12 United States Patent

Homme et al.

US008656182B2

US 8,656,182 B2
Feb. 18, 2014

(10) Patent No.:
45) Date of Patent:

(54) SECURITY MECHANISM FOR 7,382,904 B2* 6/2008 Lee ..ccooereeiiiiiiiannnn, 382/124
DEVELOPMENTAL OPERATING SYSTEMS 8,023,773 B2* 9/2011 Brunketal. ... 382/305
2006/0036873 Al 2/2006 Ho et al.
(75) Inventors: Jeffrey M. Homme, Redmond, WA 2006/0195906 Al 872006 Jin et al.
(US); Mariusz H. Jakubowski 2011/0035805 Al 2/2011 Barkan et al.
Bellevue, WA (US); Jeremy S. Russell,
Bellevue, WA (US); Scott A. Kupec, OTHER PUBLICATIONS
I;;ﬁfgg;l“%;;LuS;ﬁ]?;;g(?ssc)' International Search Report and Written Opinion 1ssued in PCT/
! 1ot US2011/055727, mailed Sep. 3, 2012, 7 pages.
(73) Assignee: ?I/Ijié:;'()soft Corporation, Redmond, WA * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this , _
patent 1s extended or adjusted under 35 Primary Examiner — Hosuk Song
U.S.C. 154(b) by 0 days. (74) Attorney, Agent, or Firm — Glen Johnson; Andrew
Sanders; Micky Minhas
(21) Appl. No.: 13/230,708
(22) Filed: Sep. 12, 2011 (57) ABSTRACT
(65) Prior Publication Data A security technique to reduce the risk of unauthorized
release of a software object. The technique allows 1dentifica-
U 2013/0067238 Al Mar. 14, 2013 tion of an individual responsible for the unauthorized release
(51) Int.CL by marking each object with information, which acts as a
HO04L 9/32 (2006.01) fingerprint from which a person manipulating the object 1n a
(52) U.S.CL development environment can be identified. The develop-
USPC 713/189; 712/193; 726/26; 726/27 ment environment may be configured to quickly and auto-
(58) Field of Classification Search matically mark the object whenever a manipulation that may
USPC 713/168-170, 176, 178, 181, 182, 189, precede an unauthorized release occurs. To prevent circum-
713/193: 726/26-30; 382/115-118, 124: venting the security technique, the object may be configured
3R0/277 to enforce a requirement for a valid fingerprint such that the
See application file for complete search history. object 1s disabled 11 the fingerprint 1s removed or altered.
Despite the marking, personally identifiable information 1s
(36) References Cited not revealed because the fingerprint is generated through a

U.S. PATENT DOCUMENTS

one-way cryptographic function performed on i1dentifying
information.

6,910,132 Bl
7,194,618 Bl *
7,225,337 B2 *

6/2005 Bhattacharya
3/2007 Suominen 713/155

5/2007 Baesslerccco...... 713/175 15 Claims, 7 Drawing Sheets

US 8,656,182 B2

Sheet 1 of 7

1

Feb. 18, 2014

U.S. Patent

100

11

1

11

1

FIG. 1

US 8,656,182 B2

€INLSAINE 0 C Fd AWWNNG

"
o
. e, 1
SN ..
s aH..,...F

= 4N =
: gz B
¢ ITALS QINg e o . “ - 30UNO0S

Sheet 2 of 7

= 1
404N0S

veQee

¥ ATALS S_zm\ yIIALS QTNG ol T
!
/ INIWIDHOLNT |

mwOmN {ﬁOMN / .. m

et e e e — -_—
- -
q _ - .l.lr.rr
- -

™. - .
r -.‘.l I‘l-l L]
: - - .
] e Sl .
_ —_
: .
: .
] .
i
: .
: .
i
: .

.

.

r '
L O T N N A T Eu Tar I g A T I A A A A A N A A A A R A A N A I N I I I N &

N m|_>._,m d , //
|
| RS A A

Feb. 18, 2014

i
i
i
i
i
i
i
1

_) —_— -
-— —
-
a
-h‘-
. -
- -
Il.-. hh
., -
- -
— et = ——— -

414
A04N0S

2 m.cﬁ.m Qq@

U.S. Patent

U.S. Patent

i Timebuild Post-

T i

oulld embeds
default blgb.

o o o o o o o o o o o o o o ol o o o o o ol o o o o o o

L]
1
A
r
N
1
L B L L L L L L L L L L] L]
1
H
L |
1
'

Usef iD,
Hash and
Timesgtamp
of Nﬁﬁ.cat

Encrépted
Blgb

o ol o o o o o o o o o o o o o o o

WS Blob.

g‘l“‘l‘““““““‘lﬁ““““
- .
. ™

= = m A am—-

344

/

7 Fite. ™
Harsmg,

.Il“..l

_______ .
'''''''''''''''''''''''''''''''' v raraTLry Sarararyr.
11111111111111111111 -
B A T . S
! e e e e e e e e e e e e e e e e e ' an Ser ame ¥
** N '3 .
o e e T e T Ty Ty e e e L "
###################### r .qu -
e M N N M N N M M M NN N -
;;;;;;;;;;;;;;;;;;; :__;h 1 \
iiiiiiiiiiiiiiiiiiii - . ’ - .-
S e . . WFES
o R N e e e e - '|| \
! - .‘T-:.:.::‘.::'.:::':':'T" :.T ’ 1 r N N th-__-*‘-
: R ; €15 an : g
----- !
/ Y N ———— .~ USE g Mﬂﬁe T N
! r "y t : B e ey PR R 0,
h n | UITers T
f C o e 11. ... B oe e e e e e e e
, : f . f{:at!@ﬁ
. 3 U CADPHG RS
1 . B - - -
. T IR
- 3
. L O
__________________________ L S
,,,,,,,,,,,,,,,,,, r WL L T T T T T T Lt s e T
,,,,,,,,,,,,,,,,,,,,, [T
IIIIIIIIIIIIIIIIIIII . . . - . . - . . - . . - . . . - - - - - - -
T e T T T 1S -2 DR DCUNERE)
r bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb h bI'
.....................
************************************ u LF ""_'_'_'_'_'_'_'_'_'_'_'_'_'_'_":-1' .
i A e B N LA ik e N -,
**************** . L] =
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 3 . .z Lol
------------------ < 1 . . S A . =
1-.1-'1-'1-'1'1'1-'1'1'1-'1‘1'1'1':.11 3 N -,
, n Ir.‘I.I.: I-:I':. '._.:.r o I- .
. Rl E N R [
r ----------------------------------- 1 - .
L e . . #
1 !"l \
'L : . .
L « - Lo ;
e L B T L
L] .
........................ .. .
. - ‘-
L]

pp— L il

’
-J)
;’J-.‘-‘-“'-“Ill-

.
b

. Calculation Service

Feb. 18, 2014 Sheet 3 of 7 US 8,656,182 B2

314
/

- Windows

v shnaTEEALEIE

"""""" A 316

: /
. : ‘* “MediarisSo,
: el - 51QEING e

ViHD, Raw,
________ ESD. ...

324

L]
1
i
I
II .

Filo

Reguest

-
T
-

gb;': image Cofy Request

.................................

..

" w !

..

...
...........................

............................

o«
.....................................
.................................
.......................
......................
.....................
..................

..................

fi‘--l-.-.---.-.---.-.- -

Filerfame |
and User I | Offsetsand | :
% Filled Data Bufferg SMBVIK

+++++++++++++++++++

a4
qqqqqqqqqqqqqqqqqq

N
Fi% Name

Instaliable
image

woe

.............................

.........................

......................

...............

Encrypted

......

Blob

FIG. 3

U.S. Patent

Feb. 18, 2014 Sheet 4 of 7 US 8.656,182 B2
400
" START o
H 410
RECEIVE REQUEST FOR OPERATION | _~
INVOLVING OBJECT
5 412
OBTAIN IDENTIFYING INFORMATION OF |~
~ PERSON REQUESTING OPERATION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 414
OBTAIN IDENTIFYING INFORMATION |~
IDENTIFYING OBJECT
HASH INFORMATION IDENTIFYING |~ 416
PERSON
ADD INFORMATION IDENTIFYING 418
OBJECT TO HASH e
420
SIGN COMBINED INFORMATION
4
REPLACE FINGERPRINT 7

[ S Sy S S S S S S S TR S S S S SO SR SN S S SN SR S SR S S S S SR S S SR S S S A S SN SN S S SO S S S TR S S S SHr S S T S SR S S S S

-y

STtEm A A A A A A s s a s

FEpr I e A A A A R ar N

[ SISy S S S S S S S S TR S S S S SO SR SN S S SN S S SO S SN S S S S S TR S S S A S SN SR S S SN SR S S SR S SR S S S S T S S S S S

.

FIG. 4



U.S. Patent

eb. 18, 2014 Sheet S of 7

~ START |

T E E EEEEEEEE-

READ FINGERPRINT LOCATION

YES

P EEE .-

[ Ep S T R S S A S S S S S I S I I S I I A S I S I I I I D I S S D S S S D S e D D I e D I S D I e S e e e e

CHECK SIGNATURE

[ R S S Ry B I I S S I S R D S I R I S A S I I D S I I B A D S S S S R D S S e D S D D S S D e S R D S e S i e aer

YES

[ R S S S S S S S T S S S S S TSN S SO S SN S S S S S S S S S SN S S S SR S SO SN SR S SN SN S S S SN S S TR S S S S S SR TR SR S T SR

R R R R

CHECK INFORMATION ABOUT OBJECT

b e e e e e e e e e e e e e e e e e e e e e e e e e e s e e e e e e e e e s e e e e e e e e e e e e e e e e e e e e e e

540

US 8,656,182 B2

— .F..-‘-‘-'\--\_
J"'-r-.i‘- -‘-‘-‘-\.--"-\‘_
- -
- -
1_‘_'_.-- oy —
—
_F.__..o-l = --\_\-"-H_
- -
__._'_;" -‘1--""'--|_
— "-.._\‘--‘
i_-_.--" -.._\‘__-
—_— - -
_---- ---‘-"l-
_-l""'_' T -
- e —
'I-\_\___‘-‘- -.‘_‘__,.l'
——_ - -‘__,.-
L -
~—— -—
— -
- - o -
"'-\..___ -
"--\._‘_ _-_‘__,-F'
---\.____‘-- _-.-l'
-— -—
- o
- -
--.___‘_‘ _,_,-"“
T,
— —
T = .--".-F -
--\..____\_‘- -‘_‘_.__,.,—
T T
.......a....a.a.a....a.a....a.......a.a....a.a.a.a.a....a.a....a.......a.a....a.a....a.a....a.a....a.a.a.a.a....a.a....a.a....a.a....a.a....a. S S i R S
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
[ e e e .
___________________________________________________________ e e e — — — — — — — — i —— — — —— —— ——
L —m—m- —m—m- ===
- —m-m- —m-m- -
‘.-"'J ‘\"'-\.
- .
’ :,
S ) :
| L .
1 .
[ . '
h ) :
Ay 4
.-"'.
- A
x“_‘h‘- o
- - - - - ---’




U.S. Patent Feb. 18, 2014 Sheet 6 of 7 US 8,656,182 B2

v

" START | 600
) | 610

L
L
L
L
L

READ FINGERPRINT LOCATION

EGENERATE FINGERPRINT FOR SUSPECT

622

Ia. A A A A A A A A A A A A A A A A A A A A A A A A A AR A A A Al A A A A A A A A A A A A A A A A A A A A A A A A R AR AR B A R A R

612
NEXT SUSPECT

E
- —
e
-H--l-
- I-'I-
-“--‘-'-.
™ -
= ""--._\_.._ ~—
-
=

PSSR SR S S SR S SOy T S S S S S —

e e o e e e e e e e o e e e e e o e e ]

FIG. 6



US 8,656,182 B2

Sheet 7 of 7

Feb. 18, 2014

U.S. Patent

-
—
M

G8Z  SIYHO0Nd /'Ol
NQLLYIddY y~ L
| 310NN | — — —
e Ivl 7 Gh2 2.
Y1va S3INAON SIYHO0Md NI LSA
8L AShON NYH90Nd _ NVY90Hd §FHLO | NOILYDITddY A INEE
_ 20/ QUYOBAIN g,
¥3LNdINOD F58 BOODn 00 JaL A7l \
JI0NF | 08, | H38 Shmmeseass
OOo CooHeDDEOD O
¢/l NNN
_Eﬁ_o «
WHOMLIN YISV FAM Y oo e "
0Ll 062 [_ m
LN m - ] . i NYE90Yd I4 _ m
_ Y3LN JOVAYILN =) ANEN]) “
R LAdN NIOIZIA TOANON | | AMOWAR " TOANON m
WYOMLIN YINY TYI0T | 438N J18YAQN s J1YAONIENON | m
m Y, __ m
== TS0 | |
m SNE WILSAS AL m
s M W E e w
4 it m _ NOILY I TddY m
m = VANEIL Y3 NI __ m
\_ daiNide '| m TWTHANAd $aih Pl WALSAS m
954 m 1d1N0 | e ONLVAEd0 | ||
! m G6L- o - 76l (Wwvd) |
/// m e m
" o “L 5019 "
0Z. m
~— e 1EL oMl |
6. m KHOWIW WIESKS |




US 8,656,182 B2

1

SECURITY MECHANISM FOR
DEVELOPMENTAL OPERATING SYSTEMS

BACKGROUND

New versions of operating systems for computing devices
are of 1nterest to many people, including ordinary computer
users, parties seeking to make and distribute unauthorized
copies ol the operating system, manufacturers of competing
operating systems and developers of applications to execute
on the operating system. Sometimes, this level of interest
leads some who have legitimate access to the code of the
operating system while 1t 1s 1n development to reveal details
of the new version before it 1s officially released.

There can be many undesired consequences for the manu-
facturer of an operating system when a version of the operat-
ing system 1s leaked 1n this way. Competitors may gain access
to the operating system and use it improperly 1n competing
with the operating system manufacturer. Though, even less
malicious uses can be harmtul. Pre-release leaks, for
example, can reduce the cachet of new features 1n the oper-
ating system when 1t 1s oflicially released, thereby hurting
sales. Also, problems can arise if the developmental version
contains features that are not fully debugged, creating the
erroneous perception that the final version of the operating
system will not work well. Additionally, parties planning to
make applications or components that interact with the new
version of the operating system may implement their prod-
ucts based on the leaked development version, only to find
that, when a version 1s oflicially released, their products do
not work as intended because of changes to the operating,
system between the leak and the official release.

There are various ways that these leaks can occur. Some-
times, information about the new version of the operating
system 15 leaked from within a development organization by
someone within that orgamization making an unauthorized
release of a build of the operating system. In a developmental
organization, software source code may be maintained within
developmental servers. These servers may include a configu-
ration management system that tracks versions of files or
other components holding the components of the operating
system.

A large team of soitware developers may work on the
source code. Each may check-out from the configuration
management system pieces of the source code on which that
developer 1s working. When a developer 1s done working on
a piece of the software, that developer may check 1t into the
configuration management system, allowing another devel-
oper to check 1t out and work on 1t.

From time to time, the latest version of the various com-
ponents of the source code may be assembled into a build. In
addition to collecting the latest version of each component of
the operating system, a build server may convert the software
source code 1nto an executable form, creating an executable
object for the build. This object may then be tested or other-
wise used for legitimate purposes related to the development
of the operating system. In some instances, the object may be
stored on a distribution server from which others can make
copies of the object for testing.

Leaks may occur at any point in the process. In some
instances, leaks may occur when an unauthorized build 1s
created. The object created as part of this build may be copied
and distributed on the Internet or in other ways. As another
example, the object to be leaked may be obtained from a

distribution server.

SUMMARY

To reduce risks associated with leaks of objects, such as an
object for a new version of an operating system under devel-

10

15

20

25

30

35

40

45

50

55

60

65

2

opment, an object may be marked with a fingerprint of each
person controlling an operation involving mampulation of the
object. The operations for which such a fingerprint 1s applied
may relate to creation of the object, copying of the object or
moving of the object. Within a developmental entity, the
fingerprint may be overwritten at each of multiple steps 1n the
process of creation and distribution of the object, such that the
fingerprint 1n an unauthorized object found external to the
development organization may indicate the identity of'the last
person within the organization to manipulate the object. This
information may provide a usetul starting point in responding
to leaks of objects.

Accordingly, in some aspects, the invention may relate to a
method of processing a software object. The method may
include, in conjunction with an action involving manipulation
ol the object, obtaining information identifying a person con-
trolling the action. Obfuscated data may be cryptographically
generated based on information i1dentitying the person and
information identifying the object. The obfuscated data may
then be incorporated 1nto the object.

In another aspect, the invention relates to a method of
executing an object on a computing device. The method may
include accessing a component of the object and determining
whether the component 1s valid. The component may be
validated by checking whether the component was signed
with a predetermined key and checking whether the compo-
nent contains iformation 1dentifying the object. When the
component 1s valid, the object may be executed. When the
component 1s not valid, the object may be disabled.

In another aspect, the invention relates to at least one com-
puter readable storage media comprising an object 1mple-
menting an operating system. A kernel of the operating sys-
tem may include a component that accesses security
information incorporated in the object, accesses information
identifving the object, and determines whether the security
information 1s formatted as a valid fingerprint. When the
security information i1s not formatted as a valid fingerprint,
the component may disable the object.

The foregoing 1s a non-limiting summary of the invention,
which i1s defined by the attached claims.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn
to scale. In the drawings, each identical or nearly 1dentical
component that 1s 1llustrated in various figures 1s represented
by a like numeral. For purposes of clarity, not every compo-
nent may be labeled 1n every drawing. In the drawings:

FIG. 1 1s a conceptual sketch of an exemplary environment
in which a security system may operate;

FIG. 2 1s a conceptual sketch of an exemplary process of
inserting fingerprints in objects;

FIG. 3 1s a block diagram of an exemplary embodiment of
a security system for a software object;

FIG. 4 1s a flow chart of an exemplary process of operating
a component of a security system 1n a development environ-
ment,

FIG. 5 1s a flow chart of an exemplary process of operating,
an object to implement security 1n a runtime environment;

FIG. 6 15 a flow chart of an exemplary method of identify-
ing a person responsible for leaking an object; and

FIG. 71s ablock diagram of an exemplary computer system
that may be used to implement portions of a security system.

DETAILED DESCRIPTION

The inventors have recognized and appreciated that risks of
unauthorized release of a software object may be reduced



US 8,656,182 B2

3

through marking objects with information acting as “finger-
prints” of people who manipulate the object. The fingerprint
may be mserted as part of object manipulations. The finger-
print provides information unique to the individual who
manipulated the object such that the person may later be
identified. The possibility that the person manipulating an
object will be 1dentified may reduce the likelihood that such a
person will release an unauthorized build of a software prod-
uct. Moreover, through identifying a person responsible for
an unauthorized disclosure, further unauthorized disclosures
by the same person may be foreclosed. Fingerprints may be
applied 1n connection with any suitable type of software
objects, such as an object for a new version of an operating
system under development.

In some embodiments, a development environment for an
operating system or other software product may be config-
ured to mark the object with a fingerprint of each person
controlling an operation involving manipulation of the object.
For example, each server from which any such manipulation
can be performed may be configured to automatically mark
an object with the fingerprint of the person controlling the
operation each time such an operation 1s performed. The
operations for which such a fingerprint 1s applied to an object
may relate to creation of the object or copying of the object or
moving of the object. Though, the fingerprint may be applied
to the object 1n connection with any suitable operation.

In some embodiments, an object may contain a single
fingerprint location and the fingerprint stored 1n this location
may be overwritten as successive manipulations of the object
occur. The object may be designed to initially include a
default fingerprint which can be overwritten at the first
manipulation of the object. Overwriting an existing finger-
print in this way may allow the marking to occur quickly so as
not to disrupt normal operation of the developmental envi-
ronment.

Within an entity performing development, the fingerprint
may be overwritten at each of multiple steps 1n the process of
creation and distribution of the object, such that the finger-
print 1n an unauthorized object found external to the devel-
opment organization may indicate the i1dentity of the last
person within the organization to manipulate the object. This
information may provide a useful starting point in responding
to leaks of objects.

In some embodiments, the fingerprint may contain infor-
mation from which a person controlling manipulation of the
object can be 1dentified. However, in some embodiments, the
fingerprint may contain no personally 1dentifiable informa-
tion associated with any user. Rather, the fingerprint may
contain information about the person that has been obscured
through a one-way cryptographic function such that the infor-
mation personally identifying the individual cannot be recov-
ered. Nonetheless, i an unauthorized object 1s detected,
information for any person suspected of being involved 1n the
unauthorized release may be processed through the same
one-way cryptographic function. The obscured imnformation
in the object may be compared to the information similarly
generated for the suspected 1individual to determine whether
the suspected individual was the last person within the devel-
opmental organization to manipulate the object.

In some embodiments, a simple mechanism may be used to
mark an object with a fingerprint. For example, the fingerprint
may be iserted 1nto a predefined location within the object.
In some embodiments, a fingerprint, when first inserted into
the object, may overwrite a component of the object that 1s
initially included in the object as a placeholder for the finger-
print. For example, the object may be designed such that
when the object 1s built, 1t includes a file that i1s not otherwise

10

15

20

25

30

35

40

45

50

55

60

65

4

required for operation of the object. This file may be over-
written when a fingerprint 1s inserted into the object. Storing
the fingerprint 1n a predefined location may simplify the pro-
cessing required to mark an object because only a simple
modification of the object 1s required to mark 1t.

Techniques that foreclose unauthorized removal of a fin-
gerprint may also be employed. In some 1nstances, the object
may include a component that checks for the existence of a
valid fingerprint. If no valid fingerprint 1s detected when the
object 1s executed, that component may disable the object.
Moreover, obluscation techniques may be used to prevent
detection of the fingerprint or the component that enforces a
requirement for the presence of a valid fingerprint. For
example, the component that checks for a valid fingerprint
may initiate actions to disable the object at a random time
alter failing to detect a valid fingerprint. These actions may
include selecting random locations within the object to cor-
rupt. As a result, the object may cease operation at some
random time for a seemingly random reason, making 1t diffi-
cult for a person attempting to defeat the enforcement mecha-
nism to 1dentity where it 1s within the object.

Turming now to FIG. 1, an example of an environment 1n
which embodiments of a protection system may operate 1s
provided. FIG. 1 1illustrates a security system 100. FIG. 1
illustrates that components of security system 100 operate 1n
a development environment 110 and 1n a runtime environ-
ment 150. The components of security system 100 operating
in development environment 110 may insert one or more
fingerprints into each software object that can be generated 1in
the development environment 110. In this example, the soft-
ware object created 1n development environment 110 1s an
executable version of an operating system of a computing
device objects generated for any suitable software product
may be marked as described heremn. Though, 1t should be
appreciated that the nature of the object marked with a fin-
gerprint 1s not critical to the invention.

In the exemplary embodiment of FIG. 1, a single finger-
print 1s included 1n the object. However, the number of fin-
gerprints inserted into the object 1s also not critical to the
invention. For example, 1n some embodiments, multiple com-
ponents within the object may be marked with a fingerprint
using techmques as described herein.

In the embodiment of FIG. 1, the runtime environment 150
includes a component that enforces a requirement of a valid
signature. In this example, the object contains an enforcement
component such that i1f the object 1s executed on a computer,
such as computer 152 by a user 154, the enforcement com-
ponent may limit execution of the object 1f a valid fingerprint
1s not present 1n the object. In this way, a user 154 1s precluded
from obtaining information about the features and function-
ality of the software product if the object 1s not marked with
a valid fingerprint. In scenarios in which a person within
development environment 110 releases an unauthorized copy
ol the object for the purpose of allowing others to determine
its features or functionality, the enforcement component
within the object may thwart efforts to remove or alter a
fingerprint associated with an object inserted 1n development
environment 110.

The fingerprint may be inserted into the object in any
suitable way within development environment 110. In the
example 1llustrated, development environment 110 1ncludes
one or more servers performing functions as are known in the
art. In this example, a server 112 and a server 118 are included
in development environment 110. Server 112 may represent a
development server of the type that manages access to a
database 114 of software source code for a software product
being developed. Development server 112 may access the




US 8,656,182 B2

S

source code 1n database 114 and create a build of the software
product. The result of creating a build may be a software
object that can be 1nstalled and executed.

During a development process for a software product, mul-
tiple builds may be created. Accordingly, development server
112 may, as part of creating a build, incorporate version
information into the build, indicating a version of the software
source code at database 114 used to create that build.

Some of these builds may be used for development pur-
poses. Though, when the software source code in database
114 1s finalized, a build may be legitimately distributed out-
side of development environment 110. Though, 1t may be
undesirable for a build to be released while the software
product 1s still under development.

A build may be distributed using techniques as are known
in the art. In the embodiment illustrated, development envi-
ronment 110 includes a distribution server 118. Distribution
server 118 may package a build for distribution. Multiple
distribution mechanisms may be used for a soitware object.
For example, a software object may be copied to a disc or 1t
may be distributed over a network, such as the Internet. Dis-
tribution server 118 may perform functions as appropriate for
the mode of distribution. In the embodiment 1llustrated in
FIG. 1, distribution server 118 distributes a software object
over a network, such as the Internet 140. Though, it should be
appreciated that the mode of distribution 1s not a limitation on
the invention. To the contrary, development server 112 may
be configured to create objects formatted for any of multiple
distribution formats.

Operations within development environment 110 may be
controlled by one or more people employed by an enfity
developing the software product. In this example, a person
122 1s shown 1nteracting with the development environment
through a workstation 120. Person 122 may have security
credentials that allows person 122 to access components
within development environment 110. Those credentials may
include a user ID, which may be assigned using techniques as
are known 1n the art. These credentials may be used to gain
access to the components 1n development environment 110.

Though FIG. 1 shows a single person 122, a single person
1s shown for simplicity of illustration. In a development envi-
ronment such as might be found 1n an entity developing
commercial products for sale, there may be multiple people
that have access to the resources of development environment
110. Dafferent ones of the people within development envi-
ronment 110 may have different access privileges to different
functions 1n the development environment. For example, a
subset of the people employed by the entity offered in devel-
opment environment 110 may have access to development
server 112 such that they can modily software stored in data-
base 114 and/or control development server 112 to construct
a build. Another subset may have access privileges that allow
them to control distribution server 118 to allow distribution of
a software object outside of development environment 110.
Though access to the functions that can be performed within
development environment 110 may be restricted, there may
nonetheless be numerous people that have credentials that
allow them to perform one or more functions that can result 1n
the unauthorized distribution of a software object for a soft-
ware product under development.

To provide a mechanism to 1dentily a person that is likely
responsible for an unauthorized release of an object, compo-
nents of distribution environment 110 may be adapted to
insert a fingerprint of a person controlling manipulation of the
object such that, if an unauthorized object is identified outside
of development environment 110, a person responsible for the
release may be identified. In the embodiment 1llustrated,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

though development server 112 and distribution server 118
perform functions as 1n a conventional development environ-
ment, those components may additionally 1nsert a fingerprint
into each object they process. The fingerprint may be gener-
ated 1n such a way as to be uniquely associated with a person
controlling the operation that manipulated the object.

In the embodiment 1llustrated, the fingerprint may be gen-
erated using a key. For added security, the elements within
development environment 110 that insert the fingerprint into
an object need not have access to the key. Rather, key server
116 maintains the key. In the embodiment 1llustrated, each of
the elements of development environment 110 that requires a
fingerprint may, instead of accessing the key, provide the
information used to generate the fingerprint to key server 116.
Key server 116 may then generate the fingerprint and return 1t
to the component of development environment 110 that waill
msert 1t 1nto an object being processed.

Such an exchange of information may be possible because
the components of development environment 110 may be
interconnected with a network 130. Network 130 may be an
enterprise network within the entity operating development
environment 110. Though, 1t should be appreciated that any
suitable mechanism of communication between the compo-
nents of development environment 110 may be used.

In some embodiments, a fingerprint may be generated from
information relating to the person that controlled an operation
to manipulate an object. In addition, the fingerprint may be
generated from information relating to an object. For
example, the information about the object may include values
of parameters such as a version number or a time of creation.
The specific source of mformation about the object 1s not
critical to the mvention. Though, in the illustrated embodi-
ment, information about the object 1s readily obtained from
the object, 1tsell, such as by reading a header file.

A fingerprint may be generated using any suitable process-
ing. In the embodiment illustrated, key server 116 generates a
fingerprint by computing the result of a one-way crypto-
graphic function of the imnformation 1dentifying the person
controlling an operation that manipulates an object. For
example, a hash may be computed of the user ID of the person
controlling the operation. Use of a one-way cryptographic
function means that the specific 1dentity of the person con-
trolling the operation cannot be derived from the fingerprint.
Though, the function may be such that for any two people
with different user IDs, the chances of the same value being
generated through the cryptographic function are so small as
to be imconsequential.

Regardless of the manner 1n which the user information 1s
processed, that processed information may be combined with
information about the object. This information may then be
signed with the key maintained within development environ-
ment 110. The signed information may then be nserted nto
the object during an operation mvolving mampulation of the
object to act as a fingerprint of the person who controlled the
operation on the object.

In the embodiment 1llustrated, key server 116 may main-
tain a private key associated with a public key/private key
pair. A computing device within runtime environment 150
may be programmed to have or access the corresponding key
of the key pair. As a specific example, computing device 152
in runtime environment 150 may have access to the public key
corresponding to the private key maintained by key server
116. The object distributed with the fingerprint may contain a
component that applies the public key to the signed finger-
print to validate that the fingerprint was signed within devel-
opment environment 110. Conversely, if information stored at
the location where a valid fingerprint was expected 1s not




US 8,656,182 B2

7

signed with a valid public key from key server 116, a com-
ponent of the object executing 1n runtime environment 1350
may detect that the fingerprint was removed, tampered with or
for some other reason the copy of the object 1in runtime envi-
ronment 150 1s not a legitimate copy because 1t 1s lacking a
valid fingerprint. In some embodiments, an object to be pro-
tected using the security techmques as described herein may
contain an enforcement component that checks for a valid
fingerprint and, 1f such a fingerprint 1s not found, takes a
security measure, such as disabling the object.

The specific components within development environment
110 that insert fingerprints are not critical to the invention. In
some embodiments, though, a fingerprint 1s inserted as part of
cach operation that might lead to an unauthorized distribution
ol an object. In the embodiment 1illustrated 1n FIG. 1, these
operations include generating the object and making a copy of
the object from a distribution server. Though, 1n some
embodiments, any copy operation within development envi-
ronment 110 may result in a fingerprint of the person control-
ling that operation being inserted in the object. In such a
scenario, any component within development environment
110 that 1s capable of performing a copy operation or other
operation that may precede an unauthorized release of an
object, may be equipped to sert a fingerprint.

As can be seen from the example in FIG. 1, though, com-
ponents within development environment 110 may be simply
configured to insert a fingerprint. Any component within
development environment 110 may obtain a fingerprint by
interactions with key server 116.

Moreover, 1n some embodiments, a fingerprint 1s simply
inserted into an object by overwriting information previously
present in the object. For example, the object may be created
with a default fingerprint such that when the first person
within development environment 110 controls an operation
manipulating the object, their fingerprint may overwrite the
default fingerprint. Similarly, when subsequent users access
an object that has already been fingerprinted within develop-
ment environment 110, the fingerprint previously mnserted in
the object may be overwritten by a fingerprint of the person
controlling an operation manipulating the object. Overwrit-
ing a fingerprint may be performed with a simple and fast
operation such that incorporating a security measure as
described may be performed simply without disrupting
operation of the development environment. Though, it should
be appreciated that any suitable mechanism may be used to
insert fingerprints into an object.

FIG. 2 schematically 1llustrates the process of generating
objects incorporating a fingerprint. FIG. 2 1llustrates a code
base 210. Code base 210 may, for example, represent source
code files for a software product, such as may be stored 1n a
developmental database 114 (FIG. 1). In this example, code
base 210 corresponds to programming instructions imple-
menting an operating system for a computing device.

In this example, the code includes multiple source code
files, of which files 212A, 2128, and 212C are illustrated. In
addition, the code base may include a dummy file 214.
Dummy file 214 may be a file that has no functional purpose
in connection with the operation of the software product
defined by code base 210. However, the code base 210 may be
coniigured such that when an object for the software product
1s built from the code base 210, dummy file 214 1s incorpo-
rated into the object. In this example, dummy file 214 may
contain information defining a default fingerprint. Accord-
ingly, when an object 1s bult from the code base 210, 1t
contains a default fingerprint with a value determined from
the contents of dummy file 214. Though, 1t should be appre-

10

15

20

25

30

35

40

45

50

55

60

65

8

ciated that any suitable mechanism may be used to 1ncorpo-
rate a default fingerprint into an object that 1s generated.

In addition, code base 210 includes source code defining an
enforcement component 216. In this example, enforcement
component 216 performs functions 1n the runtime environ-
ment to determine whether an object executing 1n that runtime
environment includes a valid fingerprint and, 11 not, disables
execution of the object.

It should be appreciated that FIG. 2 illustrates that code
base 210 contains source files. It should be appreciated, how-
ever, that 1t 1s not a requirement of the invention that the code
base for the software product under development be stored
strictly 1n source code format. In some embodiments, some or
all of the components within the code base 210 may be stored
as library or executable components or in any other suitable
representation.

Regardless of the manner in which the components of the
soltware product are stored 1n code base 210, the develop-
ment environment may process those components to build an
object. FIG. 2 illustrates a scenario in which a user 222 A has
controlled a development environment to generate an object
from code base 210. In this example, objects of multiple build
styles may be generated. These build styles, for example, may
correspond to various formats 1n which a distribution of the
object may occur. A specific build style, for example, may be
provided for objects intended to be distributed electronically.
Different styles may be provided for different distribution
mechanisms. For example, further styles may be provided for
objects distributed on disk and other media that may be
employed to distribute the software product. Though each of
the objects for the different build styles may be functionally
equivalent, the location of each of the components from code
base 210 may be located differently 1n each of the build styles.
Significantly, dummy file 214, which defines the default fin-
gerprint 1n each of the build styles, may be located differently
in each of the build styles.

Nonetheless, the location or locations of the default finger-
print incorporated as a result of dummy file 214 may be
determined regardless of the build style. That default finger-
print may be overwritten by a fingerprint computed for person
222A. In this example, a fingerprint 250A 1s computed for
person 222A. This fingerprint may be based on user 1D, or
other distinguishing, personal information, for user 222A 1n
combination with information about the code 1n code base
210 at the time person 222A controlled the development
environment to generate an object from code base 210.

FIG. 2 schematically shows that fingerprint 250A may be
inserted into object 230, ,, 230, ,, 230, ,, or 230, ,. Accord-
ingly, regardless of the build style, the object created may be
marked with the fingerprint of person 222A that controlled
the creation of that object.

FIG. 2 further illustrates that the objects 230, ,, 230, .
230, ,, and 230, , may be further processed within a develop-
ment environment. In this example, person 222B manipulates
objects created by person 222A by copying them. Accord-
ingly, because person 222B controls a copy operation, a fin-
gerprint for person 222B may be inserted into the objects.
FIG. 2 illustrates fingerprint 250B computed for person
222B. As with fingerprint 250A, fingerprint 2508 may be
computed from a user ID for person 222B in combination
with information about the object. In thus example, the fin-
gerprint of person 222B 15 used to overwrite the fingerprint of
person 222A. Accordingly, FIG. 2 shows object 230, , with a
fingerprint 250B. Object 230, , may be the same style and
functionally 1dentical to object 230, . However, object 230, 5
may differ from object 230, , 1n that fingerprint 2508 has
replaced fingerprint 250A. Similarly, objects of other styles




US 8,656,182 B2

9

are marked with the fingerprint of person 222B, 1if those
objects arise from a manipulation controlled by person 222B.
Accordingly, objects 230, 5, 230, and 230, ; are shown cor-
responding to objects 230, ,, 230, ,, and 230, ,, but with fin-
gerprint 2508 substituted for fingerprint 250A.

With this scenario for processing objects 1n a development
environment, 1f an unauthorized copy of an object 1s discov-
ered outside of a development environment, fingerprints for
those people within the development environment suspected
ol releasing that object may be computed and compared to the
fingerprint 1n the object. For example, 1f an unauthorized
object 1s found with fingerprint 250A, 1t can be determined
that the object was released after the operation controlled by
person 222A and before any manipulation of that object per-
formed under control of person 222B. Such information may
provide a basis to investigate the unauthorized disclosure, and
may lead to further evidence that the unauthorized disclosure
was performed under control of person 222A.

Turning to FIG. 3, additional details of a security system
that aids in determining the origin of unauthorized releases of
objects are provided. In this example, the fingerprint is
inserted into an object that 1s copied from a file server. FI1G. 3
illustrates components that may supply a file responding to
the copy request.

Accordingly, the system of FIG. 3 includes a network client
310. Network client 310 may request a copy of an object from
a file server 312 within the development environment. If
network client 310 1s being operated by a person with valid
credentials, file server 312 may respond to the copy request by
obtaining and providing a copy of the requested file. File
server 312 may respond even 1f the request 1s for a copy ol an
object under development that the person requesting the copy
intends to improperly distribute.

For example, the object may be stored as an unstaged
image 314. Prior to release, the unstaged image may be pro-
cessed by astaging component 316. The staged image may be
turther processed by a media creation component 318, yield-
ing one or more objects 320 1 one or more build types
suitable for one or more types of distribution. These objects
may be managed by a release manager component 322. The
release manager component 322 may provide either the
unstaged 1image 314 or one of the object types 320, as appro-
priate based on the information requested 1n the copy request.
Regardless of the format of the object, release manager 322
may provide this information as release data 324.

Staging component 316, media creation component 318
and release manager 322 may operate using techniques as are
known 1n the art. Those components may also operate on data
representing an object for a software product generally as 1s
known 1n the art. However, in the embodiment 1llustrated,
component 330 embeds a default fingerprint into the unstaged
image 314. In the embodiment 1llustrated, the fingerprint 1s 1n
the format of a binary large object (blob). In this specific
example, the blob may be a 128-bit long string of data. The
default fingerprint may be generated 1n any suitable way. In
the embodiment illustrated, the default fingerprint 1s gener-
ated by a blob calculation service component 332.

In this example, component 332 receives as input a default
user ID and a time stamp of an N'T3.cat file containing infor-
mation about the object. In this example, the NT5.cat file
contains metadata about the object captured at the time 1t 1s
built. As aresult, the N'T5.cat file contains a time stamp which
may be used to i1dentity a specific build that generated the
object. Though, any suitable source of information may be
used to obtain information about the object and/or any suit-
able information identifying the build.

10

15

20

25

30

35

40

45

50

55

60

65

10

Regardless of the source of the information, this informa-
tion may be processed in the same way that a fingerprint 1s
generated. As a specific example, the default user ID may be
hashed and combined with the information and a hash of the
NT5.cat metadata file and time stamp to generate the blob.
The blobmay be encrypted with the private key ol the security
system as a way of signing the blob. In some embodiments,
component 332 may have access to the private key, itself.
Though, 1n other embodiments, component 332 may interact
with a signing component 334, which maintains the private
key. The signing component 334 may return to component
332 the encrypted blob in response to a request containing the
hashed user ID and hashed time stamp and metadata file.

Regardless of the manner in which the encrypted blob 1s
generated, component 332 may provide the encrypted blob to
component 330. Component 330 may embed the encrypted
blob as a default fingerprint into the unstaged image 314.

In response to the copy command received from network
client 310, the default fingerprint inserted into the unstaged
image 314, may be replaced by a fingerprint generated for the
person controlling network client 310 to request a copy of the
object. In the embodiment 1llustrated, the security system
may replace the default fingerprint with a fingerprint of that
user by detecting that server 312 has received a copy request.

In the embodiment illustrated, server 312 1s configured
with a filter driver 340. Filter driver 340 intercepts commands
received by server 312. Filter driver 340 passes information
about requested files to security application component 342.
In conjunction with the name of the file requested, driver 340
provides the user ID corresponding to the user logged 1n to
network client 310 that 1ssued the copy request.

Security application component 342 then interacts with a
file parsing component 344. File parsing component 344
determines whether the requested file 1s a file to be marked
with a fingerprint during the copy operation. In the embodi-
ment 1llustrated, file parsing component 344 determines
whether the requested file contains an object of a software
product under development. Though, it should be appreciated
that any suitable files may be marked with a fingerprint.

File parsing component 344 returns to user mode security
component 342 an indication of whether the requested file
should be marked with a fingerprint. If the requested file 1s not
of a type to be marked, the copy operation may proceed as 1n
a conventional server. However, il the requested file 1s a file to
be marked, file parsing component 344 returns to user mode
security component 342 information defining the fingerprint
and information defimng the location or locations within the
requested file where the fingerprint is to be inserted.

The specific location or locations at which fingerprint data
1s to be 1nserted at the requested file may depend on the type
of object requested. In this example, file parsing component
344 may contain sub-components to process different types
ol objects to determine a location or locations to overwrite
with fingerprint data. Such locations may be identified 1n any
suitable way including being preconfigured based on the
build type for which a requested file was created. To support
processing ol different types of objects, file parsing compo-
nent 344 may contain multiple subcomponents for parsing
files of different types. For example, subcomponent 3468
may parse a file constituting an object prepared for distribu-
tion on a disk. In contrast, subcomponent 346C may parse an
object prepared for distribution as part of an electronic down-
load. Subcomponent 346 A represents a component for pars-
ing an object created for distribution 1n some other way, and
may represent processing to be performed on any suitable
type of object.




US 8,656,182 B2

11

Each subcomponent may perform one or more functions,
including determining whether the requested file 1s, 1 fact,
one that 1s to be marked with a fingerprint. Another function
that may be performed 1s speciiying what data 1s to be mnjected
into the file. In the embodiment 1llustrated, each of the parsing
subcomponents, such as subcomponents 346A . ..346C, may
obtain an encrypted blob from signing component 334 based
on the user ID of the user requesting a copy of a file. The
specific parsing subcomponent may provide to signing com-
ponent 334 a blob formed from hashing the user ID and
combining 1t with a time stamp, from an NT5.cat file associ-
ated with the object. This information may then be encrypted
by signing component 334 and returned to the parsing sub-
component. Based on this encrypted blob, the parsing sub-
component may determine specific values to be inserted at the
designated vocations within the requested file. The parsing
subcomponent may return this information 1n any suitable
format. In some embodiments, the information may be
returned as a list of offsets into the file, with each oflset
indicating a designated location at which information 1s to be
injected. The specific mnformation to be imjected may be
recorded 1n a butfer returned from the specific parsing sub-
component to user mode security component 342. Further-
more, 1n some embodiments, objects may be compressed or
encrypted such that a fingerprint cannot be inserted simply by
direct replacement. Rather, the object 1n unencrypted and/or
uncompressed form may be altered by insertion of the finger-
print. The altered 1mage may then be recompressed and/or
re-encrypted to determine which locations must be replaced
with which values to achieve the effect of inserting in the
object the fingerprint of the user requesting a copy. Because
the specific operations require to determine the specific bits to
insert 1n a file and the locations at which those bits are to be
inserted may depend on the type of the object, each type of
object may have a corresponding subcomponent as 1llustrated
in FIG. 3. Additionally, 1n some embodiments, altering a
portion of an object, by replacing one fingerprint for another,
may necessitate other changes to the object for 1t to continue
to fTunction correctly. A subcomponent associated with each
type of object may be configured to determine these and other
changes to the object to 1nsert a fingerprint.

Additionally, the fingerprint generated for each object type
may be based on information associated with the object. The
specific information used 1n generating the fingerprint may
preferably be readily available at runtime. Accordingly, dif-
ferent object types may have different types of information
available at runtime. The parsing component associated with
cach type of object may specity the specific information for
the object type to be used 1n generating a fingerprint for that
object type.

Regardless of the object type, the information contained in
the butlfers, may be returned to the user mode security com-
ponent 342, in combination with the ofisets for the file at
which that information 1s to be replaced. This information
then may be passed from user mode security component 342
to the filter driver 340.

Filter driver 340 may pass that information to component
350 which monzitors the stream of data being passed through
the filter driver, representing an information stream contain-
ing the results of the copy command. Upon detecting a loca-
tion 1dentified by the ofisets produced by the parsing subcom-
ponent, component 350 may replace the information at that
location 1n the data stream file with mnformation from the
buller, representing the fingerprint to be injected into the
copied file. In this way, the fingerprint may be injected into
the appropriate location or locations 1n the file being copied

10

15

20

25

30

35

40

45

50

55

60

65

12

without expressly modifying the copy command and/or alert-
ing the person that generated the copy request.

Nonetheless, network client 310 receives the streamed file,
with the designated locations replaced by appropriate finger-
print information. In this example, the copied file may be an
installable 1mage of the object 360. That image may be
installed to create an installed image 362. The installed image
362 may include a runtime validation component 370. The
runtime validation component, in the embodiment 1llustrated
in which the object corresponds to an operating system of a
computing device, may be a component within the kernel of
the operating system.

Regardless of the manner 1n which the runtime validation
component 1s implemented, 1t may execute at runtime. In this
example, the runtime validation component 370 1s pro-
grammed with imnformation defining where in the installed
image 362 the fingerprint inserted 1n the downloaded file may
be located. Accordingly, the runtime validation component
may access the signature and determine whether 1t represents
a valid fingerprint. In the specific example of FIG. 3, the
fingerprint 1s encrypted by signing component 334 using a
private key. The runtime validation component 370 has access
to the corresponding public key for the private key used by
signing component 334. The public key may be stored 1n any
suitable way within the installed image 362. In some embodi-
ments, operating systems include key stores or other mecha-
nisms for storing security information. The public key corre-
sponding to the private key used by signing component 334
may be stored 1n such a key store or 1n any other suitable way.

Regardless of the manner 1n which the key 1s stored, runt-
ime validation component 370 may access that key to decrypt
the encrypted blob representing the fingerprint. Components
of the decrypted blob may then be analyzed to determine
whether the blob constitutes a valid signature. As a specific
example, 1n the 1llustrated embodiment, the unencrypted blob
may contain four portions. A {irst portion may be a header
identifying the blob as a fingerprint. A further portion may be
a non-reversible hash derived from the account credentials of
the individual requesting the copy demand. A third portion
may indicate the creation time of the object. A fourth portion
may be a hash of multiple pieces of metadata about the object.
In some embodiments, each time an object1s built, an NT5.cat
file may be created, containing information about the object.
The unencrypted blob may contain a hash of the entire con-
tents of this file.

In the embodiment 1llustrated, the runtime validation com-
ponent 370 may access comparable mformation about the
object that 1s retained as part of the installed image 362. As a
specific example, the NT5.cat file may be retained in the
installed image, such that the time stamp associated with the
object may be accessed. Similarly, the entire content of that
file may be accessed and hashed 1n the same manner used to
create a valid signature. The hash of the metadata about the
object generated at runtime and the time stamp for the object
may be compared to those from the unencrypted blob. If the
information generated at runtime matches the information 1n
the unencrypted blob, the unencrypted blob may be deemed
to contain a valid fingerprint. If not, the installed 1mage may
be deemed to correspond to an unauthorized or tampered with
copy. In response to such a determination, the runtime vali-
dation component 370 may disable the object to prevent 1t
from operating.

Turming now to FIG. 4, a method of operating a component
in a development environment 1s illustrated. The method 400
may be performed by any suitable component 1n a develop-
ment component. For example, the method may be performed
by a distribution server, such as distribution server 118 (FIG.




US 8,656,182 B2

13

1). Though, any server that may perform an operation that
could lead to an unauthorized release of an object may be
configured to perform method 400.

In the example illustrated in FIG. 4, method 400 begins at
block 410. At block 410, a request for an operation involving,
an object 1s recerved. This request may be recerved 1n any
suitable way, including by monitoring commands recerved by
the component executing method 400 and intercepting those
commands requesting an operation involving an object to be
protected by a security system.

Regardless of the manner 1n which the request for an opera-
tion 1s recerved, method 400 may proceed to block 412. At
block 412, information i1dentifying a person requesting the
operation received at block 410 may be obtained. Any suit-
able 1dentitying information may be used. In some embodi-
ments, the identifying information may constitute a portion of
a credential used by the person to gain access may be used as
identifying information. As a specific example, each person
allowed access to an object may be assigned a user ID. The
user 1D may be the identifying information obtained at block
412. Though, 1t should be appreciated that any suitable 1den-
tifying information may be used.

Atblock 414, identiiying information about the object may
be obtained. This information also may be obtained in any
suitable way. In embodiments 1n which objects are generated
based on builds of a software product, the identilying infor-
mation may identily a specific build of the object. The build
may be 1dentified 1n any suitable way, such as from a time
stamp 1ndicating the time at which the build occurred.
Though, other information may alternatively or additionally
be used to 1dentily the object. In some scenarios, some or all
of the mnformation identifying the object may be hashed and
the hash of the identifying information may be used.

Regardless of the manner 1n which information identifying
the person and information identifying the object are
obtained, method 400 may proceed to block 416. Processing
at block 416 may entail a one-way cryptographic function
such that the specific identity of the person cannot be recov-
ered. As a specific example, at block 416, the information
identifving the person may be hashed.

At block 418, the hash of information 1dentifying the per-
son may be combined with information identifying the object.
This information may be combined in any suitable way. In the
embodiment illustrated, the combination may be performed
in such a way that the hash of information identifying the
person may be separated from information used to identify
the object. As a simple example, the hash of information
identifying the person may occupy a first portion of the bits 1n
a blob. The information 1dentitying the object may occupy a
second portion of the bits 1n a blob.

Regardless of the manner in which the hash of information
identifying the person 1s combined with information identi-
tying the object, the combined information may be signed at
block 420. Signing at block 420 may be performed 1n accor-
dance with any suitable cryptographic process, including
cryptographic processing as 1s known in the art. The signature
may be generated using a private key accessible to the com-
ponent executing method 400. In some embodiments, the
blob created at block 418 may be signed by encrypting the
blob using the key.

Regardless of the manner in which the combined informa-
tion 1s signed, the signed information created at block 420
may act as a fingerprint of a person requesting the operation
on the object at block 410. Atblock 422, this information may
be used to replace a fingerprint already within the object. In
the scenarios 1 which method 400 represents processing,
during a first controlled operation on an object, processing at

5

10

15

20

25

30

35

40

45

50

55

60

65

14

block 422 may entail overwriting information included by
default 1n the object. Such information may, for example, be
a default fingerprint having the same form as a fingerprint
created at block 420. In scenarios 1n which the object has been
previously the subject of an operation that resulted in the
generation of a fingerprint, processing at block 422 may entail
replacing that fingerprint previously 1nserted into the object.

Once the fingerprint 1s replaced at block 422, the operation
requested at block 410 may complete as in conventional pro-
cessing. Completing the method 400 may result in a distribu-
tion of the object such that it may be available for execution on
a computing device. In some embodiments, the object may
incorporate an enforcement component that may operate
according to method 500 as illustrated in FIG. 5.

In scenarios 1n which the object 1s an operating system, the
enforcement component may be a kernel mode component
within the operating system. Though, the specific mechanism
by which an enforcement component 1s incorporated into the
object 1s not critical to the invention.

Regardless of the manner in which the method 3500 1s
executed, the method may begin at block 510. At block 510,
the enforcement component may read imformation stored at
one or more designated fingerprint locations. The location or
locations read at block 510 may correspond to locations 1n the
memory of the computing device on which method 500 1s
executed where the fingerprint, 1f properly included in the
object, 1s stored when the object 1s installed on that computing
device. The location may be designated 1n any suitable way.
For example, 1t may be designated by an absolute memory
address, by an offset 1n memory measured from a location
where a beginning of the object 1s mstalled. Alternatively or
additionally, the location may be designated dynamically, by
using a file name or other 1dentifier to determine the location
of the fingerprint.

At decision block 520, method 500 may branch, depending
on whether information 1n a format of a fingerprint 1s present
atthe accessed location or locations. For example, in embodi-
ments 1n which a fingerprint i1s stored as a file, 11 no file 1s
present at the designated location processing may branch
from decision block 520 to block 550. In this example, block

5350 represents the beginning of a subprocess in which the
object 1s disabled.

Conversely, 1f information in the format of a fingerprint 1s
present 1n the accessed locations, the method 500 may branch
from decision block 520 to block 522. At block 522, a cryp-
tographic operation may be performed on the mformation
accessed from that location to check whether that information
has been properly signed. In the embodiment illustrated, the
check at block 522 may entail determining whether the infor-
mation 1s signed with a pre-determined key used by the secu-
rity system 1n a development environment. Such processing
may entail attempting to decrypt the information read from
the location at block 510. Such processing may be performed
as 1s known 1n the art using a key that 1s part of a pair with a
key used 1n the development environment to encrypt finger-
print information. The key used at block 522, for example,
may be the public key corresponding to a private key used in
the development environment.

Following processing of block 3522, method 3530 may
branch, depending on whether the signature of the informa-
tion read at block 510 1s valid. Any suitable mechanism may
be used to determine whether the signature 1s valid. For
example, the signature may be deemed to be valid when, as a
result of the processing at block 522, the information read at
block 510 1s determined to have a header indicating that the




US 8,656,182 B2

15

information constitutes a fingerprint or any other suitable
characteristics indicating that the information 1s formatted as
a fingerprint.

Regardless of the manner in which the signature 1s vali-
dated, 1f the accessed information does not contain a valid
signature, method 500 may again branch to block 550. Alter-
natively, 1 the information 1s determined to have a valid
signature, method 500 may proceed to block 532.

At block 332, the fingerprint 1s checked to determine
whether 1t contains information about the object that was used
to install the component executing method 500. The check
performed 1n block 532 may be performed 1n any suitable
way. For example, a component may read information about
the object used to 1nstall the executing 1image of an operating,
system. The information read may be header information.
The header information obtained at block 532 may be the
same type obtained at block 414 (FIG. 4). In this way, the
information obtained from the object installed 1n a runtime
environment may be compared to information about the
object used to generate the fingerprint read at block 510. A
comparison of the information about the object 1n the runtime
environment and the object for which the fingerprint was
generated allows the enforcement component to recognize
whether the fingerprint detected at runtime was copied from
another object, possibly to obscure the 1dentity of the person
who released the object mstalled in the runtime environment.
Accordingly, 11 the information about the object read from the
fingerprint does not match the imnformation about the object
executing 1n the runtime environment, method 500 may
branch at decision block 540 to block 550.

Processing at block 550 represents the beginning of a sub-
process 1n which the object 1s disabled. Any suitable tech-
nique may be used for disabling the object. Though, 1n the
embodiment illustrated, the object 1s disabled 1n a way that
obscures the enforcement component. In this example, that
processing 1ncludes selecting a random location of the
installed image of the object at block 550. At block 5352, the
enforcement component waits a random time. At block 554,
the enforcement component overwrites the randomly
selected location after waiting the random time. Overwriting
at block 554 may eventually create an error halting execution
of the object. Though, 1f overwriting one location at block 554
does not halt execution of the object, the process may loop
back to block 550. As shown, the process of selecting and
corrupting random locations may continue until the executing
object crashes.

Conversely, 1n scenarios in which the fingerprint read at
block 510 1s validated as both being 1n the format of a valid
signature and matching the specific object that 1s executing,
method 500 may branch from decision block 540 to the end.
When method 500 reaches the determination point in this
tashion, the object may then continue to execute normally. An
enforcement mechanism as 1illustrated 1n FIG. 5 may help
ensure that a fingerprint inserted 1n an object in a development
environment 1s maintained in that object even after the object
1s released from the development environment because
removing or replacing the fingerprint may result in the object
ceasing to execute. As a result, 11 an object 1s detected, 1t 1s
likely to retain the fingerprint inserted in the object in the
development environment. A person controlling an operation
that preceded the release of the object from the development
environment can be identified from that fingerprint. Accord-
ingly, 1f an unauthorized copy of an object 1s found outside of
the development environment, the fingerprint of that object
may be used 1n an investigation to determine a responsible
person. FIG. 6 illustrates a method 600 that may be performed
on such an unauthorized object. Method 600 may be executed

10

15

20

25

30

35

40

45

50

55

60

65

16

on any suitable computing device. Though, 1n some embodi-
ments, the method 600 may be implemented within a devel-
opment environment or other secure area where access to
personally identifying information, such as a user ID, used to
generate a password can be had 1n a secure fashion.

Method 600 1n this example 1s shown to begin at block 610.
In block 610, information is read from the fingerprint location
of the object. Processing at block 610 may be performed inthe
same way as processing at block 510. Though not expressly
shown 1n FIG. 6, processing of method 600 may entail pro-
cessing such as shown in FIG. 5 to determine whether the
information read at block 610 1s a valid fingerprint for the
object and to recover from that fingerprint a hash of user
information used to generate that fingerprint.

Regardless of the specific techniques by which a finger-
print 1s obtained for the object, processing may arrive at block
612.

At block 612, all or a portion of a fingerprint 1s generated
for a person suspected of making the unauthorized release of
the object. Any suitable mechanism may be used for identi-
tying a suspect at block 612. Though, 1n some embodiments,
the 1dentified suspects are limited to people in the develop-
ment environment that had access privileges suificient to
create, copy and/or otherwise manipulate the object in a way
that could lead to an unauthorized release.

Regardless of the manner 1n which a suspect 1s 1identified, a
fingerprint for the suspect may be generated at block 612.
Processing at block 612 may be performed using processing
as 1llustrated in connection with FIG. 4 to generate a finger-
print. Though, 1n some embodiments, processing at block 612
may entail generating only a portion of the fingerprint. For
example, processing at block 612 may entaill generating
hashed information 1dentifying a person, such as 1s described
in connection with block 416 (FI1G. 4) (above).

Regardless of the extent of information generated at block
612, it may be compared to corresponding information in the
fingerprint read at block 610. If the information matches, the
suspect for which the fingerprint information was generated
in block 612 may be further investigated as a person possibly
involved 1n the release of the unauthorized object. Con-
versely, 1f the fingerprint information generated at block 612
does not match information recovered from the fingerprint
read at block 610, the method 600 may branch from decision
block 620 to block 622. Atblock 622, a further suspect may be
identified. IT further suspects remain, the method 600 may
loop back to block 612 where the process of comparing {in-
gerprints 1s repeated for the additional suspect.

In this way, a security system may be implemented that
provides a substantial disincentive for a person to make an
unauthorized release of an object. Though, the security sys-
tem 1s implemented in such a way that personally identifying
information about people 1 a development environment
mampulating the object 1s not disclosed.

FIG. 7 illustrates an example of a suitable computing sys-
tem environment 700 on which the invention may be imple-
mented. The computing system environment 700 1s only one
example of a suitable computing environment and 1s not
intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the computing
environment 700 be interpreted as having any dependency or
requirement relating to any one or combination of compo-
nents 1llustrated 1n the exemplary operating environment 700.

The 1mvention 1s operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with the invention include, but are not limited to,




US 8,656,182 B2

17

personal computers, server computers, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputers, mainirame computers, distrib-
uted computing environments that include any of the above
systems or devices, and the like.

The computing environment may execute computer-ex-
ecutable 1nstructions, such as program modules. Generally,
program modules include routines, programs, objects, com-
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. The mvention may
also be practiced 1n distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted computing environment, program modules may be
located 1n both local and remote computer storage media
including memory storage devices.

With reference to FIG. 7, an exemplary system for imple-
menting the mvention includes a general purpose computing,
device 1n the form of a computer 710. Components of com-
puter 710 may include, but are not limited to, a processing,
unit 720, a system memory 730, and a system bus 721 that
couples various system components including the system
memory to the processing unit 720. The system bus 721 may
be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus
using any ol a variety of bus architectures. By way of
example, and not limitation, such architectures include Indus-
try Standard Architecture (ISA) bus, Micro Channel Archi-
tecture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec-
tronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus also known as
Mezzanine bus.

Computer 710 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 710 and includes
both volatile and nonvolatile media, removable and non-re-
movable media. By way of example, and not limitation, com-
puter readable media may comprise computer storage media
and communication media. Computer storage media includes
both volatile and nonvolatile, removable and non-removable
media implemented 1n any method or technology for storage
ol information such as computer readable instructions, data
structures, program modules or other data. Computer storage
media includes, but 1s not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical disk storage, magnetic

cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can accessed by
computer 710. Communication media typically embodies
computer readable instructions, data structures, program
modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of 1ts characteristics
set or changed 1n such a manner as to encode information 1n
the signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,
RF, infrared and other wireless media. Combinations of the
any of the above should also be included within the scope of
computer readable media.

The system memory 730 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 731 and random access memory

(RAM) 732. A basic input/output system 733 (BIOS), con-

10

15

20

25

30

35

40

45

50

55

60

65

18

taining the basic routines that help to transfer information
between elements within computer 710, such as during start-
up, 1s typically stored in ROM 731. RAM 732 typically con-
tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 720. By way of example, and not limitation, FIG. 7
illustrates operating system 734, application programs 735,
other program modules 736, and program data 737.

The computer 710 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 7 illustrates a hard disk drive 741
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 751 that reads from or
writes to a removable, nonvolatile magnetic disk 752, and an
optical disk drive 755 that reads from or writes to a remov-
able, nonvolatile optical disk 756 such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the
exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 741 1s typically
connected to the system bus 721 through a non-removable
memory 1nterface such as mtertace 740, and magnetic disk
drive 751 and optical disk drive 755 are typically connected to
the system bus 721 by a removable memory interface, such as
interface 750.

The drives and their associated computer storage media
discussed above and 1llustrated 1n FIG. 7, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 710. In FIG. 7, for
example, hard disk drive 741 1s 1llustrated as storing operating
system 744, application programs 745, other program mod-
ules 746, and program data 747. Note that these components
can either be the same as or different from operating system
734, application programs 735, other program modules 736,
and program data 737. Operating system 744, application
programs 743, other program modules 746, and program data
747 are given different numbers here to illustrate that, at a
minimum, they are different copies. A user may enter com-
mands and information 1nto the computer 710 through input
devices such as a keyboard 762 and pointing device 761,
commonly referred to as a mouse, trackball or touch pad.
Other mput devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. These
and other input devices are often connected to the processing
unit 720 through a user input interface 760 that 1s coupled to

the system bus, but may be connected by other interface and
bus structures, such as a parallel port, game port or a universal
serial bus (USB). A monitor 791 or other type of display
device 1s also connected to the system bus 721 via an inter-
face, such as a video interface 790. In addition to the monitor,
computers may also include other peripheral output devices
such as speakers 797 and printer 796, which may be con-
nected through an output peripheral interface 7985.

The computer 710 may operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 780. The remote computer
780 may be a personal computer, a server, a router, a network
PC, a peer device or other common network node, and typi-
cally includes many or all of the elements described above
relative to the computer 710, although only a memory storage
device 781 has been 1llustrated 1n FI1G. 7. The logical connec-
tions depicted 1n FIG. 7 include a local area network (LAN)
771 and a wide area network (WAN) 773, but may also




US 8,656,182 B2

19

include other networks. Such networking environments are
commonplace 1n offices, enterprise-wide computer networks,
intranets and the Internet.

When used 1n a LAN networking environment, the com-
puter 710 1s connected to the LAN 771 through a network
interface or adapter 770. When used in a WAN networking
environment, the computer 710 typically includes a modem
772 or other means for establishing communications over the
WAN 773, such as the Internet. The modem 772, which may
be 1nternal or external, may be connected to the system bus
721 via the user mput interface 760, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 710, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 7 illustrates remote
application programs 785 as residing on memory device 781.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

Having thus described several aspects of at least one
embodiment of this mvention, it 1s to be appreciated that
various alterations, modifications, and improvements will
readily occur to those skilled 1n the art. For example, though
operation of a security system in connection with an operat-
ing system described, techniques as described herein may be
used 1n connection with any suitable software product.

Such alterations, modifications, and improvements are
intended to be part of this disclosure, and are intended to be
within the spirit and scope of the invention. Further, though
advantages of the present invention are indicated, it should be
appreciated that not every embodiment of the mnvention will
include every described advantage. Some embodiments may
not implement any features described as advantageous herein
and 1n some 1nstances. Accordingly, the foregoing description
and drawings are by way of example only.

The above-described embodiments of the present mven-
tion can be implemented 1n any of numerous ways. For
example, the embodiments may be implemented using hard-
ware, software or a combination thereof. When implemented
in software, the software code can be executed on any suitable
processor or collection of processors, whether provided 1n a
single computer or distributed among multiple computers.
Such processors may be implemented as integrated circuits,
with one or more processors 1n an integrated circuit compo-
nent. Though, a processor may be implemented using cir-
cuitry in any suitable format.

Further, it should be appreciated that a computer may be
embodied 1 any of a number of forms, such as a rack-
mounted computer, a desktop computer, a laptop computer, or
a tablet computer. Additionally, a computer may be embed-
ded 1n a device not generally regarded as a computer but with
suitable processing capabilities, including a Personal Digital
Assistant (PDA), a smart phone or any other suitable portable
or fixed electronic device.

Also, a computer may have one or more imnput and output
devices. These devices can be used, among other things, to
present a user interface. Examples of output devices that can
be used to provide a user interface include printers or display
screens for visual presentation of output and speakers or other
sound generating devices for audible presentation of output.
Examples of input devices that can be used for a user interface
include keyboards, and pointing devices, such as mice, touch
pads, and digitizing tablets. As another example, a computer
may recerve input information through speech recognition or
in other audible format.

Such computers may be interconnected by one or more
networks 1n any suitable form, including as a local area net-

10

15

20

25

30

35

40

45

50

55

60

65

20

work or a wide area network, such as an enterprise network or
the Internet. Such networks may be based on any suitable
technology and may operate according to any suitable proto-
col and may include wireless networks, wired networks or
fiber optic networks.

Also, the various methods or processes outlined herein
may be coded as software that 1s executable on one or more
processors that employ any one of a variety of operating
systems or platforms. Additionally, such software may be
written using any of a number of suitable programming lan-
guages and/or programming or scripting tools, and also may
be compiled as executable machine language code or inter-
mediate code that 1s executed on a framework or virtual
machine.

In this respect, the invention may be embodied as a com-
puter readable storage medium (or multiple computer read-
able media) (e.g., a computer memory, one or more floppy
discs, compact discs (CD), optical discs, digital video disks
(DVD), magnetic tapes, flash memories, circuit configura-
tions in Field Programmable Gate Arrays or other semicon-
ductor devices, or other tangible computer storage medium)
encoded with one or more programs that, when executed on
one or more computers or other processors, perform methods
that implement the various embodiments of the invention
discussed above. As 1s apparent from the foregoing examples,
a computer readable storage medium may retain information
for a suflicient time to provide computer-executable instruc-
tions 1n a non-transitory form. Such a computer readable
storage medium or media can be transportable, such that the
program or programs stored thereon can be loaded onto one or
more different computers or other processors to implement
various aspects of the present invention as discussed above.
As used herein, the term “computer-readable storage
medium”™ encompasses only a computer-readable medium
that can be considered to be a manufacture (i.e., article of
manufacture) or a machine. Alternatively or additionally, the
invention may be embodied as a computer readable medium
other than a computer-readable storage medium, such as a
propagating signal.

The terms “program™ or “software” are used herein 1n a
generic sense to refer to any type of computer code or set of
computer-executable instructions that can be employed to
program a computer or other processor to implement various
aspects of the present invention as discussed above. Addition-
ally, 1t should be appreciated that according to one aspect of
this embodiment, one or more computer programs that when
executed perform methods of the present invention need not
reside on a single computer or processor, but may be distrib-
uted 1n a modular fashion amongst a number of different
computers or processors to implement various aspects of the
present 1nvention.

Computer-executable instructions may be 1n many forms,
such as program modules, executed by one or more comput-
ers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. Typically the functionality of the program mod-
ules may be combined or distributed as desired 1n various
embodiments.

Also, data structures may be stored in computer-readable
media in any suitable form. For simplicity of 1llustration, data
structures may be shown to have fields that are related through
location in the data structure. Such relationships may likewise
be achieved by assigning storage for the fields with locations
in a computer-readable medium that conveys relationship
between the fields. However, any suitable mechanism may be
used to establish a relationship between information 1n fields




US 8,656,182 B2

21

ol a data structure, including through the use of pointers, tags
or other mechanisms that establish relationship between data
clements.

Various aspects of the present invention may be used alone,
in combination, or 1n a variety of arrangements not specifi-
cally discussed 1n the embodiments described 1n the forego-
ing and 1s therefore not limited 1n i1ts application to the details
and arrangement ol components set forth in the foregoing
description or illustrated in the drawings. For example,
aspects described 1 one embodiment may be combined 1n
any manner with aspects described in other embodiments.

Also, the invention may be embodied as a method, of which
an example has been provided. The acts performed as part of
the method may be ordered 1n any suitable way. Accordingly,
embodiments may be constructed in which acts are per-
formed in an order different than illustrated, which may
include performing some acts simultaneously, even though
shown as sequential acts 1n 1llustrative embodiments.

Use of ordinal terms such as “first,” “second,” “third,” etc.,
in the claims to modily a claim element does not by itself
connote any priority, precedence, or order of one claim ele-
ment over another or the temporal order 1n which acts of a
method are performed, but are used merely as labels to dis-
tinguish one claim element having a certain name from
another element having a same name (but for use of the
ordinal term) to distinguish the claim elements.

Also, the phraseology and terminology used herein 1s for
the purpose of description and should not be regarded as
limiting. The use of “including,” “comprising,” or “having,”
“containing,” “imnvolving,” and vanations thereof herein, 1s
meant to encompass the items listed thereafter and equiva-
lents thereotf as well as additional 1tems.

What 1s claimed 1s:
1. A method of processing a software object, the method
comprising;
in conjunction with an action involving manipulation of the
object:
obtaining information 1dentifying a person controlling
the action;
with at least one processor, cryptographically generating
obfuscated data based on the information 1dentifying,
the person and information identifying the object; and
incorporating the obfuscated data in the object, the
object comprises a component associated with a sec-
ond key of a key pair, the component being adapted to
verily that the obfuscated data comprises the inifor-
mation 1identiiying the object based on the second key
and the information 1dentitying the object;
wherein the cryptographically generating the obfus-
cated data comprises:
computing a hash of the information identifying the
person;
combining the hash with the information 1dentifying,
the object to produce combined information; and
signing the combined information with a firstkey of a
key patrr.
2. The method of claim 1, wherein:
the action comprises making a build of the object.
3. The method of claim 1, wherein:
the action comprises making a copy of the object.
4. The method of claim 1, further comprising;
obtaining the key from a server configured to manage
release of versions of the object from a development
environment.

10

15

20

25

30

35

40

45

50

55

60

65

22

5. The method of claim 1, wherein:

incorporating the obfuscated data in the object comprises

overwriting a file 1in the object.

6. The method of claim 1, wherein:

the object comprises an operating system for a computing

device.

7. A method of executing an object on a computing device,
the method comprising:

accessing a first component of the object;

by a second component of the object executing on at least

one processor, determining whether the first component

1s valid by, with the at least one processor:

by using a second key of a key pair, checking whether the

first component was signed with a predetermined key
which 1s a first key of the key pair; and

checking whether the first component contains informa-

tion 1dentitying the object;
when the first component 1s valid, executing the object; and
when the first component 1s not valid, disabling the object.

8. The method of claim 7, wherein:

disabling the object comprises disabling the object at a

random time after determining whether the encrypted
component 1s valid.

9. The method of claim 8, wherein:

disabling the object comprises:

randomly selecting portions of the object; and
moditying the randomly selected portions.
10. The method of claim 7, wherein:
accessing the first component comprises reading a file from
a predetermined location within the object.

11. The method of claim 7, wherein:

the determining comprises indicating that the first compo-
nent 1s not valid when the first component 1s absent from
a predetermined location within the object.

12. At least one computer readable storage device compris-
ing an object, the object comprising computer-executable
instructions that, when executed on a computing device,
implement an operating system of the computing device, the
computer-executable instructions comprising:

a kernel of the operating system, the kernel comprising a

component that:

accesses security information incorporated 1n the object;

accesses mnformation identifving the object;

determines whether the security information 1s format-
ted as a valid fingerprint, the determining whether the
security information 1s formatted as the valid finger-
print comprises determining whether a signed finger-
print 1s signed with a first key of a key pair using a
second key of the key pair; and

when the security mformation 1s not formatted as the
valid fingerprint, disables the object.

13. The at least one computer readable storage device of
claim 12, wherein:

the component disables the object by:

randomly selecting portions of the object; and

corrupting the randomly selected portions.

14. The at least one computer readable storage device of
claim 12, wherein:

the component disables the object by corrupting portions

of the object at random times.

15. The at least one computer readable storage device
media of claim 12, wherein:

the determining whether the security information 1s for-

matted as a valid fingerprint further comprises determin-
ing whether the signed fingerprint contains information
identifying the object.

G o e = x




	Front Page
	Drawings
	Specification
	Claims

