12 United States Patent

US008646070B1

(10) Patent No.: US 8.646.,070 B1

Patsenker et al. 45) Date of Patent: Feb. 4, 2014
(54) VERIFYING AUTHENTICITY IN DATA (56) References Cited
STORAGE MANAGEMENT SYSTEMS
U.S. PATENT DOCUMENTS
(75) Inventors: Svetlana Patsenker, Wayland, MA 6.574.617 BL* 62003 Immerman et al. w........... (1
(US); Benjamin Thrift, Reston, VA 6,976,053 Bl * 12/2005 Tripp etal. .oooocovrvvren... 709/202
(US); Boris Farizon, Westborough, MA 7,131,143 B1* 10/2006 LaMacchiaetal. ... 726/30
(US); Mordechai Zvi Zur, Newton, MA ;a égga%g Ezz 3//%88; Proudler etal. ggﬁ igg
1T : : 356, Ting ..oooovveiii
(U 2) ?y;;’“‘ Bg‘“gm ihﬁmb“g AMAS 7,398,380 B2* 7/2008 Tealetal.cooo........ 713/164
(US); Jeffrey B. Lee, Ashburn, VA (US); 7.430,594 B2* 9/2008 Krupczak 709/223
Nigel B. Hislop, Springtield, VA (US); 7,779,469 B2* 82010 Hopenetal.ccuvv....... 726/22
Eric Baize, Sudbury, MA (US) 2001/0037311 Al* 11/2001 McCoyetal. 705/65
2002/0078380 Al* 6/2002 Linetal. 713/201
: : : 2002/0078382 Al* 6/2002 Sheikhetal. 713/201
(73) Assignee: Fggj Corporation, Hopkinton, MA 2003/0028363 Al* 2/2003 Nobilietal. ..ooovvveviivvii, 704/1
2004/0205772 Al* 10/2004 Uszoketal. 719/317
o .
(*) Notice: Subject to any disclaimer, the term of this cited by examiner
patent 1s extended or adjusted under 35 Primary Examiner — Nadia Khoshnoodj
U.5.C. 154(b) by 1830 days. (74) Attorney, Agent, or Firm — Krishnendu Gupta; Jason A.
Reyes; Deepika Bhayana
(21) Appl. No.: 11/171,906
(37) ABSTRACT
(22) Filed: Jun. 30, 2005 A storage area network management application operates
using agents for management of resources. Authenticity 1s
(51) Int.Cl. verified in 1nstalling an agent on a host computer system in the
GO6F 11/00 (2006.01) storage area netwo.rk..A file 1s 1dentified fqr'use i.n installing
GOGF 12/14 (2006.01) the agent. The file 1s signed to produce a digital signature for
GOGF 12/16 (2006.01) the ﬁle.‘A‘ certiﬁcate 1S sent to a recipient f01t use ?11 veriiving
GOSB 23/00 (2006.01) authenticity of 1r}f0rmat10n. The': ﬁle and dlglta} signature are
sent to the recipient. At the recipient, the certificate and the
(52) U.S.Cl | digital signature are used to verily the file. An agent installa-
USPC ... 726/223 726/26 tion Op@l’<iOIl iS pel'fOI'IHEd,, USiIlg the ﬁlej tO iIlStElH the agent
(58) Field of Classification Search on the host Compu‘[er Sys‘[em_
None

See application file for complete search history.

19 Claims, 9 Drawing Sheets

GENERATE CERTIFICATE 4010

SIGN SCRIPTS AND
ARCHIVE FILES 4020

PROVIDE CERTIFICATE TO
MASTER AGENT 4030

PROCEED
WITH INSTALLATION

4080

AT MASTER AGENT, RECEIVE 4040
AND SAVE CERTIFICATE

Y < GIGNATURE VALID- S>>
2

SEND FILE AND DIGITAL 4050
SIGNATURE OF FILE TO MASTER
AGENT IN SINGLE TRANSACTION

AT MASTER AGENT, VERIFY 4060
SIGNATURE USING CERTIFICATE

4070

Y

RETURN ERROR
INDICATION TO SERVER

4090

U.S. Patent Feb. 4, 2014 Sheet 1 of 9 US 8,646,070 B1

[0] Agent Patch Deployment | x|
- Agent Patch Deployment

132
GRAPHICAL

USER
INTERFACE

130
DISPLAY
[T —] |
L (e i]
[
105-1 105-Q
CLIENT CLIENT

DEVICES DEVICES

104-2 104-P |

| 106-2 1072 |eee| 106-5 107-P | NETWORK

1061 107-1 1062 107-2 ETWORK |
104-1 00
103-M (e.g., SAN)

CONNECTIVITY

DEVICE CONNECTIVITY

DEVICE (e.g.,
S.AN. SWITCH)

102-1 102-2 102-3 102-N
| STORAGE STORAGE STORAGE
| RESOURCE RESOURCE RESOURCE coe

I

I

I

I

I

: HOST 101 103-1
I

: S.AN. SWITCH)
|

|

I
I
I
DEVICE (e.g., :
|
I
|

U.S. Patent Feb. 4, 2014 Sheet 2 of 9 US 8,646,070 B1

— . —
[O] Agent Patch Deployment x|

132

10 [Canal] b |

130

114
/0 INTERFACE
110

COMPUTER SYSTEM
(E.G., MANAGEMENT STATION)

112
MEMORY

150-1

113
PROCESSOR

150-2

AGENT
INSTALLER
APPLICATION

115
COMM. INTERFACE

100
FIG 2 NETWORK

U.S. Patent Feb. 4, 2014 Sheet 3 of 9 US 8,646,070 B1

MANAGE CERTIFICATE 3010

PRODUCE SIGNATURE 3020

INSTALL AGENTS 3030

I 1 I I
1

FIG. 3

U.S. Patent Feb. 4, 2014 Sheet 4 of 9 US 8,646,070 B1

GENERATE CERTIFICATE 4010

SIGN SCRIPTS AND
ARCHIVE FILES 4020

PROVIDE CERTIFICATE TO
MASTER AGENT 4030

AT MASTER AGENT, RECEIVE 4040
AND SAVE CERTIFICATE

SEND FILE AND DIGITAL
SIGNATURE OF FILE TO MASTER 4020
AGENT IN SINGLE TRANSACTION

AT MASTER AGENT, VERIFY

SIGNATURE USING CERTIFICATE f—4060

4070
SIGNATURE VALID
?

PROCEED RETURN ERROR
WITH INSTALLATION INDICATION TO SERVER

4080 4090

Y N

FIG. 4

U.S. Patent Feb. 4, 2014 Sheet 5 of 9 US 8,646,070 B1

5010

ASSIGN ID FOR EACH
CERTIFICATE
GENERATE CERTIFICATE
AND PRIVATE KEY 5020

CREATE BINARY FILE WITH
PRIVATE KEY AND CERTIFICATE 5030

AND FILE CONTAINING
EXPORTED CERTIFICATE

STORE FILE IN RESTRICTED
ACCESS DIRECTORY 2040

FIG. 5

U.S. Patent Feb. 4, 2014 Sheet 6 of 9 US 8,646,070 B1

AT SERVER, ATTEMPT TO VALIDATE
CERTIFICATE ON STARTUP 6010

6020

Y < CERTIFICATE DATES SN
OK?
6050 AT MASTER AGENT, DISABLE REMOTE INSTALL
USE CERTIFICATE FUNCTIONALITY AND

OUTPUT WARNING

6040

FIG. 6

U.S. Patent Feb. 4, 2014 Sheet 7 of 9 US 8,646,070 B1

7030
7010
ASTE;IKQTAGENT' N ERASE
CURRENT CERTIFICATE CERTIFICATE
END RESET ID

VALID
?

Y

AT MASTER AGENT, SEND INITIAL
TRANSACTION TO SERVER ON 7040
STARTUP

7050
MASTER

AGENT HAS VALID
CERTIEICATE

SET ID FIELD SET ID FIELD
ACCORDINGLY TO NULL

7060 7070

AT SERVER, EXTRACT ID FROM 7080
INITIAL TRANSACTION FROM
MASTER AGENT

TOFIG. 7B

FIG. 7A

U.S. Patent Feb. 4, 2014 Sheet 8 of 9 US 8,646,070 B1

FROM FIG. 7A
7100
7090
DETERMINE ID Y RECEIVED
TO BE ID SAME AS SERVER'S
CORRECT Ig)

DETERMINE ID TO BE INCORRECT L7110

AT SERVER, PREPARE TOSEND |._ 7490
CERTIFICATE TO MASTER AGENT

AT SERVER, OBFUSCATE 740
TRANSMISSION TO MASTER AGENT

AT MASTER AGENT, REVERSE |._7140
OBFUSCATION

AT MASTER AGENT, REPLACE OLD |._ 7450
CERTIFICATE WITH NEW CERTIFICATE

AT MASTER AGENT, TEST 2160
CERTIFICATE

AT MASTER AGENT, IF PROBLEM |
WITH CERTIFICATE. ERASE 7170
CERTIFICATE FILE AND RESET ID

FIG. 7B

U.S. Patent

Feb. 4, 2014 Sheet 9 0of 9

AT SERVER, GET EXISTING
SIGNATURE OF FILE

SEND FILE AND SIGNATURE IN
SECURE TRANSACTION

AT MASTER AGENT, CHECK FOR |
CERTIFICATE EXPIRATION BEFORE
RECEIVING INSTALL FILES

AT MASTER AGENT, IF CERTIFICATE
EXPIRED, ERASE CERTIFICATE

AT SERVER, INITIATE SENDING
FILE CONTENTS TO MASTER
AGENT

AT MASTER AGENT, ON RECEIPT

OF FILE CONTENTS, USE EXISTING
CERTIFICATE TO VERIFY SIGNATURE
PROVIDED BY SERVER

FIG. 8

8010

8020

8030

8040

8050

8060

US 8,646,070 B1

US 8,646,070 Bl

1

VERIFYING AUTHENTICITY IN DATA
STORAGE MANAGEMENT SYSTEMS

BACKGROUND

The present invention relates generally to verifying authen-
ticity, and more particularly to verifying authenticity in data
storage management systems.

The need for high performance information technology
systems 1s driven by several factors. In many 1industries, criti-
cal information technology applications require outstanding
levels of service. At the same time, the world 1s experiencing
an information explosion as more and more users demand
timely access to a huge and steadily growing mass of data
such as large databases or high quality multimedia content.
The users also demand that information technology solutions
protect data and perform securely.

Modern computer networks carry large amounts of data
among many computer systems. This information 1s typically
stored within high-capacity data storage systems that can be
interconnected to form a computer network referred to as a
storage area network. A typical storage area network includes
host computer systems, typically referred to as servers, which
connect through a switching fabric (e.g., one or more storage
area network switches) to a group of data storage systems to
gain access to the stored data on behalf of client computer
systems (e.g., end user computers) that request the data. Users
responsible for managing resources in the storage area net-
work (“network managers”) often use storage area network
management soitware to manage the configuration and
operation of resources such as host computer systems,
switches, data storage systems, and associated software
applications and hardware devices within the storage area
network, and rely on such software to perform 1n a highly
secure way.

SUMMARY

A storage area network management application operates
using agents for management of resources. Authenticity 1s
verified minstalling an agent on a host computer system in the
storage area network. A file 1s identified for use 1n 1nstalling
the agent. The file 1s signed to produce a digital signature for
the file. A certificate 1s sent to a recipient for use 1n verifying,
authenticity of information. The file and digital signature are
sent to the recipient. At the recipient, the certificate and the
digital signature are used to verily the file. An agent installa-
tion operation 1s performed, using the file, to install the agent
on the host computer system.

One or more implementations of the invention may provide
one or more of the following advantages. Network managers
can install network management components out on the net-
work 1n a highly secure way.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
ol the present application will be apparent from the following
more particular description of preferred embodiments, as
illustrated 1n the accompanying drawings 1n which like ret-
erence characters refer to the same parts throughout the dit-
terent views. The drawings are not necessarily to scale, with
emphasis instead being placed upon illustrating example
embodiments, principles and concepts.

FI1G. 1 1s a pictorial diagram of a storage area network and
corresponding management station configured to operate
according to an embodiment of the present application.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a block diagram of a sample architecture associ-
ated with the computer system management station for
executing a resource manager application according to an
embodiment of the present application.

FIGS. 3-8 are flow charts of processing steps that may be
executed in the storage area network of FIGS. 1-2.

DETAILED DESCRIPTION

A storage area network management application, €.g., as
described in connection with FIG. 1 below, provides a man-
agement server and a console program that provides a graphi-
cal user interface that allows users to graphically manage
resources within a storage area network. The management
server interacts with agent software processes (“agents™) that
execute on host computer systems operating within the stor-
age arca network to manage individual resources. The agents,
which are part of the network management application,
execute on the host computer systems to recerve commands
from the management server to configure and control the
managed resources within the storage area network.

In the storage area network management application, dif-
terent types of resources within the storage area network are
managed by respective agents such as host agents for man-
aging hosts, switch agents for managing switches, storage
system agents for managing the data storage system, and
agents for managing soiftware applications (e.g., database
agents). BEach agent operates to collect periodically configu-
ration data associated with resources managed by the agent
for reporting back to the management server. Using the con-
figuration data collected by the agents, the management
server displays the current status and configuration of
resources within the storage area network to a network man-
ager on the graphical user interface of the console.

The network manager operates the management server to
remotely install and configure the agents for operation on host
computer systems 1n the storage area network. The installa-
tion process allows the network manager to identify a specific
agent for installation on a specific host computer system
within the storage area network. The network manager 1s
guided by the installation process through the steps of install-
ing the selected agent on the selected host. If the agent to be
installed 1s replacing an agent already installed on that host
(e.g., to provide a newer version of the agent), the installation
process executes the replacement. Once the agent 1s properly
installed, the network manager can cause the management
server to mstruct the newly installed agent to begin execution
on the host.

The storage area network management application may
include an agent installer as described in co-pending U.S.
patent application Ser. No. 11/081,177 filed Mar. 6, 2005
entitled “METHODS AND APPARATUS FOR INSTALL-
ING AGENTS IN A MANAGED NETWORK?”, which 1is
assigned to the same assignee as the present application, and
which 1s incorporated 1n its entirety herein by reference. The
agent installer provides mechanisms and techniques for
installing agents on host computer systems 1n an automated
and bulk manner so that the network manager does not have to
install each agent individually on each host using a separate
manual installation process for each agent for each host.

In operation, configurations of the agent 1nstaller identily
at least one agent to be 1nstalled on host computer systems.
The 1dentification of the agent to be installed on a group of
computer systems can allow a user, for example, to select any
number of host computer systems operating within the net-
work. Based on a selection of the host computer systems, the
agent installer 1s able to communicate with each of the host

US 8,646,070 Bl

3

computer systems to identity the agents that are presently
installed on those host computer systems. For example, 11 a
user (e.g., a network manager) installs new agent code
received from an agent vendor 1nto a media repository asso-
ciated with the storage area network management application
(1.e., amedia repository known to the agent installer), the user
can operate the agent installer to select a group of hosts upon
which that new agent code 1s to be installed. The agent
installer communicates with a master agent on each host to
determine the agent and the agent versions that are currently
installed on those hosts. The master agent replies with a list of
the agents 1nstalled as well as the version numbers of those
agents. The agent installer then sorts the data recerved from
the master agent from each host to determine, based on a
comparison of the media repository agent versions that exist
and the agents that are currently installed on each host
machine, the agents that can be replaced (“patched’) with the
new agent. The agent installer produces a list, for each host, of
the current version of agents 1nstalled on those hosts and the
available patch version of those agents 1n the media reposi-
tory. The user can then choose the hosts and agents on those
hosts that should be upgraded or patched with the new agents.

Once the hosts and agents have been selected, the agent
installer then performs prerequisite checking of each of the
selected host computer systems to determine the host com-
puter systems that are capable of supporting operation of the
new agent(s). This can include performing, for example,
cumulative pre-requisite disk space checking for each host to
be patched with a new agent(s) to determine whether suifi-
cient disk space exists on those hosts to deploy the new agent
code. IT prerequisite checking 1s successiul, the agent installer
provides a summary to the user and the user can confirm the
installation to be performed.

The processing can be repeated 1n an automated manner for
cach host computer system that 1s capable of supporting
operation of the agent. The system thus performs an auto-
mated bulk agent installation operation to install the agents on
cach host computer system and does not required further
intervention by the user. During the installation process, an
installation script provides detailed status of the installation
back to the agent installer that 1s then displayed to the user
who can then determine the current state of installation on
many host computer systems.

The network management application may also include
security features helping to secure communications between
components of the network management application. As
described below, the network application may include file
authentication and signing functionality, which may be used,
for example, 1n installing and managing components of the
network management application.

FIG. 1 1llustrates an example storage area network envi-
ronment 133. As shown, a network system 100 such as a
storage area network includes a network medium 101 such as
a high-speed data communications medium (e.g., Ethernet,
optical network, or other network) that interconnects such as
storage resources 102-1, 102-2, . . ., 102-N (collectively,
storage resources 102), network switches 103-1, .. .,103-M
(collectively, network switches 103 such as storage area net-
work switches), host computer systems 104-1 (e.g., servers),
104-2, . .., 104-P (collectively, host computer systems 104),
client devices 105-1, 105-2, . . ., 105-Q (collectively, client
devices 105), and a management computer system server 110
(e.g., a storage area network management station). Each host
computer system in this storage area network example oper-
ates one or more agents 106-1 through 106-S and master
agents 107-1 through 107-P. When 1nstalled and operational
within the host computer systems 104, the agents 106 (of

5

10

15

20

25

30

35

40

45

50

55

60

65

4

which a host may execute more than one) interact with the
resources 102 through 104 to manage these resources under
the control of a network management application 120 oper-
ating 1n the host computer system.

Server 110 operates (e.g., executes) the network manage-
ment application 120 and further includes a display 130 and a
media repository 125. The network management application
120 displays a graphical user interface 132 (e.g., a software
graphical user interface application more particularly shown
in FIG. 2) on the display 130 to generate and display infor-
mation 1n connection with agent installation. The network
management application 1s configured with an agent installer
150 that communicates with master agents 107-1 through
107-P as explained in the above-referenced co-assigned
patent application to perform bulk installations/patches of
agents 106 within the host computer systems 104. Server 110
further includes, or has access to, a media repository 125 that
stores agents 151 (1.¢., as agent installation packages with file
authentication features as described below) that the agent
installer 150 can install as agents 106 onto the host computer
systems 104. In a sample embodiment, the media repository
maintains third party soiftware programs 127 that may be
required on host computer systems 104 during operation of
agents 151. Also 1n the sample embodiment, the media
repository maintains pre-requisite checking scripts 128 that
can pertform pre-requisite checking of the host computer sys-
tems 104 prior to installation of the agent packages 151.

In the sample embodiment, server 110 1s configured as a
storage area network management station operated by a user
108 such as a network manager responsible that the user 108
uses for managing resources (e.g., 102 through 104) associ-
ated with the storage area network 100. The network man-
agement application 120 may be any type of network man-
agement software application that executes, performs, or
otherwise operates within the management station computer-
1zed device server 110. Server 110 may include one or more
other components such as one or more internal devices as well
as software applications or processes (e.g., an operating sys-
tem) that operate within or 1n conjunction with the illustrated
components and devices 1n FIG. 1.

As shown 1n FIG. 1, the agent installer 150, operating 1n
this example as part of the management application 120 on
server 110, displays a graphical user interface 132 on the
display 130 that allows the user 108 to provide mput com-
mands to control the process of performing bulk agent instal-
lations. Details of the operation of the agent installer 150 are
shown 1n a more detailed view in FIG. 2.

FIG. 2 1s a block diagram 1llustrating an example architec-
ture of server 110, which may be any type of computerized
device such as a personal computer, workstation, portable
computing device, console, laptop computer, or network ter-
minal. As shown, server 110 includes an interconnection
mechanism 111 that couples a memory system 112, a proces-
sor 113, an input/output interface 114, and a communications
interface 1135. A peripheral device 116 (e.g., one or more
viewer controlled devices such as a keyboard, mouse, etc.)
couples to the processor 113 through the I/O interface 114 and
cnables the user 108 to provide input commands and thus
generally control bulk agent installation operations and view
installation status of the agent installer 150 on the graphical
user interface 132. The media repository stores new agent
installation packages 151, including files and signatures as
described below, that can be used to install operating agents
106 onto the host computer systems 104. The media reposi-
tory maintains third party software programs 127 that may be
required on host computer systems 104 during operation of
agents 151. The media repository also maintains pre-requisite

US 8,646,070 Bl

S

checking scripts 128 that can perform pre-requisite checking
of the host computer systems 104 prior to installation of the
agent packages 151. The communications interface 1135
cnables the server 110 (and the corresponding user 108) to
communicate with other devices (i.e., resources) associated
with the network 100 which 1s a storage area network in this
example.

As shown, the memory system 112 i1s encoded with a
network management application that includes an agent
installer 150 that supports bulk agent installation as described
in the above referenced co-assigned patent application. The
network management application may be embodied as soft-
ware code such as data and/or logic instructions (e.g., code
stored 1n the memory or on another computer readable
medium such as a disk) that supports agent installer 150
processing functionality. During operation, the processor 113
accesses the memory system 112 via the interconnect 111 1n
order to launch, run, execute, interpret or otherwise perform
the logic instructions of the network management applica-
tion. Execution of the network management application pro-
duces a network management process that includes function-
ality of the agent installer 150. Thus the network management
process 1ncluding agent installer process 130-2, which
includes transaction functionality 240 as described below,
represents one or more portions of the network management
application (or the entire application 120), including the agent
installer application 150-1, performing within or upon the
processor 113 m server 110. (In an alternative configuration,
the agent installer application 150-1 and process 150-2 can be
configured and operate separately from the network manage-
ment application and process, such as a standalone agent
installer 150.)

The network management manager 120 and the agent
installer 150 executed 1n server 110 are represented in FIG. 2
by either one or both of application 150-1 and/or process
150-2. The network management application 120 and the
agent mstaller 150 perform or support functional operations
to carry out agent installation techmques. Example configu-
rations herein include the agent installer 150 1itself (1.e., the
un-executed or non-performing logic instructions and/or
data) which may be stored on a computer readable medium
(such as a floppy disk), hard disk, or optical medium and may
be part of or separate from the network management appli-
cation 120. The agent 1nstaller 150 may also be stored 1n a
computer readable medium such as the memory system 112
that may be firmware, read only memory (ROM), or, as in this
example, as executable code 1n, for example, Random Access
Memory (RAM). In addition to these embodiments, 1t should
also be noted that other embodiments herein include the
execution of the resource manager application in processor
113 as the resource manager process that each include the
agent mstaller 150, or the agent installer 150 itself may exist
as an application in memory 112 or as a process on the
processor 113.

Thus, those skilled 1n the art will understand that server 110
may include other processes and/or software and hardware
components, such as an operating system. The display 130
need not be coupled directly to server 110. For example, the
network management application 120 can be executed on a
remotely accessible computerized device. Further opera-
tional details of the network management application and
process icluding the agent installer 150 are described in the
above referenced co-assigned patent application.

FIGS. 1-2 also illustrate functional components used in file
authentication and signing as described below. These com-
ponents help provide security at, and in communications
between, server 110 and master agents 107-1 through 107-P,

10

15

20

25

30

35

40

45

50

55

60

65

6

and include one or more installation files 210, one or more
digital signatures 220, one or more certificates 230, function-
ality providing a secure transaction 240, and functionality
providing a file authenticator utility 250.

File authentication and signing relies on well known pub-
lic-key cryptography principles, according to which an entity
(e.g., here, server 110) has a public key that can be published,
and a private key that 1s known only to the entity. Data
encrypted by the public key can be decrypted only by the
private key, and vice versa, but not by any other means.

Another well known concept 1s a message digest which 1s
a small representation of a long message that 1s obtained by
applying a one-way hash function to the long message such
that, computationally, 1t 1s nearly impossible to find two long
messages that have the same message digest. If the message
digest 1s sent together with the long message, the recipient can
compute a new message digest from the received long mes-
sage and compare it with the recerved message digest to
determine whether the recerved long message 1s valid.

A related well known concept 1s a digital signature, which
1s the result of encrypting (“signing’”) a message digest with
the sender’s private key. Since only the sender knows the
private key, the recipient (e.g., here, master agent 107) can
operate reliably on the basis that the message digest, and
therefore the long message, was imndeed provided by the pur-
ported sender (e.g., here, server 110).

A certificate 1s another well known related concept and
forms the basis of authentication. The certificate 1s data 1n a
well-defined format that binds an entity’s identity to 1ts public
key and 1s signed by a trusted authority. If the enftity itself
serves as the trusted authornty, the certificate 1s a self-signed
certificate. The certificate can also include other information
such as an expiration period including an expiration date.

Thus, for example, server 110 can produce a self-signed
certificate by creating a message digest from a collection of
information that includes the server’s public key and an 1den-
tification of the system, encrypting the message digest using
the server’s private key, and providing the encrypted message
digest together with the collection of information. After being
provided with the certificate, master agent 107 can then use
the public key from the certificate to authenticate files of
agent installation packages 151 recetved from the server.

FIG. 3 1s a high level flow chart illustrating file authenti-
cation and signing in the course of installing agents 1n general
accordance with the methods and system described 1n the
above referenced co-assigned patent application. Certificate
230 1s managed, which management may include generation
of the certificate (e.g., at server 110 or elsewhere) and pro-
viding (e.g., by transmission from the server or elsewhere) of
a copy of the certificate to master agent 107 (step 3010).
Signatures 220 for files 210 are produced, e.g., at server 110,
in connection with the certificate, for use 1n agent installation
packages 151 (step 3020). Agents 106 are installed using one
or more of files 210 which are authenticated, e.g., after receipt
by master agent 107 (step 3030).

Agent mstallation requires sending files, 1n packages 151,
from server 110 to master agent 107. Types of files sent 1n the
course of agent installation include a script and a set of files
collected into a single archive file. After master agent 107
receives the files, master agent 107 runs the script. File
authentication and signing helps prevent unauthorized
replacement of the files en route to master agent 107.

In a specific sample embodiment as described below, the
files are authenticated using digital signatures. FIG. 4 1llus-
trates a flow chart of steps executed 1n the sample embodi-
ment. In particular, a certificate 1s used and every file to be
sent 1n 1nstallations 1s digitally signed. In sample embodi-

US 8,646,070 Bl

7

ments, the certificate may be signed by a specified signing,
authority or may be selif-signed. The certificate may be gen-
crated (step 4010) at a separate, centralized location (e.g., at
a soltware publisher), or at the server when the management
system 1s first installed or i1n the course of enhancing an
existing system by providing file authentication and signing.
In the event the certificate 1s generated at the separate, cen-
tralized location, the private key may be retained at the cen-
tralized location and may not be installed at the server. In the
sample embodiment, digital signing relies on RSA (Rivest-
Shamir-Adleman) key methodology with default key length
of 2048 bits and an SHA1 hash method for signatures.

Scripts and collection files are signed (step 4020), e.g., at
the centralized location before the management system 1s
installed, or once when the management system 1s first
installed or 1n the course of enhancing an existing system,
such as 1n connection with installing software such as EMC
Solution Enabler. In the sample embodiment, the signatures
and files are saved at the same location, e.g., inrepository 125.

The certificate 1s provided at the master agent’s location,
e.g., by CD-ROM or by being sent securely to the master
agent on master agent startup (step 4030), and the master
agent accepts and saves the certificate (step 4040).

In the sample embodiment, which may be implemented in
a system 133 as described above and in the above referenced
co-assigned patent application, functionality 240 referred to
as a secure transaction i1s provided. The secure transaction
allows the server to send a file and the digital signature of the
file to the master agent 1n a single transaction (step 4050).

After recerving the file and its signature, the master agent
verifies the signature using the certificate (step 4060). It the
signature 1s valid (step 4070), the master agent proceeds with
the installation (step 4080). Otherwise the master agent
returns an error imndication to the server (step 4090).

Now described 1n more detail 1s certificate management
which may include certificate generation, certificate distribu-
tion, and certificate replacement. In the sample embodiment,
utility 250 1s a stand-alone Java application and 1s used for
certificate management and signing files.

Certificate Generation

With respect to certificate generation (FIG. 5), a unique
identifier (“Id”) 1s assigned for each certificate (step 5010).
Utility 250 generates the certificate (e.g., signed by a signing,
authority or self-signed) and a private key (step 5020), e.g., at
the centralized location or at the server when the management
system 1s first installed or i1n the course of enhancing an
existing system. In the sample embodiment, utility 250 1s
executed with arguments specifying certificate generation,
the required key length 1n bits (e.g., 2048), and an expiration
period.

Two files are created (step 5030): a binary file with a private
key and certificate, and a file containing the certificate
exported 1nto printable base-64 encoding format.

With respect to types of users with access rights to the files,
both files are stored 1n a directory (step 5040) that allows full
access for Administrator type, Creator owner type, and Sys-
tem type, but allows no access for Network type. The direc-
tory may be, include, or be included 1n, repository 125.

In the sample embodiment, the certificate 1s generated only
once at the centralized location, or at the server when the
management system 1s first installed or in the course of
enhancing an existing system. In the event the certificate
needs to be replaced a replacement procedure (described
below) 1s executed.

Certificate Distribution

With respect to certificate distribution (FIG. 6), 1n an

embodiment 1n which a certificate 1s not pre-installed with the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

master agent (e.g., by CD-ROM) and 1s not stored 1n a cen-
tralized location, server 110 has a unique generated certificate
that it sends securely to a master agent as discussed above.
(Other servers have their own respective unique generated
certificates.) The server attempts to validate the certificate on
its startup (step 6010), including by checking the expiration
date. In particular, the server checks that the current date 1s not
later than the expiration date and not before the certificate
expiration period (step 6020). I the validation fails, the server
disables remote install functionality and outputs a warning
message, e€.g., “Failed venifying install certificate” (step

6040).

Master agent 107 uses the certificate that 1t receives from
server 110 or that 1s pre-installed (step 6050).

When master agent 107 starts up, 1t executes a procedure
(FI1G. 7) that can lead to the master agent recerving a certifi-
cate from the server 11 needed.

Upon startup, the master agent attempts to validate 1ts
current certificate, if any (step 7010). In particular, the master
agent attempts to load 1t and verily the expiration date. When
the master agent verifies the expiration date i1t checks that the
current time 1s not later than the certificate expiration date. In
addition, the master agent does not validate 1f the current time
precedes the start of the certificate expiration period. If the
master agent fails to load the certificate or the certificate 1s
expired, the master agent erases the certificate and resets 1ts
current certificate Id (step 7030).

As noted above, master agent 107 sends an 1nitial transac-
tion to server 110 on 1ts startup (step 7040). The transaction
includes an Id field for use 1n transmitting the current certifi-
cate Id that 1s 1n the master agent’s possession.

I1 the master agent has a valid certificate (step 7050), it sets
the value of the Id field accordingly (step 7060). IT certificate
validation has failed, the master agent sets the value of the Id
field to null (step 7070). In the sample embodiment, an agent
106 always set the certificate Id value to null.

When the server recerves the 1nitial transaction from the
master agent 1t extracts the certificate Id from the nitial
transaction (step 7080). It the received certificate Id 1s the
same as the server’s certificate Id (step 7090), 1t 1s determined
to be correct (step 7100). The certificate Id 1s determined to be
incorrect otherwise (step 7110), e.g., i1 1t amounts to an empty
string or 1s different from the server’s certificate Id.

The server prepares to send the certificate 1n an acknowl-
edgement response to the master agent only 11 the certificate
Id recerved from the master agent 1s incorrect (step 7120).

Certificate management includes handling at least the fol-
lowing five scenarios:

1. The master agent starts out having no certificate. The
master agent sends an 1mitial transaction with an empty cer-
tificate Id field and receives a response with a certificate. The
master agent successiully validates the certificate and keeps
it.

2. The master agent starts having no certificate. The master
agent sends an 1itial transaction with an empty certificate Id
field and receives a response with no certificate. In this case
the master agent has no certificate and every install attempt
fails. This scenario can arise when there 1s a certificate prob-
lem on the server side. The master agent receives a valid
certificate only after the master agent 1s restarted after the
problem 1s fixed on the server.

3. The master agent starts with a certificate from a previous
execution. It sends the certificate Id in the 1nitial transaction
and gets back a new certificate. The master agent successiully
verifies the new certificate and keeps it. The master agent
erases the old certificate.

US 8,646,070 Bl

9

4. The master agent starts with a certificate from a previous
execution. It sends the certificate Id in the 1nmitial transaction
and gets back a new certificate, but fails to verily the new
certificate. The master agent does not keep the new certificate,
and erases the old certificate. In this case the master agent has
no certificate, and every install attempt sent to the master
agent fails. The master agent may recerve a valid certificate
only after the master agent 1s restarted.

5. The master agent starts with a certificate from a previous
execution. It sends the certificate Id in the 1nitial transaction
and gets back an empty certificate. The master agent does
nothing and continues using 1ts old certificate. This scenario
may arise because the master agent 1s 1n sync with the server
and there 1s no need to send a new certificate. Alternatively,
the server may be experiencing a certificate problem, in
which case the master agent will not recerve any install
requests from the server until the problem 1s fixed and the
server 1s restarted. In particular, the problem might be fixed by
correcting the server environment. In this case the master
agent continues working with restarted server. In at least
some cases the problem may be fixed by replacing the certifi-
cate on the server side and causing re-signing of the media
repository. If so, every install request coming from the
restarted server would fail, and the master agent would need
to be restarted 1n order to obtain the new certificate from the
Server.

If the server 1s to send a certificate Id to the master agent the
server reads the certificate from the certificate file.

In the sample embodiment, the server encrypts or other-
wise obluscates the entire structure above and includes the
result 1n the 1mitial response (step 7130).

The master agent reverses the obfuscation of the last token
(step 7140), parses the certificate Id and the certificate and
recreates the certificate file.

The master agent performs an 1nitial test on the certificate
file to ensure that the format 1s correct, and further tests
successiully loading i1t and verifying the expiration date (step
7160).

The master agent replaces the old certificate with the new
certificate received from the server (step 7150). The Id of the
new certificate replaces the previous certificate Id. The loca-
tion of the certificate 1s the above described directory that 1s
protected against unauthorized network users. The certificate
1s not included 1n an agent’s clone 1f a clone of the agent 1s
created.

If there 1s any problem with the recerved certificate, the
master agent erases the certificate file, resets the certificate Id,
and shuts down (step 7170). An error message (e.g., “Valida-
tion of received certificate failed”) 1s added to the master
agent’s log file. If the master agent has no certificate at all and
expects a certificate from the server in the mitial reply but
receives an empty field, the master agent shuts down and a
suitable error message (e.g., “Did not recerve expected extra
data 1n 1nitial reply™) 1s added to the master agent log file. In
the sample embodiment, the master agent does not restart
automatically, and 1s restarted by a user.

On the next startup, the master agent has no certificate Id to
send to the server, and sends an empty certificate Id 1n the
initial transaction to prompt the server to resend the certifi-
cate.

Certificate Replacement

With respect to certificate replacement, 11 needed, the fol-
lowing procedure 1s executed.

At the server, a new certificate 1s generated or replaced
using utility 250 noted above.

The new certificate replaces the old certificate 1in the secure
location at repository 125 at the server.

10

15

20

25

30

35

40

45

50

55

60

65

10

All files that are signed at the management system instal-
lation time are re-signed as described below, or new signed
files are 1installed 11 the certificate 1s generated at a centralized
location.

All master agents are restarted. Master agents receive the
new certificate on startup. If a master agent does not restart, 1t
fails with every future installation of any agent.

Signing Files

As now described 1n more detail, signing files may include
signing scripts and archive files, as described below.

In the sample embodiment, all files that are brought to a
master agent during an agent installation are digitally signed.
With respect to the types of files that are involved 1n installa-
tions, scripts and archive files are included in the installation
data (e.g., on a compact disc) and can be signed once during
the management system installation, or at a centralized loca-
tion as described above, for all future uses.

With respect to signing scripts and archive files, utility 250
signs the scripts and archive files when the management sys-
tem 1s first installed or in the course of enhancing an existing
system, or at a centralized location as described above.

Utility 250 reads the file and generates a digital signature
for each archive or script file 1n an appropnate (e.g., media
repository) folder using the server’s private key. The signa-
tures’ files are saved with the original files.

In the event of an upgrade of the media repository, when the
media repository 1s changed, the updated or new scripts and
archive files are signed or signature files installed for signa-
tures to reflect the changes. Utility 250 1s executed with an
appropriate argument for updated or new files.

Prerequisite Checking

At server startup, an installation plugin 1s loaded and
executed. The plugin checks that every script and archive file
in the media repository has a signature. If one or more of the
files has no signature, the plugin disables installation of the
agent.

A call for every script and archive file in the media reposi-
tory 1s made to a method of utility 250 and specifies the name
of the file to be signed. The method also checks whether the
file 1s s1igned using the server certificate.

Sending Signed Files

With respect to sending a signed file to amaster agent (FI1G.
8), for every file (script or archive) that the server sends to a
master agent 1t includes the signature of the file 1n the trans-
action. It uses utility 250 to get the existing signature of a
script or archive file (step 8010).

Both the file and the digital signature are sent 1n the above-
referenced secure transaction (step 8020).

The master agent checks for certificate expiration during
the 1nstallation before 1t recerves the install files (step 8030).
If the certificate 1s expired the master agent erases the certifi-
cate (step 8040), and the master agent replies with NAK to the
server’s secure transaction, and produces an error message
(e.g., “Unable to verily signature of file: certificate on host 1s
invalid or expired™). Thus every subsequent agent install fails,
and the master agent needs to be restarted by a user to recerve
the new certificate from the server.

In the sample embodiment, the secure transaction may
execute entirely over the same TCP socket (1.e., the same
handle to a commumications link over the network).

The server starts the transaction specifying the name of the
file to be sent, the file size (the length of the file on the server
disk), and the file signature to be used to validate the content
of the recerved file. In the sample embodiment, signature 1s
used 1 decryption to validate the content of the file.

An acknowledgement 1s provided from the master agent to
accept the file.

US 8,646,070 Bl

11

Upon receipt of the file name, s1ze, and signature the master
agent acknowledges by sending a header followed by a pay-
load having ACK or NAK and an error message text (in the
case of a NAK). If the Master Agent fails to parse the signa-
ture (e.g., 1n the case of an empty signature), or determines
any other parsing error on the signature, the error message
returned 1s: “INVALID SIGNATURE format for file file-
name” (filename being the name of the recerved file).

The server mitiates sending the file contents to the master
agent (step 8050) using the secure transaction.

Upon receipt of an acknowledgement (ACK) from the
master agent, the server sends the file contents 1n the payload.
In the sample embodiment, the payload 1s sent 1n 32 k por-
tions.

Upon receipt of the file contents, the master agent uses its
existing certificate to verily the signature provided by the
server (step 8060). Together with every signature validation
the master agent verifies the expiration date of the certificate.
The master agent acknowledges by sending a header followed
by a payload having ACK or NAK and an error message text
(in the case of a NAK).

If the master agent fails to validate the file signature, the
error message returned 1s “Signature verification failed for
file filename™ (filename being the name of the received file)

If the master agent finds that the certificate 1s expired, the
error message returned 1s “Certificate 1s expired. Signature
verification failed for file filename™ (filename being the name
ol the received file).

Signing Utility

In the sample embodiment, utility 250 may be used as
follows 1f an 1nstall (e.g., archive) file in the media repository
1s not signed.

Files 1n the Media Repository are signed by running utility
250 with a signing argument, and 11 a {ile 1s also specified, the
utility digitally signs the file specified. If a directory name 1s
specified, the utility signs all files 1n the directory filtered by
extensions. If recursion parameter follows the signing argu-
ment, the utility recursively signs all files 1n the directory and
its subdirectories filtered by extensions.

In at least one embodiment, some information may be
signed on the fly, 1.e., after agent installation has already
begun. For example, information that 1s created with user
interaction at an agent install time may be signed on the tly
when the 1nstall transaction 1s sent.

It 1s to be understood that the functionality described above
may be embodied solely as a software program, or as a soft-
ware program operating 1n conjunction with corresponding,
hardware. For example, embodiments may be implemented
in EMC’s Control Center (ECC) software application that
provides graphical management functionality of storage area
network resources. Embodiments may also be implemented
in computer devices that operate the Control Center (ECC)
software. Control Center software 1s manufactured by EMC
Corporation of Hopkinton, Mass., USA.

Other examples of the configurations disclosed herein
include a computer system (e.g., a host computer, worksta-
tion, etc.) configured to support the functionality disclosed
herein. In such embodiments, the computer system includes a
display, a memory system, a processor (€.g., a processing
device) and an interconnect. The mterconnect supports coms-
munications among the display, the processor and the
memory system. The memory system 1s encoded with file
authentication and signing soitware that, when executed on
the processor, produces processes supporting the embodi-
ments and functionality discussed above and disclosed else-
where herein.

10

15

20

25

30

35

40

45

50

55

60

65

12

Yet other embodiments of the present application disclosed
herein include software programs to perform the methods and
operations summarized above and disclosed 1n detail below
under the heading Detailed Description. More particularly, a
computer program product (e.g., a computer-readable
medium) including computer program logic encoded thereon
may be executed on a computer device to support agent instal-
lation server and host operations as explained herein. The
computer program logic, when executed on at least one pro-
cessor of a corresponding computing system, causes the pro-
cessor to perform the operations (e.g., the methods) indicated
herein as embodiments of the present application. Such
arrangements of the present application are typically pro-
vided as software, code and/or other data structures arranged
or encoded on a computer readable medium such as an optical
medium (e.g., CD-ROM), floppy or hard disk or other a
medium such as firmware or microcode 1n one or more ROM
or RAM or PROM chips or as an Application Specific Inte-
grated Circuit (ASIC) or as downloadable software images 1n
one or more modules, shared libraries, etc. The software or
firmware or other such configurations can be installed on a
computer device to cause one or more processors 1n the com-
puterized device to perform the techniques explained herein.
Software processes that operate 1n a collection of computer
devices, such as 1n a group of storage area network manage-
ment servers or hosts or management stations can also sup-
port embodiments of the present application.

What 1s claimed 1s:

1. In a storage area network management application that
operates using agents for management of resources, a method
for use 1n verifying authenticity in installing an agent on a
host computer system in the storage area network, the method
comprising;

identilying a file for use 1n installing the agent, wherein an

agent installer 1dentifies the agent for installation on the
host computer system, wherein the agent collects and
reports data within the storage area network, wherein the
agent installer recerves a list of installed agents and a list
ol agent versions {rom a master agent;

signing the file to produce a digital signature for the file;

providing, to a recipient, a certificate for use 1n veritying

authenticity of information, wherein the recipient
includes the master agent having the list of installed
agents and the list of agent versions, wherein the master
agent saves the certificate;

sending the file and digital signature to the recipient 1n a

single secure transaction;

at the recipient, using the certificate and the digital signa-

ture to verily the file, wherein the master agent verifies
the digital signature using the certificate; and

using the file, performing an agent installation operation to

install the agent on the host computer system, wherein
the host computer system connects to at least one data
storage system to gain access to stored data on behalf of
client computer systems requesting the stored data.

2. The method of claim 1, further comprising;

providing the certificate to the recipient from a centralized

location.

3. The method of claim 1, further comprising:

providing the certificate to the recipient from an agent

installation server.

4. The method of claim 3, further comprising:

at the agent 1nstallation server, creating an obfuscated ver-

sion of the certificate to send to the recipient.

5. The method of claim 1, wherein the file includes a script

file.

US 8,646,070 Bl

13

6. The method of claim 5, further comprising;
executing the script file in the agent installation operation.
7. The method of claim 1, wherein the file includes an

14

15. The method of claim 13, further comprising;:

providing a certificate to the recipient from an agent instal-
lation server.

16. The method of claim 13, wherein the file includes a

archive file. o
8. The method of claim 1, further comprising; 5 SCHpt e . .
L . . S 17. The method of claim 16, further comprising;:

validating the certificate at an agent 1nstallation server. . : : : : :

h hod of cla furth . executing the script file 1n the agent installation operation.
?. The method of claim 1, further comprising: 18. A computer system comprising:
validating the certificate at the recipient. a memory:
10. The method of claim 1, further comprising: a Processor:;
storing the certificate 1n a limited access location. " 4 communications interface;
11. The method of claim 1, further comprising: an nterconnection mechanism coupling the memory, the
storing the digital signature 1n a limited access location. processor and the communications.inte:rface; _
12. The method of claim 1, further comprising: wherein the memory 1s encoded with instructions that
using RSA methodology, an SHA™ hashing method, and . when executed on the processor help cause the computer

a 2048 bit key length to produce the digital signature.
13. In a storage area network management application that

system to verily authenticity 1n installing an agent by
performing the operations of:
identifying a file for use 1n installing the agent, wherein an

operates using agents for management of resources, a method
for use 1n verifying authenticity in installing an agent on a
host computer system 1n the storage area network, the method ,,
comprising:

agent installer 1dentifies the agent for installation on the
host computer system, wherein the agent collects and
reports data within the storage area network, wherein the
agent installer recerves a list of installed agents and a list

identifying a file for use 1n 1nstalling the agent, wherein an
agent installer 1dentifies the agent for installation on the
host computer system, wherein the agent collects and
reports data within the storage area network, wherein the

of agent versions from a master agent, wherein the stor-
age area network comprises a host computer system
connecting to at least one data storage system to gain

25 -]
agent installer recetves a list of installed agents and a list access 10 stored iata ol]zleclllalf' of client computer sys
ol agent versions from a master agent; _ tems requesting the stored data; =

signing the file to produce a digital signature for the file; signing the file to produce a digital signature for the file;
storing the digital signature together with the file in a sending, to a recipient, a certificate for use in verilying
limited access location: authenticity of 1information, wherein the recipient
- I ST 30 includes th t t having the list of installed
sending the file and digital signature to a recipient in a HHCALAES 1 Zn}‘:ﬂs e; dgClil Ddviig eh 151 O hms alle
single secure transaction, wherein the recipient includes agenis dall tﬂf IStri'i?ginF versions, wherein the master
the master agent having the list of installed agents and Aptllt SAVES HIE CRlIULAes. C e
the list of agent versions: sending the file and digital signature to the recipient 1n a
at the recipient, using the digital signature to verify the file, 45 single secure transaction; a]ild . _
wherein the master agent verifies the digital signature: at the recipient, using the certlﬁcate and the digital s1gna-
and ture to verily the file, wherein the master agent verifies
using the file, performing an agent installation operation to 1 gthTehdlgltal Signature usu}g 1‘[h.e Cfg[lﬁi?te'. h
install the agent on the host computer system, wherein ~19. 1he computer system oI claim 15, wherein the memory
the host computer system connects to at least one data 1s encoded with 1nstructions that when executed on the pro-

storage system to gain access to stored data on behalf of
client computer systems requesting the stored data.
14. The method of claim 13, further comprising;:
providing a certificate to the recipient from a centralized
location.

cessor help cause the computer system to verity authenticity
in 1nstalling an agent by performing the operation of provid-
ing the certificate to the recipient from an agent installation
SErver.

	Front Page
	Drawings
	Specification
	Claims

