US008645650B2
12 United States Patent (10) Patent No.: US 8.645,650 B2
Brassow 45) Date of Patent: Feb. 4, 2014
(54) AUGMENTED ADVISORY LOCK OTHER PUBLICATIONS

(75)
(73)

(%)

(21)
(22)

(65)

(1)
(52)

(58)

(56)

MECHANISM FOR TIGHTLY-COUPLED

CLUSTERS

Inventor:

Jonathan E. Brassow, Eagan, MN (US)

Assignee: Red Hat, Inc., Raleigh, NC (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 393 days.

Appl. No.: 12/697,123

Filed: Jan. 29, 2010

Prior Publication Data

US 2011/0191561 Al Aug. 4, 2011

Int. Cl.

GO6F 12/00 (2006.01)

U.S. CL

USPC ... 711/163; 711/152; 711/E12.094

Field of Classification Search

USPC

711/163, 152

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

“Distributed Lock Manager”, http://en.wikipedia.org/wiki/Distrib-

uted_ lock manager, Last modified on Jan. 22, 2010, pp. 1-4.
“GFS History”, DataCore digital services, Open Source Subversion
Repository, https://open.datacore.ch/DCwiki.open/ Wik,
1sp?page=GFS.History, (1994-2008), pp. 1-2.

“Gulm Project p.”, http://sources.redhat.com/cluster/gulm, printed
on Jan. 29, 2010, 1 pg.

Barry, Andrew, et al., “SCSI Device Memory Export Protocol
(DMEP) T10 Presentation”, Sistina Software, 1313 Fifth St. S.E.,
Suite 111, Minneapolis, MN 55414, (Sep. 2000), pp. 1-46.
Caulfield, Christine, “Programming ILocking Applications”, Copy-
right 2007, (2007), pp. 1-51.

Kronenberg, Nancy P, et al., “VAXclusters: A Closely-Coupled Dis-

tributed System”, ACM Transactions on Computer Systems, vol. 4,
No. 2, (May 1986), pp. 130-146.

* cited by examiner

Primary Examiner — Reginald Bragdon
Assistant Examiner — Aracelis Ruiz

(74) Attorney, Agent, or Firm — Lowenstein Standler LLP

(57) ABSTRACT

An mter-machine locking mechanism coordinates the access
of shared resources 1n a tightly-coupled cluster that includes
a number of processing systems. When a requesting process-

ing system acquires a lock to access aresource, a comparison
1s made between values of a global counter and a local
counter. The global counter indicates the number of times the
lock 1s acquired exclusively by any of the processing systems.
Based on the comparison result, the requesting processing

system determines whether the resource has been modified
since the last time 1t held the lock.

5,966,706 A * 10/1999 Bilintsetal.oo..L. 1/1
5,987,550 A * 11/1999 Shagamcccoe.e, 710/119
2007/0198792 Al1* 8/2007 Diceetal.coovvrennne.., 711/163 16 Claims, 5 Drawing Sheets
PROCESSING PROCESSING PROCESSING 100
SYSTEM 108 SYSTEM 108 SYSTEM 108 /|
CPU 102 1 CPU 102 . | CPU 102 |
LOCK MANAGER 107 ; LOCK MANAGER 107 || LOCK MANAGER 107
CACHE 105 J | CACHE 105 CACHE 105
i - | B |
IS4 ~
\ /
by JL _r.._/
INTERCONNECT 103 i
—— Al
< Y >
— P —

DATA STORAGE 104

US 8,645,650 B2

Sheet 1 of S

Feb. 4, 2014

U.S. Patent

00} \«

| Ol

¥0l 39VH0LS V1vd

>

GOl AHOVO

L0} HAOVNVIN MO0

¢01 NdD

80} W3LSAS
ONISS3004d

IIIII

€01 LOINNOODYILNI

G0} JHOVO

701 HAOYNYA MO0

¢01 Ndd

801 W3LSAS
ONISS300d4d

HIOVNVA MO0 1

¢0l NdD

801 W3LSAS
ONISS300dd

U.S. Patent Feb. 4, 2014 Sheet 2 of 5 US 8,645,650 B2

LOCK MANAGER 107

LOCK MANAGEMENT THROUGH
\ AUGMENTED AP

'

INTERNAL META-LOCK
STRUCTURE 220

LOCK MANAGEMENT THROUGH } LOCK MODE 253
NOMINAL API |

LOCAL COUNTER
294

LOCK INFO 255 i

GLOBAL LOCK STRUCTURE 21

PRy — AR

LOCK ID 212 .
ocomooezs | L
GLOBAL COUNTER l

214

FIG. 2

U.S. Patent Feb. 4, 2014 Sheet 3 of 5 US 8,645,650 B2

PEETITR U

Acquire a lock / 300
(SHARED or EXCLUSIVE) 31

< YES Create new lock structures and
New lock? 320 initialize global and local counters
; 330
Y NO
Acquire the inter-machine lock according
to the inter-machine locking mechanism |« —
340

'

NO
<Success? _3___5__Q> > Return error 360

YES
Local counter value = Global NO Copy global counter
counter value? 370 value to local counter
T value 385

tEs v
N Resource modified 390

Copy global counter value to 3
local counter value 3795

et

;
:
:

Resource not modified 380

FIG. 3

U.S. Patent Feb. 4, 2014 Sheet 4 of 5 US 8,645,650 B2

Release a SHARED or EXCLUSIVE 400
lock 410 ,/
Currently held SHARED? NO Increment local counter and copy
420 to global counter 440

[|

Release into MONITOR? NO Free internal meta-lock structure
430 460

YES
| v
Unlock the shared resource, but Unlock the shared resource and
maintain global lock structure 450 free global lock structure 470

S oWl

FIG. 4

U.S. Patent Feb. 4, 2014 Sheet 5 of 5 US 8,645,650 B2

500
N

PROCESSING DEVICE

— » <«———» VIDEODISPLAY |

022 | ‘

| LOCKING
MECHANISM

504 512
MAIN MEMORY
*\ < |ALPHANUMERIC
LOCKING 597 § INPFUT DEVICE |
MECHANISM {
506 514
CURSOR
STATIC MEMORY CONTROL
= DEVICE
)
D i
{0
508 - 516
NETWORK SIGNAL ‘
INTERFACE GENERATION
DEVICE DEVICE j
520
SECONDARY MEMORY
MACHINE-READABLE
NETWORK STORAGE MEDIUM 231
| B N § AN
- LOCKING 527
\. MECHANISM
528 |
I
LOCKING
MECHANISM >
MODULES
b rr———

FIG. 5

US 8,645,650 B2

1

AUGMENTED ADVISORY LOCK
MECHANISM FOR TIGHTLY-COUPLED
CLUSTERS

TECHNICAL FIELD

Embodiments of the present invention relate to a computer
system, and more specifically, to the management of shared

resources 1n a tightly-coupled cluster.

BACKGROUND

A “tightly-coupled cluster” 1s a system of multiple
machines that share common resources and are typically co-
located. When machines are sharing resources, they need to
be careful not to perform simultaneous contlicting opera-
tions. For example, when one machine 1s altering a resource,
the other machines should not be accessing 1t. Coordination
ol their operations on the resource can be done by the use of
inter-machine locks.

Conflicting operations, which these inter-machine locks
prevent, generally involve shared resources which are acces-
sible by all of the machines 1n a cluster. Access to the shared
resources (e.g., SAN-attached disks) 1s typically slower than
access to local memory (e.g., caches). A machine may save a
copy ol a shared resource 1n its local memory. However, the
local copy may become invalid 1t the resource in the shared
location 1s modified by other machines. The local copy can be
accessed Ifreely while the resource 1s protected by an inter-
machine lock; but if the lock 1s released, the resource must be
validated upon the next lock acquisition. This validation usu-
ally comes from re-reading the shared resource, which 1s a
performance-negative operation.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s 1llustrated by way of example, and
not by way of limitation, and can be more fully understood
with reference to the following detailed description when
considered 1n connection with the figures 1n which:

FI1G. 11sablock diagram of a tightly-coupled cluster which
implements embodiments of the invention.

FIG. 2 15 a diagram of one embodiment of a lock manager
that implements an augmented API for managing locks.

FI1G. 3 1s a tlow diagram 1illustrating one embodiment of a
method for lock acquisition.

FI1G. 4 1s a flow diagram 1illustrating one embodiment of a
method for lock release.

FIG. 5 illustrates a diagrammatic representation of a
machine 1n the exemplary form of a computer system.

DETAILED DESCRIPTION

Described herein 1s a method and system for augmenting,
an 1mter-machine locking mechanism to include knowledge
about whether a shared resource has changed. One purpose of
the augmentation 1s to facilitate the elimination of unneces-
sary cache validation work. Definitive knowledge of whether
or not another system has altered the shared resource allows a
caller machine to skip the process of cache validation. This
knowledge can be derived from the past history of the lock
associated with the shared resource; 1n particular, whether the
lock has been acquired by another machine for the purpose of
moditying the shared resource.

Embodiments of the present mnvention can be built upon
any of a number of known inter-machine locking mechanisms
that can be either distributed or centralized. The method of

10

15

20

25

30

35

40

45

50

55

60

65

2

augmentation will necessarily vary based on the chosen inter-
machine locking. In one embodiment, the act of tracking
whether machines have modified a resource 1s to monitor
whether the lock has been acquired exclusively (signaling the
intent of an acquirer to modily the resource). The exclusive
acquisition of the lock can be monitored by way of counters.
A distributed locking manager (DLM) can be utilized in one
embodiment as the inter-machine locking mechamism. The
DLM provides a range of shared and exclusive locking
modes, as well as a way to utilize a small amount of inter-
machine shared memory. The small amount of inter-machine
shared memory can be used to store a global counter. The
global counter 1s incremented before an exclusive lock 1s
released. This global counter 1s used to compare against a
local, non-shared counter that 1s not updated when another
machine acquires an exclusive lock, but 1s updated when the
local machine acquires either an exclusive or shared lock
(signaling the intent of the local machine to either modify or
read the resource). The comparison result of the two counters
indicates whether the resource has been modified since the
last time the local machine held the lock.

With the knowledge of the state of the resource, a machine,
upon acquiring a lock, can determine whether 1t can read from
a local (e.g., cached) copy of the resource without accessing
a shared location (e.g., SAN-attached disks) for the resource.
This 1s an improvement over the otherwise necessary steps of
reading the shared location 1n order to validate the local copy,
reprocessing the results to account for any potential changes,
making modifications locally, and then writing the resource to
the shared location. As a result, the performance of data
access can be accelerated.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown 1n block diagram form, rather than in detail, 1n
order to avoid obscuring the present invention.

FIG. 1 illustrates an exemplary cluster 100 which imple-
ments embodiments of the invention. In one embodiment, the
cluster 100 1s a tightly-coupled cluster that includes multiple
processing systems 108 (also referred to as “machines™)
coupled to shared data storage 104 via an interconnect 103.
The data storage 104 may include magnetic or optical storage
based disks, tapes or hard drives, etc. The interconnect 103
provides access to the data storage 104 for the processing
systems 108. The data storage 104 stores shared resources.
The shared resources may include a file in a file system, a
record 1n a database, a block of data, or anything else that an
application designer chooses.

Each processing system 108 may include one or more
central processing units (CPUs) 102 and a local (non-shared)
memory, such as a cache 1035. Each processing system 108
also includes a lock manager 107, which 1s responsible for
maintaining the inter-machine locks. Although not shown 1n
FIG. 1, the processing systems 108 may be connected to
external networked resources via a network, which may be a
public network (e.g., the Internet) or a private network (e.g.,
an Ethernet or a local area Network (LAN)).

To ensure data coherency, each processing system 108
obtains a lock when reading from or writing to a shared
resource. The lock 1s released when the read/write operation
1s completed. Each lock 1s associated with a shared resource.
In one embodiment, the locks may be distributed across the
processing systems 108. When a processing system 108 (re-
terred to as a requesting machine) requests a lock for a shared
resource, 1ts lock manager 107 1dentifies or calculates the
location of the lock. For example, with a distributed inter-

US 8,645,650 B2

3

machine locking mechanism, the lock manager 107 may use
a lock 1dentifier to calculate a value, which can be mapped to
a processing system 108 (referred to as a lock managing
machine) that manages and stores the lock. The lock manag-
ing machine may store the lock 1n a data structure 1n 1ts local
memory. With a centralized inter-machine locking mecha-
nism, a designated machine 1n the cluster may serve as the
lock managing machine for all of the machines 1n the cluster.

In one embodiment, after the lock location 1s determined,
the requesting machine sends a lock request to the lock man-
aging machine to acquire the lock. In response, the lock
managing machine returns an indication of success (lock
acquired) or failure (lock acquisition failed) to the requesting
machine. If the lock 1s acquired successtully, the lock-man-
aging machine also returns a small portion of shared memory
associated with the lock.

According to embodiments of the present invention, a
shared, global counter 1s stored in the shared memory asso-
ciated with the locks provided by the inter-machine locking
mechanism (for example, the DLM). Embodiments of the
invention use this global counter to keep track of the number
of times 1ts associated lock 1s acquired exclusively by any
machine in the cluster. Embodiments of the invention also
maintain a non-shared, local copy of the counter value asso-
ciated with the lock. Through an augmented Application Pro-
gramming Interface (API), a requesting machine (which
attempts to access shared resources) calls functions to com-
pare the local counter value with the global counter value, and
the returned value of the function 1ndicates to the requesting,
machine whether another machine has acquired the lock
exclusively since 1t last held the lock. The actions of incre-
menting and comparing the counters are encapsulated 1n the
tfunctions. If the lock has not been acquired exclusively (that
15, the local counter value 1s the same as the current value of
the global counter), 1t means the shared resource associated
with the lock has not been modified by another machine.
Therefore, the machine can safely use 1ts cached copy of the
shared resource. If the lock has been acquired exclusively
(that 1s, the local counter value 1s different from the current
value of the global counter), 1t means the shared resource
associated with the lock has been modified by another
machine. Therefore, the machine cannot safely use 1ts cached
copy of the shared resource.

FI1G. 2 illustrates an embodiment of the lock manager 107
in each of the processing systems 108 that uses an inter-
machine locking mechanism to manage locks. The lock man-
ager 107 maintains an internal meta-lock structure 220. In an
embodiment where the DLM 1s used as the inter-machine
locking mechanism, the DLM provides a portion of the
shared memory which can be used to store a global lock
structure 210.

The global lock structure 210 1s used by all of the machines
in a cluster through a nominal API or an augmented API. A
machine that manages locks through the nominal API does
not recerve the benefit of advisory information regarding the
current state of a shared resource. Alternatively, a machine
may manage locks through the augmented API according to
embodiments of the present invention. The augmented API
utilizes the information stored 1n the internal meta-lock struc-
ture 220 as well as the information stored in the global lock
structure 210 to provide advisory information regarding the
current state of a shared resource (1.e., whether the shared
resource has been modified since the machine last held the
lock). In the embodiment of FIG. 2, the global lock structure
210 stores the information of a number of locks. Each lock 1s
identified by a lock ID 212 and 1s associated with a lock mode

10

15

20

25

30

35

40

45

50

55

60

65

4

213. A portion of shared memory 1s used by embodiments of
the invention as a global counter 214.

Embodiments of the present invention provide a number of
lock modes to derive advisory information regarding whether
a shared resource has been modified. A machine at a given
time can hold a lock 1n the EXCLUSIVE (when intending to
alter the resource), SHARED (when intending to read the
resource), UNLOCK (when access to the resource 1s fin-
ished), or MONITOR (when access to the resource 1s finished
but subsequent access to the resource 1s expected) mode. The

lock mode 213 1n the global lock structure 210 indicates
whether 1ts associated lock 1s being held in the EXCLUSIVE,

SHARED, or UNLOCK mode. The MONITOR mode 1s
tracked by the mternal meta-lock structure 220 instead of the
global lock structure 210. In one embodiment, the lock mode
213 may include machine-specific information. For example,
the lock mode 213 may indicate that the lock 1s concurrently
held by a first machine and a second machine 1n the SHARED
mode. The global counter 214 indicates the number of times
the lock has been acquired exclusively by any of the process-
ing systems 108.

The mternal meta-lock structure 220, which is used by the
augmented API, stores a lock mode 253, a local counter 254
and other lock information 2335. The internal meta-lock struc-
ture 220 1s non-shared and 1s used by the local machine on
which the structure 220 resides. The lock mode 253 indicates
the mode of the lock (EXCLUSIVE, SHARED, MONITOR,
or UNLOCK) held by the local machine.

The local counter 254 and the global counter 214 operate 1n
cooperation of the lock modes to derive advisory information
regarding whether a shared resource has been modified. In
one embodiment, a lock user (e.g., a machine 1n a cluster) can
acquire an EXCLUSIVE lock (i.e., a lock 1 the EXCLU-

SIVE mode) when imtending to alter the resource, or a
SHARED lock (i.e., a lock 1n the SHARED mode) when

intending to read the resource. The lock user can release the
lock by placing the lock in the UNLOCK mode when 1t
finishes with the resource. The lock user can change either an
EXCLUSIVE lock or a SHARED lock to MONITOR. A lock
held 1in the MONITOR mode by one machine does not con-
flict with other machines that wish to acquire the same lock.
However, when the lock 1s held 1n the MONITOR mode by a
machine and the same machine subsequently acquires the
lock 1n the EXCLUSIVE or SHARED modes, the returned
value for the lock acquisition can be 1) an error code (e.g.,
when a connection problem occurs), 2) success, indicating
some other machine or machines have grabbed the lock
exclusively while the lock 1s held 1n the MONITOR mode, or
3) success, mndicating no one else has acquired the lock exclu-
stvely while the lock was held 1n the MONITOR mode. In one
embodiment, the lock structures 210 and 220 can be hidden
from the lock user. Thus, the lock users do not see the struc-
tures 210 and 220 and do not know about the counters 214 and
254. The only thing that the lock users receive from the
functions of the augmented API are a return value indicating
error, success (resource modified), and success (resource
unmodified). Abstracting the details away from the lock users
greatly simplifies the use of the augmented API.

FIGS. 3 and 4 illustrate the functions of the augmented
API. FIG. 3 1s a tlow diagram 1illustrating one embodiment of
a method 300 for acquiring a lock. The method 300 may be
performed by computer system 500 of FIG. 5 that may com-
prise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), soltware (e.g., instructions run
on a processing device), or a combination thereof. In one
embodiment, the method 300 1s performed by the lock man-

agers 107 of FIG. 1 and FIG. 2.

US 8,645,650 B2

S

Referring to FIG. 3, in one embodiment, the method 300
begins when a requesting machine (e.g., one of the processing
systems 108) intends to access a shared resource. The lock

manager 107 of the requesting machine acquires a SHARED
or EXCLUSIVE lock associated with the resource through

the augmented API of FIG. 2 (block 310). For the purpose of
this example, 1t 1s assumed that another machine, referred to
as a lock managing machine, 1s responsible for maintaining
the global lock structure 210 for this lock. If the lock does not
exist (1.e., anew lock) (block 320), anew global lock structure
210 and a new iternal meta-lock structure 220 are created
and the corresponding global counter 214 and the local
counter 254 are imtialized (block 330). The requesting
machine then proceeds to acquire an inter-machine lock
according to the underlying inter-machine locking mecha-
nism (which can be the DLM or other distributed or central-
1zed locking mechanisms) (block 340). It the lock 1s not new
(block 320), which means the corresponding structures 210
and 220 already exist, the requesting machine proceeds
directly to acquire the inter-machine lock according to the
underlying inter-machine locking mechanism (block 340).

At block 340, the requesting machine receives an indica-
tion of whether the lock 1s successtully acquired (block 350).
If the lock cannot be successiully acquired, an error is
returned to the requesting machine (block 360). If the lock 1s
successiully acquired, the requesting machine recetves an
indication of whether or not the shared resource has been
modified. In one embodiment, the indication 1s a result of
comparing the values of the global counter 214 and the local
counter 254 (block 370). After the comparison 1s performed,
the value of the global counter 214 1s copied to the local
counter 254 regardless of the outcome of the comparison
(blocks 375 and 385). A global counter value that 1s equal to
the local counter value indicates that the shared resource has
not been modified (block 380). Otherwise, the shared
resource has been modified (block 390).

FI1G. 4 15 a tlow diagram illustrating one embodiment of a
method 400 for releasing a lock. The method 400 may be
performed by computer system 500 of FIG. 5 that may com-
prise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (e.g., instructions run
on a processing device), or a combination thereof. In one
embodiment, the method 400 1s performed by the lock man-
agers 107 of FIG. 1 and FIG. 2. Referring to FIG. 4, 1n one
embodiment, the method 400 begins when a requesting
machine requests to release a SHARED or EXCLUSIVE lock
(block 410). It the lock 1s currently held by the requesting
machine 1 the SHARED mode (block 420), the requesting,
machine proceeds to release the lock. If the lock 1s currently
held by the requesting machine in the EXCLUSIVE mode
(block 420), the requesting machine, through the augmented
locking mechanism, increments the local counter 254, copies
the local counter value into the global counter 214 (block
440), and subsequently releases the lock. The requesting
machine may release the lock mto the UNLOCK mode (e.g.,
when it finishes the use of the shared resource) or the MONI-
TOR mode (e.g., when subsequent usage 1s expected). When
the lock s released into the MONITOR mode (block 430), the
shared resource 1s unlocked for use by other machines and the

global lock structure 210 for the lock 1s maintained for access
by other machines (block 450). When the lock 1s not released

into the MONITOR mode (1.e., mnto the UNLOCK mode)
(block 430), the requesting machine frees the internal meta-
lock structure 220 for the lock (block 460). Additionally, the
shared resource 1s unlocked for use by other machines and the
shared memory storing the global lock structure 210 for the

lock 1s freed for other uses (block 470).

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In an alternative embodiment, the information about
whether a resource has changed can be derived with a call-
back mechanism implemented by a lock manager. In this
alternative embodiment, a lock released into the MONITOR
mode by a first machine would have 1ts lock mode 213
recorded as SHARED in the global lock structure 210. When
a second machine requests the lock i the EXCLUSIVE
mode, the second machine 1ssues a ‘callback’ to all the other
machines to release their locks. Upon receiving the callback,
the first machine unlocks the SHARED inter-machine lock,
and sets a flag indicating that the resource has been modified
(because the second machine 1s acquiring the lock exclu-
stvely). Subsequently, when the first machine wishes to
acquire the lock again, 1t does so with an indication of the flag
that the resource has been changed. If, between the time the
first machine releases the lock and re-acquires the lock, no
other machine had come along requesting an EXCLUSIVE
lock, the °‘callback’ would have never occurred and the
resource 15 known to be unaltered.

Embodiments of the present invention provide a simple-
to-use, cluster-wide, locking mechanism that can generally
be applicable to a wide range of products. Engineers and
programmers can make their products cluster-aware without
the amount of effort normally required. The augmented lock-
ing mechanism has broad usage and promotes robustness in a
tightly-coupled cluster.

A use case for the augmented locking mechanism 1s pro-
vided below. In one scenario, the information about whether
a shared resource has been modified can be used to improve
the performance of snapshot processing. In this context, a
snapshot 1s a point-in-time copy of a storage device (1.¢., the
Origin). It functions by storing old portions of data from the
Origin 1n a separate arca—the Copy On Write (COW)
device—belore overwriting them with new data. Subsequent
alterations to the same location on the Origin do not require
the COW device to be updated, since a copy of the old data
from the point-in-time of the snapshot 1s already recorded on
the COW device. Old versions of the data accumulate 1n the
COW device as new locations in the Origin are changed.
When multiple processing systems are sharing a snapshotted
storage device, they are all responsible for updating the COW
device when the Origin changes. Their efforts must be coor-
dinated, or conflicting changes will be made to the COW
device——causing corruption of the information.

When a machine wishes to read from a snapshot—the
point-in-time copy ol a storage device (Origin)—it first
checks the COW device to see 11 the requested data has been
altered and must be retrieved from the COW device. If the
data has been changed, the old copy 1s retrieved from the
COW device; otherwise, it 1s simply read from the Origin. It
would be an expensive process 11 the COW needed to be read
every time to check whether or not a particular area of the
Origin had changed, so this information i1s cached for quick
look-ups. A single machine operating a snapshot can be con-
fident that 1ts cache 1s always correct, but 1n a cluster where
the storage 1s shared, another machine may add new entries to
the COW device and 1nvalidate the cache. If this situation 1s
not handled, a machine requesting snapshot data may incor-
rectly retrieve the data from the Origin—believing the data to
be unaltered—even though another machine has altered the
data and made the appropriate adjustments to the COW
device. The situation 1s handled by acquiring a SHARED lock
on the COW device—preventing changes to the COW device
while reading 1t—and re-reading the COW device for any
changes that may have occurred. Again, the re-reading of the
COW device 1s an expensive operation. Embodiments of the
invention provide a way of avoiding this expensive operation.

US 8,645,650 B2

7

When acquiring a lock through the augmented API, the
machine will know whether or not the lock protecting the
resource was acquired exclusively (1.e., in the EXCLUSIVE
mode). If 1t has been acquired exclusively, the expensive
operation of re-reading the COW 1s necessary, but 11 ithas not,
the operation can be avoided and the cache 1s known to be
valid. This benefit becomes more pronounced as the COW
device ages (fills with old copies of data from the Origin),
since fewer and fewer alterations will be required and there-
fore a reduced frequency of machines requiring an EXCLU-
SIVE lock.

FIG. 5 illustrates a diagrammatic representation of a
machine 1n the exemplary form of a computer system 500
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a Local Area Network (LAN), an intranet, an
extranet, or the Internet. The machine may operate 1n the
capacity ol a server or a client machine 1n a client-server
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be a
personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a server, a network router, switch or bridge, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specily actions to be taken by that machine.
Further, while only a single machine 1s illustrated, the term
“machine” shall also be taken to include any collection of
machines (e.g., computers) that individually or jointly
execute a set (or multiple sets) of instructions to perform any
one or more of the methodologies discussed herein.

The exemplary computer system 300 includes a processing,
device 502, a main memory 504 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory

(DRAM) such as synchronous DRAM (SDRAM) or Rambus
DRAM (RDRAM), etc.), a static memory 506 (e.g., flash
memory, static random access memory (SRAM), etc.), and a
secondary memory 518 (e.g., a data storage device), which
communicate with each other via a bus 530.

The processing device 502 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device 502 may be a complex instruction set computing
(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. The processing device 502 may also be one or more
special-purpose processing devices such as an application
specific integrated circuit (ASIC), a field programmable gate
array (FPGA), a digital signal processor (DSP), network pro-
cessor, or the like. The processing device 502 1s configured to
execute the locking mechanism 522 for performing the opera-
tions and steps discussed herein.

The computer system 500 may further include a network
interface device 508. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 316 (e.g., a
speaker).

The secondary memory 318 may include a machine-read-
able storage medium (or, more specifically, a computer-read-
able storage medium) 531 on which 1s stored one or more sets
of mstructions (e.g., a locking mechamism 522) embodying
any one or more of the methodologies or functions described

10

15

20

25

30

35

40

45

50

55

60

65

8

herein (e.g., the lock managers 107 of FIGS. 1 and 2). The
locking mechanism 3522 may also reside, completely or at
least partially, within the main memory 504 and/or within the
processing device 502 during execution thereol by the com-
puter system 3500; the main memory 504 and the processing
device 3502 also constituting machine-readable storage
media. The locking mechanism 522 may further be transmit-
ted or recetved over a network 520 via the network interface
device 508.

The machine-readable storage medium 331 may also be
used to store the locking mechanism 522 persistently. While
the machine-readable storage medium 531 1s shown 1n an
exemplary embodiment to be a single medium, the term
“machine-readable storage medium™ should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable storage medium™ shall also be taken to
include any medium that 1s capable of storing or encoding a
set of 1nstructions for execution by the machine that cause the
machine to perform any one or more of the methodologies of
the present mvention. The term “machine-readable storage
medium™ shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

The computer system 500 may additionally mclude lock-
ing mechanism modules 528 for implementing the function-
alities of the lock managers 107 of FIGS. 1 and 2. The mod-
ules 528, components and other features described herein (for
example in relation to FI1G. 1) can be implemented as discrete
hardware components or integrated in the functionality of
hardware components such as ASICS, FPGAs, DSPs or simi-
lar devices. In addition, the modules 528 can be implemented
as firmware or functional circuitry within hardware devices.
Further, the modules 528 can be implemented 1n any combi-
nation of hardware devices and software components.

Some portions of the detailed descriptions which follow
are presented 1n terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
cifectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though notnecessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transiferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons ol common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it 1s appreciated that
throughout the description, discussions utilizing terms such
as “acquiring”’, “incrementing’, “comparing’, “determin-
ing”’, or the like, refer to the action and processes of a com-
puter system, or similar electronic computing device, that
mampulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or reg-
isters or other such information storage, transmaission or dis-
play devices.

US 8,645,650 B2

9

Embodiments of the present mvention also relates to an
apparatus for performing the operations herein. This appara-
tus may be specially constructed for the required purposes, or
it may comprise a general purpose computer system selec-
tively programmed by a computer program stored in the com-
puter system. Such a computer program may be stored 1n a
computer readable storage medium, such as, but not limited
to, any type of disk including tloppy disks, optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic disk storage media, optical storage
media, flash memory devices, other type of machine-acces-
sible storage media, or any type of media suitable for storing
clectronic 1nstructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or 1t may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear as set forth 1n the descrip-
tion below. In addition, the present invention 1s not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the invention as
described herein.

It 1s to be understood that the above description 1s intended
to be 1illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill in the art upon reading
and understanding the above description. Although the
present invention has been described with reference to spe-
cific exemplary embodiments, 1t will be recognized that the
invention 1s not limited to the embodiments described, but can
be practiced with modification and alteration within the spirit
and scope of the appended claims. Accordingly, the specifi-
cation and drawings are to be regarded 1n an illustrative sense
rather than a restrictive sense. The scope of the mvention
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What 1s claimed 1s:

1. A method comprising:

identifying a lock location of a resource shared by a cluster

of processing devices;
requesting, by a processing device, a lock from a lock
manager of the lock location associated with the
resource shared by a cluster of processing devices;

comparing a value of a global counter receirved from the
lock manager with a value of a local counter;

determining whether the resource has been modified since
a last time the lock was held by the requesting processing
device based on whether there 1s a difference between
the value of the global counter and the value of the local
counter;

in response to a determination that the resource has not

been modified, using a locally cached version of the
resource; and

in response to a determination that the lock 1s released nto

a monitor mode, unlocking access to the resource and
maintaining the value of the global counter and the value
of the local counter.

2. The method of claim 1, wherein the lock has a lock mode
selected from exclusive, shared, monitor, or unlock.

3. The method of claim 1, further comprising incrementing,
the global counter each time when the lock 1s acquired by one
of the processing devices 1n an exclusive mode.

10

15

20

25

30

35

40

45

50

55

60

65

10

4. The method of claim 1, further comprising maintaining,
a meta-lock structure locally at the requesting processing
device to store the local counter.
5. The method of claim 1, further comprising maintaining,
a global lock structure to store the global counter used by all
of the processing devices.
6. The method of claim 1, further comprising copying a
value of the local counter to a value of the global counter
when the requesting processing device releases the lock.
7. The method of claim 1, further comprising determining,
that the resource has not been modified when the value of the
global counter and the value of the local counter are the same.
8. A system comprising:
a plurality of processing devices, each processing device of
the plurality of processing devices comprising a lock
manager that maintains a local counter;
a resource shared by the plurality ol processing devices and
assoclated with a lock;
shared memory to store a global counter associated with
the lock, the global counter accessible by each process-
ing device of the plurality of the processing devices;
wherein the lock manager of one of the plurality of pro-
cessing devices 1s to:
identily a lock location of the resource shared by the
plurality of processing devices;

request the lock from a lock manager ot the lock location
assoclated with the resource;

increment a value of the global counter upon exclusively
acquiring the lock;

compare, with the local counter, the value of the global
counter recerved from the lock manager with a value
ol the local counter to determine whether the resource
has been modified since a last time a requesting pro-
cessing device held the lock;

in response to a determination that the resource has not
been modified, use a locally cached version of the
resource; and

in response to a determination that the lock 1s released
into a monitor mode, unlock access to the resource
and maintain the value of the global counter and the
value of the local counter.

9. The system of claim 8, wherein the lock has a lock mode
selected from exclusive, shared, monitor, or unlock.

10. The system of claim 8, wherein the lock manager of a
requesting processing device of the plurality of processing
devices copies the value of the local counter to the value of the
global counter when the requesting processing device
releases the lock.

11. The system of claim 8, wherein the lock manager of a
requesting processing device of the plurality of processing
devices uses a locally cached version of the resource in
response to a determination that values of the global counter
and the local counter are the same.

12. A non-transitory computer readable storage medium
including 1nstructions that, when executed by a processing
device, cause the processing device to perform operations
comprising:

identifying a lock location of a resource shared by a plu-
rality of processing devices;

releasing, by a requesting processing device, a lock mnto a
monitor mode, the lock associated with the resource
shared by the plurality of processing devices, the moni-
tor mode indicating access to the resource 1s finished and
subsequent access to the resource 1s expected;

acquiring the lock in etther an exclusive mode or a shared
mode by the requesting processing device after releasing
the lock, the exclusive mode and the shared mode 1ndi-

US 8,645,650 B2

11

cating an intent of the requesting processing device to
modily and read the resource, respectively;

receiving, when the lock 1s acquired, an indication regard-
ing whether the resource has been modified since a last
time the lock was released into the monitor mode;

comparing, by the requesting processing device, a value of
a global counter with a value of a local counter;

determining, by the requesting processing device, whether
the resource has been modified since the last time the
lock was held by the requesting processing device based
on whether there 1s a difference between the value of the
global counter and the value of the local counter;

unlocking access to the resource; and

in response to a determination that the lock 1s released nto
the monitor mode, unlocking access to the resource and
maintaining the value of the global counter and the value
of the local counter.

13. The computer readable storage medium of claim 12,

where the operations further comprise:

5

10

15

12

maintaining the lock 1n the shared mode 1n a global lock
structure; and
recerving a callback from another processing device when
the other processing device requests the lock in the
exclusive mode.
14. The computer readable storage medium of claim 13,
where the operations further comprise updating a flag locally
at the requesting processing device machine when receiving

the callback.

15. The computer readable storage medium of claim 12,
further comprising incrementing the global counter each time
the lock 1s acquired by one of the plurality of processing
devices 1n an exclusive mode.

16. The computer readable storage medium of claim 12,
turther comprising:

maintaining a meta-lock structure locally at the requesting

processing device to store the local counter; and
maintaining a global lock structure to store the global
counter used by the plurality of processing devices.

¥ ¥ * ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

