claim 1 and a dermatological acceptable carrier.
- 14. The skincare composition of claim 13, wherein the composition is in the form of an aerosol, emulsion, lotion, cream, paste, ointment, or foam.

* * * * *