12 United States Patent

Werner

US008650217B2

US 8.650,217 B2
Feb. 11, 2014

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(86)

(87)

(65)

(30)

Nov. 23, 2005

(1)

(52)

(58)

t"'-.

OREC G800 GOR0 0880 GUG 0oL glll

et =y

COMPRESSION METHOD FOR A DATA
TRANSFER THAT IS INDEPENDENT OF
COMPUTER ARCHITECTURE AND/OR
DECOMPRESSION METHOD FOR A DATA
RECORD

Inventor: Christian Werner, Salzgitter (DE)

Assignee: Universitat Zu Lubeck, Lubeck (DE)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 869 days.

Notice:

Appl. No.: 12/094,761

PCT Filed: Nowv. 21, 2006

PCT No.:

§ 371 (c)(1),
(2), (4) Date:

PCT/DE2006/0020352

Sep. 22, 2008

PCT Pub. No.: WQO2007/059746
PCT Pub. Date: May 31, 2007

Prior Publication Data

US 2009/0193045 Al Jul. 30, 2009

Foreign Application Priority Data

(DE)

10 2005 056 122

Int. CL.
GO6F 17/30

U.S. CL
USPC

(2006.01)

707/796; 707/101; 707/E17.044;
709/24°7, 715/234

Field of Classification Search

None
See application file for complete search history.

1273

16RL

(56) References Cited

U.S. PATENT DOCUMENTS

5,862,325 A * 1/1999 Reedetal. 709/201
7,154,638 B1* 12/2006 Lapstunetal. 358/3.28
2003/0154444 Al 8/2003 Tozawaetal. 715/513
2004/0117358 A1* 6/2004 von Kaenel etal. 707/3
2006/0155398 Al1* 7/2006 Hoftbergetal. 700/86

FOREIGN PATENT DOCUMENTS

01/27754 4/2001
OTHER PUBLICATIONS

WO

Cheney, J., “Comprising XML with Multiplexed Hierarchical PPM
Models,” IEEE Computer Society Press, Los Alamitos, CA, Mar. 27,

2001, pp. 163-172.

Haritharan, S., et al., “Compressing XML Documents with Finite
State Automata,” Proceedings of the Tenth International Conference
on Implementation and Application of Automata (CIAA 2005), pp.
285-296, 2005.

(Continued)

Primary Examiner — Shyue Jtunn Hwa
(74) Attorney, Agent, or Firm — Seed IP Law Group PLLC

(57) ABSTRACT

A compression method for a data transfer that 1s independent
of computer architecture and/or a decompression method for
a data record that contains structural indicators and variable
values are provided. The method includes the following steps:
provision of a string automaton, which represents the struc-
turing rules of the data record in a unit that compresses the
original data record; input of the data record into the string
automaton; generation of a second, shorter data record by the
string automaton, the record containing the variable values of
the first data record and control symbols that are specific to
the string automaton equipment, the symbols representing a
switch from an automaton condition to a sequence condition;
and transmission of the second data record to a similar string
automaton, which interprets the control symbols, whereby a
copy of the original data record with an identical data struc-
ture 1s generated.

24 Claims, 4 Drawing Sheets

GEGH REOD GEGD GEeR BDEO BI1 1001 @11?;
918

mmm.

T T
r L

A

US 8,650,217 B2
Page 2

(56) References Cited

OTHER PUBLICATTONS

Leighton, G., et al., “A Grammar-based Approach for Compressing
XML,” TR-2005-004, Aug. 2005, 17 pages.

Leighton, G., et al., “Treechop: A Tree-based Query-able Compres-
sor for XML,” TR-2005-005, Aug. 2005, 27 pages.

L1, W., XCOMP: An XML Compression Tool, A Thesis Presented to
the Unmiversity of Waterloo in fulfillment of the thesis requirement for
the degree of Master of Mathematics in Computer Science, Waterloo,
Ontario, Canada, 2003, 86 pages.

Segoufin, L., et al., “Validating Streaming XML Documents,” Sym-
posium on Principles of Database Systems, Proceedings of the

twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, Madison, Wisconsin, 2002, 12 pages.

Toman, V., “Syntactical Compression of XML Data,” Proceedings
International Conference on Advanced Information Systems Engi-
neering, Jun. 2004, 12 pages. Retrieved from internet URL:http://

caise04dc.1di.ntnu.no/CRC__ CaiseDC/toman.pdi>, download date
of Jul. 24, 2007.

Werner, C., et al., “WSDL-Driven SOAP Compression,” Interna-
tional Journal of Web Services Research, 2(1), Jan.-Mar. 2005, pp.
18-35.

Cheney, J., “Compressing XML with Multiplexed Hierarchical PPM
Models,” IEEE Computer Society Press, Los Alamitos, CA, Mar. 27,
2001, pp. 163-172.

* cited by examiner

U.S. Patent Feb. 11, 2014 Sheet 1 of 4 US 8,650,217 B2

U.S. Patent Feb. 11, 2014 Sheet 2 of 4 US 8,650,217 B2

-, Temperature 32-bit Iinteger

~» 20 Z1
Pressure: '
Humidity:
23] - z4
32-bit integer | / 32-bit inte ger

U.S. Patent Feb. 11, 2014 Sheet 3 of 4 US 8.650,217 B2

Temperature Tw, 32-bit integer

Pressure: Humidity:

32-bitinteger % / 32-bit integer

US 8,650,217 B2

Sheet 4 of 4

Feb. 11, 2014

U.S. Patent

o

hl.!ru_...ml.!i.-..,.t....in...l..

STTO 1HOT TTI00 0080 G080 0080 G600 A6H0 0 1601 111D COOPN QE6H 0R6B 0000 @@mm Q&Q@

US 8,650,217 B2

1

COMPRESSION METHOD FOR A DATA
TRANSFER THAT IS INDEPENDENT OF
COMPUTER ARCHITECTURE AND/OR
DECOMPRESSION METHOD FOR A DATA
RECORD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a national stage application of Patent
Cooperation Treaty (PCT) Application No. PCT/DE2006/
002052, filed Nov. 21, 2006, which in turn claims priority to
German Patent Application No. 102005056 122.5, filed Nov.
23, 2005. These applications are assigned to the same
assignee as the present application, and incorporated herein
by reference 1n their entireties.

TECHNICAL FIELD

The invention relates to a compression method for a data
transter that 1s independent of computer architecture and/or a
decompression method for a data record according to the
features of the independent claims, particularly for simulta-
neous processing of data records, e.g., for applications in data
transmission. The invention also relates to the implementa-
tion of data compression algorithms in digital circuits, par-
ticularly in microchips.

BACKGROUND INFORMATION

Progressive cross-linking of electronic computers has
meanwhile led to the development of computer languages
that are independent of the platform and that allow the
exchange of information between different computer archi-
tectures. Locally installed programs (e.g., Web browsers) first
translate the transmitted data into machine commands that are
specific to the terminal device and so capable of being
executed or interpreted. The independence from the architec-
ture 1s achieved by means of following a defined structure for
the transmitted data stream, whereby this generally, however,
1s also accompanied by an increased data volume, for
example when compared to optimisations specific to the
device. There 1s obviously, therefore, a demand for compres-
sion and decompression methods for such transmitted data
streams.

BRIEF SUMMARY

One aspect provides a method for compressing of a data
record, the method comprising:

providing a string automaton in a compression apparatus,
wherein the string automaton represents predefined structur-
ing rules of the data record;

inputting the data record into the string automaton, wherein
the data record comprises structure tags and un-structured
values and complies with the predefined structuring rules; and

processing the mput data record by the string automaton to
thereby produce a compressed data record, wherein the com-
pressed data record comprises the un-structured values of the
data record and control symbols representing state transitions
of the string automaton’s tlow path caused by the structure
tags of the input data record.

Another aspect provides a method for decompressing a
compressed data record, the method comprising:

providing a string automaton in a decompression appara-
tus, wherein the string automaton represents predefined struc-
turing rules of the data record;

10

15

20

25

30

35

40

45

50

55

60

65

2

inputting the compressed data record into the string
automaton, wherein the compressed data record comprises
control symbols for the string automaton and un-structured
values, and complies with the predefined structuring rules;
and

processing the mput compressed data record by the string
automaton to generate a decompressed data record, wherein
the string automaton replaces the control symbols by struc-
ture tags to thereby generate the decompressed data record
comprising structure tags and un-structured values.

Still another aspect provides a compression apparatus for
compressing of a data record, the compression apparatus
comprising;

circuitry 1mplementing a string automaton representing,
predefined structuring rules of the data record,

wherein the circuitry implementing the string automaton 1s
operable to process a data record mput to the string automaton
to thereby produce a compressed data record, wherein the
input data record comprises structure tags and un-structured
values and complies with the predefined structuring rules,

wherein the circuitry implementing the string automaton 1s
further operable to add to the compressed data record the
un-structured values of the data record and control symbols
representing state transitions of the string automaton’s flow
path caused by the structure tags of the input data record.

Yet another aspect provides a decompression apparatus for
decompressing a compressed data record, the decompression
apparatus comprising:

circuitry 1mplementing a string automaton representing,
predefined structuring rules of the data record,

wherein the circuitry implementing the string automaton 1s
operable to process a compressed data record input to the
string automaton to thereby produce a decompressed data
record, wherein the input compressed data record comprises
control symbols and un-structured values and complies with
the predefined structuring rules, and wherein the control sym-
bols of the compressed data record describe a flow path of the
string automaton,

wherein the circuitry implementing the string automaton 1s
turther operable to replace the control symbols by structure
tags to thereby generate the decompressed data record com-
prising structure tags and un-structured values.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

One or more embodiments of the invention 1s explained 1n
more detail in the following using a drawing. Shown are:

FIG. 1 afinite automaton that accepts the input data records
W with the pattern a”bbc™,

FIG. 2 a finite automaton for recognizing data records for
recording measurement data, and

FIG. 3 an expanded finite automaton for recognmizing data
records for recording measurement data, and

FIG. 4 an output data record.

DETAILED DESCRIPTION

In the following description, numerous specific details are
given to provide a thorough understanding of embodiments.
The embodiments can be practiced without one or more of the
specific details, or with other methods, components, materi-
als, etc. In other instances, well-known structures, materials,
or operations are not shown or described 1n detail to avoid
obscuring aspects of the embodiments.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,

US 8,650,217 B2

3

structure, or characteristic described 1n connection with the
embodiment 1s included 1n at least one embodiment. Thus, the
appearances of the phrases “in one embodiment” or “in an
embodiment” 1n various places throughout this specification
are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or character-
1stics may be combined 1n any suitable manner 1n one or more
embodiments.

The headings provided herein are for convenience only and
do not interpret the scope or meaning of the embodiments.

The objective of any data compression technique 1s to
convert an input data record into an output data record 1n such
a way that the output data record 1s shorter than the input data
record. This allows more efficient storage and transmission of
the data. At the same time, the information content of the
input data record must, however, be retained 1n the output data
record (at least 1n essential sections) so that during a decom-
pression process, 1t 1s possible to recover the input data record
from the output data record.

There are two different classes of data compression meth-
ods: those that can be applied to any given input data (entropy
encoding) and those that can be applied only to special input
data (source coding). Methods for entropy encoding work
with a statistical analysis of the frequencies of the symbols in
the mput data record. Frequent symbols 1n the mput data
record are formed into short binary tokens in the output data
record and less frequent ones are formed 1nto longer ones. In
this way, 1t 1s possible to reduce the total length of the input
data record. Such methods always work losslessly, 1.e. 1t 1s
possible exactly to reconstruct the input data record from the
output data record.

Methods for source coding, on the other hand, utilize spe-
cial characteristics of the input data record. For example, 11 1t
1s known that a black and white digital image 1s stored 1n the
input data record and that black pixels 1n the image matrix are
encoded with 0 and white ones with 1, one can exploit the fact
that typical image motifs have extensive structures. For the
input data record, this means that there 1s a large probability
that long, continuous sequences of zeros or ones will be
present. This characteristic can be taken into consideration in
the compression process, and run-length encoding, for
example, can be used. The symbol sequence 111111111 1s
encoded here as 9,1 (mine times one). Some source coding
methods additionally use strategies for entropy encoding. As
a rule, they achieve better compression rates than plain
entropy encoding methods.

There are both lossless and “lossy” methods for source
coding. Lossy methods achieve even better compression rates
than lossless ones, and are always used 1f only certain portions
of the mnformation encoded in the mput data record are rel-
evant (e.g., those portions of an audio data stream that can be
percerved by the human ear).

Methods for entropy encoding have already been very
extensively researched. A number of methods have become
established here whose compression results lie very close to
the theoretical optimum. These methods particularly include
those of Shannon-Fano, Huffman, Lempel-Z1v and Lempel-
Z1v-Welch.

Methods for source coding have likewise already been very
thoroughly researched for several application areas, such as
for audio data (for example, MP3 encoder) or image data
(JPEG encoder) or moving pictures data (for example, MPEG
encoder).

As mentioned at the beginning, structured or partially
structured data records play a special role in communication
between different computers. Such data records are set up
according to fixed rules, for example, the following:

10

15

20

25

30

35

40

45

50

55

60

65

4

A data record consists of a 32-bit integer temperature
value, followed by either a pressure value or a humidity value,
likewise as a 32-bit integer. Encoding as ASCII text 1s done
according to the following pattern:

Temperature: Valuel, Pressure: Value2

Or

Temperature: Valuel, Humidity: Value2

On the one hand, this data record contains fixed structuring,
information (Temperature:, Pressure:) and, on the other hand,
variable parts with no further structure (Valuel, Value2). This
data record 1s consequently a partially structured data record.
Data records without variable parts would be completely
structured. Such a thorough mixing of structuring informa-
tion (referred to as structural indicators 1n the following) and
parts with no further structuring i1s absolutely typical in
today’s data records.

In the state of the art, WO 01/27754 A2 1s known to
describe a source coding method for compressing program
source codes, and such are a possible expression for partially
structured data records. This method, however, exploits the
structure that 1s given by the respective programming lan-
guage 1n order to produce an especially compact representa-
tion of the program source code. The method described there
works with the parse tree, which 1s set up 1n the memory of a
computer as the program source code 1s parsed. A fundamen-
tal disadvantage in this case 1s that the size of the parse tree
grows with the length of the data record to be compressed. In
long documents, this leads to a requirement for a large main
memory area. Furthermore, the application area of this
method 1s restricted to high-level computer languages.

While the known compilation of a program into machine
language often leads to a shortened representation of the
source code, it nevertheless cannot be seen as a suitable
compressor for the object formulated here, because a com-
piler 1s fundamentally created for the rules of a previously
defined programming language and for a specified computer
architecture. A source code compiled under Windows cannot
run on a UNIX operating system, and vice versa. Given this
fact, a transter of compiled programs between various archi-
tectures 1s not expedient.

Moreover, the compiled program, which 1s consequently
executable on at least one architecture, 1s not necessarily
shorter than the source code, so that one cannot, 1n principle,
assume that compilation compresses the source code. A com-
piler, whose job 1s, 1n any case, not compression, 1s also not
designed for decompiling compiled files. As far as decompi-
lation 1s technically implemented today, 1t nevertheless pro-
duces only equivalent, but not 1dentical, source code (e.g.,
comment lines are not restored).

Finally, 1it1s also not known how a compiler algorithm, e.g.,
for a high-level language, can be completely compiled 1nto a
hardware circuit, so that direct processing of the source code
without compilation by the microprocessor of the computer 1s
not possible. Particularly when the task at hand 1s to compile
a large number of short source codes imto machine-readable
form (as 1s common 1n today’s server applications), the pro-
cessing power required for the compilation represents a limi-
tation.

In view of these disadvantages of the use of compilers a
person skilled in the art will not solve the object of one or
more embodiments of the mnvention using a compiler.

Further publications consider the data description lan-
guage XML, which in recent years has gained acceptance as
a universal means for describing hierarchically structured
contents. An XML data record has two main components:
markup structures (structured portions) and character data
(unstructured portions). The markup structures consist of

US 8,650,217 B2

S

tags. Tags are 1dentifiers in angle brackets that describe the
hierarchical structure of the data record. Each identifier has a
start-tag in the form <adentifier> and an end-tag in the form
</1dentifier>. The structure of a data record 1s formed by
nesting individual tags. Either additional tag pairs or charac- 5
ter data, or a combination of the two, can thereby be contained
between a start-tag and the corresponding end-tag. Character
data here are any character strings specific to an application.

In principle, XML data records are permitted to contain any
markup structures and any character data, as long as they 10
satisty the syntax rules described 1n the XML specification.

For a specific application case, however, typically only
certain combinations are meaningftul. For the application case
mentioned above, for example, only the tag identifiers mea-
sured values, temperature, pressure and humidity should be 15
allowed, 1n the combinations and orders described above.

Such restrictions can be defined with special grammar
description languages for XML (common here are the lan-
guages DTD and XML-Schema).

Source coding methods especially for XML can therefore 20
in turn be divided into two classes: those that can be applied
to arbitrary XML documents and those that first read in a
grammar description and then can be applied only to the XML
documents that satisty this grammar description. The latter
achieve even better compression results. 25

The first group includes xmlppm, XMill, exalt, fast infoset
and XMLZip. The latter 1s a commercial product that 1s,
however, no longer sold. These methods separate the charac-
ter data and markup areas and then apply entropy encoding
methods to each area. Certain XML syntax rules are further- 30
more exploited during compression. In particular, the char-
acteristic that each XML document can be represented as a
tree (acyclic, connected, undirected graph) 1s exploited. By
means of these techniques, the compression results that are
achieved are distinctly better than those achieved by entropy 35
encoding methods.

The second group includes WBXML, Millau, bim, Xebu,
Xgrind and additional table-based encoding techniques. In
addition to known techniques from the first group, here cer-
tain patterns (tokens) that may be in the XML document that 40
1s to be compressed are additionally extracted from the gram-
mar description. Each token 1s then assigned to an unambigu-
ous character string that 1s as short as possible. This assign-
ment 1s stored 1n a table that then serves as a dictionary of
abbreviations during compression. Because these methods 45
can additionally exploit information from the grammar
description for the compression process, they work even more
cifectively than generic XML compressors. These methods
always make limited use of resources, because 1n this case,
the compression process 1s essentially limited to comparing 50
character strings in the abbreviation table and in the input data
record. The compression rates achieved are, however, not
optimal because of the principle itself. It 1s only evaluated
which tokens can appear 1n the input data record. The 1nfor-
mation on the order of the tokens is not taken 1nto account. 55

The second group likewise includes the method for XML
difference coding presented in the article Werner, Christian;
Buschmann, Carsten; Fischer, Stefan: WSDL-Driven SOAP
Compression. In: International Journal of Web Services
Research 2 (2005), No. 1. This method does not work with an 60
abbreviation table. Instead, a set of skeleton data records 1s
generated from the grammar description. These represent all
possible variations of data records that satisty this grammar
description. In the framework of the compression process, the
data record that 1s to be compressed 1s then compared to the 65
best-matching skeleton data record and only deviations from
it are coded. The difference coding approach is particularly

6

powerful. It also takes into account information regarding
possible sequences of input patterns. But the algorithmic
cifort 1n the case of complex grammar descriptions 1s very
high, because the data record that 1s to be compressed must be
compared to a multitude of skeleton data records. This
approach 1s therefore suitable only for selected applications
with simple grammar descriptions.

Current source coding methods for compressing structured
or partially structured data require either a large amount of
processing power and memory or do not work particularly
cifectively.

Most of the known source coding methods for compressing,
structured data records (exceptions here are WO 01/27754
A2, WBXML and the method of Millau) furthermore obliga-
torily assume that the compressed data must first be decom-
pressed before they can be parsed and processed. In practice,
this 1s often a crucial disadvantage, on the one hand, because
this additional processing step results 1n delays, and on the
other hand, because the decompressed data record must be
kept in memory, which, particularly 1n the field of the mobile
micro-computers with very limited main memory, represents
a serious disadvantage.

Particularly for micro-computers, 1t 1s 1n any case advan-
tageous and desirable to implement compression and decom-
pression of transmitted data 1in hardware to the largest extend.
The concept of the automatons from theoretical computer
science can be used for this.

Such an automaton, or “‘state machine”, 1s a functional
group with a very simple configuration. In the simplest case,
it consists of a single clocked memory element (e.g., a 16-bit
register) and can store a single value (state) 1n this memory
clement at any given time. In addition to this memory ele-
ment, such an automaton also has a set of rules that deter-
mines, depending on the current state, on the one hand, and
the characters read from the 1nput, on the other hand, which
state should be adopted 1n the next clock step. Certain devel-
opments of such automatons additionally have a so-called
push-down stack. Such automatons are called stack
machines.

One great advantage in this case 1s that an automaton,
unlike a compiler, does not require a microprocessor 1n order
to be executed; 1t can be implemented solely on the basis of a
clocked memory element (as state memory) as well as a ROM
or RAM module (for the state transition rules).

In addition, 1n the case of such an automaton, no parse tree
1s built up in the memory, such as a compiler would do. An
assembler compiler also does not work according to the state-
based principle of such an automaton.

The fundamental advantage of automatons 1s two-fold:

Because of their simple structure, automatons can be
implemented 1n a micro-chip 1n accordance with known
methods.

Automatons (particularly string automatons, which are to
be distinguished from tree automatons) for processing
the data record type can be systematically designed
according to known methods from almost any structure
rules of a data record type (concrete example: XML).

When “implementation” of a string automaton 1s discussed
in the following, the creation of a corresponding hardware
circuit 1s primarily meant. Implementation in the form of
software can, however, simulate hardware circuits, as 1s
known.

Furthermore, tree automatons for processing and validat-
ing XML documents are known, such as from US 2003
0154444 Al. This automaton class was the object of a great
deal of research work on processing structured data records 1n
recent years.

US 8,650,217 B2

7

Data compression using string automatons was already
proposed 1n the article from Vojtech TOMAN: Syrtactical
Compression of XML Data. Proceedings of the 16 Interna-
tional Conference on Advanced Information Systems Engi-
neering, 7-11 Jun. 2004, Riga, Latvia. In the case of the
method described there, the grammar description 1s initially
assumed to be unknown. At the processing start, there conse-
quently 1s no information on the structure of the datarecord to
be processed. During the processing, the algorithm “learns™
the structure, and a separate string automaton 1s created and,
il necessary, expanded, for each symbol found 1n the data
records, whereby this string automaton describes the struc-
ture information subsequently assigned to this symbol. The
state transitions of the automatons are furthermore counted to
indicate how often individual structure branches are called up
in such an automaton. These automatons are then accessed for
processing the mnput data record. Compact coding of the input
document 1s produced by means of evaluating the frequency
counts of the state transitions used and using these to make a
prediction which symbol will follow next.

For practical use, the method 1s only partially suitable,
because new automaton structures must be created and
updated dynamically during the processing of a data record.
For implementation as a chip, this 1s disadvantageous,
because 1t 1s not known ahead of time how many memory
cells would have to be provided on the circuit. It 1s further-
more detrimental that the automaton structures never com-
pletely portray the rules that the data record satisfies. Even in
the case of very long data records, in which the algorithm can
“learn” a very great deal of information about the structure of
the data record, the automatons that were created by steps do
not necessarily describe the structure of the data record 1n full.
Toman additionally constructs only such string automatons
that lie 1n the class of the acyclic, deterministic finite automa-
tons. These are adequate only for descriptions of very simple
structure descriptions.

It1s the object of one or more embodiments of the invention
to specily methods for the compression and decompression of
at least partially structured data records, whereby said meth-
ods additionally, preferably 1n a sitmplified manner, make 1t
possible to encode any data records and to process com-
pressed data records without prior decompression and that
moreover are easy to implement 1n hardware.

The object 1s solved by the method with the features of the
independent claim. The dependent claims indicate advanta-
geous developments.

The proposed method for compression and/or decompres-
sion of a data record that contains structure and variable
values 1s characterised by provision of a string automaton,
which represents the previously known structuring rules of
the data record in a unit that compresses the original data
record, mput of the data record into the string automaton,
generation of a second, shorter data record by the string
automaton, said record containing the variable values of the
first data record and control symbols that are specific to the
string automaton, said symbols representing a switch from
one automaton state to a subsequent state, and transmission of
the second data record to a similar string automaton, which
interprets the control symbols, whereby a copy of the original
data record with an 1dentical data structure 1s generated.

An mventive concept lies in the mntroduction of control
symbols 1n those places where the state transitions of the
automaton have branching possibilities. The replacement of
the structure symbols that are otherwise carried along 1n the
uncompressed data record with the very short control sym-
bols of the automaton 1s necessary for high compression

10

15

20

25

30

35

40

45

50

55

60

65

8

eificiency. The structure rules of the processed data records
being retlected 1n the automaton design allows for this.

Naturally, it 1s also possible for there to be only a decom-
pression of a previously recetved data record, e.g., one
received via the Internet, said data record containing control
data for string automatons and variable values. In this case, 1t
1s only necessary to enter the data record 1n a pre-specified,
known string automaton that interprets it and then produces
from 1t an uncompressed representation of the data record
and/or controls external functional groups.

It 1s essential for one embodiment of the mvention to re-
encode the compressed data record so that the compressed
representation describes the flow path through the string
automaton. This flow path 1s described thereby using suitable
control symbols, which represent “branches™.

In other words: The proposed compression method con-
sists of showing a way for manufacturing a stmple hardware
compressor, which 1s simultaneously the decompressor and
processor of the compressed data record. Such chip can be
systematically developed and industrially manufactured for
cach, practically any, compression problem. Built into any
computer architectures, it then allows complete transfer free-
dom of compressed data records.

The control symbols that are in accordance with one
embodiment of the invention and that are needed for this are
not present or are not processed 1n “normal” stack machines
as they are described in the literature for standard applica-
tions.

In principle, the control symbols can be represented by a
tew bits. The method allows the size of typical data records to
be reduced by factors between 10 and 13. These savings are
primarily reached due to the fact that the structure informa-
tion 1n a data record 1s already described by unambiguous
state transitions 1n the known string automaton. A large por-
tion of the state transitions in the string automaton conse-
quently have only one subsequent state. Because in such a
case, the state transition 1s already clear, this information does
not have to be encoded 1n the output data. In other words:
Such unambiguous state transitions can be encoded with O
bits.

The entire structure information of a data record can con-
sequently be reduced to a few bits. All tags or tokens that
describe structure information are removed from the data
record, because the data structure 1s already reflected in the
automaton. In particular, no translation table has to be
reserved.

The data record compressed 1n this way 1s only suitable for
running through this special automaton, and so 1t must be
known, particularly to the receiver of a compressed transmis-
s1on. It contains, however, only variable values and the com-
pactly encoded control symbols, 1.e., no redundant informa-
tion whatsoever. The data record can obviously also be fully
processed without prior decompression.

Such automatons are furthermore simple to implement in
hardware. In the design of digital circuits, automatons are
standard modules and so constituents of virtually every
clocked digital circuat.

A string automaton 1s a functional group that examines the
validity of an 1nput data record W using pre-specified states
and state transitions. The example 1n FIG. 1 explains the basic
procedure graphically. A string automaton includes states and
state transitions. In the schematic depiction, these are the
circles and the arrows between the circles. One state here 1s
identified as the start state (arrow pointing to z0). One or more
states are 1dentified as end states (double circles). The transi-
tions between the states are labelled 1n the form of a character
string, giving the string automaton 1ts name.

US 8,650,217 B2

9

While examining an input data record W, the automaton
runs through a sequence of states (flow path). The automaton
processes W character by character, from left to right, and
selects the state transitions with the matching labels. If there
1s no matching state transition or if the sequence ends in a
state that 1s not the end state, the input word 1s mvalid; oth-
erwise 1t 1s valid.

For the input data record W1=aabbc, the depicted automa-
ton would run through the sequence z0, z0, z0, z1, z2, z2.
State z2 1s the end state, so that W1 1s a valid mput.

The input data record W2=abba, on the other hand, would
not be valid, because here the partial sequence z0, z0, z1, z2
results, and there 1s no transition from z2 with the label a.
W3=aaab would also be invalid, because the resulting
sequence Z0, z0, z0, z0, z1 does not end with an end state.

There are several types of string automatons. FIG. 1 shows
an example for the simplest automaton variant: a finite
automaton. This type has no further memory elements (ex-
ceptthose for the state and state transitions) and can therefore,
because of the principle, process only data records with a
simple structure (those that are the words of a language which
1s 1n the class of regular languages).

In addition to the finite automaton type, the use of stack
machines 1s also particularly common. These are configured
like a finite automaton, but additionally have a push-down
stack (often also called LIFO memory). Reading and writing
operations mvolving the push-down stack are controlled via
two additional labels of each state transition. Each state tran-
sition consequently has three label fields:

Input character to be read

Character to be read from the pushdown stack

Characters to be written to the push-down stack

Even complex structured input data records can be pro-
cessed with a stack machine (those that are the words of a
language which 1s 1n the class of context-iree languages, cf.
Schoning, Uwe: Theoretische Informatik kurzgefapt<A com-
pact guide to theoretical computer science>, 3™ edition, Spe-
ktrum, 1997).

In principle, all string automaton types are suitable for
implementing the method. Fach type can, however, offer
specific advantages 1n certain applications: finite automatons,
for example, require very little memory and stack machines
are particularly versatile 1n use, because they can recognize
all context-iree languages.

Producing a string automaton from structure descriptions
such as regular expressions, for example, 1s known. In par-
ticular, 1t 1s possible to construct stack machines from XML
grammar descriptions (D'TD, XML-Schema document) [Seg-
oufin L.; Vianu, V.: Validating Streaming XML Documents.
Proceedings of the 21°* ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, Madison,
Wis., USA, 2002].

The method according to one embodiment of the invention
tocuses on the application of these automatons to the removal
of redundant structure information from the data record and
on the introduction of control symbols for controlling the
automaton flow i1n those places where alternative state
changes are possible.

For the example mentioned at the beginning, a finite
automaton, as shown 1n FI1G. 2, can be specified that describes
the structure of the input data records that are to be processed.
The alternatives, namely whether a pressure value or a humid-
ity value follows the temperature value, 1s described 1n the
automaton by two possible state transitions starting from z2.

The automaton description can furthermore contain infor-
mation about the content of non-structured areas 1n the input
data record (Boolean, string with length 10, 16-bit integer,

10

15

20

25

30

35

40

45

50

55

60

65

10

etc.). In the example, the state transitions from z3 to z5 and
from z4 to z5 each indicate that numerical values are expected
here that can be expressed as 32-bit integer numbers. This
information 1s evaluated during the compression process, 1n
order to find especially compact encodings for possible val-
ues. During the decompression, this altered manner of
expression 1s reversed again. The variable values contained 1n
a data record can be output 1n an altered encoded form or
recognised and converted during the processing by both an
encoding string automaton and an interpreting one.

In order for it to be possible to use the automaton for
compression, 1t must first be expanded as follows.

If the automaton has states with more than one possible
subsequent state, the state transitions to the subsequent states
are given additional, locally unambiguous identifiers (control
symbols). This produces an expanded string automaton.

In the example, such an expansion would consequently be
necessary at z2. There are only two subsequent states, so that
consequently a single bit 1s suificient for unambiguous encod-
ing. In the example, the transition to z3 1s marked with O and
that to z4 1s marked with 1. FIG. 3 shows an example for an
automaton expanded 1n this way.

I1 there are more than two possible subsequent states, the
bit sequence must be longer. The encoding method from
Huflman 1s particularly suitable for producing such unam-
biguous codes for the state transitions. It produces minimal,
unambiguous codes and can also take the probabilities of the
state transitions into account. If 1t 1s known that certain state
transitions are selected more frequently than others, these can
be encoded with especially short bit sequences. This has a
positive effect on the compression result.

The expanded string automaton processes the input data
record that 1s to be compressed. If states that have more than
one possible subsequent state flow through, the locally unam-
biguous identifier of the selected state transition 1s encoded in
the output data record. If non-structured contents are read
from the input during the state transitions, these are likewise
encoded 1n the output data record.

For the example data record

lemperature:121,Pressure: 918

the following actions would be executed:

Read Write
(from input data (1n output data
State record) record)
70 (start) Temperature: (Transition is
(structural indicator) unambiguous)
z1 121 121 as 32-bit integer
72 , Pressure: ‘0’ (transition to z3)
(structural indicator)
73 918 918 as 32-bit integer
z5 (end) — —

The output data record as shown 1n FIG. 4 consequently
results.

In this data record, which 1s only 65 bits long, all the
information that 1s needed for reconstructing the mput data
record with the help of the string automaton 1s encoded. The
length of the uncompressed input data record in 7-bit ASCII
encoding 1s 28x7=192 [bits].

The starting point for the decompression process 1s, in turn,
the expanded string automaton used for compression. This
automaton will once again run through from the start state to
an end state. The automaton’s flow path during the decom-
pression 1s, however, controlled by the data record that 1s the
result of the compression process. During the tlow, the values

US 8,650,217 B2

11

with which the state transitions are labelled are written 1nto
the output data record. The values of non-structured contents
here are decoded and likewise written into the output data
record.

The results for the above example are:

Read Write
(from input data (1n output data
State record) record)
z0 (start) (Transition 1s Temperature:
unambiguous) (Structural indicator)
z1 32-bit integer 121
72 ‘0O’ (transition to z3) , Pressure:
(structural indicator)
73 32-bit integer 918
z5 (end) - -

The example data record can consequently be exactly
reconstructed.

In the case of more complex string automatons, in which
the state transitions are not only controlled by the mput data
record, but also depend on other parameters (for example, on
the top-most value 1n the memory of a stack machine), 1t can
be expedient to carry out the expansion of the string automa-
ton dynamically 1n the framework of the compression and
decompression process, instead of ahead of time.

Example: The state z4 i a stack machine has ten possible
subsequent states. During one of the static expansions of the
automaton, these ten states must be encoded using a block
code with [log, 10]=4 baits.

During the processing of an mput data record X, the
automaton now reaches z4. On the basis of the top-most entry
in the push-down stack, however, only two of the ten transi-
tion states are possible. In this situation, 1t 1s also necessary to
encode only these two states, because only they can be
selected during the processing of the input; one bit 1s suili-
cient for this purpose.

Because, however, the state of the push-down stack
changes dynamically with the processing of the mnput data
record, such optimised encoding can only be determined
dynamically, 1.e., during the processing of an mput data
record. This leads to better compression results, but has the
disadvantage that during compression and decompression,
additional calculation steps must be carried out. As a resullt,
the processing speed 1s somewhat slower.

Both the compression process and the decompression pro-
cess are essentially based on the fact that the states of a string
automaton are run through. Such automatons have an excep-
tionally simply structure and can be efficiently implemented
in hardware or software.

In the case of a finite automaton, only a RAM memory area
for holding the current state 1s required. The state transitions
of the automaton can be stored as a table 1n a ROM area. The
start state and end states are likewise not variable, and can
therefore likewise be stored 1n ROM.

Even a stack machine 1s only a little bit more complex;
there 1t 1s only necessary to provide an additional RAM
memory area as the push-down stack.

One particular advantage of such automatons lies 1n the
fact that they are very simple to implement. The implemen-
tation of a string automaton 1s essentially restricted to the tlow
through a while loop, and the necessary storage space 1s very
limited.

Automaton structures are also common modules 1n chip
design. The automaton structures used 1n this association are
frequently called finite state machines or Moore machines,

10

15

20

25

30

35

40

45

50

55

60

65

12

and correspond as far as possible to the finite automatons
introduced above. For implementation of a stack machine 1n
hardware, the automaton structure would have to be expanded
by a stack, which 1s likewise a standard module.

In addition to these advantages 1n the implementation, the
method also offers the possibility of combining the processes
of parsing and data compression or decompression 1nto a
single processing step.

The control of the automaton tlow can be handled directly
from another soitware component via a programming inter-
tace (API). If the implementation 1s carried out in hardware,
the automaton flow could be controlled from other modules or
functional groups via control lines. This has the advantage
that absolutely no uncompressed representation of the data to
be compressed must be reserved in the memory of the data-
compressing device. This representation form 1s possibly
very large and unnecessarily consumes the storage capacity
of the data-compressing device. On a machine producing data
records of measurements, it would be, for example, possible
to not produce the uncompressed representation of the data
record with the measured values at all. When the measured
values are recorded, the flow of the string automaton 1s
directly controlled by this technical process. The compres-
s10n result, however, corresponds to one 1n which there had
been an uncompressed representation of the data record, so
that a recerver of the compressed data record can decompress
and interpret or further process the measurement data in the
absolutely normal way.

The method indicated above also allows for the string
automaton additionally to arrange the control of external
functional groups during its run. For example, it would be
possible that, 1n the framework of the decompression, the
uncompressed representation of the data record 1s not to be
recovered at all. Possibly an external functional group or
module (for example, an external software component, pro-
duction system or arithmetic-logic unit) should alternatively
or additionally be controlled depending on the values read
from the data record. Many technical processes can namely
be portrayed directly on an automaton model as 1s proposed
by an embodiment of the invention

The various embodiments described above can be com-
bined to provide further embodiments. All ofthe U.S. patents,
U.S. patent application publications, U.S. patent applica-
tions, foreign patents, foreign patent applications and non-
patent publications referred to in this specification and/or
listed 1n the Application Data Sheet are incorporated herein
by reference, 1n their entirety. Aspects of the embodiments
can be modified, if necessary to employ concepts of the
various patents, applications and publications to provide yet
further embodiments.

These and other changes can be made to the embodiments
in light of the above-detailed description. In general, 1n the
following claims, the terms used should not be construed to
limit the claims to the specific embodiments disclosed 1n the
specification and the claims, but should be construed to
include all possible embodiments along with the full scope of
equivalents to which such claims are entitled. Accordingly,
the claims are not limited by the disclosure.

The mvention claimed 1s:
1. A method usable for compressing data records that com-
ply with predefined structuring rules, the method comprising;:
inputting a data record 1nto a string automaton of a com-
pression apparatus, wherein the data record comprises
structure tags and unstructured values and complies with
said predefined structuring rules, and wherein the string,

US 8,650,217 B2

13

automaton represents predefined structuring rules of the
data record as state transitions of the string automaton;
and

compressing the mput data record by the string automaton

to thereby produce a compressed data record, wherein
the compressed data record comprises the unstructured
values of the data record and control symbols represent-
ing state transitions of the string automaton’s tflow path
caused by the structure tags of the input data record, with
bit representations of the control symbols based on at
least one of probabilities and frequencies of the state
transitions encoded by the control symbols, and wherein
compressing the mput data record comprises:

replacing structure tags of the mput data record by control

symbols, wherein a respective structure tag 1s replaced
by a control symbol to denote the state transition of the
string automaton, in case the state transition from a
current state to a subsequent state of the string automa-
ton caused by the respective structure tag 1s ambiguous,
and

removing structure tags of the input data record, wherein a

respective structure tag of the mput data record 1s
removed, 1n case the state transition from the current
state to the subsequent state of the string automaton
caused by the respective structure tag 1s unambiguous.

2. The method according to claim 1, further comprising
transmitting the compressed data record to a decompression
apparatus.

3. The method according to claim 1, wherein the data
record 1s an eXtensible Markup Language (XML) document.

4. The method according to claim 1, wherein processing
the mput data record by the string automaton comprises con-
trolling external functional groups or modules.

5. The method according to claim 1, wherein the unstruc-
tured values of the data record are output by the string
automaton in an at least partially altered, encoded form or are
recognized and converted by said string automaton.

6. The method according to claim 1, further comprising
storing additional coding rules 1n the string automaton relat-
ing to state transitions.

7. The method according to claim 1, further comprising
determining bit representations of the control symbols for
coding state transitions of the string automaton based on
dynamically changing memory content.

8. The method according to claim 1, and the method com-
prises determining whether a state transition of from a current
state to a subsequent state caused by the respective structure
tag 1s ambiguous or unambiguous taking into account
whether the current state allows for transitions to plural sub-
sequent states.

9. The method according to claim 8, wherein the string
automaton 1s implemented by circuitry comprising a push-
down stack and determining whether a state transition of from
a current state to a subsequent state caused by the respective
structure tag 1s ambiguous or unambiguous 1s further taking
into account the state of the push-down stack.

10. A method for decompressing a compressed data record,
the method comprising:

inputting the compressed data record 1nto a string automa-

ton ol a decompression apparatus, wherein the com-
pressed data record comprises unstructured values of the
uncompressed data record and control symbols repre-
senting state transitions of the string automaton’s tlow
path caused by the structure tags of the uncompressed
data record upon compression, with bit representations
of the control symbols based on at least one of probabili-
ties and frequencies of the state transitions encoded by

10

15

20

25

30

35

40

45

50

55

60

65

14

the control symbols, and wherein the string automaton
represents predefined structuring rules of the data record
as state transitions of the string automaton; and

decompressing, by the string automaton, the input com-
pressed data record to generate the uncompressed data
record comprising structure tags and unstructured val-
ues, wherein control symbols of the compressed data
record and unambiguous state transitions of the string
automaton’s tlow path caused by the input compressed
data record are replaced by structure tags to thereby
generate the uncompressed data record.

11. The method according to claim 10, wherein, in addition
or alternatively to generating the decompressed data record,
processing the input compressed data record comprises con-
trolling functional groups or modules by the string automa-
ton.

12. The method according to claim 10, further comprising
storing additional coding rules for state transitions of the
string automaton.

13. The method according to claim 10, further comprising
determining bit representations of the control symbols for
coding state transitions of the string automaton based on
dynamically changing memory content.

14. The method according to claim 10, wherein the string
automaton 1s implemented by circuitry comprising a push-
down stack and replacing control symbols of the compressed
data record and unambiguous state transitions of the string
automaton’s flow path caused by the input compressed data
record by structure tags 1s taking into account the state of the
push-down stack.

15. A compression apparatus for compressing of a data
record, the compression apparatus comprising:

circuitry 1mplementing a string automaton representing

predefined structuring rules of the data record as state
transitions of the string automaton,

wherein the circuitry implementing the string automaton 1s

operable to compress a data record input to the string
automaton to thereby produce a compressed data record,
wherein the mput data record comprises structure tags
and unstructured values and complies with the pre-
defined structuring rules,

wherein the circuitry implementing the string automaton 1s

further operable to

replace structure tags of the mnput data record by control

symbols, wherein a respective structure tag is replaced
by a control symbol to denote the state transition of the
string automaton with bit representations of the control
symbols based on at least one of probabilities and fre-
quencies of the state transitions encoded by the control
symbols, in case the state transition from a current state
to a subsequent state of the string automaton caused by
the respective structure tag 1s ambiguous, and

remove structure tags of the input data record, wherein a

respective structure tag of the input data record 1is
removed 1n case the state transition from the current state
to the subsequent state caused by the respective structure
tag 1s unambiguous.

16. The compression apparatus according to claim 15,
further comprising a push-down stack and wherein the cir-
cuitry implements a state machine.

17. A micro-chip comprising a compression apparatus
according to claim 15.

18. The compression apparatus according to claim 135,
wherein the circuitry implementing the string automaton 1s
comprising a push-down stack, and i1s further operable to
determine whether a state transition of from a current state to
a subsequent state caused by the respective structure tag 1s

US 8,650,217 B2

15

ambiguous or unambiguous taking into account whether the
current state allows for transitions to plural subsequent.

19. The compression apparatus according to claim 18,
wherein the circuitry implementing 1s further operable to
determine whether a state transition of from a current state,
allowing for transitions to plural subsequent states, to a sub-
sequent state caused by the respective structure tag 1s ambigu-
ous or unambiguous taking into account the state of the push-
down stack.

20. A decompression apparatus for decompressing a com-
pressed data record, the decompression apparatus compris-
ng:

circuitry 1mplementing a string automaton representing,

predefined structuring rules of the data record as state
transitions of the string automaton,

wherein the circuitry implementing the string automaton 1s

operable to decompress a compressed data record input
to the string automaton to thereby produce an uncom-
pressed data record, wherein the input compressed data
record comprises unstructured values and control sym-
bols representing state transitions of the string automa-
ton’s flow path caused by the structure tags of the
uncompressed data record upon compression with bit
representations of the control symbols based on at least
one ol probabilities and frequencies of the state transi-
tions encoded by the control symbols,

10

15

20

16

wherein the circuitry implementing the string automaton 1s
further operable to replace control symbols of the com-
pressed data record and unambiguous state transitions of
the string automaton’s flow path caused by the input
compressed data record by structure tags to thereby gen-
crate the uncompressed data record.

21. The decompression apparatus according to claim 20,
wherein the circuitry implementing the string automaton, in
addition or alternatively to generating the decompressed data
record, 1s operable to control functional groups or modules by
the string automaton.

22. The decompression apparatus according to claim 20,
turther comprising a push-down stack and wherein the cir-
cuitry implements a state machine.

23. A micro-chip comprising a decompression apparatus
according to claim 20.

24. The decompression apparatus according to claim 20,
wherein the circuitry implementing the string automaton 1s
comprising a push-down stack, and the circuitry implement-
ing the string automaton 1s further operable to replace control
symbols of the compressed data record and unambiguous
state transitions of the string automaton’s flow path caused by
the input compressed data record by structure tags taking into
account the state of the push-down stack.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

