12 United States Patent

US008656462B2

(10) Patent No.: US 8,656.462 B2

Kailash et al. 45) Date of Patent: Feb. 18, 2014
(54) HTTP AUTHENTICATION AND 388% 8(13% 3% i S; 3882 gll‘fJWIl et ﬂil*
1 iver et al.
AUTHORIZATION MANAGEMENT 2004/0039909 Al1* 2/2004 Chengccoooevvvinnnnnn, 713/169
2004/0088349 Al* 5/2004 Becketal 709/203
(75) Inventors: Kailash Kailash, San Jose, CA (US); 2006/0021004 Al* 1/2006 Moranetal. 726/2
Shashidhara Mysore Nanjundaswamy, 2006/0059564 Al* 3/2006 Tanetal.cccceennn. 726/27
: : 2006/0083165 Al 4/2006 McLane et al.
Eingzlore (IN)’I‘;"_meatIl; Mlllllil‘:k’ 2006/0112016 Al 5/2006 Ishibashi
andannagar (IN); Jose Raphel, 2006/0156352 Al* 7/2006 Smithetal.ccoco......... 725/86
Austin, TX (US) 2006/0185007 Al 82006 Hourselt
2006/0230265 Al 10/2006 Krishna
(73) Assignee: Zscaler, Inc., San Jose, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1236 days. WO WO 02/39237 A2 5/2002
(21) Appl. No.: 12/179,403 OTHER PUBLICATIONS
_ Garbriel Lope et al., Jul. 28, 2005, “A network access control
(22) Filed: Jul. 24, 2003 approach based on the AAA architecture and authorization
_ o attributes” , Journal of Network and Computer Applications, pp.
(65) Prior Publication Data 900-919 *
US 2010/0024006 Al Jan. 28, 2010 (Continued)
(1) Int. CI, Primary Examiner — Luu Pham
Go6l 7704 (2006.01) Assistant Examiner — Canh Le
(52) U.S. (1
e | | | | | (74) Attorney, Agent, or Firm — Clements Bernard PLLC;
USPC 726/4; 726/2;°726/3;726/5; 726/6; [awrence A. Baratta, Ir.; Christopher L. Bernard
713/166; 713/170;°709/201; 709/202; 709/203;
709/223 (57 ABSTRACT
58) Field of Classification S h
(58) UlSePCO ASSTICATION SEATt 796/4 Systems, methods and apparatus for a distributed security that
Qoo apphcatlon file for ¢ ompletesearchhlstory provides authentication and authorization management. The
| system can 1nclude a state manager that 1s used to identity and
(56) References Cited maint:ain the source associated with a client browser that
submits requests to the state manager. The state manager can
U.S. PATENT DOCUMENTS allow requests that are authorized and request authorization
| for requests that are not. The state manager can maintain the
gag(ﬁ'a é gi g) g//{ 3883 ﬁOOd etal. ... e 713/155 states associated with each domain to reduce the number of
6779118 BI 2/2004 Ikﬁg’;nﬁfz :1[a transaction needed to authenticate and/or authorize subse-
7:827:3 1R B2%* 11/2010 Hinton et al 709/250 quent requests to the same domain or to different domains.
2002/0023159 Al1* 2/2002 Vangeetal. 709/228

2002/0169961 Al 11/2002 Giles et al.

19 Claims, 12 Drawing Sheets

Q

Start)

Receive a request for a domain —)
1102

Allow requsst —

Request includes
dormain authorization

Yes

1104

il

Request authorized user

1103; data

Generate domain
authcorization data

l

Request user

Allow request

authorization

|

Provide the domain
authorization data to
the client browser

US 8,656,462 B2

Page 2
(56) References Cited 2009/0320115 A1* 12/2009 Deanetal.cooeevvvnne... 726/8
2010/0017596 Al 1/2010 Schertzinger
UUS. PATENT DOCUMENTS 2010/0042735 A1* 2/2010 Blinnetal. 709/229

2006/0288213 Al 12/2006 Gasparini et al. OTHER PUBLICATIONS
2007/0124482 Al 5/2007 Lee et al. . L .
2007/0220259 A | 0/7007 Pavlicic Alz.m H. Karp, | Authozzatlon-Based Access (;ontrol for th: Services
2008/0060061 Al* 3/2008 Deshpande et al. ... 726/5 Orented Architecture”, IEEE Computer Society, pp. 1-8.
2008/0195740 Al* 8/2008 Towelletal 709/220 Sunan Shen & Shaohua Tang, “Cross-Domain Grid Authentication
2008/0235522 Al 0/2008 Suzuki et al. and Authorization Scheme Based on Trust Management and Delega-
2008/0301444 A1 12/2008 Kim et al. tion”, IEEE Computer Society, pp. 339-404 .*
2009/0080661 Al 3/2009 Brown et al. International Search Report and the Written Opinion of the Interna-
2009/0132713 Al1* 5/2009 Duttaetal. ..oooovivvivinnins 709/227 tional Searching Authority, or the Declaration, PCT/US2009/
2009/0228357 Al 9/2009 Turakhia 051668, Feb. 22, 2010, 12 pages.
2009/0235069 Al 9/2009 Sonnega et al.
2009/0319769 A1 12/2009 Betouin et al. * cited by examiner

US 8,656,462 B2

Sheet 1 of 12

Feb. 18, 2014

U.S. Patent

asldiaug

00¢

0t¢

0Ll

0Ll

U.S. Patent Feb. 18, 2014 Sheet 2 of 12 US 8,656,462 B2

110

Data Inspection
Engine

14

0
Logging Node
Manager 101

120

Epoch Manager

128 126

Authority Node Manager
122

U.S. Patent Feb. 18, 2014 Sheet 3 of 12 US 8,656,462 B2

‘)’ 300

304
Verified User Credenasﬁ

Unauthenticated Authorization For
User A Location

302

300 308
N

Authorization For A Domai

New Domain Encountered

FIG. 3

U.S. Patent Feb. 18, 2014 Sheet 4 of 12 US 8,656,462 B2

402 10T 180 404
Client Processing Access .
406 ={ Request; <URL> STATE: UA
302
408 < Response: Redirect to PN ? <URL>
410 =] Request: PN ? <URL> >
412 < Response: Redirect to AA ? <URL>
414 =1 Request: <AA> 7 <URL> >
416 < Response: Unauthorized 401
118 Request: <AA> ? <URL>
Authorization Information
420 < Response: Redirect to PN ? <URL> ? <Ticket>
o __f_:__:f___ 1 stATE Al
422 =1 Request: PN ? <URL> ? <Ticket> 304
424 Response: Redirect to <URL> ? <Ticket>
Authorization Token PN
o - N1 stAatE AU
426 =] Request: <URL> 7 <Ticket> > 306
 Request: <URL> > 428
< Response. OK 430
Response: Ok
432 Authorization Token Domain1
1 ~ 1 1 sAEA]
'd 08
400 FIG. 4

U.S. Patent Feb. 18, 2014 Sheet 5 of 12 US 8,656,462 B2

402

Client
Browser

110 180 404

Processing
Node

STATE: AD
308

502 =] Request: <URL>

Authorization Token Domain1

504

Request: <URL> >

Response: OK

506

508

< Response: Ok

500

FIG. 5

U.S. Patent Feb. 18, 2014 Sheet 6 of 12 US 8,656,462 B2

402 110 180 620
Client Processing ACCeSS New
Browser Node Agent Target Site
N
602 =] Request: <URL2> ﬁ}
Lﬁ
/
604 = (Response: Redirectto PN ? <URL2>
Y
\
506 =] Request: PN ? <URL2> \
Request: Authorization Token PN /
/
/
608 ={(Response: Redirect to <URL2> ? <Ticket>
H‘
-1 1 1 smmEaAa|
\ 306
010 ™| Request: <URL2> ? <Ticket> }
/
N
Request: <URLZ2>) 612
/
) |
(Response: OK P 614
/ \ FIG. 7
518 <f Response: Ok
\ Authorization Token Domain2
x\\l
-1 1 | SsTATE:AD|
308
600 f’

FIG. 6

. Ol

_le Jasn

pPajedljusyiny

_ 807 >
90, 087

1Sanbay
1USDY SS920V

uonezuoyny

US 8,656,462 B2

e
Ble uoneanuayiny 7 uoneoiusyIny J 9
\ c— — — — S——
o PIuods)
80/
= 4z 0}L
M T ono us)o]
- o\m "\._o. _w N 9)BID0SSY o
2 T a6 ez Uy osmor
ocl Jusl om
lobeuep gg !

) yood3 eg
~
) eled
- UOIIBZIIOYINY Uz
o 80/
e UaXO |

9]BI00SSY oL e1eq
— uoleonuayiny
Ol :©pON buissaoo.id 1s9Nnbay
ST T YN
5911 q917 oIpoN ¢
JaunuLp| | [J84IUSPI M yonezuouyiny | 20,

92.1N0S 4yood3

U.S. Patent

U.S. Patent Feb. 18, 2014 Sheet 8 of 12 US 8,656,462 B2

800 Receilve a request for a domain from a client browser
304 Identity authorized user data associated with the request

808 Identify the communication address of the request

Associate the communication address of the request with the
808 authorized user data

Encrypt the authorized user data and the associated
communication address of the request to generate associated
310 authorization data

Provide the associated authorization data to the client browser at
812 the communication address of the request

FIG. 8a

U.S. Patent Feb. 18, 2014 Sheet 9 of 12 US 8,656,462 B2

Receive a request for a domain from a client browser and
852 . L
associated authorization data

ldentify a source communication address associated with the
client browser

854
Decrypt the associated authorization data into authorized user
- data and a request communication address
858
Source communication
address the same as the request
communication address?
860

862 L
Allow the request Request user authorization

End

FIG. 8b

U.S. Patent Feb. 18, 2014 Sheet 10 of 12 US 8,656,462 B2

00 — Receive authenticated user data at an authority node
004 G Define a plurality of epochs
| Associate the authenticated user data with the current epoch
906
508 C Obtain an epoch key pair for the current epoch
— Encrypt the associated authenticated data with a private epoch
910 key for the current epoch to generate authentication qata
Provide a public epoch key for the current epoch and the
912 = authentication data to an external security service
NO
Current epoch
914 expired?
YES
416 Obtain a new epoch key pair for the new epoch
018 Associate the authenticated user data with the new epoch
Encrypt the associated authenticated data with a new private
020 epoch key for the new epoch to generate new authentication
data
Provide a new public epoch key for the new epoch and the new
022 authentication data to an external security service

End
FIG. 9

U.S. Patent Feb. 18, 2014 Sheet 11 of 12 US 8,656,462 B2

Recelve a public epoch key)
Recelve authorized user data)

Decrypt the authorized user data
with the public epoch key L 1006

N\ Decrypt with previous
O epoch key 1014

1002

1004

Valid Decryption?

A

1008
Valid Decryption?
i Yes
1016
Valid Prior
Epoch Id?
No
1020
1018
Yes
1010 e

Yes Renew authorized
user data
Allow request 1024
1012
Allow request

End

FIG. 10

U.S. Patent Feb. 18, 2014 Sheet 12 of 12 US 8,656,462 B2

Recelve a request for a domain

1102

1104

Request includes

Yes domain authorization No
data?
Request authorized user
1108 data
Allow request
1106

1110

Yes Authorized User?

(Generate domain 112

authorization data No
1118

Request user
authorization
Allow request

1114

Provide the domain

authorization data to
the client browser 1116

End
FIG. 11

US 8,656,462 B2

1

HTTP AUTHENTICATION AND
AUTHORIZATION MANAGEMENT

BACKGROUND

This disclosure relates to security provisioning.

The prevalence and accessibility of computer networks
requires security measures to protect valuable information.
An enterprise that implements the security system canrequire
a user to be authenticated and authorized before using the
network. The authentication and authorization checks 1n the
security system are prone to processing ineificiencies and can
require many resources within the enterprise to maintain the
systems. For example, the security system may require mul-
tiple analysis of the request to determine 11 the user that
submitted the request 1s authenticated and authorized.

Additionally, the authentication and authorization data that
maintains the state of the user can be subject to replay attacks
by unauthorized users. For example, an unauthorized user can
attempt to generate fraudulent authorization or authentication
data. Other unauthorized users can attempt to improperly
obtain authentication and authorization data that 1s directed to
a valid user through theft.

SUMMARY

The subject matter described i1n this specification 1s
directed to distributed security provisioning. Security pro-
cessing for an enterprise can, for example, be provided exter-
nal to a network edge of the enterprise.

In general, one aspect of the subject matter described in this
specification can be embodied 1n methods that include the
actions of recewving at a processing node a request for a
domain from a client browser; determining at the processing
node whether the request includes domain authorization data
for the requested domain; if the request for the domain
includes the domain authorization data, allowing the request;
if the request for the domain does not include the domain
authorization data, requesting authorized user data from the
client browser; 1n response to the request for the authorized
user data, determining 1f the client browser provided the
authorized user data; 1f the client browser provided the autho-
rized user data, generating at the processing node the domain
authorization data, providing the domain authorization data
to the client browser, and allowing the request for the domain;
and 11 the client browser did not provide the authorized user
data, requesting user authorization from the client browser.
Other implementations of this aspect include corresponding
systems, apparatus, and computer program products.

Another aspect of the subject matter described 1n this
specification can be embodied 1n methods that include the
actions of recerving at a processing node a first request for a
domain from a client browser, the client browser associated
with a first communication address; identifying a first autho-
rized user data associated with the first request; identifying at
the processing node the first communication address associ-
ated with the client browser; associating at the processing
node the first communication address of the client browser
with the first authorized user data; encrypting at the process-
ing node the first authorized user data and the associated first
communication address to generate a first associated autho-
rization data; and providing the first associated authorization
data to the client browser at the first communication address.
Other implementations of this aspect include corresponding
systems, apparatus, and computer program products.

Another aspect of the subject matter described 1n this
specification can be embodied 1n methods that include the

10

15

20

25

30

35

40

45

50

55

60

65

2

actions recerving authenticated user data at an authority node;
defining a plurality of epochs, each epoch 1dentified by an
epoch 1d; associating the authenticated user data with a cur-
rent epoch ID for a current epoch; obtaining a current epoch
key pair for the current epoch, the current epoch key pair
comprising a current public epoch key and a current private
epoch key, wherein one attribute of the current public epoch
key 1s the current epoch 1d; encrypting the associated authen-
ticated user data with the current private epoch key to gener-
ate authentication data; providing the current public epoch
key to an external security service; and providing the authen-
tication data to the external security service. Other implemen-
tations of this aspect include corresponding systems, appara-
tus, and computer program products.

Another aspect of the subject matter described 1n this
specification can be embodied 1n methods that include the
actions receiving at a processing node a current public epoch
key of a current epoch key pair, wherein one attribute of the
current public epoch key 1s a current key epoch ID that 1den-
tifies the current epoch of the current public epoch key;
receiving at the processing node authorized user data associ-
ated with a request; decrypting at the processing node the
authorized user data using the public epoch key; determining
if the decryption of the authorized user data was successiul; 1f
the decryption of the authorized user data was successiul,
identifying at the processing node a user epoch ID from the
decrypted authorized user data; comparing at the processing
node the user epoch ID to the current key epoch ID of the
current public epoch key; determining at the processing node
whether the user epoch ID 1s a valid epoch 1d; 11 the user epoch
ID 1s a valid epoch ID, processing the decrypted user data and
the request. Other implementations of this aspect include
corresponding systems, apparatus, and computer program
products.

The details of one or more embodiments of the subject
matter described in this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a distributed security system.

FIG. 2 1s a block diagram of the system of FIG. 1 in which
the components of FIG. 1 are 1llustrated 1n more detail.

FIG. 3. 1s a state diagram of the diflerent states maintained
by a state manager.

FIG. 4 1s an example timing diagram of the management of
unauthenticated and unauthorized requests by the state man-
ager.

FIG. 5 1s an example timing diagram of the management of
a subsequent request to an authorized domain by the state
manager.

FIG. 6 1s an example timing diagram of the management of
a request to an unauthorized domain by an authorized user by
the state manager.

FIG. 7 1s an example communication flow across a secured
network.

FIG. 8A 1s a flow diagram of an example process for
preventing authorization data from being improperly
obtained.

FIG. 8B 1s a flow diagram for handing authorization data
that include source data.

FIG. 9 15 a flow diagram of an example process for gener-
ating authentication data associated with an epoch.

US 8,656,462 B2

3

FIG. 10 1s a flow diagram of an example process for han-
dling authentication data associated with an epoch.

FIG. 11 1s a flow diagram of an example process for han-
dling authorized and unauthorized requests at a processing
node.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram of a distributed security system
100. The system 100 can, for example, be implemented as an
overlay network 1n a wide area network (WAN), such as the
Internet. The system 100 includes content processing nodes
110 that detect and preclude the distribution of security
threats, e.g., malware, spyware, and other undesirable content
sent from or requested by an external system. Example exter-
nal systems can include an enterprise 200, a computer device
220, and a mobile device 230, or other network and comput-
Ing systems.

§1.0 Example High Level System Architecture

In an example implementation, each processing node 110
can include a decision system, e.g., data inspection engines
that operate on a content 1tem, e.g., a web page, a file, an
¢-mail message, or some other data or data communication
that 1s sent from or requested by one of the external systems.
In some 1mplementations, all data destined for or recerved
from the Internet 1s processed through a processing node 110.
In other implementations, specific data specified by each
external system, e.g., only e-mail, only executable files, etc.,
1s processed through a processing node 110.

Each processing node 110 can generate a decision vector
D=[d1, d2, . . ., dn] for a content 1tem of one or more parts
C=[cl,c2,...,cm]. Each decision vector can 1dentily a threat
classification, e.g., clean, spyware, malware, undesirable
content, innocuous, unknown, etc. For example, the output of
cach element of the decision vector D can be based on the
output of one or more data inspection engines. In some imple-
mentations, the threat classification can be reduced to a subset
of categories e.g., violating, non-violating, neutral, unknown.
Based on the subset classification, a processing node 110 may
allow distribution of the content item, preclude distribution of
the content item, allow distribution of the content item after a
cleaning process, or perform threat detection on the content

item.

In some implementations, the actions taken by a processing,
node 110 can be determinative on the threat classification of
the content item and on a security policy of the external
system to which the content 1tem 1s being sent from or from
which the content 1tem 1s being requested by. A content 1item
1s violating if, for any part C=[cl, c2, .. ., cm] of the content
item, at any processing node 110, any one of the data inspec-
tion engines generates an output that results 1n a classification
of “violating.”

Each processing node 110 can be implemented by a plu-
rality of computer and communication devices, €.g., server
computers, gateways, switches, etc. In some 1mplementa-
tions, the processing nodes 110 can serve as an access layer
150. The access layer 150 can, for example, provide external
system access to the security system 100. In some implemen-
tations, each processing node 110 can include Internet gate-
ways and a plurality of server computers, and the processing,
nodes 110 can be distributed through a geographic region,
e.g., throughout a country. According to a service agreement
between a provider of the system 100 and an owner of an

10

15

20

25

30

35

40

45

50

55

60

65

4

external system, the system 100 can thus provide security
protection to the external system at any location throughout
the geographic region.

Data communications can be monitored by the system 100
in a variety of ways, depending on the size and data require-
ments of the external system. For example, an enterprise 200
may have multiple routers that are used to communicate over
the Internet, and the routers may be configured to establish
communications through the nearest (1n traffic communica-
tion time) processing node 110. A mobile device 230 may be
configured to communication to a nearest processing node
110 through any available wireless access device, such as an
access point, or a cellular gateway. A single computer device
220, such as a consumer’s personal computer, may have 1ts
browser and e-mail program configured to access the nearest
processing node 110, which, 1n turn, serves as a proxy for the
computer device 220. Alternatively, an Internet provider may
have all of 1ts customer traific processed through processing
nodes 110.

In some 1mplementations, the processing nodes 110 can
communicate with one or more authority nodes 120. The
authority nodes 120 can store policy data for each external
system and can distribute the policy data to each processing
node 110. The policy data can, for example, define security
policies for a protected system, e.g., security policies for the
enterprise 200. Example policy data can define access privi-
leges for users, web sites and/or content that 1s disallowed,
restricted domains, etc. The authority nodes 120 can distrib-
ute the policy data to the processing nodes 110.

In some 1implementations, each authority node 120 can be
implemented by a plurality of computer and communication
devices, e.g., server computers, gateways, switches, etc. In
some 1mplementations, the authority nodes 110 can serve as
an application layer 160. The application layer 160 can, for
example, manage and provide policy data, threat data, and
data inspection engines 117 and dictionaries for the process-
ing nodes.

Other application layer functions can also be provided 1in
the application layer, such as a user interface front-end 130.
The user iterface front-end 130 provides a user interface
through which users of the external systems can provide and
define security policies, e.g., whether e-mail traffic 1s to be
monitored, whether certain web sites are to be precluded, eftc.

Another application capability that can be provided
through the user interface front-end 130 1s security analysis
and log reporting. The underlying data on which the security
analysis and log reporting functions operate are stored 1n
logging nodes 140, which serve as a data logging layer 170.
Each logging node 140 can store data related to security
operations and network traflic processed by the processing
nodes 110 for each external system.

In some implementations, the logging node 140 data can be
anonymized so that data identifying an enterprise 1s removed
or obfuscated. For example, identifying data can be removed
to provide an overall system summary of security processing
for all enterprises and users without revealing the 1dentity of
any one account. In another example, identifying data can be
obfuscated, e.g., provide a random account number each time
it 1s accessed, so that an overall system summary of security
processing for all enterprises and users can be broken out by
accounts without revealing the 1dentity of any one account. In
other implementations, the 1dentifying data and/or logging
node 140 data can be further encrypted, e.g., so that only the
enterprise (or user 1f a single user account) can have access to
the logging node 140 data for 1ts account. Other processes of
anonymizing, obiuscating, or securing logging node 140 data
can also be used.

US 8,656,462 B2

S

In some implementations, an access agent 180 can be
included 1n the external systems. For example, an access
agent 180 1s deployed in the enterprise 200. The access agent
180 can, for example, facilitate security processing by pro-
viding a hash index of files on a client device to a processing
node 110, or can facilitate authentication functions with a
processing node 110, e.g., by assigning tokens for passwords
and sending only the tokens to a processing node so that
transmission of passwords beyond the network edge of the
enterprise 1s mimmized. Other functions and processes can
also be facilitated by an access agent 180.

In some 1implementations, the processing node 110 may act
as a forward proxy that receirves user requests to external
servers addressed directly to the processing node 110. In
other implementations, the processing node 110 may access
user requests that are passed through processing node 110 1n
the transparent mode. A protected system, e.g., enterprise
200, can, for example, choose one or both of these modes.

For example, a browser may be configured either manually
or through an access agent 180 to access a processing node
110 1n a forward proxy mode. In the forward proxy mode, all
accesses are addressed to processing node 110.

In another example, an enterprise gateway can be config-
ured so that user requests are routed through the processing,
node 110 by establishing a communication tunnel between
enterprise gateway and the processing node. For establishing
the tunnel, existing protocols such as generic routing encap-
sulation (GRE), layer two tunneling protocol (L2TP), or IP
security protocols may be used.

In another example, the processing nodes 110 can be
deployed at Internet service provider (ISP) nodes. The ISP
nodes can redirect subject traffic to the processing nodes 110
in a transparent proxy mode. Protected systems, such as the
enterprise 200, can use a multiprotocol label switching
(MPLS) class of service for indicating the subject traflic that
1s to be redirected. For example, at the within the enterprise an
access agent 180 can be configured to perform MPLS label-
ing.

In another transparent proxy mode example, a protected
system, such as the enterprise 200, may 1dentify a processing
node 110 as a next hop router for communication with the
external servers.

§2.0 Example Detailed System Architecture and Operation

FIG. 2 1s a block diagram of the system of FIG. 1 1n which
the components of FIG. 1 are illustrated in more detal.
Although only one representative component processing
node 110, authority node 120 and logging node 140 are illus-
trated, there can be many of each of the component nodes
110,120 and 140 present 1n the system 100.

A wide area network (WAN) 101, such as the Internet, or
some other combination of wired and/or wireless networks,
connects 1n data communication the processing node 110,
authority node 120 and logging node 140. The external sys-
tems 200, 220 and 230 likewise communicate over the WAN
101 with each other or other data providers and publishers.
Some or all of the data commumnication of each of the external
systems 200, 220 and 230 can be processed through the
processing node 110.

FIG. 2 also shows the enterprise 200 in more detail. The
enterprise 200 can, for example, include a firewall 202 pro-
tecting an internal network that can include one or more
enterprise servers 206, a lightweight director access protocol
(LDAP)server 212, and other data or data stores 214. Another
firewall 203 can protect an enterprise subnet that can include
user computers 206 and 208 (e.g., laptop and desktop com-
puters). The enterprise 200 may communicate with the WAN
101 through one or more network devices, such as a router,

10

15

20

25

30

35

40

45

50

55

60

65

6

gateway, etc. The LDAP server 104 may store, for example,
user login credentials for registered users of the enterprise
200 system. Such credentials can include a user 1dentifiers,
login passwords, and a login history associated with each user
identifier. The other data 214 can include sensitive informa-
tion, such as bank records, medical records, trade secret infor-
mation, or any other mformation warranting protection by
one or more security measures.

In some 1implementations, a server access agent 180 can
facilitate authentication functions with a processing node
110, e.g., by assigning tokens for passwords and sending only
the tokens to a processing node 110 so that transmaission of
passwords beyond the network edge of the enterprise 1s mini-
mized. Other functions and processes can also be facilitated
by the server access agent 180.

The computer device 220 and the mobile device 230 can
also store information warranting security measures, such as
personal bank records, medical information, and login infor-
mation, e.g., login information to the server 216 of the enter-
prise 200, or to some other secured data provider server.
§2.1 Example Processing Node Architecture

In some 1implementations, the processing nodes 110 are
external to network edges of the external systems 200, 220
and 230. Each processing node 110 stores security policies
113 received from the authority node 120 and monitors con-
tent 1tems requested by or sent from the external systems 200,
220 and 230. In some implementations, each processing node
110 can also store a detection process filter 112 and/or threat
data 114 to facilitate the decision of whether a content 1tem
should be processed for threat detection.

A processing node manager 118 can manage each content
item 1n accordance with the security policy data 113, and the
detection process filter 112 and/or threat data 114, 11 stored at
the processing node 110, so that security policies for a plu-
rality of external systems in data communication with the
processing node are implemented external to the network
edges for each of the external systems 200, 220 and 230. For
example, depending on the classification resulting from the
monitoring, the content item can be allowed, precluded, or
threat detected. In general, content 1tems that are already
classified as “clean” or not posing a threat can be allowed,
while those classified as “violating” can be precluded. Those
content items having an unknown status, e.g., content 1tems
that have not been processed by the system 100, can be threat
detected to classily the content item according to threat clas-
sifications.

In some implementations, the processing node 110 can
include a state manager 116a. The state manager 116a can be
used to maintain the authentication and the authorization
states of users that submit requests to the processing node.

Maintenance of the states through the state manager 1164 can
minimize the number of authentication and authorization
transactions that are necessary to process a request. An
example of a state manager 116q 1s described 1n FIG. 3-6.

In some implementations, the processing node 110 can
include an epoch processor 1165. The epoch processor 1165
can be used to analyze authentication data that originated at
an authority node 120. The epoch processor 1165 can use an
epoch ID to further validate the authenticity of authentication
data. An example of an epoch processor 1165 1s described 1n
FIG. 7.

In some 1implementations, the processing node can include
a source processor 116¢. The source processor 116¢ can be
used to verily the source of authorization and authentication
data. The source processor 116¢ can identily improperly

US 8,656,462 B2

7

obtained authorization and authentication data, enhancing the
security of the network. An example of a source processor
116¢ 1s described 1n FIG. 7.

Because the amount of data being processed by the pro-
cessing nodes 110 can be substantial, the detection processing
filter 112 can be used as the first stage of an information
lookup procedure. For example, the detection processing {il-
ter 112 can be used as a front end to a looking of the threat data
114. Content 1tems can be mapped to index values of the
detection processing filter 112 by a hash function that oper-
ates on an information key derrved from the information item.
Theinformation key 1s hashed to generate an index value (1.¢.,
a bit position). A value of zero 1n a bit position 1n the guard
table can indicate, for example, absence of information, while
a one 1n that bit position can indicate presence of information.
Alternatively, a one could be used to represent absence, and a
Zero 10 represent presence.

Each content item can have an information key that 1s
hashed. For example, the processing node manager 118 may
identify the URL address of a URL requests as the informa-
tion key and hash the URL address; or may 1dentify the file
name and the file size of an executable file information key
and hash the file name and file size of the executable file.
Hashing an information key to generate an index and check-
ing a bit value at the index 1n the detection processing filter
112 generally requires less processing time than actually
searching threat data 114. The use of the detection processing
filter 112 can improve the failure query (i.e., responding to a
request for absent information) performance of database que-
ries and/or any general information queries. Because data
structures are generally optimized to access information that
1s present 1n the structures, failure query performance has a
greater effect on the time required to process mmformation
searches for very rarely occurring items, e.g., the presence of
file information 1n a virus scan log or a cache where many or
most of the files transferred in a network have not been
scanned or cached. Using the detection processing filter 112,
however, the worst case additional cost1s only on the order of
one, and thus 1ts use for most failure queries saves on the order
of m log m, where m 1s the number of information records
present in the threat data 114.

The detection processing filter 112 can thus improve per-
formance of queries where the answer to a request for infor-
mation 1s usually negative. Such instances can include, for
cxample, whether a given file has been virus scanned,
whether content at a given URL has been scanned for inap-
propriate (e.g., pornographic) content, whether a given fin-
gerprint matches any of a set of stored documents, and
whether a checksum corresponds to any of a set of stored
documents. Thus, 1f the detection processing filter 112 indi-
cates that the content item has not been processed, then a
worst case null lookup operation 1nto the threat data 114 1s
avolded, and a threat detection can be implemented 1immedi-
ately. The detection processing filter 112 thus complements
the threat data 114 that capture positive information.

In some 1mplementations, the detection processing filter
112 can be a Bloom filter implemented by a single hash
tfunction. The Bloom filter can be sparse table, 1.e., the tables
include many zeros and few ones, and the hash function 1s
chosen to mimimize or eliminate false negatives which are, for
example, instances where an mnformation key 1s hashed to a
bit position and that bit position indicates that the requested
information 1s absent when 1t 1s actually present.

§2.2 Example Authority Node Architecture

In general, the authority node 120 includes a data store that
stores master security policy data 123 for each of the external
systems 200, 220 and 230. An authority node manager 128

10

15

20

25

30

35

40

45

50

55

60

65

8

can be used to manage the master security policy data 123,
¢.g., receive mput from users of each of the external systems
defining different security policies, and can distribute the
master security policy data 123 to each of the processing
nodes 110. The processing nodes 110 then store a local copy
of the security policy data 113.

The authority node 120 can also store a master detection
process filter 122. The detection processing filter 122 can
include data indicating whether content 1tems have been pro-
cessed by one or more of the data inspection engines 116 1n
any of the processing nodes 110. The authority node manager
128 can be used to manage the master detection processing,
filter 122, e.g., recerve updates from a processing nodes 110
when a processing node 110 has processed a content item and
update the master detection processing filter 122. In some
implementations, the master detection processing filter 122
can be distributed to the processing nodes 110, which then
store a local copy of the detection processing filter 112.

In some mmplementations, the authority node 120 can
include an epoch manager 126. The epoch manager 126 can
be used to generate authentication data associated with an
epoch ID. The epoch ID of the authentication data 1s a veri-
fiable attribute of the authentication data that can be used to
identity fraudulently created authentication data. An example
of a epoch manager 126 1s described 1n FIG. 7.

In some implementations, the detection processing filter
122 can be a guard table. The processing node 110 can, for
example, use the information 1n the local detection processing
filter 112 to quickly determine the presence and/or absence of
information, €.g., whether a particular URL has been checked
for malware; whether a particular executable has been virus
scanned, etc.

The authority node 120 can also store master threat data
124. The master threat data 124 can classily content items by
threat classifications, e.g., a list of known viruses, a list of
known malware sites, spam e-mail domains, etc. The author-
ity node manager 128 can be used to manage the master threat
data 124, e.g., receive updates from a processing nodes 110
when a processing node 110 has processed a content 1tem and
update the master threat data 124 with any pertinent results. In
some 1mplementations, the master threat data 124 can be
distributed to the processing nodes 110, which then store a
local copy of the threat data 114.

In some implementations, the authority node 120 can also
monitor the health of each processing node 110, e.g., the
resource availability in each processing node 110, detection
of link failures, etc. Based on the observed health of each
process node 110, the authority node 120 can redirect traffic
among processing nodes 110 and/or balance tratfic among the
processing nodes 110. Other remedial actions and processes
can also be facilitated by the authority node 110.

§3.0 States of a User 1n the State Management System

FIG. 3. 15 a state diagram 300 of the different states main-
tained by the state manager 116a. Each state of the state
diagram 300 1dentifies a different level of authentication and
authorization of a user. The state manager 116a can maintain
these different states and process requests to the processing
node 110 based on the state of the user.

A request to the processing node 110 1s processed by the
stage manager 116a based on the level of authentication and/
or authorization the user has obtained. In some 1implementa-
tions, authentication refers to the validation of the identity of
the user. User credentials can be used to validate the identity
of a user. For example, a user may be authenticated by sup-
plying a user name and password. Authorization can refer to
the eligibility of a validated user to complete an action. For
example, an authenticated user can may be eligible to request

US 8,656,462 B2

9

content from domains that provide informational content, but
not from domains associated with file sharing. Thus, the user
1s authorized for the domains associated with provision of
informational content, but not for the domains associated
with file sharing.

Different levels of authentication and authorization are

identified by the different states in the state diagram 300. If
the user has not obtained any level of authentication or autho-
rization, the user 1s assigned to the unauthenticated (UA) state
302. The UA state 302 means that the user (or a client device
being used by the user) has not provided any verified creden-
tials to the state manager 116q, and thus the user must be
authenticated betfore the request can be processed. The user
can obtain authentication by providing credentials to the state
manager 116a.

If the state manager 116aq 1s able to verily the user creden-
tials, the user has obtained authentication and can be assigned
to the authenticated for a location (AL) state 304. A user in the
AL state 304 1s authenticated to transmit requests to the
domain of the processing node 110. Thus, the state manager
116a has validated the identity of the users 1n the AL state 304
and can attempt to process requests from the users. However,
the authorization level of a user in the AL state has not been
determined. Thus, a user must obtain authorization before 1t
can request content from the processing node 110.

In some implementations, the AL state 304 1s a transient
state that 1s reached after the user has been authenticated, but
before the user has been authorized to request content from
any domain. Thus, 1n some implementations, the AL state 304
1s maintained through the component responsible for the
authentication, e.g., the access agent 180 and/or the authority
node 120. Accordingly, state manager 116a may not be
responsible for assigning a user to the AL state 304. However,
the state manager 116a can identily when the user 1s in the AL
state 304 and obtain the authorization necessary to move the
user to the authenticated user state 306.

When a user 1s 1n the AL state 304 obtains authorization to
request content from the processing node 110, the state man-
ager 116a assigns the user to the authenticated user (AU) state
306. The AU state 306 means that the identity of the user has
already been validated, and that processingnode 110 1s able to
determine what level of authorization the user has. The pro-
cessing node 110 can authorize requests of the user. The AU
state does not enable the user to request content directly from
domains, such as the domain of a target site. In order for the
user to obtain content from the domain directly rather than
through the processing node 110, the user must be authorized
tor the specific domain that 1s subject to the request.

Once the user 1s authorized for a specific domain, the user
can be assigned to the authorized for a domain (AD) state for
the specific domain. The AD state 306 means that the identity
of the user has already been validated, the validated user 1s an
authorized user of the processing node 110 such that the
processing node 110 can determine whether a request s to be
allowed, and that processing node 110 has already deter-
mined the validated user 1s authorized to request content from
the authorized domain.

The state diagram 300 identifies how the state manager
116a maintains the states of the user. The state manager 116a
does not require each request transmitted by the user to origi-
nate in the UA state 302. Rather, the state manager 1164
maintains the authorization state of the user by interpreting,
data that 1s transmitted with each request. The data (or lack of
data) transmitted by the user can identily the user as in the UA

state 302, the AL state 304, the AU state 306, or the AD state
308. Accordingly, the state manager 116a can identify the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

state of the user submitting the request, and the ¢
authenticate and authorize users 1s minimized.

For example, when a new domain 1s encountered through a
request, the state of the user will not be 1n the AD state for the
new domain. However, the state manager 116a does not
default the user to the UA state 302. Rather, the state manager
116a determines 11 the user that submitted the request1s in AU
state 306 or the AL state 304. Depending on what state the
user 1s 1n when the request 1s recerved, the state manager 1164
can minimize the transactions needed to authorize the user’s
request.

§4.0 The State Management System

FIG. 4 1s a timing diagram 400 of the management of an
unauthenticated and unauthorized request by the state man-
ager 116a. In the diagram 400, a client browser 402 submits
a request 406, e.g. an HI'TP request that includes a Uniform
Resource Locator (URL) for content accessible at a domain,
¢.g., target site 304. The state manager 1164 of the processing
node 110 determines whether to allow the request 406 based
on the state of the user that submitted the request. For
example, the state manager 116a can allow a request for
content at a domain if the user 1s 1n a state that 1s authorized to
request content from that domain.

The state manager 116a can determine the state of the user
based on the data transmitted with the request by the client
browser 402. The state manager 116a can make this determi-
nation because with any request to a domain, the client
browser 402 transmits data applicable to the domain.
Included 1n the data transmitted 1s authentication and autho-
rization data for the domain that was provided by the state
manager 116a. For example, when a user visits an Email Site
on Domain E, the client browser 402 transmits any authenti-
cation and/or authorization data provided by the state man-
ager 116a for the Domain E. One method of storing data to
ensure that the data for a domain 1s transmitted to that domain
with each request 1s by storing the data as an http cookie
assigned to the domain. Other methods of storing the data can
also be used.

Based on the state of the user, the state manager 116a can
determine whether to allow the request, or whether to obtain
additional authentication and/or authorization. Because the
client browser 402 1s the interface for the user, the state of the
user 1s equivalent to the state of the client browser 402 that

submitted the user request. Thus, 1n the diagram 400, the state
ol the client browser 402 1s used to refer to the state of the user.
§4.1 Identification of the Unauthenticated (UA) State

A request from a client browser 402 in the UA state 302 1s
not processed by the processing node 110 because the user
has not been authenticated. In some implementations, the
state manager 116a can determine that the client browser 402
1s 1n the UA state 302 by determining that the client browser
402 1s not 1n the AL state 304, the AU state 306 or the AD state
308. In some implementations, the state manager 1164 must
first determine that the client browser 402 1s not 1n the AD
state 308, then the AU state 306. This method 1s used because
the AD state 308 inherently includes the AU state 306.

The state manager 116a can determine 11 the client browser
402 1s 1n the AD state 308 for a domain by identifying domain
authorization data submitted with a request for the domain.
The domain authorization data can be data that indicates that
the client browser 402 has been authorized by the state man-
ager 116a to submit requests to the domain of a target site. If
the client browser 402 1s in the AD state 308 for the domain of
the requested content, the client browser 402 provides
domain authorization data with 1ts request. If there 1s no

ort to

US 8,656,462 B2

11

domain authorization data submitted with a request for con-
tent from a domain, the client browser 402 1s not 1in the AD
state 308 for that domain.

For example, the client browser 402 can submit a request
406 for content at the target site. Because the request 406 1s
directed to the target site, the request 406 includes the URL of
the target site. However, no data 1s passed in the request 406
that indicates that the client browser 402 1s authorized to visit
the domain of the target site. Thus, the state manager 116a can
determine that the client browser 402 1s not 1n the AD state
308 for the domain of the target site.

After determining that the client browser 402 1s not 1n the
AD state 308, the state manager 116a can determine if the
client browser 402 1s in the AU state 306. The client browser
402 can be determined to be in the AU state 306 11 the client
browser 402 can provide authorized user data to the state
manager 116a. The authorized user data can be data that
indicates that the client browser 402 has been authorized by
the state manager 116a to submit requests to the domain of the
processing node 110. The authorized user data can be used by
the processing node to identily the user policy of the user. The
authorized user data 1s associated with the domain of the
processing node. The state manager 116a can solicit this
authorized user data by sending the client browser 402 a
redirect request 408.

For example, the state manager 116a submits the redirect
response 408 to the client browser 402 after determining that
the client browser 402 i1s not in the AD state 308 for the
requested domain. The response 408 requires the client
browser 402 to submit a request 410 for the target site 404 to
the state manager 116a of the processing node 110. The
request 410 seeks the contents of the target site 404 from the
processing node 110, thus the original URL of the target site
404 1s submitted as a query parameter of the request 410.
Because the request 1s directed to the processing node 110,
the target domain of the request 410 1s the domain of the
processing node 110. The state manager 116a 1dentifies any
data submitted with the request 410 to the domain of the state
manager 116a. The state manager 1164 can determine that the
client browser 402 1s not in the AU state 306 because no
authorized user data 1s submitted from the client browser 402
with the request 410 to the processing node 110.

If the state manager 116a determines that the client
browser 402 1s not 1n the AU state 306, then the state manager
116a determines 11 the client browser 402 1s in the AL state
304. Although 1n some implementations, the AL state 304 1s
a transient state that 1s maintained by the node responsible for
authentication, e.g., access agent 180, the state manager 116a
can still determine when the client browser 402 1s assigned to
the AL state 304 by an access agent.

The state manager 116a can determine that the client
browser 402 1s 1n the AL state when the client browser 402
submits a request with authentication data, e.g., a user authen-
tication ticket. The user authentication ticket can be data that
indicates that the client browser 402 has been authenticated
by the access agent 180. In some implementations, the user
authentication ticket can be used to identify the user policy of
the client browser 402.

For example, the state manager 116a can determine that
neither the request 406 nor the request 410 included any

authentication data. Thus, the state manager 116a can deter-
mine that the client browser 1s not in the AL state 304. Based
on this the state manager 116a can determine that the client
browser 1s 1n the only remaining state, the UA state 302.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

§4.2 Transition from the UA State to the Authorized for a
Location (AL) State

If the state manager 1164 has 1dentified the client browser
402 to be 1n the UA state 302, the processing node 110 cannot
process any request from the client browser 402. Instead, the
client browser 402 must obtain authentication for the process-
ing node 110 to process the requests from the client browser
402. If the client browser 402 obtains authentication and is
able to submit the obtained authentication data to the state
manager 116a, the state manager 116a can modily the state of
the client browser 402 to the AL state 304. The state manager
116a can trigger the authentication by redirecting the client
browser 402 to the access agent 180.

For example, upon 1identifying the client browser 402 as 1n
the UA state 302, the state manager 116a can submit a redirect
response 412 to the client browser 402 to obtain authentica-
tion. The redirect response 412 requires the client browser
402 to submit a request 414 to the access agent 180. The
access agent 180 canrespondto arequest 414 by notifying the
client browser 402 that 1t 1s not authenticated. In a response
416 to the request 414, the access agent 180 can request
authentication information from the client browser 402. The
client browser 402 can prompt the user for authorization, and
the user credentials can be passed to the access agent through
a request 418. The access agent 180 receives the request 418,
and 11 the user credentials are verified, the client browser 402
can be authenticated. Where a client browser 402 1s authen-
ticated, the access agent 180 can transmit authentication data
back to the client browser 402.

In some 1mplementations, after the access agent 180
authenticates the user credentials, the access agent 180 can
obtain the user policy associated with the user credentials 1n
the form of the authentication data, provided by the authority
node 120 of FIG. 1, as discussed 1n Section 5.0 and Section
5.1. The access agent 180 can transmit the authentication data
back to the client browser 402.

The client browser 402 now possesses the authentication
data, and 1s 1in the AL state 304.

§4.3 Transition from the AL State to the Authorized User
(AU) State

Once the client browser 402 1s 1n the AL state, the state
manager 116a can attempt to authorize the client browser
402. Because the AL state 304 1s a transient state encountered
prior to the AU state 306, the access agent 180 provides the
authentication data to the client browser 402 as a parameter of
a redirect response 420. The state manager 116a can verily
the 1dentity of the client browser 402 with the authentication
data, and attempt to authorize the client browser 402. If the
client browser 402 1s authorized, the state manager 116qa
assigns the client browser 402 to the AU state 306.

For example, the client browser 402 can receive from the
access agent 180 a redirect response 420 to the processing
node 110. The redirect response 420 requires the client
browser 402 to present the authentication data to the state
manager 116a of the processing node 110. The state manager
116a of the processing node 110 receives the redirected
request from the client browser, e.g. request 422. Because the
request 422 includes authentication data, the state manager
116a can determine that the client browser 1s in the AL State
304. The state manager 116a can verily the use the data in the
user authorization ticket to determine 1f the client browser
402 1s an authorized user of the state manager 116a. If the
client browser 402 1s an authorized user, the state manager
116a can generate authorized user data based on the authen-
tication data.

The client browser 402 now possesses the authorized user

data, and 1s 1n the AU state 306.

US 8,656,462 B2

13

§4.4 Transition from the AU State to the Authorized for a
Domain (AD) State

Once 1n the AU state 306, the client browser 402 1s autho-
rized to submit requests to the processing node 110. Thus, a
request cannot be directly to the target site 404, but rather the
request 1s directed to the processing node 110 with the target
site 404 as a query parameter. The processing node 110 can
determine whether the client browser 1s authorized to request
content from the target site 404, e.g., by examining the policy
data 113 that specifies access privileges for the user. It the
client browser 402 1s authorized, the processing node 110
redirects the request of the client browser 402 back to the
target site 404, with domain authorization data that indicates
the client browser 1s authorized.

For example, after the state manager 116a of the process-
ing node 110 provides the authorized user data in the response
424, the client browser 402 1s in the AU state 306. Because the
initial request 406 has still not been processed, as part of the
response 424, the processing node 110 instructs the client
browser 402 through a redirect request to submit a request to
the target site 404. The redirected request, €.g., request 426, 1s
directed to the target site 404 of the original URL, and
includes the domain authorization data as a query parameter.

The redirected request from the client browser 402 1s
directed to the target site 404, but the processing node 110 still
examines every request. Because the request has the domain
authorization data as a query parameter, the processing node
110 allows the request after stripping the query parameter that
include the domain authorization data, e.g., the data passed in
the ticket query parameter of the request 426. The response
from the target site 404 1s also communicated through the
processing node 110.

For example, the request 426 redirected the client browser
404 to the target site 404. The processing node 110 forwards
the request to the target site 404 through request 328. The
response from the target site 404 1s sent back to the processing,
node 110, e.g., response 330.

Upon recerving the response from the target site 404, the
state manager 116qa transmits the domain authorization data
back to the client browser 402 in a format that can be stored by
the client browser and associated with the target site 404. For
example, the response 432 from the processing node 110 can
send the domain authorization data back as an http cookie for
the domain of the target site 404. The client browser 402 now
possesses the domain authorization data for the domain of the
target site 404, and 1s 1n the AD state 308 for the domain.
§4.5 Subsequent Requests for a Domain from the AD State

FIG. 5 1s an example timing diagram 500 of the manage-
ment of a subsequent request to an authorized domain by the
state manager 116a. In the realization 500, the processing
node 110 processes a request for a domain from a client
browser 402 1n the AD state 308 for the domain. The process-
ing node 110 1s able to process the request without requesting
additional authentication or authorization from the client
browser.

After the client browser 402 1s 1n the AD state 308 for a
domain, the client browser 402 can receive a subsequent
request for the target site 404 on the same domain. The client
browser 402 can also receive a subsequent request for a dif-
ferent target site on the same domain. The state manager 116a
of the processing node 110 can recognize that the client
browser 402 1s 1n the AD state 308 based on the data passed
with the subsequent request.

For example, the client browser 402 may have obtained
authorization to visit Company A Shopping Site on Domain
1. Thus, the client browser 402 has stored domain authoriza-
tion data for Domain 1. Request 502 can be a subsequent

10

15

20

25

30

35

40

45

50

55

60

65

14

request to the Company A Shopping Site on Domain 1. Alter-
natively, the request 502 can be a subsequent request to a
different site on the Domain 1, e.g., Company A Consumer
Reviews Site on Domain 1. Because the domain authorization
data 1s associated Domain 1, for either of these requests the
client browser 402 can submit the domain authorization data
with the request. The state manager 116a can determine that
the client browser 402 1s 1n the AD state 308 for Domain 1
because the client browser 402 submitted domain authoriza-
tion data with the request.

Once the state manager 116a 1dentifies the request as a
request from a client browser 1n the AD state 308, the state
manager 116a allows the request without further authoriza-
tion or authentication. For example, because the client
browser 1s 1n the AD state 308 for Domain 1, the state man-
ager 116a forwards a request for the URL to the target site
404, ¢.g., request 504, after stripping the domain authoriza-
tion data, e.g., the data ol the Authorization Token for Domain
1. The target site 404 can then respond to the client browser
402 through the processing node 110, e.g., response 506 and
response 3508.

§4.6 Subsequent Requests for a Domain from the AU State

FIG. 6 1s an example timing diagram 600 for the manage-
ment of a request to an unauthorized domain by an authorized
user by the state manager 116a. In the realization 600, the
processing node 110 processes a request for a domain from a
client browser in the AU state 306. The processing node 110
1s able to process the request without requesting authentica-
tion from the client browser, and the authorization 1s obtained
in one transaction with the processing node.

When the client browser 402 1s in the AD state 308 for a
domain, the client browser 402 can request content from a
target site 608 that 1s on a different domain than the domain of
the AD state 308. The client browser 402 can also be inthe AU
state 306 only, and notinthe AD state 308 for any domain. For
example, the client browser may be in the AD state 308 for
Domain 1 when the client browser 402 submits a request for
content from Domain 2. Alternatively, the client browser 402
can be 1n the AU state 306 only and not in the AD state 308 for
any domain.

In either of these scenarios, the state manager 1164 of the
processing node 110 can recognize that the client browser 402
1s not in the AD state 308 for the requested domain of target
site 620 based on the data passed with the request. For
example, because the client browser 402 1s not 1n the AD state
308 for the Domain 2, the client browser 402 does not have
any domain authorization data to submit with the request 602.
Based on the lack domain authorization data for Domain 2
submitted with request 602, the state manager 116a of the
processing node 110 can determine that the client browser
402 1s not 1n the AD state 308 for the Domain 2.

The state manager 116a can then determine whether the
client browser 402 1s 1n the AU state by soliciting domain
authorization data for the domain of the state manager 1164,
¢.g., the domain of the processing node 110. For example, the
state manager 116a can send a response 604 to the client
browser 402, which requires the client browser 402 to send a
redirected request to the processing node 110. Because the
client browser 402 has authorized user data for the domain of
the processing node 110, the client browser 402 can submit
the authorized user data with redirected request 606. Based on
the authorized user data submitted with the request 606, the
state manager 116a can determine that the client browser 402
1s 1n the AU state 306.

At this point, the state manager 116a can handle the request
from the client browser 402 as it would any request from a
client browser 1n the AU state 306. The state manager 116qa

US 8,656,462 B2

15

can redirect the client browser 402 to submit a request to the
target site 620 with the domain authorization data passed as a
query parameter. For example, the state manager 116a can
send response 608 back to the client browser 402. The
response 608 redirects the client browser 402 to request the
content directly from the target site 606, ¢.g., Company B Site
on Domain 2.

The state manager 116a can process the request, and for-
ward it to the target site 606. For example, the client browser
402 can submit the request 610 to the Company B Site on
Domain 2 as required by the response 608. The state manager
116a at the processing node 110 can process the request 610,
and forward it to the target site 606 as request 612.

The target site 606 can respond back to the client browser
402 through the processing node 110, and the state manager
116a can assign the client browser 402 to the AD state 308 for
the domain of target site 606. For example, the Company B
site on Domain 2 can send response 614 to the client browser
402. The processing node 110 receives the response 614, and
torwards the response as response 616. The state manager
116a can submit the domain authorization data for Domain 2
with the response 616 in the form of an http cookie. Other
forms to transmit the domain authorization data can also be
used.

In addition to passing authorization data for a domain, the
client browser 402 can pass data that 1s associated with the
domain but that 1s not authentication or authorization data
created by the processing node 110. This authentication or
authorization data 1s not data that 1s generated at the target
domain, but rather that 1s generated either by or for the state
manager 116a. For example, where the target site 1s a shop-
ping site, the client browser 402 can store as the contents of a
shopping cart for the shopping site. The contents of the shop-
ping cart can be passed by the client browser 402 as an http
cookie with each request to the domain, along with domain
authorization data for that domain. However, the http cookie
tor the shopping cart was generated at the domain of the target
site, and 1s not considered authentication or authorization
data. The domain authorization data for that domain 1n the
request 1s stripped by the processing node 110, and thus the
target site does not receive the domain authorization data.
Accordingly, 1n some implementations, the domain authori-
zation data for each domain 1s only transmitted between the
processing node 110 and the client browser 402.

§5.0 Thett and Fraud Prevention

The authentication and/or authorization data submitted by
the client browser 402 with each request determines whether
the client browser 402 can request content from a target site.
Without authentication and authorization data, a client
browser 402 cannot request content through the network.
However, unauthorized client browsers may still attempt to
obtain unauthorized access to the network. For example, the
data can be subject to a replay attack that can compromaise the
security of the network. In particular, an unauthorized client
browser can either attempt to fraudulently create the authen-
tication and/or authorization data, or attempt to utilize
authentication and/or authorization data that was intended for
a different client browser. The incidents of replay attacks can
be minimized by identiiying fraudulently created authentica-
tion or authorization data and 1dentifying the thett of authen-
tication or authorization data. In some implementations, the
epoch manager 126, the epoch processor 1165 and the source
processor 116¢ can be used to minimize these kinds of replay
attacks.

FIG. 7 1s an example communication flow 700 across a
secured network. In the diagram 700, authentication and
authorization data 1s passed through a network that utilizes an

10

15

20

25

30

35

40

45

50

55

60

65

16

epoch manager 126, an epoch processor 1165, and a source
processor 116¢ to minimize the replay attacks. The epoch
manager 126 and the epoch processor 1165 can be used to
identily fraudulently generated authentication or authoriza-
tion data. The source processor 116¢ can be used to identify
the incidents of theft of authentication or authorization data.
§5.1 Fraud Prevention

In some implementations, authentication data 706 can be
generated by the authority node 120 when the client browser
402 requests authentication. For example, 11 the client
browser 402 submits an unauthenticated request 702 to the
processing node 110, the processing node 110 may require
the client browser 402 to obtain authentication. The process-
ing node 110 can redirect the client browser 402 to the access
agent 180, which can authenticate the user. In turn, the access
agent 180 can provide the authority node 120 with the authen-
ticated user data 706, ¢.g., authorized user credentials. For
example, 11 a client browser 402 provides the access agent
with a user ID and password that 1s validated, the access agent
can provide the validated user ID to the authority node.

The authority node 120 can generate authentication data
708, ¢.g., a user authentication ticket, based on the authent-
cated user data 706 provided to the authority node. The
authentication data 708 can be transmitted through a network
and allows the processing node 110 to 1dentity the authenti-
cated user from the authentication data 708, and in some
implementations, determine the user policy associated with
the authenticated user data 706.

§5.1.1 Generation of Authentication Data with an Epoch
Manager

In some implementations, the epoch manager 126 can be
used by the authority node 120 to encrypt the authentication
data 708 using a public epoch key of an epoch key pair. The
epoch manager 126 can reduce the ability of an unauthorized
client browser to synthetically generate the encrypted authen-
tication data 708 by maintaining the epoch key pair only for a
defined epoch. An epoch can be a period of time, a number of
processed requests, or any other measurement of a period. An
epoch ID 712 can be any quasi-unique or unique value that
identifies a specific epoch.

For each epoch, the authority node creates an epoch key
pair. The epoch key pair includes a private epoch key and a
public epoch key, e.g., public key 704. Data encrypted by a
private epoch key can only be decrypted by the public epoch
key for the same epoch as the private epoch key. At the
expiration of the epoch, a new epoch key pair 1s created that 1s
used to encrypt the authentication data 708.

For example, during epoch 1, the authority node 120 cre-
ates epoch key pair 1. The authority node 120 can use the
private epoch key of epoch 1 to generate encrypted authenti-
cation data 708 during epoch 1. The authentication data 708
generated during epoch 1 can only be decrypted by the public
epoch key of epoch 1.

In some implementations, the epoch manager 126 modifies
the authenticated user data 706 before generating the authen-
tication data 708. The epoch manager 126 can associate an
epoch ID 712 for the current epoch with the authenticated
user data 706 to generate associated authenticated user data.
The associated authenticated user data can be used to create
an encrypted authentication data 708 that 1s associated with
the current epoch. Thus, the authentication data 708 can be
associated with the epoch during 1t was created. For example,
if the authenticated user data 1s “UserA,” during epoch 1 the
associated authenticated user data would be a combination of
the authenticated user data and the epoch ID, e.g., “UserAl.”
Similarly, the associated authenticated user data during epoch
2 would be “UserA2.” The associated authenticated user data

US 8,656,462 B2

17

can be encrypted to generate the authentication data 708.
Other combination schemes can also be used.

Thus, 1n some implementations, the authentication data
708 can only be decrypted by the public epoch key, e.g.,
public key 704, for the same epoch as the private epoch key
that was used to encrypt the authenticated user data. Addi-
tionally, after the authentication data 708 1s decrypted, the
resulting data can be the authenticated user data 706 followed
by an epoch ID 712 of the period 1n which the authentication
data 708 was encrypted. This generation of authentication
data 708 that 1s associated with an epoch reduces the ability to
create fraudulent authentication data 708. Because the
authentication data 708 can be the basis of the authorization
data 710, e.g., the authorized user data and the domain autho-
rization data, the authorization data 1s also difficult to fraudu-
lently create. Fraudulently created authentication data 708 or
authorization data 710 can be 1dentified by the epoch proces-
sor 116b.

§5.1.2 Handling of Authentication Data Generated by an
Epoch Manager

The epoch processor 1165 can be at the processing node
110, and thus can be used to identily fraudulently created
authentication data 708 or authorization data 710 submuitted
with a request.

After the epoch manager 126 generates an epoch key pair,
the epoch manager 126 transmits the public epoch key 704 of
the epoch key pair to the epoch processor 1165 of the pro-
cessing node 110. The epoch ID 712 of the public epoch key
704 1s also transmitted to the epoch processor 1165. For
example, when the epoch manager 126 generates an epoch
key pair during epoch 1, the public epoch key generated
during epoch 1 1s transmitted to the epoch processor 11656
with the epoch 1D 1 as an attribute of the public epoch key. At
the same time, the authority node 120 transmits the authenti-
cation data 708 back to the access agent 180 to be stored by
the client browser 402.

When the processing node 110 recerves authentication data
708 or authorization data 710, the epoch processor 1165 of
the processing node 110 analyzes the data. The epoch pro-
cessor 116H attempts to decrypt the data using a valid public
epoch key stored at the epoch processor 1165. For example,
the epoch processor 1165 can try to decrypt authentication
data 708 or authorization data 710 using the public epoch key
704 for epoch 1.

In some 1implementations, a valid public epoch key 1s the
current public epoch key 704 stored at the epoch processor
1165. Alternatively, in some implementations, a public epoch
key 1s a valid public epoch key 1f the public epoch key was
generated within some defined range of epochs of the current
public epoch key. This epoch window allows authenticated
users that have not accessed the processing node 110 for a
time period less than the epoch window to not be required to
re-authenticate 1f their current authentication data 708 or
authorization data 710 1s encrypted according to a previous
epoch within the epoch window. The epoch processor 1165
can attempt to decrypt the data using any valid public epoch
key. For example, 11 the range of valid epochs 1s three epochs,
then during the epoch 3, the public epoch keys of epoch 2 and
epoch 1 remain valid. Thus, If the range of valid epochs 1s
three epochs, and the epoch processor 1165 can attempt to
decrypt the data using the public epoch key of the epoch 1,
epoch 2, and epoch 3, even though the current epoch 1s epoch
3. However, the public epoch key of epoch 1 1s not used to
decrypt the data when the current epoch 1s the epoch 4.

Some Iraudulently created authentication data 708 or
authorization data 710 can be identified by failed decryptions.
However, 1t 1s possible for an unauthorized user to fraudu-

10

15

20

25

30

35

40

45

50

55

60

65

18

lently generate authentication data 708 or authorization data
710 that 1s decrypted by a valid public epoch key. In this
scenario, the epoch processor 1165 will attempt to parse the
decrypted value into user authorization data and an epoch ID.

If the epoch processor 1165H 1s able to parse an epoch 1D
from the decrypted data, the epoch ID parsed from the
decrypted value must match the epoch ID attributed to the
public epoch key that was used to decrypt the data. I the user
epoch ID parsed from the decrypted does not match the key
epoch ID, 1.e., the epoch ID attribute to the public epoch key,
the decryption 1s not successtul and the epoch processor 11656
does not accept the authorization data 708 or authentication
data 710.

For example, an unauthorized client browser may have
been able to create encrypted authorization data that when
decrypted by the public epoch key of epoch 5, produces an
authenticated user ID “UserA.” However, the value “UserA”
cannot be parsed to 1dentity the epoch ID of “3.”” Thus, the
decryption by the epoch processor 1165 fails. Similarly, 11 the
encrypted authorization data can be decrypted by the public
epoch key 704 of epoch 5 to produce the user ID “UserAl,”
the user epoch ID parsed from the decrypted data 1s 1. The
user epoch 1D does not match the epoch ID of 5 that was
attributed to the public key that was used to decrypt the data.
Thus, the decryption by the epoch processor 11656 fails.

In some implementations, if the decryption is successiul by
using a public epoch key that 1s valid, but not the current
public epoch key, the epoch processor 1165 can modify the
authentication data 708 to associate the authentication data
708 with the current public epoch key. Similarly, any autho-
rization data 710 based on the authentication data 708 can be
modified as well. This modification of the epoch associated
with the authentication and authorization data can be done by
the epoch processor 1165 without requiring a reauthentica-
tion by the client browser.

For example, the epoch processor 1165 can receive authen-
tication data 708 or authorization data 710 that can be suc-
cessiully decrypted by the public epoch key of epoch 1. If the
current public epoch key 1s of epoch 2, the epoch processor
1165 can request an updated authentication data 708 for the
epoch 2 from the access agent 180 or the authority node 120.
The epoch processor 1165 can then reissue the authentication
data 708 or authorization data 710 for the user for the current
epoch.

§5.2 Thett Prevention

An unauthorized client browser can attempt to 1ntercept
authorization data 710 intended for the client browser 402 or
the processing node 110. The unauthorized client browser can
then attempt to transmit the improperly obtained authoriza-
tion data 710 on behalf of the unauthorized client, 1n an
attempt to bypass the authorization requirements of the pro-
cessing node 110. This type of theft can be prevented using
the source processor 116¢ of the processing node 110. The
source processor 116¢ utilizes an associate token 714 to main-
tain the source an 1nitial request for authentication, and can
require subsequent requests for authorization to originate
from the same source as the 1nitial request.

In some 1mplementations, the source processor 116¢ can
identify the source of the authentication data 708 recerved by
the processing node. For example, when the authentication
data 708 1s transmitted by the client browser 402 to the pro-
cessing node 110, a unique communication address of the
client browser 402 can be determined by the source processor
116c¢, e.g., the port number the client browser 402 communi-
cates on, the MAC address of the client browser 402, etc.

The source processor 116¢ can associate the communica-
tion address 1identified by the source processor 116¢ with the

US 8,656,462 B2

19

authentication data 708 that was transmitted in the initial
request. For example, the source processor 116¢ can create a
token containing the port number the client browser 402 uses
to communicate to the processing node 110, and the authen-
tication data 708. The data associated together by the source
processor 116¢ can be encrypted to generate an associate
token 714. The associate token 714 can be provided to the
client browser 402 by the processing node 110, along with the
authorization data 710 that 1s provided by the processing node
110.

Subsequent requests to the processing node 110 must con-
tain the associate token 714. If the associate token 714 1s not
transmitted with a subsequent request, authorization 1s not
granted by the processing node 110. If the associate token 714
1s transmitted with the subsequent authorization, but the com-
munication address specified 1n the associate token 714 does
not match the communication address from which the subse-
quent request was transmitted, authorization 1s not granted.
The source processor 116¢ may only grant authorization
where an authorized request 1s sent from the same communi-
cation address that requested the authentication.

§6.0 Example Processes for Theft Prevention

FIG. 8A 1s a flow diagram of an example process 800 for
preventing authorization data from being mproperly
obtained. The process 800 can, for example, be implemented
by the source processor 116¢ of FIG. 1, and as described in
FIG. 7.

Stage 802 receives a request for a domain from a client
browser. For example, the source processor 116¢ can receive
a URL request from a client browser. The URL points to a
domain. Thus, the source processor 116¢ can receive a
request for a domain.

Stage 804 1dentifies authorized user data associated with
the request. For example, the source processor 116¢ can iden-
tify any authorized user data transmitted with the request for
the domain.

Stage 806 i1dentifies the commumnication address of the
request. For example, the source processor 116¢ can identify
the port that the client browser 402 uses to communicated
with the source processor 116c¢.

Stage 808 associates the communication address of the
request with the authorized user data. For example, the source
processor 116c¢ associates the 1dentified port with the autho-
rization data transmitted 1n the request.

Stage 810 encrypts the authorized user data and the asso-
ciated communication address of the request to generate asso-
ciated authorization data. For example, the source processor
116¢ encrypts into the associate token the authorization data
and the port associated with the authorization data.

Stage 810 provides the associated authorization data to the
client browser at the communication address of the request.
For example, the source processor 116¢ provides the associ-
ate token to the client browser 402 at the identified port.

FIG. 8B 1s a flow diagram of an example process 850 for
preventing authorization data from being improperly
obtained. The process 850 can, for example, be implemented
by the source processor 116¢ of FIG. 1, and as described in
FIG. 7.

Stage 852 recerves a request for a domain from a client
browser and associated authorization data. For example, the
source processor 116¢ canreceive a request for a URL request
from a client browser. The URL points to a domain. Thus, the
source processor 116¢ can recerve a request for a domain. The
source processor 116¢ can also receive with the request an
associate token that 1s comprised of associated authorization
data.

10

15

20

25

30

35

40

45

50

55

60

65

20

Stage 854 1dentifies a source communication address asso-
ciated with the client browser. For example, the source pro-
cessor 116¢ can 1dentily the port that the client browser 402
uses to communicated with the source processor 116c¢.

Stage 856 decrypts the associated authorization data into
authorized user data and a request communication address.
For example, the source processor 116¢ can decrypt the asso-
ciate token 1nto authorized user data, e.g., authorization data,
and a request communication address, e.g., a port associated
with the authorization data.

Stage 858 determines whether the source commumnication
address 1s the same as the request communication address.
For example, the source processor 116¢ can compare the port
identified by stage 854 with the port identified by stage 856.

If stage 858 determines that the source communication
address 1s the same as the request communication address,
stage 860 allows the request. For example, if the source pro-
cessor 116c¢ determines that the port identified by stage 854 1s
the same as the port 1dentified by stage 856, then the request
1s allowed.

If stage 860 determines that the source communication
address 1s not the same as the request communication address,
stage 862 requests user authorization from the client browser
at the request communication address. For example, if the
source processor 116¢ determines that the port identified by
stage 854 15 not the same as the port 1dentified by stage 856,
then source processor 116¢ can request authorization from
the client browser 402. In some 1implementations, the source
processor 116¢ can trigger an external security service, e.g.,
the access agent 180 or the authority node 120, to obtain
authorization from the client browser 402.

§7.0 Example Processes for Fraud Prevention

FIG. 9 1s a flow diagram of an example process 900 for
generating authentication data associated with an epoch. The
process 900 can, for example, be implemented by the epoch
manager 126 of FIG. 1, and as described in FIG. 7.

Stage 902 recerves authenticated user data at an authority
node. For example, the epoch manager 126 can receive
authenticated user credentials at the authority node 120.

Stage 904 defines a plurality of epochs. For example, the
epoch manager 126 can define that every fifteen minute inter-
val 1s associated with an epoch. Each epoch can be 1dentified
by an identifier. Thus, the first fifteen minute interval 1s epoch
1, followed by epoch 2, etc.

Stage 906 associates the authenticated user data with the

current epoch. For example, the epoch manager 126 can
associate the user credentials with the current fifteen minute
interval. If the current interval 1s the second fifteen minute
interval, the epoch manager can accomplish this by associat-
ing the user credentials with epoch 2.

Stage 908 obtains an epoch key pair for the current epoch.
For example, the epoch manager 126 can generate an epoch
key pair for each epoch. The epoch manager 126 can obtain
the epoch key pair for epoch 2.

Stage 910 encrypts the associated authenticated data with a
private epoch key for the current epoch to generate authenti-
cation data. For example, the epoch manager 126 can use the
private epoch key for epoch 2 to encrypt the association from
stage 906. The encrypted association can become the authen-
tication data associated with epoch 2.

Stage 912 provides a public epoch key for the current
epoch and the authentication data to an external security
service. For example, the epoch manager 126 can provide the
public epoch key for epoch 2 to the processing node 110,
which 1s a component of the external security service. The

US 8,656,462 B2

21

epoch manager 126 can provide the authentication data asso-
ciated with epoch 2 to the access agent 180 or the processing
node 110.

Stage 914 determines 11 the current epoch has expired. For
example, the epoch manager 126 can determine that the sec-
ond fifteen minute interval has expired, and that the third
fifteen minute 1nterval 1s the new current epoch, 1.e., epoch 3.

If stage 914 determines that the current epoch has not
expired, stage 914 continues to momtor the current epoch to
determine when the epoch does expire. For example, the
epoch manager 126 of FIG. 1 can continue to execute the
stage 914 as defined above.

If stage 914 determines that the current epoch has expired,
stage 912 obtains a new epoch key pair for the new epoch. For
example, the epoch manager 126 can obtain a new epoch key
pair for epoch 3.

Stage 918 associated the authenticated user data with the
new epoch. For example, the epoch manager 126 can associ-
ate the user credentials with the third fifteen minute interval.
The epoch manager can accomplish this by associating the
user credentials with epoch 3.

Stage 920 then encrypts the associated authentication data
with a new private epoch key for the new epoch to generate
new authentication data. For example, the epoch manager 126
can use the private epoch key for epoch 3 to encrypt the
association from stage 918. The encrypted association can
become the authentication data associated with epoch 3.

Stage 922 then provides a new public epoch key for the new
epoch and the new authentication data to an external security
service. For example, the epoch manager 126 can provide the
public epoch key for epoch 3 to the processing node 110,
which 1s a component of the external security service. The
epoch manager 126 can provide the authentication data asso-
ciated with epoch 3 to the access agent 180 or the processing
node 110.

FI1G. 10 1s a flow diagram of an example process 1000 for
handling authentication data associated with an epoch. The
process 1000 can, for example, be implemented by the epoch
processor 1165 of FIG. 1, and as described 1n FIG. 7.

Stage 1002 receive a public epoch key. For example, the
epoch processor 1165 can receive a public epoch key for an
epoch. The epoch processor 11656 can also receive as an
attribute of the public epoch key an epoch ID. The epoch ID
can 1dentify the epoch 1n which the public epoch key (and a
corresponding private epoch key) was created.

Stage 1004 receives authorized user data. For example, the
epoch processor 1165 can receive authorized user data 1n the
form of an authorization token.

Stage 1006 decrypts the authorized user data with the pub-
lic epoch key. For example, the epoch processor 1165 can use
the public epoch key 1t recerved 1n stage 1002 to decrypt the
authorized user data from the authorization token received 1in
stage 1004.

Stage 1008 determines 1f the decryption of stage 1006 was
valid. For example, if the epoch processor 1165 can decrypt
the authorized user data using the public epoch key of stage
1002, the decryption of stage 1006 was valid. If the epoch
processor 1165 1s unable to decrypt the authorized user data
using the public epoch key of stage 1002, the decryption of
stage 1006 1s not valid.

If stage 1008 determines that the decryption 1s valid, stage
1010 determines if the decrypted data contains a valid epoch
ID. For example, if the decrypted value that resulted from the
decryption of stage 1006 can be parsed to 1dentily an epoch
ID, e.g. auser epoch 1D, the epoch processor 1165 can deter-
mine whether the user epoch 1D 1s the same as the epoch ID of
the public key, e.g., the key epoch ID, that was used to decrypt

10

15

20

25

30

35

40

45

50

55

60

65

22

the data. If the user epoch ID 1s the same and the key epoch 1D,
stage 1010 determines that the decrypted data contains a valid
epoch ID. If the user epoch ID 1s not the same as the key epoch
ID, stage 1010 determines that the decrypted data does not
contain a valid epoch ID.

If stage 1010 determines that the decryption contains a
valid epoch 1D, stage 1012 allows the request. For example,
where the user epoch ID 1s the same as the key epoch ID, the
epoch processor 1165 can determine that the authorized user
data 1s not fraudulent and allow the request.

If stage 1008 determines that the decryption 1s not valid,
stage 1014 attempts to decrypt the authorized user data with
previous public epoch keys 1n the range of valid epochs. For
example, the epoch processor 1165 can use a previous public
epoch key stored at the epoch processor 1165 to decrypt the
authorized user data from the authorization token received 1n
stage 1004. A previous public epoch key can be used 1t the
previous epoch key pair was generated within a range of valid
epochs.

Stage 1016 then determines if the decryption of stage 1014
was valid. For example, 1f the epoch processor 1165 can
decrypt the authorized user data using a previous public
epoch stored at the epoch processor 1165, the decryption of
stage 1014 was valid. If the epoch processor 1165 1s unable to
decrypt the authorized user data using a previous public
epoch key stored at the epoch processor, the decryption of
stage 1014 1s not valid.

If stage 1016 determines that the decryption of stage 1014
was valid, stage 1020 determines 11 the decrypted data con-
tains a valid epoch ID. For example, 11 the decrypted value
that resulted from the decryption of stage 1014 can be parsed
to 1dentily an epoch ID, e.g. a user epoch ID, the epoch
processor 11656 can determine whether the user epoch 1D 1s
within an acceptable range of epochs as the epoch ID of the
public epoch key, e.g., the key epoch ID, that was used to
decrypt the data. It the user epoch ID 1s within an acceptable
range of epochs as the key epoch ID, stage 1020 determines
that the decrypted data contains a valid epoch ID. If the user
epoch ID 1s not the within an acceptable range of epochs as
the key epoch 1D, stage 1020 determines that the decrypted
data does not contain a valid epoch ID.

If stage 1020 determines that the decrypted data contains a
valid epoch ID, stage 1022 renews the authorized user data.
For example, 11 the epoch processor 1165 can determine that
the decrypted data contains a valid epoch ID using a previous
public epoch key, the authorized user data 1s associated with
a previous epoch ID that 1s still valid. The epoch processor
1165 can request the access agent 180 or the authority node
120 to provide a current authorized user data associated with
the current epoch. The epoch processor 1165 substitute the
authorized user data received at stage 1004 with the current
authorized user associated with the current epoch.

Stage 1024 then allows the request. For example, the epoch
processor 1165 has determined that the authorized user data 1s
not fraudulent, and can allow the request.

If stage 1010 determines that the decrypted data of stage
1006 does not contain a valid epoch ID, or if stage 1020
determines that the decrypted data of stage 1016 does not
contain a valid ID, stage 1018 reauthorizes the user. For
example, 11 the epoch processor 116 has determined that the
decrypted data does not contain an valid 1D, the epoch pro-
cessor 1165 can require reauthorization by the user.

§8.0 Example Processes for State Management

FIG. 11 1s a flow diagram of an example process for han-

dling authorized and unauthorized requests at a processing

US 8,656,462 B2

23

node. The process 1100 can, for example, be implemented by
the state manager 116a of FIG. 1, and as described 1n FIG.
4-6.

Stage 1102 receives a request for a domain. For example,
the stage manager 116a can recerve a request for a New Site
1 at Domain N.

Stage 1104 determines whether the request includes
domain authorization data. For example, the state manager
116a can determine whether the request included domain
authorization data for Domain N.

If stage 1104 determines that the request includes domain
authorization data, stage 1106 allows the request. For
example, 1I the state manager 116a determines that the
request includes domain authorization data for Domain N, the
state manager 116a can allow the request to Domain N for
New Site 1.

If stage 1104 determines that the request does not include
domain authorization data, stage 1108 requests authorized
user data from the client browser 402. For example, 11 the state
manager 116a determines that the request did not includes
domain authorization data for Domain N, the state manager
116a can request authorized user data from the client browser
402.

Stage 1110 then determines whether the client browser 402
provided authorized user data. For example, the state man-
ager 116a can determine 1 the client browser provided the
authorized user data.

If stage 1110 determines that client browser 402 provided
authorized user data, stage 1112 generates domain authoriza-
tion data. For example, 11 the state manager 116a determines
that the client browser provided user authorization data, the
state manager 116a can generate domain authorization data
for Domain N based on the authorized user data.

Stage 1114 allows the request. For example, the state man-
ager 116a can allow the request to Domain N for New Site 1.

Stage 1116 then provides the domain authorization data to
the client browser. For example, the state manager 116a can
provide domain authorization data to the client browser 402
with the response from Domain N.

If stage 1110 determines that client browser 402 did not
provide authorized user data, stage 1118 requests user autho-
rization from the client browser. For example, if the state
manager 116a determines that the client browser 402 did not
provide authornized user data, the state manager 11164 can
request authorization from the client browser 402. In some
implementations, the state manager 116q can trigger an exter-
nal security service, €.g., the access agent 180 or the authority
node 120, to obtain authorization from the client browser 402.

Embodiments of the subject matter and the functional
operations described in this specification can be implemented
in digital electronic circuitry, or in computer software, firm-
ware, or hardware, including the structures disclosed 1n this
specification and their structural equivalents, or 1n combina-
tions of one or more of them. The computer readable medium
can be a machine readable storage device, a machine readable
storage substrate, a memory device, a composition of matter
elfecting a machine readable propagated signal, or a combi-
nation of one or more of them.

A computer program (also known as a program, software,
soltware application, script, manager, processor, or code) can
be written 1n any form of programming language, including,
compiled or interpreted languages, or declarative or proce-
dural languages, and 1t can be deployed 1n any form, including
as a stand alone program or as a module, component, subrou-
tine, or other unit suitable for use 1 a computing environ-
ment. A computer program does not necessarily correspond
to a file 1n a file system. A program can be stored in a portion

10

15

20

25

30

35

40

45

50

55

60

65

24

of a file that holds other programs or data (e.g., one or more
scripts stored in a markup language document), 1n a single file
dedicated to the program in question, or in multiple coordi-
nated files (e.g., files that store one or more modules, sub
programs, or portions of code). A computer program can be
deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

Additionally, the logic tlows and structure block diagrams
described 1n this patent document, which describe particular
methods and/or corresponding acts 1n support of steps and
corresponding functions in support of disclosed structural
means, may also be utilized to implement corresponding
soltware structures and algorithms, and equivalents thereof.
The processes and logic flows described 1n this specification
can be performed by one or more programmable processors
executing one or more computer programs to perform func-
tions by operating on input data and generating output.

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to recetve data from or transier data to, or both, one
or more mass storage devices for storing data, €.g., magnetic,
magneto optical disks, or optical disks. However, a computer
need not have such devices. Computer readable media suit-
able for storing computer program instructions and data
include all forms of non volatile memory, media and memory
devices, including by way of example semiconductor
memory devices, e.g., EPROM, EEPROM, and tlash memory
devices; magnetic disks, e.g., iternal hard disks or remov-
able disks; magneto optical disks; and CD ROM and DVD
ROM disks. The processor and the memory can be supple-
mented by, or incorporated 1n, special purpose logic circuitry.

Embodiments of the subject matter described 1n this speci-
fication can be implemented 1n a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front end component, e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
subject matter described 1s this specification, or any combi-
nation of one or more such back end, middleware, or {front end
components. The components of the system can be intercon-
nected by any form or medium of digital data communication,
¢.g., a communication network. Examples of communication
networks include a local area network (“LAN") and a wide
area network (“WAN”), e.g., the Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client server relationship to each other.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any mvention or of what may be claimed, but
rather as descriptions of features that may be specific to
particular embodiments of particular inventions. Certain fea-
tures that are described 1n this specification 1n the context of
separate embodiments can also be implemented 1n combina-

US 8,656,462 B2

25

tion 1n a single embodiment. Conversely, various features that
are described 1n the context of a single embodiment can also
be implemented in multiple embodiments separately or 1n any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can 1n some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted 1n the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents 1 the embodiments described above should not be
understood as requiring such separation in all embodiments,
and 1t should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

Particular embodiments of the subject matter described in
this specification have been described. Other embodiments
are within the scope of the following claims. For example, the
actions recited 1n the claims can be performed 1n a different
order and still achieve desirable results. As one example, the
processes depicted in the accompanying figures do not nec-
essarily require the particular order shown, or sequential
order, to achieve desirable results. In certain 1implementa-
tions, multitasking and parallel processing may be advanta-
geous.

This written description sets forth the best mode of the
invention and provides examples to describe the invention
and to enable a person of ordinary skill 1n the art to make and
use the invention. This written description does not limit the
invention to the precise terms set forth. Thus, while the mnven-
tion has been described in detail with reference to the
examples set forth above, those of ordinary skill in the art may
effect alterations, modifications and variations to the
examples without departing from the scope of the invention.

What 1s claimed 1s:

1. A computer implemented method, comprising;:

receiving, at a processing node comprising a communica-

tion device, a request for a domain from a client browser;
determining 11 the client browser 1s both authenticated and
authorized through the steps of:

determining a state of a plurality of states associated with

the client browser based on data included with the
request, wherein the plurality of states are managed by a
state manager and the plurality of states comprise a
plurality of authenticated states and an unauthenticated
state;

determining whether the state comprises an authenticated

state of the plurality of authenticated states,

in response to the state comprises an authenticated state of

the plurality of authenticated states,

determining at the processing node whether the request

includes domain authorization data for the requested

domain;

in response to the request for the domain includes the
domain authorization data, determining whether the
domain authorization data matches with the requested
domain,

in response to the domain authorization data matches
with the requested domain, allowing the request for
the domain;

10

15

20

25

30

35

40

45

50

55

60

65

26

in response to the request for the domain does not
include the domain authorization data, requesting
authorized user data from the client browser;
in response to the request for the authorized user data,
determining whether the client browser provided
the authorized user data:
in response to the client browser provided the authorized
user data, generating at the processing node the
domain authorization data, allowing the request for
the domain, and providing the domain authorization
data to the client browser;
in response to if the client browser does not provide the
authorized user data, requesting user authorization
from the client browser.

2. The method of claim 1, wherein recerving at a processing,
node a request for a domain from a client browser comprises:

receving at a processing node a request for a Uniform

Resource Locator (URL) from a client browser; and
identifying a domain associated with the URL.

3. The method of claim 2, wherein allowing the request for
the domain comprises allowing the request for a URL asso-
ciated with the domain.

4. The method of claim 1, wherein requesting user autho-
rization from the client browser comprises initiating a request
from an access agent to the client browser for user credentials,
and wherein the access agent 1s separate from the processing
node.

5. The method of claim 1, wherein the domain authoriza-
tion data 1s based on the authorized user data.

6. The method of claim 1, wherein user authorization data
1s based on authentication data, the authentication data passed
to the processing node as a query parameter.

7. The method of claim 1, wheremn the request for the
domain 1s an Hypertext Transfer Protocol (http) request.

8. The method of claim 1, wherein the domain authoriza-
tion data 1s an Hypertext Transier Protocol (http) cookie.

9. The method of claim 1, wherein allowing the request
COmMprises:

removing the domain authorization data from the request;

and

transmitting the request to the domain.

10. The method of claim 1, wherein determining a state
associated with the client browser comprises determiming that
the client browser 1s associated with an Authorized User (AU)
state 1I the request from the client browser included user
authorization data.

11. A computer implemented method, comprising:

recerving, at a processing node comprising a comimunica-

tion device, an Hypertext Transfer Protocol (http)
request from a client browser;

analyzing at the processing node data associated with the

http request;

determining 11 the client browser 1s both authenticated and

authorized through the steps of:

determining a state of a plurality of states based on the data

associated with the http request, wherein the plurality of
states are managed by a state manager and the plurality
of states comprise a plurality of authenticated states and
an unauthenticated state;

determiming whether the state comprises one of the plural-

ity of authenticated states,

in response to the state comprises one of the plurality of
authenticated states, determining whether the data
associated with the http request;

US 8,656,462 B2

27

in response to the data associated with the http request
included domain authorization data, determining
whether the domain authorization data matches with the
http request,
in response to the domain authorization data matches with
the http request, allowing the data associated the http
request;
in response to the data associated with the http request
does not include domain authorization data,
determining whether the data associated with the http
request;
in response to the data associated with the http request
included authorized user data,
generating domain authorization data based on the

authorized user data;

redirecting the client browser to submit a redirected http
request to the processing node with the generated
domain authorization data,

in response to the data associated with the http request
does not include authorized user data, instructing the
client browser to obtain authorization; and

determining whether the state comprises the unauthenti-

cated state,

in response to the state comprises the unauthenticated state,

redirecting the client browser to an access agent for
authentication, and wherein the access agent 1s separate
from the processing node.
12. A non-transitory computer readable storage medium
storing computer instructions, which when executed by a
computer device, cause the computing device to perform the
steps of:
receiving at a processing node a request for a Uniform
Resource Locater (URL) at a domain;

determining 1f a client browser associated with the request
1s both authenticated and authorized through the steps
of:

determining a state of a plurality of states based on the

request, wherein the plurality of states are managed by a
state manager and the plurality of states comprise a
plurality of authenticated states and an unauthenticated
state;

determining whether the state comprises one of the plural-

ity ol authenticated states,

in response to the state comprises one of the plurality of
authenticated states,

determining at the processing node whether the request
includes domain authorization data for the domain of
the request URL;

10

15

20

25

30

35

40

45

28

in response to the request for the domain includes the
domain authorization data, determining whether the
domain authorization data matches with requested
domain,

in response to the domain authorization data matches
with the requested domain, allowing the request for

the URL;
in response to the request for the domain does not

include the domain authorization data, requesting
authorized user data from the client browser;

in response to the request for the authorized user data,
determining whether the client browser provided the

authorized user data;
in response to the client browser provided the autho-

rized user data, generating at the processing node
the domain authorization data, allowing the request
for the URL, and providing the domain authoriza-
tion data to the client browser;

in response to the client browser does not provide the
authorized user data, requesting user authorization
from the client browser.

13. The non-transitory computer readable storage medium
storing computer 1nstructions of claim 12, wherein the
request 1s an Hypertext Transfer Protocol (http) request.

14. The non-transitory computer readable storage medium
storing computer 1nstructions of claim 12, wherein the
domain authorization data and the authorized user data are
stored 1n the form of an Hypertext Transfer Protocol (http)
cookie.

15. The method of claim 1, further comprising:

11 the state comprises the unauthenticated state, redirecting
the client browser to an access agent for authentication
of the client browser, and wherein the access agent 1s
separate from the processing node.

16. The method of claim 1, wherein each of the plurality of
authenticated states determine an authorization level related
to accessible resources of the client browser, and each of the
plurality of states comprises a level of authentication and
authorization of the client browser.

17. The method of claim 16, wherein the state manager 1s
configured to maintain the state of the client browser.

18. The method of claim 4, wherein the processing node 1s
part of a distributed security system comprising an authority
node communicatively coupled to the processing node and
the access agent.

19. The method of claim 18, wherein the distributed secu-
rity system 1s implemented as an overlay network 1n a wide
area network.

	Front Page
	Drawings
	Specification
	Claims

