12 United States Patent

US008640194B2

(10) Patent No.: US 8.640,194 B2

Inoue et al. 45) Date of Patent: Jan. 28, 2014
(54) INFORMATION COMMUNICATION DEVICE (56) References Cited
AND PROGRAM EXECUTION .S, PATENT DOCUMENTS
ENVIRONMENT CONTROL METHOD T
4,245,305 A * 1/1981 Gecheleetal. 710/25
(75) Inventors: Hiroaki Inoue, lTokyo (JP); Junji Sakai, 4,658,349 A * 4/1987 Tabata et al. 710/26
Tokyo (JP); Tsuyoshi Abe, Tokyo (JP); 4,866,664 A * 9/1989 Burkhardtetal. ... 709/227
Masato Edahiro, Tokyo (JP) 5,146,596 A * 9/1992 Whittakeretal. 710/116
5,689,714 A * 11/1997 Moyercccovvvvrvrvinnns, 713/310
: _ 6,199,181 Bl 3/2001 Reshef et al.
(73) Assignee: NEC Corporation, Tokyo (JP) 6,279,066 B1* 82001 Velingker 710/240
6,321,337 B1 11/2001 Reshef et al.
(*) Notice: Subject to any disclaimer, the term of this 6,507,904 Bl 1/2003 Ellison et al.
patent is extended or adjusted under 35 6,549,961 Bi: 4/2003 Klothcoooviivinn, 710/36
U.S.C. 154(b) by 1450 days. 6,795,901 Bl 9/2004 Florek etal. 711/152
(Continued)
(21) Appl. No.: 11/660,967
FOREIGN PATENT DOCUMENTS
(22) PCT Filed: Aug. 15, 2005 N (188448 A {2003
GB 2318894 A * 5/1998
(86) PCT No.: PCT/JP2005/014903 _
§ 371 ()1 (Continued)
C 3
(2), (4) Date: Feb. 23, 2007 OTHER PUBLICAHIONS
Lucci, Stephen, Gertner, Izidor, “Reflective-Memory Multiproces-
(87) PCT Pub. No.: WQ02006/022161 sor”’, IEEE, 1995 *
PCT Pub. Date: Mar. 2, 2006
oD e R Primary Examiner — Mohammad L. Rahman
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Foley & Lardner LLP
US 2008/0005794 Al Jan. 3, 2008 (57) ABSTRACT
: Y . A device and a method are provided for increasing processing
(30) Foreign Application Priority Data speed and for ensuring system security when an application
or adriveris added. The device includes a first CPU group that
Aug. 25,2004 (IP) oo, 2004-245731 executes software composed of basic processing and an OS:
(51) Int.Cl a second CPU group that executes software composed of
H0:¢ 7 2 006 (2006.01) additional processing and OS corresponding to the additional
' processing, inter-processor communication means used for
(52) US.CL communication between the first CPU and the second CPU,
USPC ... 726/2;726/4; 726/17; 726/27; 713/182 and access control means that controls access made by the
(58) Field of Classification Search second CPU to a memory and/or an input/output device.
USPC e, 713/3775;°726/26, 2

See application file for complete search history.

105; SECURITY POLICY BB

100A; BAS|C DOMAIN

42 Claims, 28 Drawing Sheets

100B; TRUSTED EXTENSION DOWAIN | 100C; UNTRUSTED EXTENSION DOMAIN

110; BASIC SOFTWARE ENVIRONMENT _},04A

o LT T
a

. BAS I NATIVE CODE NATIVE CODE
leaTion | i [POMLOM wANAGENENT DOWNLOAD EXECUT ION
ADD) T IO FUNCTION
‘ 113
112] : : NG I
. : FUNCTICN
: _ ; | 1BRARY
................. I.- t01A 1218
l oS

{03’

102A°
VIRTU VIRTUAL
DEDIGATED EXTERNAL ¢ IR 1
FILE_SYSTEM DEV I CE EXTERNAL DEVICE 1028

NAT|VE CODE -104C
DOWNLOAD EXECUT | ON
FUNCT ION

I 120C

S|

101B
1210
/
CERTIF 1CATE T 102C
A
EXTERNAL DEVICE |

00
VIRTUAL CPU | 200A VIRTUAL CPU |, 2008 VIRTUAL CPU c00C
—— 210A - — 2108

210C
VIRTUAL MACHINE MONITOR T VIRTUAL WAGHINE HONITOR VIRTUAL _P&F?HINEAP\-/

US 8,640,194 B2
Page 2

(56)

6,820,063
7,076,652
7,155,550
7,590,864
7,725,558
7,958,351
2002/0055979
2002/0099952
2002/0165896
2003/0126381

References Cited

U.S. PATENT DOCUMENTS

Bl *
B2 *
B2

B2 *
B2 *
B2

Al*
Al

Al*
Al

S

11/2004
7/2006
12/2006
9/2009
5/2010
6/2011
5/2002
7/2002
11/2002
7/2003

England etal. 705/54
Ginteretal.ce..... 713/153
Katoh et al.

Khanetal. 713/189
Dickensoncoovevinnin, 700/215
Lutht ..o, 713/166
Kochetal.c..c.ceon. 700/212
[Lambert et al.

Kim oo, 709/102
VO i, 711/152

2003/0204682 AlL* 10/2003 Uenocoovevvvvvvneennennn, 711/147
2005/0044375 Al* 2/2005 Paateroetal. ... 713/176
2006/0031940 Al* 2/2006 Rozmanetal. 726/27

FOREIGN PATENT DOCUMENTS

P 56-072754

P 0-332804

JP 2002-533791 A
JP 2002-351854 A
P 2002-542537 A
JP 2004-500066 A
WO WO 02/14987 A2

* cited by examiner

6/1981
12/1994
10/2002
12/2002
12/2002

1/2004

2/2002

US 8,640,194 B2

Sheet 1 of 28

Jan. 28, 2014

U.S. Patent

—— IN1S54004d

41 wNo1Llaay

SNV

NO! LVO I NNINWOO
40SSI00Ud-UIN|

SNVA
NO11YOINNNKOO

H0SSI00Ud-HIN|
10) 7

0S
_|||I
] 1dO
——————————= VOI
[]
_
__ ON1SS3004d _
11 olIsvdg |
|||||||| :
| DI

US 8,640,194 B2

012t
: NdO

- S NdD ONTANIS

. 08 |7
m 0ZLt

OLLw

U.S. Patent

VIV

m v |

1 _04INOD_ | ¢ t] _04INDD |

s LAAISOIOXA L : L. & [3AISHIOXT U224
S BEETRE A

2| NOILYD | : : NO | 1VO

Tl -INOH0D 1) 74, NdO

W U Nd0 H0d YAy
zﬁ% h@% zmzﬁ%mo@ NOT1¥9 INWNOD UZE Uiz N1dO ONIAI303Y
>m_o_>_m_s_om_m_<_._w_m¢

—— NdO
H g, NdD ONIAIZOR
2 JLIND ONIGTOH] s linn sniooH
] SIS f:mem ol oIS
1d3EN] m 1 AN CN_..V D n_o

NOILVOIONI

i LadluddiNLL : Ju)) ¢ 0# NdO ONIAIFOM

Ndd 40
JOYINOD
1IN UlP

J01Ad0 '104INOD LdMPAEINI-LY

o1 volan
. hmsmzuhz_

ond B i
1dMREINI Olp

¢ Il

US 8,640,194 B2

Sheet 3 of 28

Jan. 28, 2014

U.S. Patent

g0,

M NdO INIAN3S

VY

d1NOJ
JA I SNTT0X

BECLRE
NOILYD |
— | NBON

Oft Nd9 404 vy
> |INOLLYOINNAOS OZp

- ferane L prao:

E____

L Ll

| J04INO)
: | 3AISNDYE |

v o) @

m AN4N0

| NOILYD |
1L - NDABOD _

OosooQOoOonopo@Aan

cu J 40 qmmq

LYO WNHROD Udw

AGCHi (DdvHS

rzo:g_%i :
AR LN
O N H04.

49 1A40 _1041NOD
LdMRAINT Ol

zo_hdo_oz_
m:mmmhz_

(dd xDm
mo_pm 0H1INOD

_ ndo

[1gJ
U NdD ONIAIFORY

g J
NdD DNIAIZORY

1dMHE4IN] Yip

1430 TOULNO

Lallde31N] - L

0t NdO ONIAIFO

o Jla

US 8,640,194 B2

Sheet 4 of 28

Jan. 28, 2014

U.S. Patent

dol

(1dO

SN 415
ONISSH004d

- WNOILIAAY igoz

v1v(
NOISS IWddd SS300V

>
i
ATNO VR (R NdD
| _
SNV3H _ \\
NOISS I3d SSIOV Sna_ 301 VOl
. DNISSII0N
Ve -~ YNOILIQQV ¢ w0z
||||||||||||||||||| J
SNYIH TOMINGD SSI00V ‘0€
vy Ol

US 8,640,194 B2

.v,..__.._...._._...ur.. g oty gl Rt L T G R, R L N, L L, RN B A S A A R, SR P
e
]
H
3
£
£

I 0000004%X0 | 000000dX0

0000004X0 | 0000000X0 | ¢# N%Dn_o
00020000 | 000L000X0 v%Dn_O

Sheet 5 of 28

Jan. 28, 2014

Nd0 dIS
ddAL SSJ0OV SSJd0dv (N4 9544V LuVIS DN SS3004d
— [WNO| L1ddY

SRR L e g R RS L Ly Ry B Tt B A N T e e PR R g e B e e e et T et e A e e " LA R A A R T TR T A R R SR SR T g A i S L L s L L an B LR R R Y A R
x o
.
: ..""_
i L
b] ..I“
[-
f £
! .
1 3
L b
T i
4 &
) h
.- -

BN\ Bl EEEIENRR)ES JONVH NO|SS [Wd4d

G Ol

U.S. Patent

US 8,640,194 B2

V1vd
NO1SS [Widd 5SSO0V

: NdO
3
= S04 | ot ssaooue-wiot ooy ‘904! vol
= n S 301
x ON1SS3004d
s | _ ~TYNOILIQQY ‘oz
= SNVIW TOHINOD $S30IV -0€
0 " DI

U.S. Patent

US 8,640,194 B2

Sheet 7 of 28

Jan. 28, 2014

U.S. Patent

SNYAW TOH1INQO

95400V

_— ON1553004d

Al vno1 L1aay

441>

oy 80L

_ ON15S3004d

d | wno 1L 1aay

SNV4W 104.1NCO
S5300V

__ __ ON155300¥8d

J|15vd

U.S. Patent Jan. 28, 2014 Sheet 8 of 28 US 8,640,194 B2

O

-

©
-]
<l =
S o

— i S
-_— D

OO o
o B o
< 0.

14/

o

o
- &3
L =
Z—
=5

_LLI m

':c_) -

oo To!
o o=
< Q.

L

-

©

= <[

-

O

FIG . 8

US 8,640,194 B2

Sheet 9 of 28

Jan. 28, 2014

U.S. Patent

83201 Vol £0l

AA1LSAS 114
PIA30 TYNIILXT qAIvo1a30

VIOl

0021 - - ‘ _
ES=
NO1 LONN4] T IVOT IO, | NO 1 LONNJ

(B0 TNKOC INTWEOVNYH QVOTNMOG
J|SYd

3009 JALIYN : :

=[arAl Neeancserssorarerrassaensrsnacenses :

INGHNOY I ANT JUVML0S 21ISVE ‘01 1

P
dd A0110d ALIYNDIS -G01

J01A30 VNy41X3
(311 1Wd3d

F1AID WNIELXS
(EINRJiLE

EINAIEINEES,

NOI1ONNd D1Svd
Gl

NOI1LVO| lddV

NOLINOAXd (VO INMO
4400 3AILWN

NOLIMJ3Xd QVOTNMOd

0L - - 4C00 JAILWN

NIVIWOd NOISNILX3 d3LSNHINN -000L NIVAOA NOISNILX3 d31SmyL-800!}

LLY
V0Ol

NIVWOd OISVH w001

6 Ol

US 8,640,194 B2

J01AJ0 TVNYE1X PIA30 TVNELS W31SAS T114
L1 G111 AN VN3N a31¥1 (30

v o
gl
-~
&
~
y—
- Al T
m NO! 19NN
= 9{Sv4
NOILONN noiond || BEET R
NOLINOAYT QYO TOC INFHIOYNVI QYO TNMCG ’
= e A 3000 3A1LVN 3000 AUW | A I5ve
« INFANOH I AN
m JYYMLJ0S I18SYd
= NIVIHOQ NOISNILX3 Q31SNYIND D001 NIVHOQ NOISN3LX3 a31Snyl:‘g00t m NIVWOd 21SVe 'vool
o~
p

40 AO110d ALIMNOSS -G01

0l " Old

U.S. Patent

US 8,640,194 B2

Sheet 11 of 28

Jan. 28, 2014

U.S. Patent

9¢01

D101

NIVIOQ NO(SNILX3 @3LSHINA 0001

J01A30 TYNYA1X3
1311 1A43d

NO | LONN

NOILNDAX3 (YO TNMCd
3000 3AILWN

veol €01

J1SAS J114

F1A30 TWN43LX3 EICAILEN

(EIRRJINED

L.
NOILONNd O1SVd
i 1211

AdvH8| 1

NO{ LONN]
J|SVd

NO1 LONN NOLLVOI IddV | ¢
NOI1INOAX3 (QVOTNMOQ TNGAEOVNYIN QYO TNMOQ 91SY4
4000 3AILVN : 11l

S - 3000 JALLVN :

=(ir4 avol- INGHNOUI NG SMVMLAOS 0158 ‘O |

wrOl _.
NIVWOd NOISNALX3 GALSMML ‘800t Tl NIVHOQ 015V OOl
3101 41 1430

g0 A01'10d ALIENOAS SOl

L OIS

viol €0l

US 8,640,194 B2

PIATE VNELE I91A30 TYARALKT 01430 VREL3 WALSAS T114
ALY LY 1 a3
0201 820}
1
v o
gl
= 010}
| .
o .
> \\\5%:
3 NO! LONN ={ NOILONN 1SV
= N 2 L : 21
NO | 1NN m .
NOI| 1IN

- NOILM3X3 QVOTHOC NOILNO3X3 QYOTNMOC INJAROYNYI Q0 INHOT V! %um_q.%%
- 01 2009 3AI LY 300 IAILYN S r 3000 3AILYN 111
= oovory - L AT | L | 7 | L ARAN L e
s 8ro} V01 .
M NIYWOG NOISNILX3 GILSMMINA ‘000! NIVOQ NOISNALX3 @3LSuL ‘8001 ‘H]~_ NIvAOd O1Svd-vool
o~
= aa £0170d ALTED3s sor VO ldHAD

U.S. Patent

US 8,640,194 B2

Sheet 13 of 28

Jan. 28, 2014

U.S. Patent

F01A30 TYN431XS
311 1Wd3d

F01A30 VNG
d3111Wdd

x40}

OlDlI
NOI 10NN
J1Svd
NOILONS NOI LONN
NOILNOAX3 avOTNMOQ NOILNO3X3 VO TNMOC
Ov0| 3000 JA1LVN 3000 A1V

NIVWOd NOISNILX3 d3LSMIINN-O001 NIVIHOG NOISNJLX3 (H1SNHL -8001

vZol ol

F01A40 YNY31X3

WALSAS 114

U4Lv01d4d

4

NO11ONNd
vagomd qoreca| § | NOILYOITddY | §
3009 JA|LVN 215vd AT

Yaseseeectsostssasnasanssassnannannd
e ! INTHNOH I ANG FHVML0S 91Sva ‘0L L

¥ NIVAOQ D1SVa VOOo!
m[w/ﬁézzﬁo
a0 AD1T0d ALIYMO3S S0t

¢l Old

US 8,640,194 B2

Sheet 14 of 28

Jan. 28, 2014

U.S. Patent

vZol £OL

WALSAS J114
PIAI0 TVNIILXI ALY 10

JO1AJ0 VNY31Xd
(EINRJ:EG

JO1AJ0 TVNJA1IX

SrAt}! (EINRIILEL

Q101

e NOI LONDA

O0¢! J|Svd

. N0 LONNS NOT LOND:
zo_._._.ﬁ%mm“ ﬁ-._.ww.._.z%a - NOILMO3AXd QVOINMOQ ININIOVNVH VO TINMOO t N _%_“.Wf:m&% 3
ool 3000 3AILWN 9 3000 JALIVN S r 3000 3A1LWN E 1L
avol e ! INGNNOYIANT JWVMLI0S 01Sve ‘0)
NiVIHOQ NOISNILXd d3LSNMINN:D00tL NIVINOd NOISNdLX3 31SML -8001 z_é_on J15VE -¥001

o
dd AD1710d ALIYNOIS-sol

i Ol

US 8,640,194 B2

Sheet 15 of 28

JO1A0 WNYA1X3
(11183

. OL Q101
MIA 14T

RO
Jicl

1

Q¢01

8

NOI11Y3I1 1ddy
(3AV0INVOQ

J0¢! NOLLYOI 1ddv
(300 TNMOC

NO| 10NN
NOLLAOAXd GVOTNAOQ

Or0l 33000 3AI1WN

FIAJ0 WNY3LX
(311 1WYd

Advad| 1

NOI1ONI
J|SVH

NO1LONNJ

NOI1NO3X3 QvOTNMGA

3000 JAIIWN

viol

PIA0 WN43LX]

tOol

WALSAS J11d
(EINAI(E

Jan. 28, 2014

U.S. Patent

NIVAOd NOISNILX3 d31SNHINN-O001 NIVWOQ NOISNILXJd d3LSmL-8001 NIVIWOd O1SvE V00!

dd AO1'10d ALIYNO4S-501

Gl Old

veli €0l

A31SAS d114
FIAI0 VNEALX 1Y) 03d

US 8,640,194 B2

F01A30 TYNHJLX4

JO1A40 TWNY41Xd

311 1844d
3201 AL IWY3d
5 so
-
b~ 9 YA
\& m —.o — m —:N —. (FD _- SHIIPLEONANEIINIBIRIINININIINAITIIIOY
2 TAIVAIN AUVHg
@ TR O - NO! LONN : | NOVLONNd D1sva K
7 2 Z : m
00¢é1 NOTIVOT 1ddv ELl G m
= NO! LONR " .
NOI LONNA NOI LONN4 :
~t NOILMO3X3 avOINWOQ NOIINO3X3 QYO TNMOG ANTHIOVNYIW GYOTNMOT | e N %owﬂ%%
= o401 3009 3AILWN a0z 1 3000 3AILVN 2000 IAIIVN " ANy
Q..r-_._-._:..._.:_.___.._-.---:---..H::-..
M,, . =vol V4440 ‘ uﬁghﬁoﬁo%__%ﬁ.o:
~ NIVWOQ NOISN3LX3 CHLSMULNN D00} NIYWOQ NOISNALXT Q3LSNYL ‘800 T~ NVhod 915vd-voo!
=
= g0 A0170d ALINND3S so1 LVOIILERD

9l DI

U.S. Patent

Viol £01

US 8,640,194 B2

O1AI0 WNIILXD
(EINR[I.EL

WALSAS 114

J01AJQ TVNHALXT

@11 1WY3d (31¥o1d4Q

2¢01|

S s
|
= oJt4
g a1zl V10l
Y : :
> IR 8 : "
= NO| LONN S
7 z S _ , 4 B!
-t NOLLNO3X3 QVOIAOG NOLLIOIXE QYO NHOG o o nvioa [€ VoI ddY |
= 301 3000 3AILVN 3000 3A1LVN 3000 JAILWN - J1SVd T
s - 1y =« b |\ Yo——T e

. IRIANONTAND
8 gvol Vol JWVILI0S 9iSva O

. NIVAOd NOISNALXd QJLSAHLNR - : & NIVWOd O1SYE -v00 1

= 0001 NIVIWOd NOISNJLX3 d31ISMiL-g001L lm/
= 80 A9170d ALIdmoIseor FVOIIILED

L1 Old

U.S. Patent

US 8,640,194 B2

Sheet 18 of 28

Jan. 28, 2014

U.S. Patent

4OL1NOW
N0 12 INTHOVI IVNIYIA

[g wauin | &
0002) v €002

FOI1A3A TVNH31Xd
NNLHIA

1701 (311 1W43d

dIAYd
J3Av0 INMCd

o121 SO

a101

J0¢1 _

NOI 10NN
NOILNO3X3 GYOINMOQ
%01 3000 3AI YN

NIVWOA NOISNZLX3 a3LSnyINn -O001

HOLINOW ANIHOVW 1VNRLHIA

1 Nd0 IWNLAIA

8201 F01A30 TYNYI1X4
EINAIE N REY

il Lithisd
sl gy

03av0 MDA

a101 gicl

AUVHEll 1

NO1 LON[14
J15Vd

thl

Mifi

NO1LONNS
NO | YO YoV NOILMO3XE QYO 1400

4000 3A1LWN

82061 3] 40)

NIVIWOO NOISN3LX3 (31SnyL-800!

\40] ¥4

JOLINCA 3NTHOVIA VRLHIA

YO00¢
TEINE NG
V201 WLGIA VN H1A €01
SO
NOTL1ONN4 21Svd
¢l
NOI LONN
: NOI1YO1 lddY :
INTWEOVNVA avoTwoal : .
3009 3AILVN J1Svd 1)
YO0l JINTANOHIANT FHYMLH0S 2ISVE QL L

NIVIWOd OISYE voolL
40 A0 '10d ALIYNO3S *s0L

gl 9ld

US 8,640,194 B2

Sheet 19 of 28

Jan. 28, 2014

U.S. Patent

40L [NOW
5077 INTHOVA TYNLYIA

8007 _ Ndd TVNLYIA

J01A30 TTYNUELX

e

g01¢é

301 A4(
TYNY1X3
AVILYIA

JIAJA VNHILX3

il g

A FAVL

SN s

V10l m
NOI L1ONM :
9iSvY w NO1LONNA 21SYE

NOILONNA
NOILNOJX3 QVOINMOd
3000 JAILWN

NO | 13NN NO | 1ONN
NOI1INJ3X3 avOINMOQ

4000 JALLWN

(NIEEVN VOO0 NO|LVOI 1ddY

3000 3A1LVN

V401 ‘ INGHNOY IAND THVMLA0S DISVE ‘01 |

ov0l 2135Vd

“'.l‘l' FeIFFFRIRRINRFEFARR

(B LI AR LT LT L LI L IR Y}

_,) NIVIOQ D15vd VoL
NIVHOO NOISNILY3 GILSTYLNA ‘0001 NIVIHOA NOISNALXA GHISIELNM 000k o 1o 0 AT 1035 01

61 Ol

£01

¢l

L)

U.S. Patent Jan. 28, 2014 Sheet 20 of 28 US 8,640,194 B2

—

10A

CPU CPU

CPU

10A
U

FIG . 20
C

U.S. Patent Jan. 28, 2014 Sheet 21 of 28 US 8,640,194 B2

FIG. 21 RELATED ART

23
P -

DOWNLOAD DTN 20
—-———» %RB&&E”QE r/\/

U.S. Patent Jan. 28, 2014 Sheet 22 of 28 US 8,640,194 B2

FIG.22 RELATED ART

23

ADD | T |ONAL
PROGESS ING II
VIRTUAL MACHINE

22

_-—__——___——r__

—_———--——_—_—_——_————-—_-__

50

U.S. Patent Jan. 28, 2014 Sheet 23 of 28 US 8,640,194 B2

FIG . 23 RE| ATED ART

|
} |
| l
| BASIC TRISTED {
i A
| & :
: 25; |
| CERTIFICATE |
| N3
:
| |
10
CPU
60

50

Memory || /0

U.S. Patent Jan. 28, 2014 Sheet 24 of 28 US 8,640,194 B2

FIG .24 RELATED ART

i ____i [T~~~ 7
l | I
' |
: | |
o 1™ [= 1™
: - '
——————————— | ——— === 11:cpU
................................... -
12 Secure Mode '4——>: Non-Secure

iii

UNIT
>0 Memory | /0 |

U.S. Patent Jan. 28, 2014 Sheet 25 of 28 US 8,640,194 B2

FIG . 25
- BASIC DOMAIN | rusTED EXTENSION DOMAIN |UNTRUSTED EXTENSION DOMAIN

FUNCTION 1 [LEVELA | | I —

[FUNCTION 2 LEVELA | LEVELB —_

FUNCTION 3 LEVEL A, LEVELB | LEVEL A LEVELB |—
| FUNCTION 4 LEVEL A, LEVEL B LEVEL A, LEVEL B LEVEL G

FUNGTION 5 LEVEL A LEVEL B, LEVEL C, LEVEL D

LEVEL C

<
2N

US 8,640,194 B2

_ V1¥Q SNVIH :
qo7 | NOISS | ad 31¥QdN Y1va _ VOT
o] $S390Y NOISSIWMId SSIOV !
5 _ :
. _ A
3 _ v1Y(_
2 [1dJ : gs NOISS [H¥3d _
$S399V NN
. — NO|ISS | H3d _
= onssoou- /L2210
z WNO1LTdav ON | SSI00-
. 918v8
= o
q0L Ig VOL
9¢ " DI

U.S. Patent

9%

US 8,640,194 B2

l

l

¢ | SNVIW ONINvVE

l

_
e I
= _ SNVIH T
S q0T '] onisoLinow NOISS | Had
= ! $SI90V $SI00V
= |
7 _

_

(1d) _ 7o
z , S
> i SNVIW
xR NOISSWHad
. Snd 3ais | SSINY
= ONISSITOUL- | L e
= wNoiLlagy ==
0L I

U.S. Patent

VOL

VOl

[1dD

snd J41S
ON15§3004d

J15v8

L¢ " Old

U.S. Patent Jan. 28, 2014 Sheet 28 of 28 US 8,640,194 B2

#
#
#

'3 L L Y "
- -,

-

?“: A e :.

- .
-

-
-
-
-

N

B
ﬁ.-'\-\.'\-'\-\."-\."-\."-\."-\."-\."- B !-_ﬁ\.

i) " _"

S, AN N 1y
& a ; ; H
{ ,_ 5 pA— :
Frappapet :

-
d W
;.:ﬂ.-' EEEEUIEE e “'\-'.:_

L
= K .

US 8,640,194 B2

1

INFORMATION COMMUNICATION DEVICE
AND PROGRAM EXECUTION
ENVIRONMENT CONTROL METHOD

TECHNICAL FIELD

The present invention relates to an mnformation processing,
device, and more particularly to a device and method suitable
for maintaining security when additional processing, down-
loaded from a source external to the information processing
device, 15 executed.

BACKGROUND ART

On an information communication terminal device such as
a mobile phone, the basic processing (for example, call pro-
cessing function, browser function for accessing the Internet,
clectronic mail function, screen control function, etc.) for
implementing the basic function of the terminal device is
usually installed 1n advance with the operating system. Addi-
tional processing (program) other than the basic processing,
described above 1s downloaded from an external source, such
as the network, onto the terminal device by the user operation
for execution and installation thereon. However, when the
downloaded additional processing 1s executed, there 1s a pos-
sibility that the operating system and the basic processing are
subjected to an attack from the additional processing.

FI1G. 21 1s a diagram schematically showing an example of
the typical configuration of an information communication
terminal device that executes downloaded additional process-
ing. FIG. 21 1s a block diagram schematically illustrating a
well-known typical device configuration. In the description
below, the additional processing 1s an application program or
a device driver (also called an “1/O driver” that 1s software for
processing an access request to a device and for processing an
interrupt from a device) provided 1n native code (binary code
generated by compiling or assembling on the vendor side).

When additional processing 23 1s downloaded and
executed (or 1s included into the operation system and
executed when the additional processing 23 1s a device driver)
in the configuration shown in FIG. 21, there 1s a possibility
that basic processing 22, an operating system (termed an OS)
21, a CPU (Central Processing Unit) 10, a memory 50, and an
input/output (I/0) device 60 are directly attacked by the addi-
tional processing 23. The reason 1s that no means 1s 1nstalled
for limiting an attack from the additional processing 23 to the
basic processing 22, CPU 10, OS 21, memory 30, or input/
output device (I/0) 60 and for implementing the safe execu-
tion environment. That 1s, in the configuration shown 1n FIG.
21, the additional processing 23 can arbitrarily 1ssue a pro-
cessing request to the basic processing 22, a processing
request to the OS 21, and a processing request to the CPU 10,
memory 50, and input/output device 60 and can freely access
the hardware and software resources. For this reason, the
additional processing 23, if malicious (or not malicious but
infected by a virus), freely attacks the vulnerable OS 21, basic
processing 22, and so on.

In some cases, an additional device driver 1s incorporated
into the kernel of the OS 21, for example, as a resident
(permanently resident) driver and, 1n this case, the reliability
of the device driver directly affects the reliability and perfor-
mance of the OS 21. The reason for this 1s apparent from the
characteristics of a device driver that the device driver
includes the processing settings to the device and the interrupt
service that will be activated by the scheduler when an inter-
rupt 1s recerved from the device and that the execution dura-
tion of the interrupt service (during which re-scheduling 1s

10

15

20

25

30

35

40

45

50

55

60

65

2

inhibited) 1s limited to a very short time (for example, shorter
than milliseconds) to maintain the processing performance.
That 1s, an additional device driver, 1f malicious, can easily
reduce the processing performance of an information pro-
cessing device. This applies also to a non-resident, loadable
driver (driver selectively loaded into, or unloaded from,
memory). If an attack 1s made by a malicious driver that 1s
installed as additional processing, the kernel of the OS 21 1s
attacked directly and a fatal (virtually inoperative) condition
may result.

To solve this problem, several architectures have conven-
tionally been proposed to limit the execution environment of
downloaded additional processing for protecting the basic
processing. The following outlines typical examples.

FIG. 22 1s a diagram showing one typical example of the
configuration that provides the software-based execution pro-
tection environment for additional processing. In the example
shown 1 FIG. 22, the additional processing 23 coded 1n
native code 1s executed on a virtual machine 24. For example,
if the additional processing 23 1s described 1n the JAVA (reg-
istered trademark) byte code, the downloaded JAVA (regis-
tered trademark) byte code 1s executed on a JVM (JAVA
(registered trademark) virtual machine) that constitutes the
virtual machine 24.

In this configuration, the basic processing 22 and the OS 21
are separated from the additional processing 23 on a software
basis to ensure 1ts security. That 1s, the additional processing
23 accesses the OS 21, CPU 10, memory 50, and input/output
device 60 only via the virtual machine 24. Usually, the virtual
machine 24 1s not given an authority to execute 1n the kernel
mode (for example, to execute a privileged 1nstruction) of the
OS 21 and, therefore, the additional processing 23 cannot
directly operate the OS 21. Because the virtual machine 24
usually executes an mstruction code received from the addi-
tional processing 23 1n the interpreter mode, 1t 1s easy to
monitor if the mstruction and the operation of the additional
processing 23 1s correct. For example, by limiting an ivalid
access (for example, a large amount of data output to the
network or the display) from the additional processing 23 to
the hardware resources or software resources, the virtual
machine 24 can also work as a software-based protective
filter, protective wall, or protective gate. In this way, the basic
processing 22 and the OS 21 are separated from the additional
processing 23 via the virtual machine 24 on a software basis.

However, the virtual machine scheme shown in FI1G. 22 has
the following problems.

The system security 1s compromised when the downloaded
additional processing 23 attacks a vulnerable point (for
example, a security hole) of the virtual machine 24.

Furthermore, because the instruction codes such as JAVA
(registered trade mark) byte codes are executed usually 1n the
interpreter mode in which an instruction 1s interpreted and
executed, one by one, the execution speed of the virtual
machine 24 such as a JAVA (registered trademark) virtual
machine 1s slow.

In addition, before executing the additional processing 23,
the virtual machine 24 1ssues a system call to request the OS
21 to perform processing and, because the overhead of the
system call 1s large, the processing speed 1s low. For example,
the virtual machine 24 issues one or more system calls cor-
responding to one instruction of the additional processing 23.
There are executed a sequence of control operations, includ-
ing for example, context-switching from user mode to system
mode caused by the 1ssuing of a system call, decoding of the
packet data of the system call and validity checking of param-
eters (error detection processing) in the system call by the
system call entry module of the OS 21, dispatching of pro-

US 8,640,194 B2

3

cessing (dispatch), passing of processing result and the con-
text switching at the time of completion of the processing,
switching from the kernel space to the user space and the like
and the overhead becomes large.

In the configuration shown in FIG. 22, a device driver
cannot be included into the OS 21 as the additional processing

23. As apparent from FI1G. 22, the virtual machine 24 1s 1n a
layer higher than that of the OS 21. The virtual machine 24 1s

configured in such a way that 1t 1ssues a processing request to
the OS 21, recerves the processing result from the OS 21, and
returns the result to the additional processing 23 as necessary,
based on the code of the additional processing 23. Thus, an
attempt to include the additional processing into the OS 21 as
a device driver requires that the virtual machine, which con-
trols the execution of the additional processing, be also
included into the OS 21. In principle, such a configuration 1s
impossible 1n the virtual machine mode shown 1n FIG. 22.

As another software-based security management architec-
ture, the configuration shown 1n FIG. 23 1s also known. As
shown 1 FIG. 23, the additional processing 23, to which a
certificate 25 which 1s for certifying the authenticity of the
additional processing 1s attached, 1s downloaded onto a ter-
minal (information processing device). The terminal side
checks the contents of the attached certificate 25 and, 1f the
attached certificate 25 1s authenticated successiully, the
downloaded additional processing 23 i1s installed and
executed. A digital signature (ITU-T X509) may be used for
the certificate 25. For example, the certificate 235 stores a
certifying organization, 1ts public key, and the digital signa-
ture (signature generated by encrypting the certifying orga-
nization or public key with the private key of the CA) of the
CA (Certificate Authority). To authenticate the certificate, the
digital signature of the CA 1s decrypted by the public key of
the CA to check if the result matches the content of certificate
data and, 1f they match, the data of the certificate 1s deter-
mined authentic. Alternatively, the certificate 23, provided it
can certily an authentic vendor, may be any certificate. The
driver signing function of a device driver 1s implemented on
Windows (registered trademark) 2000.

The architecture shown 1n FIG. 23, 1n which the additional
processing 23 can be provided 1n native code, makes the
execution faster than that of the virtual machine method
shown 1n FIG. 22. In addition, an application and a device
driver can be executed as the additional processing 23. How-
ever, the system reliability depends absolutely on the security
of the additional processing 23. That 1s, a problem with the
additional processing 23 that cannot be detected 1n advance, 1f
any, may cause a fatal damage to the system.

FI1G. 24 1s a diagram showing the configuration of a pro-
cessor that performs hardware based security management.
Referring to FIG. 24, a CPU 11 has two modes, secure mode
12 and non-secure mode 13, and the downloaded additional
processing 23 and the OS 21B corresponding to the additional
processing 23 are executed only in the non-secure mode 13. A
memory management unit 14 manages the memory area (ad-
dress space) executed in the non-secure mode 13 and the
memory area accessed 1n the secure mode 12 separately and
inhibits access from the non-secure mode 13 to the memory
area 1n the secure mode 12. That 1s, the memory management
unit 14 controls memory access from the non-secure mode 13
and 1nhibits access from the non-secure mode 13 to the
memory area in the secure mode 12.

Thus, 1 the configuration shown in FIG. 24, the basic
processing 22 1s executed 1n the secure mode 12 and the CPU
1s virtually separated from the CPU for executing the addi-
tional processing 23 to increase security.

10

15

20

25

30

35

40

45

50

55

60

65

4

However, the secure mode and the non-secure mode are
executed on the CPU 1n a time-division manner and, 1f control
1s not returned from the non-secure mode, the system opera-
tion 1n the secure mode 1s not executed.

Since the non-secure mode and the secure mode are sub-
jected the time-division processing, an overhead such as a

mode transition and the like 1s required when the mode 1s
switched.

Another problem 1s that, when the additional processing 23
1s a device driver that 1s embedded within the OS 21B of the
non-secure mode and 1if the driver 1s malicious, there 1s a
possibility that control 1s not returned to the secure mode and
the system 1s fatally damaged.

Patent Document 1, which will be given below, discloses a
processor that has a separation area 1n a system memory, as in
the configuration shown in FIG. 24, to provide a normal
execution mode and a separation execution mode. In the
device described 1n Patent Document 1, the normal execution
mode 1s a mode i which the processor runs in the non-
security environment, that 1s, 1n the usual operation mode that
has not the security function provided in the separation execu-
tion mode with access to the separation area inhibited from
the normal execution mode, while the separation execution
mode 1s a mode 1n which the execution of a predetermined
separation 1nstruction 1s supported. This configuration also
requires a mode transition overhead at switching time
because the normal execution mode and the separation execu-
tion mode are executed in the time division mode.

Another configuration 1s disclosed in which two processor
units and a switch unit are provided. In this configuration, one
ol the processor units 1s connected to the public data commu-
nication network, and the other processor unit, which is not
connected to the public data communication network, func-
tions as a data security unit (see Patent Document 2 which
will be given below). In the system described in Patent Docu-
ment 2, the processor unit connected to the public data com-
munication network and the data security unit are separated
by a switch to ensure the security of the data security unait.
However, no countermeasure 1s taken for the processor unit,
connected to the public data communication network, against
an attack that may result from the execution of the additional
processing described above (additional processing down-
loaded from the network). Although the data security unit 1s
safe, the processor unit connected to the public data commu-
nication network has not security mechanism efiective for an
attack by the additional processing. For this reason, one of the
schemes described above must be employed to perform the
security management of the processor unit connected to the
public data communication network.

A still another configuration 1s disclosed 1n Patent Docu-
ment 3 for use in a system where a separated execution
program or the operating system are executed simultaneously
on a processor. During the execution of a first program 1n this
configuration, the memory space used only by the first pro-
gram 1s set and the communication between the first program
and the computer execution environment 1s performed via a
single link, including the use of shared memory space, a
dedicated interrupt, or a dedicated 1/O port, to protect the
execution environment against an mcorrect program. In the
restricted execution environment, the first program 1s not
allowed to access the resources of the processor except the
memory space that 1s set and the single link. Because, 1n the
system described 1n Patent Document 3, the first program 1s
not allowed to access the resources of the processor except the
memory space that 1s set and the single link (use of shared
memory space, dedicated interrupt, or dedicated I/O port), the

US 8,640,194 B2

S

first program cannot be used as a device driver and therefore
cannot be applied to the additional processing including a
device driver.

Patent Document 4, a publication given below disclosing a
technology related to the inter-processor communication
means used 1n the present invention that will be described
later, discloses the inter-CPU communication scheme for use
in a multiprocessor system. Patent Document 4 describes the
following configuration as a conventional technology. That 1s,
when a CPU 2 mterrupts a CPU 1 durning the inter-CPU
communication via the shared memory in a multiprocessor
system, the CPU 2 writes communication information 1in 1ts
own inter-CPU communication information writing area in
the fixed area provided for the CPU 1 to generate an interrupt
and, upon detecting the interrupt, the CPU 1 accesses the
inter-CPU commumnication information writing area corre-
sponding to the CPU 2 to execute the interrupt processing. In
addition, Patent Document 4 describes an invention that
reduces the number of accesses to the shared memory.
Patent Document 1: Japanese patent Kohyo Publication No.

JP-P2004-500666 A
Patent Document 2: Japanese patent Kohyo Publication No.

JP-P2002-542537A
Patent Document 3: Japanese patent Kohyo Publication No.

JP-P2002-533791 A

Patent Document 4: Japanese Patent Kokai1 Publication No.
JP-A-6-332864

DISCLOSURE OF THE INVENTION

Problems to be Solved by the Invention

As described above, 1n the conventional devices that take
counter measures for ensuring security against an attack from
downloaded, malicious, or faulty additional processing, there
have been left practically various sorts of problems, such as
the problem 1n the processing performance, the problem in
which a device driver cannot be executed, and the problem in
which security cannot be guaranteed. Especially, the archi-
tecture 1n which an additional device driver cannot be down-
loaded from a source external to an information processing
device, such as that shown 1n FIG. 22 and FIG. 24, means that
neither devices nor functions can virtually be added and this
disadvantage reduces availability. On the other hand,
increased security and reliability are required for an addi-
tional device driver which 1s executed in the kernel mode
because the device driver directly affects the OS and system
reliability.

Accordingly, 1t 1s an object of the present mvention to
provide a device and a method that increase the processing,
speed 1n a simple configuration and ensure the security and
reliability when an application program or a device driver 1s

added.

Means to Solve the Problems

The following describes the overview of the present inven-
tion to achieve the above object.

A device according to one aspect of the present invention
comprises a plurality of processors wherein the plurality of
processors constitute a plurality of domains according to a
trust level of processing to be executed and the processors in
different domains communicate with each other via inter-
processor communication means, the device further compris-
ing access control means that controls access, made by a
processor belonging to a domain where relatively lower secu-
rity processing 1s executed, to a memory and/or an mmput/

5

10

15

20

25

30

35

40

45

50

55

60

65

6

output device belonging to a domain where relatively higher
security processing 1s executed.

A program execution environment control method accord-
ing to one aspect of the present invention, wherein a plurality
ol processors, which constitute an information processing
device, are divided into a plurality of domains according to a
trust level of a program to be executed, the program execution
environment control method comprising the steps of sending,
by the processors 1n different domains, data or a command
with each other via inter-processor communication means;
and checking access, which 1s made by a processor belonging
to a domain where a program whose trust level is relatively
lower 1s executed to a memory and/or an mput/output device
belonging to a domain where a program whose trust level 1s
relatively higher 1s executed to execute only a permitted
access, by access control means.

A device according to another aspect of the present mnven-
tion comprises at least one processor (termed “first class
processor’) that executes predetermined first class process-
ing; at least one processor (termed “second class processor™)
that executes predetermined second class processing that 1s
different from the first class processing; a memory and an
input/output device; inter-processor communication means
that controls communication between the first class processor
and the second class processor; and access control means that
controls access made by the second class processor to the
memory and/or the imput/output device.

In the device of the present invention, the first class pro-
cessing includes relatively higher trust level processing and
the second class processing includes relatively lower trust
level processing. In the present invention, the first class pro-
cessing includes vendor-provided basic processing and the
second class processing includes additional processing
downloaded from a network or a storage medium. In the
present invention, the second class processing may include a
device driver and/or an application program to be executed 1n
the second class processor.

In the device of the present invention, the inter-processor
communication means comprises 1nter-processor cCommuini-
cation means that performs inter-processor communication
for passing information from the first class processor side to
the second class processor; and inter-processor communica-
tion means that performs inter-processor communication for
passing information from the second class processor side to
the first class processor.

In the device of the present invention, the inter-processor
communication means preferably comprises an interrupt con-
trol device that accepts an interrupt request from a processor
on the information sending side and i1ssues an interrupt to a
processor on the mformation recerving side. In the present
invention, the inter-processor communication means prefer-
ably comprises an interrupt control device and a shared
memory corresponding to an interrupt target processor
wherein the interrupt control device comprises an interrupt
indication unit that accepts an interrupt request from an inter-
rupt-requesting processor and 1ssues an nterrupt request to
the interrupt target processor; an mterrupt holding unit that
holds the mterrupt request accepted by the interrupt indica-
tion unit; and an interrupt cancellation umt that cancels the
interrupt in response to an nterrupt processing completion
notification from the interrupt target processor and wherein
the shared memory comprises a communication area that
stores data transferred from the interrupt-requesting proces-
sor to the mterrupt target processor; and an exclusion control
area that performs exclusion control for the communication
area.

US 8,640,194 B2

7

In the device of the present invention, the access control
means preferably comprises means that stores access permis-
s1on data which stores information on access from the second
class processor to the memory and/or input/output device;
and access permission means that monitors access from the
second class processor to the memory and/or the input/output
device, references the access permission data, and determines
whether the access can be permitted. In the present invention,
the means that stores access permission data stores, for each
processor of the second class processors that 1s permitted
access, an address range for which access 1s permitted and
information on access types permitted for the address range.

A device according to another aspect of the present inven-
tion comprises further comprises at least on processor
(termed “third class processor™) that executes predetermined
third class processing; inter-processor communication means
that performs communication between the second class pro-
cessor and the third class processor; and second access con-
trol means that controls access made by the third class pro-
cessor to the memory and/or the input/output device
connected to the first class processor.

A device according to another aspect of the present inven-
tion comprises at least one processor (termed “third class
processor’) that executes predetermined third class process-
ing; and mter-processor communication means that performs
communication between the second class processor and the
third class processor, wherein each of the first to third class
processors comprises a memory and an input/output device
connected via a bus and access made by the second class
processor to the memory and/or the input/output device, con-
nected to the first class processor, 1s controlled by the access
control means, the device further comprising second access
control means that controls access made by the third class
processor to the memory and/or the input/output device con-
nected to the first class processor and/or to the memory and/or
the input/output device connected to the second class proces-
SOF.

A device according to another aspect of the present inven-
tion comprises (A) a basic domain that comprises a basic
soltware environment; an external device and/or a file system:;
and an operating system, the basic domain further comprising
a security database that stores security information on down-
loaded data and native code download management means
that controls a download of native-code downloaded data, (B)
a trusted extension domain that comprises native code down-
load execution means that controls a download of native-code
downloaded data; and an operating system, wherein a down-
loaded application program (termed “trusted application pro-
gram’), which 1s determined as trusted by the native code
download management means in the basic domain, 1is
executed and a downloaded device driver (termed “trusted
driver”), which 1s determined as trusted by the native code
download management means in the basic domain, 1is
installed 1n the operating system and a permitted external
device prepared 1n advance 1s accessed by the trusted driver to
execute trusted additional processing, and (C) an untrusted
extension domain wherein native code download execution
means that controls a download of native-code downloaded
data, an operating system, and a downloaded application
program (termed “untrusted application program™), which 1s
determined as untrusted by the native code download man-
agement means in the basic domain, are executed and a down-
loaded device drniver (termed “untrusted driver”), which 1s
determined as untrusted by the native code download man-
agement means 1n the basic domain, 1s 1nstalled 1n the oper-
ating system and a permitted external device prepared 1n
advance 1s accessed by the device driver to execute untrusted

10

15

20

25

30

35

40

45

50

55

60

65

8

additional processing and wherein the basic domain, the
trusted extension domain, and the untrusted extension
domain are implemented, respectively, 1n the first class pro-
cessor, the second class processor, and the third class proces-
SOF.

A method according to another aspect of the present inven-
tion comprises steps of, when downloaded data 1s input from
the external device 1n the basic domain and 1f the basic func-
tion recognizes the downloaded data as a downloaded appli-
cation program, checking a certificate of the downloaded
application program by the native code download manage-
ment means 1n the basic domain; and, 11 a result of the check-
ing indicates that the certificate 1s valid, sending the down-
loaded application program to the native code download
execution means 1n the trusted extension domain.

The method of the present invention may further comprise
the steps of, when downloaded data 1s input from the external
device 1n the basic domain and 1f the basic function recog-
nizes the downloaded data as a downloaded driver, checking
a certificate of the downloaded driver by the native code
download management means; if a result of the checking
indicates that the certificate 1s valid, sending the downloaded
driver to the native code download execution means 1n the
trusted extension domain; and installing the downloaded
driver imto the operating system in the trusted extension
domain by the native code download execution means in the
trusted extension domain.

The method of the present invention may further comprise
the steps of, when downloaded data 1s input from the external
device 1n the basic domain and 1f the basic function recog-
nizes the downloaded data as a downloaded application pro-
gram, checking a certificate of the downloaded application
program by the native code download management means in
the basic domain; and, 1T a result of the checking indicates that
there 1s no certificate or a content of the certificate 1s 1nvalid,
sending the downloaded data to the native code download
execution means 1n the untrusted extension domain via the
native code download execution means 1n the trusted exten-
s1on domain.

The method of the present invention may further comprise
the steps of, when downloaded data 1s input from the external
device 1n the basic domain and 1f the basic function recog-
nizes the downloaded data as a downloaded driver, checking
a certificate of the downloaded driver by the native code
download management means in the basic domain; 1f a result
of the checking indicates that there 1s no certificate or a
content of the certificate 1s mnvalid, sending the downloaded
driver to the native code download execution means in the
untrusted extension domain via the native code download
execution means in the trusted extension domain; and install-
ing the downloaded driver into the operating system 1n the
untrusted extension domain by the native code download
execution means 1n the untrusted extension domain.

The method of the present invention, wherein the trusted
extension domain further comprises a basic function library
that includes a processing group, which 1ssues a request to a
basic function 1n the basic software environment 1n the basic
domain, as a library, may further comprise the steps of send-
ing a request to the native code download management means
in the basic domain by the basic function library in response
to a request from the application program downloaded in the
trusted extension domain using a certificate of the application
program; and checking by the native code download manage-
ment means 1n the basic domain if the request recerved from
the trusted extension domain 1s valid (if the request corre-
sponds to the certificate of the application program) and, 11 the
request 1s valid, requesting the basic function 1n the basic

US 8,640,194 B2

9

soltware environment to process the request. The method
may further comprise the steps of processing the request and
notifying a completion of the processing to the native code
download management means in the basic domain by the
basic function in the basic domain; and notitying, by the
native code download management means in the basic
domain, the completion to the basic function library 1n the
trusted extension domain and notifying the completion of the
processing to the application program.

The method of the present invention, wherein the trusted
extension domain further comprises a basic function library
that includes a processing group, which 1ssues a request to a
basic function 1n the basic software environment 1n the basic
domain, as a library, the method turther comprising the steps
of send data from the application program, downloaded in the
untrusted extension domain, to the application program in the
trusted extension domain; 1ssuing, by the application program
in the trusted extension domain, a request, which includes the
data received from the downloaded application program 1n
the untrusted extension domain, to the basic function library;
sending, by the basic function library, the request to the native
code download management means in the basic domain 1n
response to the request from the trusted extension domain;
checking, by the native code download management means 1n
the basic domain, 1 the received request 1s valid (if the request
corresponds to the certificate of the application program); if
the request 1s valid as a result of the checking, requesting a
user to confirm the request and, 11 a confirmation result indi-
cates permission, requesting the basic function in the basic
soltware environment to process the request; and, 11 the con-
firmation result of the user indicates no permission, notifying
no permission to the basic function library by the native code
download management means.

In the present invention, the method may further comprise
the steps of processing the request and notifying a completion
of the processing to the native code download management
means 1n the basic domain by the basic function; notifying, by
the native code download management means 1n the basic
domain, the completion to the basic function library in the
trusted extension domain; notifying the completion of the
processing to the downloaded application program; and noti-
tying, by the downloaded application program, the comple-

tion of the processing to the downloaded application program
in the untrusted extension domain.

A 1nformation processing device according to the present
invention comprises a plurality of processors, wherein the
plurality of processors constitute processors constituting a
first domain and a second domain different from the first
domain and the second domain includes the processor having
at least one processing that 1s lower 1n a trust level than
processing executed by the processor belonging to the first
domain, the information processing device further compris-
Ing inter-processor communication means that controls com-
munication between the processor 1n the first domain and the
processor 1n the second domain; and access control means
that limits access, made by the processor belonging to the
second domain, to a memory and/or an mput/output device
belonging to the first domain according to a trust level of
processing executed in the second domain.

In the information processing device of the present mven-
tion, the access control means comprises means that stores
access permission data and access permission means that
monitors access from the processor belonging to the second
domain to the memory and/or the input/output device, refer-
ences the access permission data, and determines whether the
access can be permitted.

10

15

20

25

30

35

40

45

50

55

60

65

10

In the information processing device of the present inven-
tion, the access control means may further comprise access
permission data update means that updates the access permis-
s10on data.

In the information processing device of the present inven-
tion, the access control means may further comprise access
monitoring means that acquires access information on access
by the processor belonging to the second domain and learning
means that stores the access information.

In the information processing device of the present inven-
tion, the iter-processor communication means may com-
prise an mterrupt control information processing device that
receives an interrupt request from a processor on a sending
side of information and 1ssues an interrupt to a processor on a
receiving side of the information.

A portable information terminal according to the present
invention comprises a plurality of processors, wherein the
plurality of processors constitute processors constituting a
first domain and a second domain different from the first
domain and the second domain includes the processor having
at least one processing that 1s lower 1n a trust level than
processing executed by the processor belonging to the first
domain, the portable information terminal further comprising
inter-processor communication means that controls commu-
nication between the processor 1n the first domain and the
processor 1n the second domain; and access control means
that limits access, made by the processor belonging to the
second domain, to a memory and/or an iput/output device

belonging to the first domain according to a trust level of
processing executed 1n the second domain.

Meritorious Eftects of the Invention

According to the present invention, a plurality of proces-
sors constitute domains according to the security of process-
ing, the processor communication between the domains 1s
performed wvia the inter-processor communication means,
access control means 1s provided that controls the permission
ol access, made by a processor on the low-security domain
side, to a memory and/or an 1input/output device on the high-
security domain side, and a downloaded device driver or
application 1s executed on the low-security domain side to
ensure security.

According to the present invention, the processing 1n the
high-security domain and the processing in the low-security
domain are executed in parallel by the processors in the
domains. This makes it possible to execute high-speed pro-
cessing and to execute synchronization and cooperation pro-
cessing between the processor 1n the high-security domain
and the processor 1n the low-security domain.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram showing the hardware configuration of
one embodiment of the present invention.

FIG. 2 1s a diagram showing the configuration of inter-
processor communication means in one embodiment of the
present invention.

FIG. 3 1s a diagram showing the operation of the inter-
processor communication means in one embodiment of the
present 1nvention.

FIG. 4 1s a diagram showing the configuration of access
control means 1n one embodiment of the present invention.

FIG. 5 1s a diagram showing an example of access permis-
sion data referenced by the access control means 1 one
embodiment of the present invention.

US 8,640,194 B2

11

FIG. 6 1s a diagram showing the operation of the access
control means 1n one embodiment of the present invention.

FI1G. 7 1s a diagram showing the hardware configuration of
another embodiment of the present invention.

FI1G. 8 15 a diagram showing the hardware configuration of
another embodiment of the present invention.

FIG. 9 1s a diagram showing the software configuration in
one embodiment of the present invention.

FI1G. 10 1s a diagram showing the operation of one embodi-
ment of the present invention.

FIG. 11 1s a diagram showing the operation of one embodi-
ment of the present invention.

FI1G. 12 1s a diagram showing the operation of one embodi-
ment of the present invention.

FI1G. 13 1s a diagram showing the operation of one embodi-
ment of the present invention.

FI1G. 14 1s a diagram showing the operation of one embodi-
ment of the present invention.

FI1G. 15 1s a diagram showing the operation of one embodi-
ment of the present invention.

FI1G. 16 1s a diagram showing the operation of one embodi-
ment of the present invention.

FI1G. 17 1s a diagram showing the operation of one embodi-
ment of the present invention.

FIG. 18 1s a diagram showing the configuration of a still
another embodiment of the present invention.

FI1G. 19 1s a diagram showing the operation of still another
embodiment of the present invention.

FIG. 20 1s a diagram showing a modification of one
embodiment of the present invention.

FI1G. 21 1s a diagram showing an example of a conventional
system configuration.

FIG. 22 1s a diagram showing another example of a con-
ventional system configuration.

FIG. 23 1s a diagram showing another example of a con-
ventional system configuration.

FIG. 24 1s a diagram showing still another example of a
conventional system configuration.

FIG. 25 15 a diagram showing an example of trust levels in
one embodiment of the present invention.

FI1G. 26 1s a diagram showing an example of trust levels in
one embodiment of the present invention.

FI1G. 27 1s a diagram showing an example of trust levels in
one embodiment of the present invention.

FIG. 28 1s a diagram showing an example of trust one
embodiment of the present invention.

EXPLANATIONS OF SYMBOLS

10,10A,10B,10C CPU

11 CPU

12 Secure mode

13 Non-secure mode

14 Memory management unit

15 Separation means
20,20A,20B,20C Software

21,21A.21B,21C OS

22 Basic processing

23,23B,23C Additional processing

24 Virtual machine

25 Certificate

30 Access control means

31 Access permission means

32 Access permission data

40 Inter-processor communication means
41 Interrupt control device

410-417 Interrupt control device for CPU#0-CPU#n

5

10

15

20

25

30

35

40

45

50

55

60

65

12

42 Shared memory
420-42r» Communication area for CPU#0-CPU#n

50,50A,50B,50C Memory

60,60A,60B,60C Input/output device (1/0)

70A Basic-processing side bus

70B Additional-processing side bus

100A Basic domain

100B Trusted extension domain

100C Untrusted extension domain
101A,101B,101C OS

102A External device

102A' Virtual external device

102B.102C Permitted external device

102B',102C"' Permitted virtual external device

103 Dedicated file system

103" Virtual dedicated file system

104 A Native code download management function
104B,104C Native code download execution function
105 Secunity policy database

110 Basic software environment

111 Basic application

112 Basic function

113 Basic function library
120A,120B,120C Downloaded application
121B,121C Downloaded driver
200A.,200B,200C Virtual CPU
210A.,210B.,210C Virtual machine monitor
411 Interrupt Indication unit

412 Interrupt status holding unit

413 Interrupt cancellation unit

421 Communication queue

422 Exclusive control area

BEST MODE FOR CARRYING OUT TH
INVENTION

(L]

The best mode for carrying out the present invention will be
described. In one preferred embodiment of the present inven-
tion, a plurality of CPUs 1n an information processing device
in a multi-CPU configuration, where a plurality of CPUs are
provided, are divided into a plurality of domains (for
example, basic domain, trusted domain, and untrusted
domain) according to the trust level of programs (processing)
to be executed. Each domain has one or more CPUSs, and the
CPUs 1n different domains communicate with each other via
inter-processor communication means (for example, 40 1n
FIG. 1). At the same time, when a CPU belonging to a
domain, where low-security processing such as additional
processing 1s performed, accesses a memory and an nput/
output device 1mn a domain where high-security processing 1s
performed, access control means (for example, 30 1n FIG. 1)
determines whether or not the access request 1s permitted and
access 1s made only when the access request 1s permitted.

In this specification, a “trust level” refers to a level that 1s
set for each rank of security level according to a security
policy based on an electronic certificate indicating the level of
security assigned to each processing.

For example, the security level is set based on a security
policy for each processing to which a digital signature 1s
attached. For example, as shown 1n FIG. 25,

Level A: Password 1s required

[L.evel B: Does not confirm twice

[Level C: Confirm at each execution

[Level D: Confirm at each access

Security levels are assigned to domains according to the
function that 1s executed.

US 8,640,194 B2

13

For example, though only security levels of the same kind
may be provided in one domain as follows,

Level A to basic domain

Level B to trusted extension domain and

Level C to untrusted domain

the present invention 1s not limited to this configuration.
That 1s, one domain may include plural kinds of security
levels. For example, as shown 1n FIG. 25,

Level A or higher and Level B or igher may be provided in
the basic domain according to the importance of the function
to be executed and

Level B or higher and level C or higher may be provided in
the trusted extension domain according to the function to be
executed.

Such a setting allows the security levels to be set based on
any certificate or any security policy or to be set freely accord-
ing to the function to be executed or according to the number
of domains.

In one embodiment of the present invention that has the
configuration described above, downloaded additional pro-
cessing (including a device driver, an application program) 1s
executed on a CPU on the low-security domain side that 1s of
a separate configuration i view of hardware from that in a
high-security domain to ensure the security of the high-secu-
rity domain.

In this specification, a “download” includes a download
onto an information device not only via a data communication
network provided by the carrier of a mobile phone or a stan-
dard wireless LAN network but also via an accumulation-
type media such as an SD card and a wired communication/
medium such as a USB.

In one embodiment of the present invention, a CPU 1n a
high-security domain and a CPU 1n a low-security domain are
not separated for control via a switch but are connected by
inter-processor communication means that allows them to
communicate with each other. This configuration makes 1t
possible for the CPU 1n the high-security domain and the CPU
in the low-security domain to synchronize and cooperate with
cach other while guaranteeing security.

This iter-processor communication means (40 1n FIG. 1)
passes data (commands) from a CPU 1n one domain to a CPU
in another domain to prevent a direct attack to a CPU in some
other domain. For example, even 1f a large amount of data 1s
sent continuously from a CPU on a low-security domain side
to a CPU 1n a high-security domain 1n order to degrade the
performance of the CPU 1n the high-security domain or to
cause an over flow, the inter-processor communication means
suppresses such a condition and prevents the data from being
transmitted to the CPU 1n the high-security domain.

In one embodiment of the present invention, access control
means (30 1n FIG. 1) controls a CPU 1n a low-security domain
side and allows 1t to access only a pre-permitted memory
space and 1mput/output device only 1n a pre-permitted mode.
This prevents downloaded additional processing from mak-
ing an attack against a high-security domain. Alternatively,
the access control means controls the bandwidth and flow
amount, as necessary, to prevent downloaded additional pro-
cessing from making various attacks against a high-security
domain. The following describes the present invention with
reference to the embodiments.

EMBODIMENTS

FIG. 1 1s a diagram showing the configuration of one
embodiment of the present invention. Referring to FIG. 1, the
configuration comprises a CPU group 10A that executes sofit-
ware 20A composed of basic processing 22 and an OS 21A,

10

15

20

25

30

35

40

45

50

55

60

65

14

a CPU group 10B that executes soiftware 20B composed of
additional processing 23 and an OS 21B corresponding to the
additional processing, inter-processor communication means
401 and 402 that perform communication between the CPU
groups 10A and 10B, and access control means 30 that con-
trols access from the CPU group 10B to a memory 50 and/or
input/output devices (I/0) 60. Although each of the CPU
group 10A and the CPU group 10B consists of plural (3)
CPUs 1n FIG. 1, each group may of course consists of one
CPU. The number of CPUs need not, of course, be equal
between the CPU group 10A and the CPU group 10B. In the
description below, the CPU group 10A and the CPU group
10B are called simply CPU 10A and CPU 10B. In this
embodiment, the downloaded additional processing 23 con-
tains native code in the binary format. The additional process-
ing 23 may also be a downloaded source program compiled
(assembled) into the binary format. In the software 20A, there
may well be provided one or plural items of basic processing
(22) and one or plurality of OSs (21). In the software 20B,
there may well be provided one or plural 1tems of additional
processing (23) and one or plurality of OSs (21B).

According to this embodiment, the CPU 10B that executes
the additional processing 23 1s provided separately from the
CPU 10A that executes the basic processing 22. The CPUs
10A and 10B can operate independently, the processing can
be executed fast while increasing security, and application
programs and device drivers can be executed. Of course, 1t 1s
possible to configure the CPU 10A, which executes the basic
processing 22, as a master and the CPU 10B, which executes
the additional processing 23, as a slave to allow the slave side
to run under the supervision of the master. In this case, the
CPU 10B receives a command from the CPU 10A via inter-
processor communication means 402 to execute the addi-
tional processing 23.

The inter-processor communication means 401 and 402
control the transfer of data between the CPU 10A and the
CPU 10B. The CPUs 10A and 10B, which are independent,
can execute processing (programs) in parallel and, at the same
time, can also perform synchronization and cooperation (co-
ordination) between the CPUs 10A and 10B via the inter-
processor communication means 401 and 402. For example,
when the user instructs the execution of additional processing
from the screen of the display, a request to start the additional
processing 23 1s sent from the CPU 10A, which executes the
basic processing 22, to the CPU 10B via the inter-processor
communication means 401 and the additional processing 23
1s executed on the CPU 10B. The CPU 10B sends the execu-
tion result to the CPU 10A via the inter-processor communi-
cation means 402, and the screen control routine of the basic
processing 22 presents the information, which reflects the
execution result of the additional processing 23, to the user.

In this embodiment, 1f an access request 1s made to the
memory 50 and the mput/output device (I/0) 60 during the
execution of the additional processing 23 on the CPU 10B, the
access control means 30 controls the permission of the access
to allow only a permitted access to be executed on the
memory 50 and the mput/output device (I/0) 60. I1 the addi-
tional processing 23 is executed on the OS 21B in the CPU
10B and a processing request 1s 1ssued from the additional
processing 23 to the basic processing 22 or the OS 21A, the
request 1s notified to the CPU 10A wvia the inter-processor
communication means 401. That 1s, the additional processing
23 cannot directly control the basic processing 22. For
example, even 1f the malicious additional processing 23
1ssues a request frequently to place a burden on, and to sig-
nificantly deteriorate the execution performance of, the basic
processing i the CPU 10A side, the inter-processor commu-

US 8,640,194 B2

15

nication means 401 does not transmit such a request to the
CPU 10A side, thereby guarding against the attack and ensur-
Ing security.

In the example shown 1n FIG. 1, the inter-processor com-
munication means 401 controls the information transfer from
the CPU 10B to the CPU 10A and the inter-processor com-
munication means 402 controls the information transfer from
the CPU 10A to the CPU 10B. Alternatively, it 1s of course
possible for one inter-processor communication device to
perform a bi-directional data transfer. In this embodiment,
when inter-CPU communication 1s required among the mul-
tiple CPUs 10A that execute the basic processing 22, inter-
CPU communication 1s performed without using the inter-
processor communication means 40. This also applies to the
multiple CPUs 10B that execute the additional processing 23.
However, when some of the plurality CPUs of the CPU group
10B are dynamically switched as the elements of the CPU

group 10A as will be described later, the CPU group 10B
logically belongs to the CPU group 10A but inter-CPU com-
munication may be performed via the inter-processor com-
munication means 40.

In this embodiment, an application program or a device
driver can be downloaded, installed, and executed as the
additional processing 23. An added device driver 1s included
in the OS 21B and executed on the CPU 10B with the access
to the input/output device 60 controlled under the supervision
ol the access control means 30.

In a portable information communication device such as a
mobile phone or a PDA, the basic processing 22 and the OS
21A, shown 1n FIG. 1, are normally stored in a rewritable
nonvolatile memory (EEPROM: Electrically Programmable
and Erasable ROM) not shown, and the CPU 10A fetches an
instruction code from the EEPROM and decodes the instruc-
tion to execute the nstruction. Similarly, the additional pro-

cessing 23 and the OS 21B are stored in an EEPROM separate
from that of the CPU 10A, and the CPU 10B fetches an
instruction code from the EEPROM and decodes 1t for execu-
tion. That 1s, the memory 1n which the OS 21A 1s stored to
execute the basic processing 22 and the memory in which OS
21B 1s stored to execute the additional processing 23 are
separated between the basic processing side and the addi-
tional processing side on a hardware basis. The instruction
codes of the basic processing and the OS stored i the
EEPROM are executed, while the data such as tables 1nitial-
1zed, referenced, and updated by a program executed 1n the
CPUs 10A and 10B i1s expanded into the memory 50, com-
posed of a DRAM (Dynamic Random Access Memory),

when the OS 1s started. The access control means 30 manages
the memory area, from or into which data 1s read or written by
the CPU 10B, to limit access to the memory area referenced
by the CPU 10A. On a general information processing device
other than a portable information communication terminal, 1t
1s also possible to provide two separate memories: a memory
in which the basic processing 22 and the OS 21A are loaded
and from which the CPU 10A {fetches an instruction code and
a memory in which the additional processing 23 and the OS
21B are loaded and from which the CPU 10B fetches an
istruction code. It 1s also possible to provide two separate
areas, that 1s, the area in which the basic processing 22 and the
OS 21A are loaded and the area in which the additional
processing 23 and the OS 21B are loaded, 1n the memory 50
of a general information processing device and to manage a
read/write access from the CPU 10B to the memory 50 by
means of the access control means 30. In this case, 1t 1s also
possible to store the code, which 1s only referenced by the
CPU 10A and CPU 10B, in the common memory area and to

10

15

20

25

30

35

40

45

50

55

60

65

16

cause the access control means 30 to control access to the
common memory area so that the CPU 10B can only read the
common memory area.

When the remaining capacity of the battery in a portable
information processing device becomes low, the remaining
battery capacity can be saved by forcing the devices, except
the CPU that performs the basic processing, to shut down or
by shutting down one or more CPUs according to the reliabil-
ity of execution processing beginning with those CPUs that
execute less reliable processing. To do so, the CPU that per-
forms the basic processing determines which CPUs to shut
down and shuts them down, based on the information on the
remaining battery capacity obtained by the means that detects
the remaining battery capacity and the means that notifies the
detection result.

Because the resources of a portable information processing,
device, for example, the bandwidth of communication with
external sources or the amount of nonvolatile memory, are
further limited, the relative ratio of resource allocation can be
changed according to the reliability. For example, this 1s done
by causing the CPU, which executes the basic processing, to
determine the following:

Allow resources to be preferentially allocated when the
reliability of processing to be executed 1s high and

Limit resources when the reliability of the processing to be
executed 1s low.

FIG. 2 1s a diagram showing an example of the hardware
configuration of the inter-processor communication means
used in one embodiment of the present invention. Referring to
FIG. 2, a set of an iterrupt control device 41 and a shared
memory 42, provided between the CPUs (CPU that executes
basic processing and CPU that executes additional process-
ing) on the right and left sides, constitutes the inter-processor
communication means 401 and 402 1n FIG. 1 1n 1ts entirety.
The interrupt control device 41 comprises n interrupt control
devices 410-41n corresponding to CPU#0, CPU#1, . . .,
CPU#n, and each interrupt control device comprises an inter-
rupt indication unit 411, an interrupt status holding unit 412,
and an interrupt cancellation unit 413. The shared memory 42
comprises n communication areas 420-42» corresponding to
CPU#0, CPU#L, . .., CPU#n, and each communication area
comprises a communication queue 421 1 which send infor-
mation (data, messages) 1s queued or bulfered and an exclu-
s1on control area 422 used for mutually exclusion control.

For example, assume that the configuration comprises two
CPUs: CPU#0 and CPU#1. In this case, the mterrupt control
device 411 for CPU#1 and the communication area 421 for
CPU#1 constitute the inter-processor communication means

401 from CPU#0 to CPU#1, and the interrupt control device
410 for CPU#0 and the communication arca 420 for CPU#0
constitute the inter-processor communication means 402
tfrom CPU#1 to CPU#0.

The interrupt control device 41 and the shared memory 42
are bus-connected to CPU#0, CPU#1, . . . CPU#n. In the
communication queue 421 1n the shared memory 42, a buffer
pointer (for example, the address of a buffer area in the
memory 50), in which send data 1s stored, may also be set
instead of setting the send data 1tself.

In this embodiment, the exclusion control area 422i of
CPU# 1n the shared memory 42 1s provided for mutually
exclusion control for preventing one CPU from using the
communication area 42i of CPU#1 when another CPU already
occupies the communication area 42i of CPU#1. That 1s, the
exclusion control area 422i of CPU#11s used to store synchro-
nization management information such as a semaphore and a
flag used for mutex.

US 8,640,194 B2

17

The mutually exclusion control mechanism implemented
in the shared memory 42 guarantees data consistency
between the sending CPU and the receiving CPU.

The mutually exclusion control mechanism prevents the
CPU on the sending side from 1ssuing an interrupt request to
the receiving CPU when the exclusion control area 422 1s
locked, thus preventing the generation of an invalid interrupt,
such as frequent data transier from the sending CPU to the
receiving CPU.

The exclusion control area 422 may also be used to perform
the lock management of placing an entry into (enqueue), or
removing an entry from (dequeue), the queue.

If multiple interrupts are allowed to be 1ssued to one recetv-
ing CPU wvia the mterrupt control device 41 1n the configura-
tion shown 1n FIG. 2, multiple communication queues 421
and exclusion control areas 422 are provided in the commu-
nication area of each CPU, one for each interrupt, in the
shared memory 42.

Although not limited thereto, the shared memory 42 may
be a predetermined memory area in the memory 50 shown in
FIG. 1 or may be provided 1n the inter-processor communi-
cation means 40 separately from the memory 50. Although
not shown, the interrupt request lines from the interrupt con-
trol device 410-41» may be connected to the recerving CPU in
parallel (the number of interrupt lines 1s increased) or may be
connected 1n the daisy-chain configuration.

Upon recerving an interrupt request from the interrupt con-
trol device 41, a sequence of control operation described
below 1s executed. The recerving CPU notifies the reception
of the interrupt request to the interrupt control device 41, the
interrupt control device 41 transiers the interrupt device nums-
ber (1interrupt vector information) to a data line not shown, the
receiving CPU generates an interrupt vector from the inter-
rupt device number, the interrupt service routine to be
executed in the recerving CPU 1s started via the scheduler, and
the interrupt service routine acquires data from the commu-
nication queue 1n the corresponding shared memory 42 and
releases (unlocks) the semaphore used for mutex 1n the exclu-
s1on control area to return control from the interrupt.

FIG. 3 1s a diagram showing the operation procedure of the
inter-processor communication means in this embodiment
shown 1 FIG. 2 1in which the procedure for send data from
CPU{#k to CPU#0 1s shown. In FIG. 3, the number beside an
arrow indicates the step number.

Step 1: The sending CPU#k locks the exclusion control
area ol the communication area for CPU#0 1in the shared
memory 42. If the exclusion control area of the communica-
tion area for CPU#0 1n the shared memory 42 indicates that 1t
has been locked by some other CPU, the sending CPU#k
waits until the lock 1s released.

Step 2: After locking the exclusion control area in the
communication area for CPU#0 1n the shared memory 42, the
sending CPU#k writes data, which will be sent to the recerv-
ing CPU#0, in the communication queue 1n the communica-
tion area for CPU#0 1n the shared memory 42.

Step 3: The sending CPU#k sends an interrupt request
notification to the interrupt indication umt of the interrupt
control device for CPU#0 1n the interrupt control device 41.

Step 4: The interrupt indication unit of the interrupt control
device for CPU#0 updates the interrupt status holding unit of
the mterrupt control device for CPU#0 and sets “interrupt
request recerved” therein.

Step 5: The interrupt indication unit of the interrupt control
device for CPU#0 sends an interrupt to the receiving CPU#0.

Step 6: The recerving CPU#0 accepts the interrupt from the
interrupt indication unit of the interrupt control device for
CPU#0 and takes data out from the communication queue 1n

10

15

20

25

30

35

40

45

50

55

60

65

18

the communication are a for CPU#0 1n the shared memory 42.
At this time, the interrupt service routine described above
performs processing in the receiving CPU#0.

Step 7: After acquiring data from the communication
queue 1n the communication area for CPU#0 1n the shared
memory 42, the receiving CPU#0 notifies the interrupt can-
cellation unit of the terrupt control device for CPU#0 that
the interrupt processing 1s completed.

Step 8: The mnterrupt cancellation unit of the interrupt
control device for CPU#0, which has recerved the interrupt
processing completion notification from the receiving
CPU#0, updates the interrupt status holding unit of the inter-
rupt control device for CPU#0.

Step 9: The recerving CPU#0 unlocks the exclusion control
area 1n the communication area for CPU#0 1n the shared
memory 42.

If mterrupt requests are sent intensively to a particular
receiving CPU 1n this embodiment, 1t 1s possible to perform
flow control or bandwidth control, for example, to control the
number of interrupts requests that are sent to the recerving
CPU. That 1s, the QoS guarantee function may be provided 1n
the interrupt control device 41 to prevent the sending CPU
side from sending interrupt requests to the receiving CPU
continuously and {frequently. For example, an interrupt
request that does not involve the passage of data to the rece1v-
ing CPU 1s not exclusively controlled and so such an interrupt
request may be 1ssued continuously. To prevent this, 1t an
interrupt request 1s generated from the sending CPU side
betore the recerving CPU side does not complete the interrupt
processing and the number of “interrupt request recerved”
indications 1n the interrupt status holding unit of the interrupt
control device 41 exceeds a predetermined number, control
may be performed to deny the subsequent interrupt requests
from the sending CPU side. This configuration prevents an
attack that results 1n performance deterioration 1n the receiv-
ing CPU caused by the sending CPU generating a large num-
ber of interrupt requests, each of which 1s not accompanied
with the passage of data to the recerving CPU.

FI1G. 4 1s a diagram showing the configuration of the access
control means 30 1n one embodiment of the present invention
shown 1n FIG. 1. Referring to FIG. 4, the access control
means 30 comprises access permission means 31 that 1s con-
nected via a basic-processing side bus 70A to the CPU 10A
that executes the basic processing (22 in FIG. 1) and 1s con-
nected via an additional-processing side bus 70B to the CPU
10B that executes additional processing (23 1n FIG. 1) and
storage means 1n which access permission data 32 1s stored.

The access permission data 32 can be read and written by
the CPU 10A. The access permission data 32 can only be read
by the access permission means 31. The access permission
data 32 can be neither read nor written by the CPU 10B. That
1s, there 1s no data path between the access permission data 32
and the CPU 10B.

The access permission means 31, based on the access
address s1ignal and the control signal (access command) to the
memory 50 (see FIG. 1), which are transierred on the address
signal line and the control signal line of the additional-pro-
cessing side bus 70B, 1dentifies the access type (read/write)
and then refers to the information 1n the access permission
data 32 to determine whether the access 1s valid. I1 1t 1s found
as a result of the determination that the access 1s 1nvalid, the
access permission means 31 does not send the access address
and the control signal (access command) to the basic-process-
ing side bus 70A to prevent the CPU 10B side from accessing
the basic-processing side bus 70A. In this case, the CPU 10B
side which has sent the access address to the additional-

processing side bus 70B, finds that the access has failed,

US 8,640,194 B2

19

because of an occurrence of a bus error or getting no response
from the memory 50 or the like for the read/write access.

When the mput/output device (I/O) 60 1s a memory
mapped 1/0, the access permission means 31 monitors the
additional-processing side bus 70B. If 1t 1s found that the
access address 1s an address corresponding to the I/0O device
and that an I/O command (read/write) 1s on the data bus, the
access permission means 31 references the information 1n the
access permission data 32 to determine if the access 1s valid.
Even 1f the I/O device 1s not a memory-mapped 1/O, the
access permission means 31 decodes the device number of an
input/output device and the I/O command transferred to the
additional-processing side bus 70B and references the infor-
mation in the access permission data 32 to determine 1f the
access 1s valid.

In this embodiment, the access control means 30 may
turther comprise bandwidth restriction means that controls
the data transfer amount per unit time. For example, the
access control means 30 comprises means that measures and
monitors the amount of data transferred from the CPU 10B to
the additional-processing side bus 70B during the access
operation of the CPU 10B. For example, 11 the number of
bytes of data transferred per unit time exceeds a predeter-
mined threshold value, the data transter from the CPU 10B to
the CPU 10A may be stopped. In this case, even if the CPU
10B finds that the data transfer to the CPU 10A has failed and
retries t h e data transier, the access control means 30 does not
transfer data from the CPU 10B to the CPU 10A. Alterna-

tively, the access control means 30 may further comprises a
bufter to allow data, transterred from the CPU 10B to the
additional-processing side bus 70B, to be accumulated 1n the
buflfer to control the flow amount of data transferred to the
CPU 10A.

FIG. 5 1s a diagram showing an example of the access
permission data 32 in one embodiment of the present inven-
tion. Referring to FIG. 5, the access permission data contains
the following data 1n the tabular format: CPU that executes
additional processing (CPU connected to the additional-pro-
cessing side bus in FIG. 4), permission range address com-
posed of the start address and the end address of the range in
which access 1s permitted, and type of permitted access (read,
read/write, write). Note that the permission range addresses
may overlap between different CPUs. In the example shown
in FI1G. 5, the permission range address of CPU#2 and CPU#3
in the second row 1s 0xC000000 to OxFO00000 and the access
type 1s read/write (R/W) indicating that data may be read and
written, and the permission range address of CPU#3 in the
third row 1s OxE000000 to OxF000000 which overlaps with
that in the second row. As the number of pieces of address
permission data, that 1s, the number of table entries, increases,
the access control becomes finer. Although R (read enabled),
W (write enabled), and R/W (read/write enabled) are shown
in FIG. 5 for the sake of description, R/W 1s not necessary
when R (read enabled) means that only the read operation 1s
ecnabled but the write operation 1s disabled and W means that
the write operation 1s enabled (the read operation 1s also
enabled). An address range 1n which read 1s disabled (write 1s
also disabled) 1s not stored 1n the access permission data 32.
Although the access permission data in the example in FIG. 5
includes the address range and the access type for each of
access-permitted CPUs, the access permission data may fur-
ther include another access type, that 1s, access inhibition
information, for storing an address range which cannot be
accessed by a CPU that executes additional processing.

The access permission means 31 1 FIG. 4 receives an
access request (address, read/write command) from the CPU
on the additional-processing side, references the permission

10

15

20

25

30

35

40

45

50

55

60

65

20

range address and the access type stored 1n the access permis-
siondata 32 and, 11 the access 1s permitted, permits the access.
On the other hand, 1f the access 1s not permitted, the access
permission means 31 inhibits the access. In the example
shown 1n FIG. 5§, CPU#4 can access the range from the start
address 1000 to the end address 2000 (hexadecimal) and the
access type 1s read (R). CPU#2 and CPU#3 can access the
range from the start address 0xC000000 to the end address
0xF000000 (hexadecimal) and the access type 1s read/write
(R/'W). CPU#3 can access the range from the start address
0xE000000 to the end address OxF000000 (hexadecimal) and
the access type 1s write (W).

FIG. 6 1s a diagram showing an example of the operation of
the access control means 30 1n FIG. 4. In FIG. 6, the number
beside an arrow indicates the step number.

Step 1: The CPU 10A, which executes basic processing,
stores mformation 1n the access permission data 32 of the
access control means 30 to inhibit the CPU 10B, which
executes all additional processing, from reading data from an
address range.

Step 2: Assume that the CPU 10B executes the additional
processing 23 and 1ssues a read request to read data from the
address range for which read 1s inhibited.

Step 3: The access permission means 31 reads the access
permission data 32 to check 11 the access request 1s valid.

Step 4: The access permission means 31 returns an error to
the CPU 10B. This 1s because the CPU 10B 1s inhibited from
reading data from the address range.

Step 5: The CPU 10B 1ssues a read request to read data
from a range different from the address range described
above.

Step 6: The access permission means 31 reads the access
permission data 32 for checking the read request.

Step 7: The access permission means 31 permits the read
access request from the CPU 10B and 1ssues the request to the
basic-processing side bus 70A as a read request.

In the example 1n this embodiment, the access control
means 30 comprises the access permission means 31 and the
access permission data 32 and, based on the access permis-
s1on information, performs access control. The present inven-
tion 1s not limited only to this configuration. With the change
(1nversion) of access permission data, there may be provided
access rejection data and access rejection means. In this case,
il an access address sent from the CPU 10B that executes
additional processing matches access rejection data, that is,
an address range for which access rejection 1s defined, the
access rejection means rejects the access.

As a modification of this embodiment, the access permis-
sion means 31 may have a cache. In this case, the access
addresses and access permission data used for checking the
validity of access are stored in the cache. In the next and the
tollowing access control checking, a check 1s made to see 1f
the access permission data on the access addresses (access
range) 1s stored 1n the cache and, 1f a cache hit occurs, the data
in the cache 1s used to speed the access validity check. The
cache comprises a tag address and access permission data
corresponding to the range of accessed addresses and further
comprises the cache hit checking circuit that checks whether
the access address specified by the additional-processing side
bus 70B hits an entry 1n the cache.

As another modification of this embodiment, the access
control means may comprise new access permission data 33
and access permission data update means 34 as shown 1n FIG.
26. Reterring to FIG. 26, the access control means 30 further
comprises the access permission data update means 34, con-
nected to the basic-processing side bus 70A, and storage
means, 1n which the new access permission data 33 1s stored,

US 8,640,194 B2

21

in addition to the embodiment shown in FIG. 4. The following
describes the function of those two means 1n detail.

The new access permission data 33, similar in the charac-
teristics to the access permission data 32 shown 1n FIG. 4, 1s
storage means from which only the access permission data
update means 34 can read data.

In response to a request from the CPU 10A via the basic-
processing side bus 70A, the access permission data update
means 34 writes the contents of the new access permission
data 33 atomically over the new access permission data 34.

In this embodiment, means may also be provided, not for
updating the access permission data, but for switching to the
new access permission data.

This configuration allows the CPU to update the access
permission data 32 by atomically rewriting 1it, thus enabling
the area that i1s protected and limited by the access control
means to be changed dynamically.

FI1G. 27 1s a diagram showing another configuration of the
access control means 30 1n one embodiment of the present
invention. Referring to FIG. 27, this access control means 30
turther comprises access monitoring means 33 and learning
means 36, connected to the additional-processing side bus
70B, 1n addition to those components 1 the embodiment
shown 1n FI1G. 4. The following describes the function of this
means 1n detail.

The access monitoring means 33 acquires access informa-
tion from the CPU 10B via the additional-processing side bus
70B 1n the same way the access permission means 31.

The learning means 36 stores access information provided
by the access monitoring means 35. The learning means 36
checks 11 the reference 1s valid based on the access informa-
tion. For example, the learning means 36 counts the number
of references to the user protection data and, 11 the predeter-
mined threshold 1s exceeded, determines that an abnormal
condition has occurred and notifies the access monitoring
means 35 about it to dynamically change the access permis-
sion data 32 according to the predetermined rule. Alterna-
tively, the learning means 36 may send a notification to the
CPU 10A, connected to the basic-processing side bus 70A, to
start abnormal-time processing.

This configuration allows the operation history informa-
tion on the CPU, which 1s considered less reliable, to be
accumulated based on the actually referenced patterns and
autonomously limits the access. Therefore, the execution can
be controlled more safely based on the CPU operation status
in the actual operation.

Furthermore, another configuration of the access control
means 1s also possible in which the access control means
comprises all new means described above, that 1s, new access
control means, access permission update means, access
monitoring means, and learning means, 1n addition to the
components 1n the configuration shown 1n FIG. 4.

FIG. 7 1s a diagram showing the configuration of another
embodiment of the present invention. Referring to FI1G. 7, this
embodiment has another set of software, an OS, and CPUs on
the additional-processing side that 1s added to the configura-
tion shown 1n FIG. 1. That 1s, a CPU 10C on the second
additional-processing side communicates with a CPU 10B
for the first additional processing via inter-processor comimu-
nication means. The CPU 10C on the second additional-
processing side 1s connected to a basic-processing side bus
70A via second access control means 302. In the software
20C, there may well have be provided one or plural items of
additional processing (23C) and one or plurality of OSs
(21C).

The setting of the access control means 301 and 302 1s set
up by a CPU 10A that executes basic processing 22. That 1s,

10

15

20

25

30

35

40

45

50

55

60

65

22

the CPU 10A that executes the basic processing 22 functions
as a master processor. The CPU 10A integrally manages a
memory 50 and an mput/output device (1/0) 60.

The CPU 10C that executes second additional processing,
23C communicates with (sends data and commands to) the
CPU 10B that executes first additional processing 23B via an
inter-processor communication means 403; similarly, the
CPU 10B that executes the first additional processing 23B
communicates with (sends data and commands to) the CPU

10A that executes basic processing 22 via an inter-processor
communication means 401. The CPU 10C that executes the
second additional processing 23C makes only permitted
access to the memory 50 and the input/output device (1/0) 60
under the supervision of the second access control means
302; similarly, the CPU 10B that executes the first additional
processing 23B makes only permitted access to the memory
50 and the mput/output device (1/0) 60 under the supervision
of the first access control means 301. The access permission

data of the first access control means 301 and the second
access control means 302 1s all set by the CPU 10A. This
configuration makes the integrated management possible and
allows processing to be passed among CPUs via the inter-
processor communication means 40. This embodiment also
avoids a direct attack from the additional processing 23B and
23C to the CPU 10A that executes the basic processing 22.
That 1s, as 1n the embodiment described above, the additional
processing 23B and 23C can neither directly invoke the basic
processing 22 nor call i1t as a subroutine. For example, a
request to invoke the basic processing 22 1s transierred from
the CPU 10C, via the CPU 10B, to the CPU 10A wvia the
inter-processor communication means. If the request 1s sent
from a CPU that has no authority, the CPU 10A recerves the
request but does not accept it (This will be described 1n detail
in the example of the software). In this way, with the hierarchy
being provided 1n privileges for the CPUs on the additional-
processing side and the CPU on the basic-processing side and
the hardware mechanism, such as the iter-processor com-
munication means 40 and the access control means 30, a
direct attack to the basic processing can be avoided. Because
the inter-processor communication means 401-404 in this
embodiment have the configuration similar to the configura-
tion of the above embodiment shown 1n FIG. 2 and the access
control means 301 and 302 have the configuration similar to
that of the above embodiment shown 1n FIG. 4, the descrip-
tion of the detailed configuration and operation 1s omitted.

FIG. 8 1s a diagram showing the configuration of another
embodiment of the present invention. Referring to FIG. 8, this
embodiment has a configuration, similar to that shown 1n FIG.
7. 1n which a CPU 10C and access control means 302 on the
additional-processing side are provided in addition to the
components 1n the configuration shown i FIG. 1. This
embodiment 1s different from the embodiment shown in FIG.
7 1n that a memory and an mput/output device (I/O) are
provided for each set (domain) of the CPU groups. The sec-
ond additional-processing CPU 10C can freely access a per-
mitted memory 50C and an input/output device (I/O) 60C
with no access limitation. A first additional-processing CPU
10B can access a permitted memory 50B and an input/output
device (1/0) 60B with no access limitation.

Access from the CPU 10C on the second additional pro-
cessing side to a memory 50A and an mput/output device
(I/0) 60A on the basic-processing side 1s controlled in the
two-stage configuration, that is, via the second access control
means 302 and the first access control means 301.

The permission of access from the CPU 10B on the first
additional-processing side to the memory S0A and the mput/

US 8,640,194 B2

23

output device (I/O) 60A on the basic-processing side 1s deter-
mined by the first access control means 301.

The access permission data of the first access control
means 301 and the access permission data of the second
access control means 302 are set by the CPU 10A that
executes the basic processing. The access permission data of
the second access control means 302 may also be set by the
CPU 10B that executes the first additional processing. This
embodiment provides a memory and an I/O device (1/0)
separately on a domain basis and connects the CPUs 1n mul-
tiple stages via the inter-processor communication means 40
to 1ncrease the function of protection against an attack by the
additional processing and thus guarantee security.

FIG. 28 1s a diagram showing an example 1n which one
embodiment of the present invention shown i FIG. 1 1s
implemented on two or more chips. Referring to FIG. 28,
multiple combinations of the CPUs 10A, 10B, 10C, and 10D
and the access control means 301 1n one embodiment of the
present invention are arranged and, 1n addition, the chips are
connected by access control means 303.

Some CPUs on one chip may be used for executing the
basic processing to allow the access control means on one
chip to limit access or at least some CPUs on each chip may
be used for executing the basic processing.

It 1s also possible to configure domains across different
chips and to control the execution by means of the access
control means between the chips.

In either case, the appropriate setup of the access control
means allows the execution control of the present invention to
be implemented even among multiple chips.

The embodiments described above primarily describe the
hardware configuration of the present invention. The follow-
ing describes the software configuration of the present mnven-
tion.

FIG. 9 1s a diagram showing an example of the software
configuration of the present mvention in which three
domains, that 1s, basic domain, trusted extension domain, and
untrusted extension domain, are provided. The hardware con-
figuration 1 FIG. 9 1s a configuration comprising three
groups of CPU, such as that shown 1n FIG. 8. In this case, the
basic domain that has an execution environment 1n which
basic processing 1s executed corresponds to the software 20A
and OS 21A 1n FIG. 8, the trusted extension domain corre-
sponds to the software 20B and OS 21B 1n FIG. 8, and the
untrusted extension domain corresponds to the software 20C
and OS 21C 1n FIG. 8.

Referring to FI1G. 9, a basic domain 100A comprises basic
software 110 that includes a basic application program
(termed “basic application”) 111 and a basic function 112, an
OS 101A, a dedicated file system 103, and an external device
102A and further comprises a native code download manage-
ment function 104A and a secunity policy database 103.
Although not limited thereto, the basic function 112 1mple-
ments the basic function of a portable information commu-
nication terminal, such as call processing including call 1ssu-
ance and reception processing, Internet access, and screen
processing, when the imformation communication device in
this embodiment 1s a portable information communication
terminal, and this basic function corresponds to the basic
processing 22 in FIG. 1. The basic application 111 calls the
basic function 112 for processing, and the basic function 112
accesses the file system and the external device via the OS.
The external device includes the communication interface
such as the wireless communication interface, the display
interface, the input interface such as keys and a pointing
device, the SD (Secure Digital) memory card interface, and
the sound interface. In the basic domain 110A, there may well

5

10

15

20

25

30

35

40

45

50

55

60

65

24

be provided one or plurality of OSs (101 A), one or plurality of
dedicated file systems (103) and one or plurality of external
devices (102A). In the basic software 110, there may well be
provided one or a plurality of basic applications (111) and one
or plural basic functions (112). The same 1s true for another
embodiments described below.

A trusted extension domain 100B comprises a native code
download execution function 104B, a downloaded applica-
tion program (termed “download application™) 120B, a basic
function library (wrapper) 113, an OS 101B, and a permaitted
external device 102B.

The OS 101B includes a downloaded driver 121B with a
certificate. The downloaded driver 121B with a certificate
controls the input/output of the permitted external device
102B. In the trusted extension domain 110B, there may well
be provided one or plurality of OSs (101B), one or plurality of
permitted external devices (102B), one or a plurality of basic
function libraries (113), and one or a plurality of download
applications (120C). The s am ¢ 1s true for another embodi-
ments described below.

An untrusted extension domain 100C comprises a native
code download execution function 104C, a downloaded
application 120C, an OS 101C, and a permitted external
device 102C. A downloaded driver 121C embedded in the OS
101C controls the mput/output of the permitted external
device 102C. In the untrusted extension domain 110C, there
may well be provided one or plurality of OSs (101C), one or
plurality of permitted external devices (102C), and one or a
plurality of download applications (120C). The same 1s true
for another embodiments described below.

The native code download management function 104A
references the contents of the security policy database 105 to
check a file that 1s mnput and downloaded from the external
device 102 A of the basic domain 100A. Then, the native code
download management function 104A transfers a trusted
(with trusted electronic certificate) native code application to
the trusted extension domain 100B and includes a trusted
(with trusted electronic certificate) native code downloaded
driver 121B 1nto the OS 101B.

The native code download management function 104A
transiers an untrusted (for example, without electronic cer-
tificate or certificate with incorrect contents) application to
the untrusted extension domain 100C via the trusted exten-
sion domain 100B, and includes an untrusted (without cer-
tificate) downloaded driver into the OS 101C of the untrusted
extension domain.

The basic function 112 can be called from the trusted
extension domain 100B but not from the untrusted extension
domain 100C. It 1s possible for the untrusted extension
domain 100C and the trusted extension domain 100B to work
together.

An application program running in the trusted domain
passes data, recetved from the untrusted domain, to the basic
function 112 only 1 the user confirms 1t (OK). The application
program does not pass data, received from the untrusted
domain, to the basic function 112 without user confirmation.
Note that a processing request cannot be 1ssued from the
trusted extension domain 100B directly to the basic function
112 of the basic domain 100A.

FIG. 10 1s a diagram showing the operation of one embodi-
ment of the present invention shown 1n FIG. 9 and showing
the execution of the basic application. In FIG. 10, the number
beside an arrow indicates the step number of information
transier corresponding to the line.

Step 1: The basic application 111 1n the basic domain 100 A
1ssues a processing request (for example, addition of data to
an address book) to the basic function 112.

US 8,640,194 B2

25

Step 2: The basic function 112 processes the request using
OS 101A.

Step 3: The basic function 112 notifies the basic application
111 whether the request 1s processed successtully.

FI1G. 11 1s a diagram showing the operation of one embodi-
ment of the present invention shown 1n FIG. 9 and showing
how a trusted application 1s downloaded. In FIG. 11, the
number beside an arrow indicates the step number of 1nfor-
mation transfer corresponding to the line.

Step 1: Downloaded data arrives from the external device
102A (network, SD card memory, etc) in the basic domain
100A to the OS 101A.

Step 2: The downloaded data 1s recognized by the basic
function 112 as an additional application (downloaded appli-
cation) based on the information such as the attribute infor-
mation.

Step 3: The basic Tunction 112 passes the additional appli-
cation to the native code download management function
104 A, and the native code download management function
104 A references the security policy database 103 to check the
clectronic certificate attached to the additional application.
As described above, the electronic certificate stores a public
key and a digital signature (generated by encrypting the cer-
tifying organization or the public key with the private key).
When the native code download management function 104A
authenticates the certificate, 1t decrypts the digital signature
with the public key and checks i1 the decrypted data matches
the content of data 1n the certificate and, 1f they match, deter-
mines that the data in the certificate 1s trusted. In addition, by
providing a digital signature composed of the digest of the
application, it 1s possible to check whether or not the down-
loaded application 1s altered.

Step 4: The native code download management function
104A saves the electronic certificate and the downloaded
information in the security policy database 103.

Step 5: If the checking result of the electronic certificate
indicates that 1t 1s valid, the native code download manage-
ment function 104A in the basic domain 100A sends the
downloaded application to the native code download execu-
tion function 104B 1n the trusted extension domain 100B and
requests 1t to execute the downloaded application. The trans-
mission of data from the native code download management
function 104 A 1n the basic domain 100A to the native code
download execution function 104B 1n the trusted extension
domain 1008 1s performed by the inter-processor communi-
cation means 40 shown 1n FIG. 7 or FIG. 8.

Step 6: The native code download execution function 1048
in the trusted extension domain 100B controls the operation
so that the received downloaded application 1s executed.

Step 7: The downloaded application 1s executed in the
trusted extension domain.

FI1G. 12 1s a diagram showing the operation of one embodi-
ment of the present invention shown 1n FIG. 9 and showing
the download execution of a trusted driver. A trusted driver
refers to a driver whose electronic certificate, attached to the
downloaded driver, 1s successtully checked. In FIG. 12, the
number beside an arrow indicates the step number of 1nfor-
mation transier corresponding to the line.

Step 1: The downloaded data arrives from the external
device 102A (network or SD card) in the basic domain 100A
to the OS 101A.

Step 2: The basic function 112 recognizes that the down-
loaded data 1s an additional device driver (downloaded driver)
based on attribute information, the automatic installation
information, and so on.

Step 3: The basic function 112 passes the received driver to
the native code download management function 104A. The

10

15

20

25

30

35

40

45

50

55

60

65

26

native code download management function 104 A references
the security policy database 105 to check the electronic cer-
tificate attached to the downloaded data.

Step 4: The native code download management function
104 A saves the electronic certificate and the downloaded
information in the security policy database 103.

Step 5: The native code download management function
104 A sends the downloaded driver to the native code down-
load execution function 104B 1n the trusted extension domain
and requests 1t to execute the installation. The transmission of
data from the native code download management function
104 A 1n the basic domain 100A to the native code download
execution function 104B 1n the trusted extension domain
1008 1s performed by the inter-processor communication

means 40 shown 1n FIG. 7 or FIG. 8.

Step 6: The native code download execution function 104B
in the trusted extension domain automatically installs the
received downloaded driver. Although not limited thereto, the

downloaded driver in this embodiment may be a resident-type
driver that 1s installed and, after the CPU 1s restarted, included
into an area of the OS 101B.

Step 7: The OS 101B in the trusted extension domain
notifies an already-executed application that the downloaded
driver 1s 1stalled or displays a message about 1t.

Step 8: In the trusted extension domain, the already-ex-

ecuted application 120B references the downloaded driver
121B that 1s installed.

Step 9: The downloaded driver 121B, installed 1n the OS
101B 1n the trusted extension domain and loaded, accesses
the permitted external device 102B.

Step 10: The downloaded driver 121B returns data,
received from the external device 102B, to the downloaded
application program 120B.

FIG. 13 1s a diagram showing the operation of one embodi-
ment of the present invention shown 1n FIG. 9 and showing
the operation performed when a trusted application (down-
loaded application) 1n the trusted extension domain uses the
basic function in the basic domain. In FIG. 13, the number
beside an arrow indicates the step number ol information
transier corresponding to the line.

Step 1: In the trusted extension domain 100B, the down-
loaded application 120B requests the basic function library
113 to perform the basic function 112 in the basic domain
100A. The basic function library 113, a library 1n which a
collection of the routines for executing the processing of the
basic function 112 in the basic domain 100A 1s stored, 1s
started by the downloaded application 120B.

Step 2: The basic function library 113 1n the trusted exten-
sion domain 100B uses the key (public key) of the electronic
certificate held by the downloaded application 120B to
encrypt the request and sends the encrypted request to the
native code download management function 104A 1n the
basic domain 100A. The transmission of the request from the
basic function library 113 1n the trusted extension domain
100B to the native code download management function
104 A 1n the basic domain 100A 1s performed by the inter-
processor communication means 40 shown 1n FIG. 7 or FIG.
8.

Step 3: The native code download management function
104 A 1n the basic domain 100 A decrypts the received request
and, using the electronic certificate, checks i the request
source of the request 1s valid. Although the request 1s checked
using the encryption and decryption of the request in this
example, 1t 1s of course possible to use any method that
coniirms the correspondence between the application and the
clectronic certificate.

US 8,640,194 B2

27

Step 4: 11 the checking result of the request indicates that
the request 1s valid, the native code download management
tfunction 104 A 1n the basic domain 100A sends the request to
the basic function 112.

Step 5: The basic function 112 in the basic domain 100A

processes the request passed from the native code download
management function 104 A and, after the processing 1s com-
pleted, notifies the native code download management func-
tion 104 A 1n the basic domain 100A that the processing 1s
completed.

Step 6: The native code download management function
104A 1n the basic domain 100A notifies the basic function
library 113 1n the trusted extension domain 100B that the
processing 1s completed. The transmission of the notification
from the native code download management function 104A
in the basic domain 100A to the basic function library 113 1n
the trusted extension domain 100B 1s performed by the inter-

processor communication means 40 shown in FIG. 7 or FIG.
8.

Step 7: The basic function library 113 in the trusted exten-
sion domain notifies the downloaded application 120B, as a
response to the request, that the processing 1s completed.

FIG. 14 1s a diagram for explaining the operation of one
embodiment of the present invention shown in FIG. 9 and
showing the execution procedure for downloading an
untrusted application 1n the untrusted extension domain. In
FIG. 14, the number beside an arrow indicates the step num-
ber of mnformation transier corresponding to the line.

Step 1: Downloaded data arrives from the external device

102A (network or SD card) 1n the basic domain 100A to the
OS 101A.

Step 2: The basic function 112 in the basic domain 100A
analyzes the attribute information and so on and recognizes
the downloaded data as an application (downloaded applica-
tion).

Step 3: The basic function 112 in the basic domain 100A
passes the downloaded application to the native code down-
load management function 104 A. The native code download
management function 104A finds that no electronic certifi-
cate 1s attached to the application or that the electronic cer-
tificate 1s mvalid.

Step 4: The native code download management function
104 A 1n the basic domain 100A saves the downloaded infor-
mation in the security policy database 105.

Step 5: The native code download management function
104 A 1n the basic domain 100A sends the downloaded appli-
cation to the native code download execution function 1048
in the trusted extension domain. The transmission of the
application from the native code download management
tfunction 104 A 1n the basic domain 100A to the native code
download execution function 104B 1n the trusted extension
domain 1s performed by the inter-processor communication
means 40 shown 1n FIG. 7 or FIG. 8.

Step 6: The native code download execution function 104B
in the trusted extension domain 100B sends the application to
the native code download execution function 104C 1n the
untrusted extension domain 100C and requests it to execute
the application. The transmission of the application from the
native code download execution function 104B 1n the trusted
extension domain 100B to the native code download execu-
tion function 104C 1n the untrusted extension domain 100C 1s
performed by the inter-processor communication means 40
shown in FIG. 7 or FIG. 8.

Step 7: The native code download execution function 104C
in the untrusted extension domain 1nvokes the recerved down-
loaded application 120C.

10

15

20

25

30

35

40

45

50

55

60

65

28

Step 8: The downloaded application 120C starts the opera-
tion 1n the untrusted extension domain 100C. In this case, the
downloaded application 120C 1n the untrusted extension
domain operates on the OS 101C in the untrusted extension
domain and 1s permitted access only to the permitted external
C

evice 102C.

FIG. 15 1s a diagram for explaining the operation of one
embodiment of the present invention shown in FIG. 9 and
showing the download execution of an untrusted driver. In
FIG. 15, the number beside an arrow 1ndicates the step num-
ber of information transier corresponding to the line.

Step 1: Downloaded data arrives from the external device
102A (network or SD card) 1n the basic domain 100A to the
OS 101A.

Step 2: The basic function 112, which 1s invoked when the
downloaded data arrives, analyzes the download data such as
the attribute information, installation information, and so on
and recognizes the data as a device driver (downloaded
driver).

Step 3: The basic function 112 passes the downloaded
driver to the native code download management function
104 A, and the native code download management function
104 A finds that no electronic certificate 1s attached to the
downloaded driver or that the electronic certificate 1s attached
but the content of the electronic certificate 1s invalid.

Step 4: The native code download management function
104 A 1n the basic domain 100A saves only the download
information in the security policy database 103.

Step 5: The native code download management function
104 A sends the downloaded driver to the native code down-
load execution function 104B 1n the trusted extension domain
100B. The transmission of the downloaded driver from the
native code download management function 104A to the
native code download execution function 104B 1n the trusted
extension domain 100B 1s performed by the inter-processor
communication means 40 shown in FIG. 7 or FIG. 8.

Step 6: The native code download execution function 1048
in the trusted extension domain 100B transiers the recerved
downloaded driver to the native code download execution
function 104C in the untrusted extension domain 100C. The
transier of the downloaded driver from the native code down-
load execution function 104B 1n the trusted extension domain
100B to the native code download execution function 104C 1n

the untrusted extension domain 100C 1s performed by the
inter-processor communication means 40 shown in FIG. 7 or
FIG. 8.

Step 7: The native code download execution function 104C
in the untrusted extension domain 100C installs the recerved
downloaded driver 121C.

Step 8: The OS 101C notifies an application 120C, which
was already executed, that the driver 121C 1s installed or
displays a message about 1t (notifies the user).

Step 9: In the untrusted extension domain 100C, the appli-
cation 120C, which was already executed, references the
downloaded driver 121C that 1s 1nstalled.

Step 10: In the untrusted extension domain 100C, the
downloaded driver 121C, which 1s installed, accesses the
permitted external device 102C via the OS 101C 1n the
untrusted extension domain.

Step 11: In the untrusted extension domain 100C, the
downloaded driver 121C returns data, acquired from the
external device 102C, to the downloaded application 120C.

FIG. 16 1s a diagram for explaining the operation of one
embodiment of the present invention shown i FIG. 9 and
showing the cooperation between a trusted application and an

US 8,640,194 B2

29

untrusted application. In FIG. 16, the number beside an arrow
indicates the step number of information transier correspond-
ing to the line.

Step 1: The downloaded application 120C 1n the untrusted
extension domain 100C sends data to the downloaded appli-
cation 120B 1n the trusted extension domain 100B. The trans-

mission of this data 1s performed usually by the inter-proces-
sor communication means 40 shown 1n FIG. 7 or FIG. 8.

Step 2: The downloaded application 120B 1n the trusted
extension domain 100B performs processing using the
received data and requests the basic function library 113 to
perform the basic function processing including information
associated with the untrusted extension domain.

Step 3: The basic function library 113 1n the trusted exten-
sion domain 100B encrypts the request using the electronic
certificate held by the application and sends the encrypted
request to the native code download management function
104A 1n the basic domain 100A. The transmission of this

request 1s performed usually by the inter-processor commu-
nication means 40 shown in FI1G. 7 or FIG. 8.

Step 4: The native code download management function
104A 1n the basic domain 100A decrypts the request and
checks the completeness of the request using the electronic
certificate stored 1n the security policy database 105. If the
result of checking indicates that the request 1s valid, the native
code download management function 104 A requests the user
to confirm 1t via the basic application 111. The basic appli-
cation 111 includes a screen display/entry application.
Although the encryption and decryption of the request are
used 1n this example to check the correspondence between the
application and the electronic certificate, 1t 1s ol course pos-
sible to use any method as long as the correspondence
between the application and the electronic certificate can be
checked.

Step 5: Assume that ‘NO’ 1s entered as a confirmation
response from the user.

Step 6: The native code download management function
104 A notifies the basic function library 113 in the trusted
extension domain 100B that the request was not permitted.
This no-permission notification 1s usually sent by the inter-
processor communication means 40 shown 1n FIG. 7 or FIG.
8.

Step 7: The basic function library 113 sends the no-permis-
s1on notification to the downloaded application 120B.

Step 8: The downloaded application 120B 1n the trusted
extension domain 100B sends the no-permission notification
to the downloaded application 120C 1n the untrusted exten-
sion domain 100C. This no-permission notification 1s sent
usually by the inter-processor communication means 40
shown in FIG. 7 or FIG. 8.

FI1G. 17 1s a diagram showing the operation of one embodi-
ment of the present invention shown 1n FIG. 9 and showing
the cooperation between a trusted application and an
untrusted application. In FIG. 17, the number beside an arrow
indicates the step number of information transfer correspond-
ing to the line.

Step 1: The downloaded application 120C 1n the untrusted
extension domain 100C sends data to the downloaded appli-
cation 120B 1n the trusted extension domain 100B. The trans-
mission of this data 1s performed by the inter-processor com-
munication means shown i FIG. 7 or FIG. 8.

Step 2: The downloaded application 120B in the trusted
extension domain 100B performs processing using the
received data and requests the basic function library 113 to
perform the basic function processing including the informa-
tion associated with the untrusted.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

Step 3: The basic function library 113 in the trusted exten-
sion domain 100B encrypts the request using the electronic
certificate held by the application 120B and sends the
encrypted request to the native code download management
function 104A 1n the basic domain 100A. This request 1s
made usually by the inter-processor communication means
40 shown 1n FIG. 7 or FIG. 8.

Step 4: The native code download management function
104 A 1n the basic domain 100A decrypts the request and
checks the completeness of the request using the electronic
certificate stored 1n the security policy database 105. If the
result of checking indicates that the request 1s valid, the native
code download management function 104 A requests the user
to confirm it via the basic application 111. Although the
encryption and decryption of the request are used in this
example to check the correspondence between the applica-
tion and the electronic certificate, 1t 1s of course possible to
use any method as long as the correspondence between the
application and the electronic certificate can be checked.

Step 5: In this case, “YES’ 1s entered as a confirmation
response from the user.

Step 6: The native code download management function
104 A 1n the basic domain 100A requests the basic function
112 to process the request.

Step 7: The basic function 112 processes the request and
notifies the native code download management function
104 A that the processing 1s completed.

Step 8: The native code download management function
104 A 1n the basic domain 100A notifies the basic function
library 113 1n the trusted extension domain 100B that the
processing 1s completed. This completion notification 1s sent
usually by the inter-processor communication means 40
shown 1n FIG. 7 or FIG. 8.

Step 9: The basic function library 113 1n the trusted exten-
sion domain 100B notifies the downloaded application 120B
that the processing 1s completed.

Step 10: The downloaded application 120B 1n the trusted
extension domain 100B notifies the downloaded application
120C 1n the untrusted extension domain 100C that the pro-
cessing 1s completed. This completion notification 1s sent
usually by the mter-processor communication means 40
shown 1n FIG. 7 or FIG. 8.

FIG. 18 1s a diagram showing the configuration of still
another embodiment of the present invention. A virtual
machine monitor (soitware layer provided between an OS
and a CPU for execution by the CPU) 1s provided between an
OS and a CPU. This makes the CPU, I/O, and memory
resources virtual. A virtual machine monitor maps virtual
hardware (for example, virtual mput/output device) to real
hardware devices between an OS and a CPU. For each of the
basic domain, the trusted extension domain, and the untrusted
extension domain, the OS controls the mnput/output (I/0) to or

from a virtual dedicated file system and a virtual external
device, and a virtual CPU200A, 200B, and 200C and a virtual

machine monitor 210A, 210B, and 210C are provided
between the OS and the CPU to map a virtual dedicated file
system 103' and a virtual external device 102A’, 102B', and
102C' to the corresponding real file system and a real external
device.

According to this embodiment, the hardware configuration
and the software configuration are different from those 1n
FIG. 8 and FIG. 9. In this embodiment, a virtual CPU corre-
sponding to the basic domain 1s not fixed but, for example, a
CPU 1n the trusted extension domain may be mapped as a
virtual CPU 1n the basic domain. The implementation of a
virtual machine monitor does not require the modification of
the existing OS, application programs, and CPUs. According

US 8,640,194 B2

31

to this configuration, the number of CPUs 1n each domain 1s
variable and they constitute virtual CPUs. The soitware con-
figuration, composed of the basic domain, trusted extension
domain, and untrusted extension domain, 1s the same as the
configuration shown 1n FIG. 9 except that the devices and the
file system are virtual devices and a virtual file system.

FI1G. 19 1s a diagram showing an example of the processing,
procedure for the embodiment shown 1 FIG. 18. In FIG. 19,
the number beside an arrow 1ndicates the step number.

Step 1: The virtual machine monitor 210A 1n the basic
domain 100A requests the virtual machine monitor 210B 1n
the trusted extension domain 100B to transfer a CPU.

Step 2: The virtual machine monitor 210B 1n the trusted
extension domain 100B reduces the virtual CPU resources.

Step 3: The virtual machine monitor 210B 1n the trusted
extension domain 100B notifies the virtual machine monitor
210A on the CPU 1n the basic domain 100A about the trans-
terable CPU.

Step 4: The virtual machine monitor 210A 1n the basic
domain 100A sets the access control means to increase the
number of virtual CPUs.

According to this embodiment, a CPU 1n another group can
be operated as 1f 1t was a CPU 1n the basic domain. The
download processing of an application 1s the same as that 1n
the embodiments described above (FI1G. 10 to FIG. 18) and so
the description 1s omitted.

As a modification of this embodiment, a virtual machine
monitor may be operated 1n the secure mode. Doing so further
Increases security.

When the CPU group 1n each domain operates as a multi-
processor 1n the embodiments of the software described
above, the channels that work together on a hardware basis,
for example, a shootdown for flushing all entries of the TLB
(Translation Lookaside Builler; address translation table pre-
pared 1n the address management unit) for invalidating a bus
and a virtual multiprocessor for maintaining cache coher-
ence, are configured so that they can all be controlled from the
basic domain 100A. Alternatively, as shown 1n FIG. 20, the
CPU group (for example, multi-CPU groups 10A and 10B 1n
the multiprocessor configuration in FIG. 1) of each domain
may be configured so that the group can be separated by
separation means 15 into multiple CPUs. This makes the
transier of a CPU from one domain to another more easily and
makes 1t possible to 1solate a failing multiprocessor (gracetul
degrading).

Although an information communication terminal device,
in which additional processing (application, device driver) 1s
downloaded from a source (for example, network) external to
the device for execution therein, 1s described 1n the embodi-
ments described above, the present invention 1s not limited to
such an information communication terminal device but may
be applied to any information communication device. While
the present invention has been described with reference to the
embodiments above, 1t 1s to be understood that the present
invention 1s not limited to the configuration of the embodi-
ments above and that modifications and changes that may be
made by those skilled 1n the art within the scope of the present
invention are included.

The mvention claimed 1s:

1. An information processing device comprising:

one or more computers comprising:

one or more first processors, each belonging to a first

domain and each configured to execute a first processing
which has a first trust level set according to a security
policy;

one or more second processor processors, each belonging

to a second domain different from the said first domain,

10

15

20

25

30

35

40

45

50

55

60

65

32

and each configured to execute a second processing

which has a second trust level set according to said

security policy and not higher than the said first trust
level;

an inter-processor communication unit configured to con-

trol a transfer of data or command between said first

processor and the said second processor; and

an access control unit comprising;

a storage unit configured to store access permission data
including one or more access information entries,
cach including;

one or more 1tems of processor 1D information of one or
more second processors configured to execute said
second processing;

permission range address composed of a start address
and an end address of a range 1n which access 1s
permitted to said one or more second processors con-
figured to execute said second processing; and

type information of permitted access to said permission
range address by one or more second processors con-
figured to execute said second processing,

said access control unit configured to permit write access

from said first processor to said access permission data,

prevent write access from said second processor to said
access permission data, and allow said access permis-
sion data to be updated by said first processor; and

an access permission unit configured to monitor access

from said second processor belonging to said second
domain to a memory and/or an input/output device, ret-
erence said access permission data, and permit said
access from said second processor to a part of said
memory and/or a part of said input/output device shared
with said first processor, when a processor ID of said
second processor matches a processor ID 1ncluded 1n
said access information entry of said access permission
data, an access address from said second processor 1s
within a range specified 1n said permission range address
of said access information entry, and a type of access
from said second processor matches a type of permitted
access specified 1n said access information entry.

2. The information processing device as defined in claim 1,
wherein said access control unit further comprises an access
permission data update unit configured to update the access
permission data.

3. The information processing device as defined in claim 1,
wherein said access control unit further comprises an access
monitoring unit configured to acquire access mnformation on
access by the processor belonging to the second domain and
a learning unit configured to store the access information.

4. The information processing device as defined in claim 1,
wherein said inter-processor communication unit comprises
an interrupt control information processing device configured
to rece1ve an interrupt request from a processor on a sending
side of information and 1ssue an iterrupt to a processor on a
receiving side of the information.

5. An information processing device comprising:

one or more computers comprising:

one or more first processors, each configured to execute a

first class processing having a first trust level set accord-

ing to a security policy;

one or more second processor processors, each configured

to execute a second class processing having a second

trust level set according to said security policy and not
higher than the first trust level;

a memory and an mput/output device shared by said first

and second processors;

US 8,640,194 B2

33

an 1nter-processor communication unit configured to con-
trol a transfer of data or command between said first
processor and said second processor; and

an access control unit comprising:

a storage unit configured to store access permission data
including one or more access information entries,
cach including;:

one or more 1tems of processor ID information of one or
more second processors configured to execute said
second processing;

permission range address composed of a start address
and an end address of a range in which access 1s
permitted to said one or more second processors con-
figured to execute said second processing; and

type information of permitted access to said permission
range address by one or more second processors con-
figured to execute additional processing; and

said access control unit configured to permit write
access from said first processor to said access permis-
s1on data, prevent write access from said second pro-
cessor to said access permission data, and allow said
access permission data to be updated by said first
processor; and

an access permission unit configured to monitor access
from said second processor to amemory and/or an mnput/
output device, reference said access permission data,
and permit said access from said second processor to a
part of said memory and/or a part of said input/output
device shared with said first processor, when a processor
ID of said second processor matches a processor 1D
included 1n said access information entry of said access
permission data, an access address from said second
processor 1s within a range specified in said permission
range address of said access mformation entry, and a
type ol access from said second processor matches a
type of permitted access specified 1n said access nfor-
mation entry.

6. An information processing device, wherein said infor-
mation processing device comprises a plurality of first pro-
cessors and a plurality of second processors, wherein each of
the plurality of first processors and each of the plurality of
second processors are respectively said first processor and
said second processor, each as defined 1n claim 5.

7. The information processing device as defined 1n claim 5,
wherein said second processor executes at least one process-
ing whose trust level 1s lower than that of the first processing
executed by said first processor.

8. The information processing device as defined 1n claim 3,
wherein the first processing includes vendor-provided basic
processing; and

the second processing includes additional processing
downloaded from a network or a storage medium.

9. The information processing device as defined 1n claim 3,
wherein the second processing includes a device driver and/or
an application program to be executed 1n said second proces-
SOF.

10. The information processing device as defined 1n claim
5, wherein said inter-processor communication unit coms-
Prises:

a {irst iter-processor communication unit configured to
perform 1nter-processor commumnication for passing
information from said first processor side to said second
processor; and

a second inter-processor communication umt configured to
perform 1nter-processor communication for passing
information from said second processor side to said first
ProCessor.

10

15

20

25

30

35

40

45

50

55

60

65

34

11. The information processing device as defined in claim
5, wherein said inter-processor communication unit coms-
prises an interrupt control information processing device con-
figured to receive an interrupt request from a processor on a
sending side of information and 1ssue an 1nterrupt to a pro-
cessor on a recerving side of the information.

12. The information processing device as defined 1n claim

5, wherein said inter-processor communication unit coms-
prises an mterrupt control information processing device and
a shared memory, corresponding to an interrupt target pro-
CEeSSOr;

wherein said interrupt control information processing
device comprises:

an nterrupt indication unit configured to accept an inter-
rupt request from an nterrupt-requesting processor and
1ssue an interrupt request to the interrupt target proces-
SOT';

an 1terrupt holding unit configured to hold the interrupt
request accepted by said mterrupt indication unit; and

an interrupt cancellation unit configured to cancel the inter-
rupt 1n response to an nterrupt processing completion
notification from the interrupt target processor; and

wherein said shared memory comprises:

a communication area that stores data transferred from the
interrupt-requesting processor to the interrupt target
processor; and

an exclusion control area which 1s for performing exclu-
sion control for said communication area.

13. The information processing device as defined in claim

5, wherein said access control unit that stores access permis-
sion data stores, for the second processor that 1s permitted
access, an address range for which access 1s permitted and
information on access types permitted for the address range.

14. The information processing device as defined 1n claim

5, wherein said access control unit that stores the access
permission data stores, for the second processor that 1s not
permitted access, an address range for which access 1s not
permitted and information on access types not permitted for
the address range.

15. The information processing device as defined in claim

5, wherein the access permission data 1s allowed to be read
and written by said first processor;

the access permission data 1s allowed only to be read by
said access permission unit; and

the access permission data 1s allowed neither to be read nor
written by said second processor.

16. The information processing device as defined 1n claim

5, wherein said access control unit comprises a cache memory
that stores a correspondence between information on access
addresses of said second processor and information on access
permission.

17. The information processing device as defined 1n claim

5, wherein said access control unit further comprises an
access permission data update unit configured to update the
access permission data.

18. The information processing device as defined in claim

5, further comprising;:

a third processor configured to execute a third processing,
having a third trust level;

a second inter-processor communication unit configured to
control a transfer of data or command between said
second processor and said third processor; and

a second access control unit configured to prevent said
third processor from accessing a part of the memory
and/or a part of the input/output device, shared with said
first processor, according to a trust level of the third
processing.

US 8,640,194 B2

35

19. The information processing device as defined 1n claim

5, further comprising:

a third processor configured to execute predetermined third
processing having a third trust level; and

36

said first processor belonging to a first domain and con-
figured to execute a first processing which has a first
trust level set according to a security policy;

said second processor belonging to a second domain

a second inter-processor communication unit configured to > different from the first domain, and configured to
perform communication between said second processor execute a second processing which has a second trust
and said third processor; level set according to said security policy and not

wherein each of said first processor, said second processor higher than the first trust level;
and said third processor comprises a memory and an an 1nter-processor communication unit configured to
input/output device connected via a bus, 10 control a transier of data or command between said

said second processor 1s prevented from accessing a part of first processor and said second processor; and
the memory and/or a part of the mmput/output device, an access control unit configured to permit or prevent an
shared with said first processor, by said access control access from said second processor to a part of a
unit according to the second trust level of the second |, memory and/or a part of an mput/output device,
class processing; and shared with said first processor, according to said
said third processor 1s prevented from accessing a part of second trust level of said second processing.
the memory and/or a part of the mput/output device 24. An information processing device comprising:
shared with said first processor, and/or to a part of the a basic domain that includes:
memory and/or a part of the input/output device shared 20 a basic soltware environment;

with the second processor, by second access control unit
according to the third trust level of the third processing.
20. The information processing device as defined 1n claim

an external device and/or a file system;
an operating system;
a security policy database that stores security informa-

tion on downloaded data; and
a native code download management unit configured to
control a download of native-code downloaded data,
a trusted extension domain that includes:
a first native-code download execution umt configured
to control an execution of a native-code downloaded

18, wherein said third processor executes at least one process-
ing whose trust level 1s lower than the second trust level of the 25
second processing executed by said second processor.

21. An information processing device comprising a plural-
ity ol information processing devices, each as defined 1n
claim 35, wherein each of said information processing devices

processor, said information processing device compris-
ng:

1s configured 1n a different chip. S program; and

22. An miformation processing device as defined 1n claim an operating system,
21, further comprising an access limitation unit, configured wherein, 1n said trusted extension domain, a downloaded
between the chips, to limit a permission of access to a memory application program which 1s a trusted application pro-
and/or nput/output device according to a trust level of pro- __ gram which 1s determined as trusted by said native code
cessing belonging to said information processing devices download management unit in the basic domain, 1s
configured 1n the chips. executed; and

23. An mformation processing device comprising;: a downloaded device driver which 1s a trusted driver which

a basic domain that includes: 1s determined as trusted by the native code download

a basic software environment; 40 management unit in the basic domain, 1s installed 1n said

an external device and/or a file system:; operating system and a permitted external device pre-

an operating system; pared 1n advance 1s accessed by said trusted driver to

a security policy database that stores security informa- execute trusted additional processing, and
tion on downloaded data; and an untrusted extension domain that includes:

a native code download management unit configured to 45 a second native-code download execution unit config-
control a download of native-code downloaded data; ured to control an execution of a native-code down-
and loaded program; and

a trusted extension domain that includes: an operating system;

a native-code download execution unit configured to wherein, 1n said untrusted extension domain, a down-
control an execution of a native-code downloaded 50 loaded application program which 1s an untrusted appli-
program; and cation program which 1s determined as untrusted by said

an operating system; native code download management umt in the basic

wherein a downloaded application program which 1s a domain, 1s executed; and

trusted application program which 1s determined as a downloaded device driver which 1s an untrusted driver

trusted by the native code download management unitin 55 which 1s determined as untrusted by said native code

the basic domain, 1s executed; and download management unit in the basic domain, 1s

a downloaded device driver which 1s a trusted driver which installed 1n said operating system and a permitted exter-
1s determined as trusted by the native code download nal device prepared in advance i1s accessed by said
management unit in the basic domain, 1s installed 1n said device driver to execute untrusted additional processing
operating system and a permitted external device pre- 60 and

pared 1n advance 1s accessed by said trusted driver to wherein said basic domain 1s implemented 1n a first pro-

execute trusted additional processing; and CeSSOr;

wherein said basic domain 1s implemented in a {irst pro- said trusted extension domain 1s implemented 1n a second
cessor; and processor; and
said trusted extension domain 1s implemented 1n a second 65 said untrusted extension domain 1s implemented in a third

processor, said information processing device compris-
ng:

US 8,640,194 B2

37

said first processor belonging to a first domain and con-
figured to execute a first processing which has a first
trust level set according to a security policy;

said second processor belonging to a second domain
different from the first domain, and configured to
execute a second processing which has a second trust
level set according to said security policy and not
higher than said first trust level;

said third processor configured to execute a third pro-
cessing which has a third trust level set according to
said security policy and not higher than said second
trust level;

a first inter-processor communication unit configured to
control a transier of data or command between said
first processor and said second processor; and

a first access control unit configured to permit or prevent
an access from said second processor to a part of a
memory and/or a part of an mput/output device,
shared with said first processor, according to said
second trust level of said second processing

a second inter-processor communication unit configured
to control a transier of data or command between said
second processor and said third processor; and

a second access control unit configured to permit or
prevent an access from said third processor to a part of
a memory and/or a part of an mput/output device,
shared with said first processor or said second proces-
sor, according to said third trust level of said third
processing.

25. The information processing device as defined 1n claim
24, wherein, when downloaded data 1s input from said exter-
nal device 1n the basic domain, said native code download
management unit in said basic domain checks a certificate of
the downloaded data and, 11 a result of the checking indicates
that the certificate 1s valid, the downloaded data 1s sent to said
first native-code download execution unit in said trusted
extension domain and

if the result of the checking indicates that there 1s no cer-

tificate or a content of the certificate 1s invalid, the down-

loaded data 1s sent to said second native-code download
execution unit 1n said untrusted extension domain.

26. The information processing device as defined in claim
23, wherein, when downloaded data 1s input from said exter-
nal device 1n the basic domain and 1f a basic function 1n said
software environment of said basic domain recognizes the
downloaded data as a downloaded application program, said
native code download management unit in the basic domain
checks a certificate of the downloaded application program
and, 1f a result of the checking indicates that the certificate 1s
valid, the downloaded application program 1s sent to said
native code download execution unit in the trusted extension
domain.

277. The information processing device as defined 1n claim
23, wherein, when downloaded data 1s input from said exter-
nal device 1n the basic domain and 1f a basic function 1n said
soltware environment of said basic domain recognizes the
downloaded data as a downloaded driver, said native code
download management unit in the basic domain checks a
certificate of the downloaded driver and, if a result of the
checking indicates that the certificate 1s valid, the downloaded
driver 1s sent to said native code download execution unit 1n
the trusted extension domain; and

said native code download execution unit 1n the trusted

extension domain installs the downloaded driver into the

operating system in the trusted extension domain.

28. The information processing device as defined 1n claim
24, wherein, when downloaded data 1s input from said exter-

10

15

20

25

30

35

40

45

50

55

60

65

38

nal device 1n the basic domain and 1f a basic function in said
soltware environment of said basic domain recognizes the
downloaded data as a downloaded application program, said
native code download management unit 1n the basic domain
checks a certificate of the downloaded application program
and, 11 a result of the checking indicates that there 1s no
certificate or a content of the certificate 1s invalid, the down-
load application program 1s sent to said second native-code
download execution unit 1n the untrusted extension domain
via said first native code download execution unit in the
trusted extension domain.

29. The information processing device as defined 1n claim
24, wherein, when downloaded data 1s input from said exter-
nal device 1n the basic domain and 1f a basic function in said
soltware environment of said basic domain recognizes the
downloaded data as a downloaded driver, said native code
download management unit in the basic domain checks a
certificate of the downloaded driver and, if a result of the
checking indicates that there 1s no certificate or a content of
the certificate 1s invalid, the downloaded driver 1s sent to said
second native code download execution unit in the untrusted
extension domain via said first native code download execu-
tion unit 1n the trusted extension domain; and

said second native code download execution unit in the

untrusted extension domain installs the downloaded
driver 1n the operating system in the untrusted extension
domain.

30. The information processing device as defined 1n claim
23, wherein said trusted extension domain further comprises
a basic function library that includes a processing group,
which 1ssues a request to a basic function in the basic software
environment 1n the basic domain, as a library;

said basic function library 1n the trusted extension domain

sends a request to said native code download manage-
ment unit in the basic domain in response to a request
from the trusted application program downloaded in the
trusted extension domain; and

said native code download management unit 1n the basic

domain checks 11 the request received from the trusted
extension domain 1s valid and, 1f the request 1s valid,
requests said basic function in the basic soitware envi-
ronment to process the request.

31. The information communication information process-
ing device as defined 1n claim 30, wherein said basic function
in the basic domain processes the request and notifies a
completion of the processing to said native code download
management unit 1n the basic domain;

said native code download management unit 1n the basic

domain notifies the completion to the basic function
library 1n the trusted extension domain; and

the completion of the processing 1s notified from said basic

function library to said trusted application program.
32. The information processing device as defined 1n claim
24, wherein said trusted extension domain further comprises
a basic function library that includes a processing group.,
which 1ssues arequest to a basic function 1n the basic software
environment in the basic domain, as a library;
data 1s sent from the untrusted application program, down-
loaded 1n the untrusted extension domain, to the trusted
application program in the trusted extension domain;

the trusted application program 1n the trusted extension
domain 1ssues a request, which includes the data
received from the untrusted application program down-
loaded 1n the untrusted extension domain, to said basic
function library;

said basic function library sends the request to said native

code download management unit in the basic domain 1n

US 8,640,194 B2

39

response to the request from the trusted application pro-
gram 1n the trusted extension domain;

said native code download management unit 1n the basic

domain checks 1f the received request 1s valid and, 11 the
request 1s valid, requests a user to confirm the request
and, i a confirmation result indicates permission,
requests the basic function in the basic software envi-
ronment to process the request; and

if the confirmation result of the user indicates no permis-

s1om, said native code download management unit 1n the
basic domain notifies no permission to said basic func-
tion library.

33. The information processing device as defined 1n claim
32, wherein said basic function processes the request and
notifies a completion of the processing to said native code
download management unit in the basic domain, said native
code download management unit in the basic domain notifies
the completion to the basic function library in the trusted
extension domain, the completion of the processing 1s noti-
fied from said basic function library to the downloaded
trusted application program, and said downloaded applica-
tion program notifies the completion of the processing to the
downloaded untrusted application program in the untrusted
extension domain.

34. The information processing device as defined in claim
23, wherein each of said basic domain and said trusted exten-
sion domain further comprises a virtual machine monitor,
which maps virtual devices to real hardware devices, to vir-
tualize the file system, the device, and a central processing
unit (CPU).

35. The information communication mformation process-
ing device as defined 1n claim 24, wherein each of said basic
domain, said trusted extension domain, and said untrusted
extension domain further comprises a virtual machine moni-
tor, which maps virtual devices to real hardware devices, to
virtualize the file system, the device, and a central processing,
unit (CPU).

36. The information processing device as defined 1n claim
34, wherein the virtual machine monitor 1n the basic domain
requests the virtual machine monitor 1n the trusted extension
domain or the untrusted extension domain to transter CPU
resources;

the virtual machine monitor 1 the trusted extension

domain or the untrusted extension domain notifies a
transferable CPU to the virtual machine monitor in the
basic domain; and

the virtual machine monitor 1n the basic domain increases

virtual CPU resources 1n the basic domain.

37. An information processing device, wherein each group
ol processors 1 each of a basic domain and an untrusted
extension domain can be separated 1into multiple processors
by means of separation units, each processor in the basic
domain and each processor 1n the untrusted extension domain
being respectively said first processor and said second pro-
cessor, each as defined 1n claim 23.

38. The information processing device as defined in claim
23, wherein the processor 1n the basic domain manages the
processor 1n other domain.

39. A program execution control method using one or more
computers, the method comprising:

transferring data or a command between a first processor

and a second processor via an nter-processor cominu-
nication unit, said first processor and said second pro-
cessor belonging to a first domain and a second domain
and executing a first processing and a second processing
having a first trust level and a second trust level set

10

15

20

25

30

35

40

45

50

55

60

65

40

according to a security policy, respectively, said second

trust level being not higher than said first trust level; and

monitoring, by an access control umt, access from the
second processor to a memory and/or an input/output
device,

referencing, by the access control unit, access permission
data including one or more access information entries,
cach including:
one or more 1tems of processor 1D information of one or

more second processors configured to execute addi-
tional processing;

permission range address composed of a start address
and an end address of a range 1n which access 1s
permitted to the one or more second processors con-
figured to execute additional processing; and

type information of permitted access to the permission
range address by one or more second processors con-
figured to execute additional processing, and

permitting, by the access control unit, the access from the
second processor to a part of the memory and/or a part of
the mput/output device shared with the first processor,

when a processor 1D of the second processor matches a

processor ID included 1n the access information entry of

the access permission data, an access address from the
second processor 1s within a range specified 1n the per-
mission range address of the access information entry,
and a type of access from the second processor matches

a type of permitted access specified in the access infor-

mation entry,

write access from the first processor to the access permis-
sion data being permitted, write access from the second
processor to the access permission data being disabled,
and the access permission data allowed to be updated by
the first processor.

40. A portable information terminal comprising;

one or more computers comprising:

a one or more first processors, each belonging to a first
domain and each configured to execute a first processing
which has a first trust level set according to a security
policy;

a one or more second processors, each belonging to a
second domain different from the first domain and each
configured to execute a second processing not which has
a second trust level set according to said security policy
and higher than the first trust level;

an inter-processor communication unit configured to con-
trol a transfer of data or command between the first
processor and the second processor; and

an access control unit comprising;

a storage unit configured to store access permission data
including one or more access information entries,
cach including;

one or more 1tems of processor 1D information of one or
more second processors configured to execute addi-
tional processing;

permission range address composed of a start address
and an end address of a range 1 which access 1s
permitted to the one or more second processors con-
figured to execute additional processing; and

type mformation of permitted access to the permission
range address by one or more second processors con-
figured to execute additional processing,

the access control unit configured to permit write access
from the first processor to the access permission data,
prevent write access from the second processor to the
access permission data, and allow the access permis-
sion data to be updated by the first processor; and

US 8,640,194 B2

41

an access permission unit configured to monitor access
from the second processor belonging to the second
domain to a memory and/or an input/output device, ret-
erence the access permission data, and permit the access
from the second processor to a part of the memory and/or
a part ol the mput/output device shared with the first
processor, when a processor ID of the second processor
matches a processor ID included 1n the access informa-
tion entry of the access permission data, an access
address from the second processor 1s within a range
specified 1n the permission range address of the access
information entry, and a type of access from the second
processor matches a type of permitted access specified
in the access information entry.

41. An mformation communication device comprising:

one or more computers comprising:
a plurality of processors; wherein said plurality of proces-
sors belong to a plurality of domains according to a trust
level of processing to be executed, said trust level being
set according to a security policy; and
the processors 1n different domains transfer data or com-
mand with each other via an inter-processor communi-
cation unit,
said information communication device further compris-
Ing an access control unit comprising:
a storage unit configured to store access permission data
including one or more access information entries, each
including;
one or more 1tems of processor ID information of one or
more second processors belonging to a domain where
a second trust level processing 1s executed;

permission range address composed of a start address
and an end address of a range in which access 1s
permitted to the one or more second processors
belonging to a second domain where a second trust
level processing 1s executed; and

type mformation of permitted access to the permission
range address by the one or more second processors
belonging to a domain where a second trust level
processing 1s executed;

the access control unit configured to permit write access
from a first processor belonging to a first domain
where the first trust level processing 1s executed to the
access permission data, prevent write access from the
second processor to the access permission data, and
allow the access permission data to be updated by the
first processor; and

an access permission unit configured to monitor access
from the second processor belonging to the second
domain to a memory and/or an mput/output device,
reference the access permission data, and permit the
access Ifrom the second processor to a part of the
memory and/or a part of the mput/output device

5

10

15

20

25

30

35

40

45

50

42

shared with the first processor, when a processor 1D of
the second processor matches a processor ID included
in the access mformation entry of the access permis-
sion data, an access address from the second proces-
sor 1s within a range specified in the permission range
address of the access information entry, and a type of
access irom the second processor matches a type of
permitted access specified 1n the access information
entry.

42. An information processing device comprising;

one or more {irst CPUs, each belonging to a first domain
and each configured to execute a first processing which
has a first trust level set according to a security policy;

one or more second CPUs, each belonging to a second
domain different from said first domain, and each con-
figured to execute a second processing which has a sec-
ond trust level set according to said security policy and
not higher that said first level;

a memory and an mnput/output device shared by said one or
more first CPUs and said one or more second CPUs; and

an access control unit comprising;
a storage unit configured to store access permission control
data table including one or more access information
entries, each entry of said access permission control data
table including:
one or more CPU IDs of said one or more second CPUs
configured to execute said second processing;

permission range address composed of a start address
and an end address of a range 1n which access to said
memory and/or said input/output 1s permitted to one
or more second CPUs having respectively said one or
more CPU IDs; and

type information of permitted access to said permission
range address by said one or more second CPUs hav-
ing respectively said one or more CPU IDs, and an
access permission unit configured to:

monitor access from said one or more second CPUs to
said memory and/or said input/output device,

reference said access permission data, and

permit said access from one of said second CPUs moni-
tored to a part of said memory and/or a part of said
input/output device shared with said one or more first
CPUs, in the case wherein a CPU ID of said one of
sald second CPUs monitored matches a CPU ID
included in said access information entry of said
access permission data table, an access address from
said one of said second CPUs monitored 1s within a
range specified in said permission range address of
said access information entry, and a type of access
from said one of said second CPUs monitored
matches a type of permitted access specified 1n said
access 1nformation entry.

% o *H % x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 3,640,194 B2 Page 1 of 1
APPLICATION NO. : 11/660967

DATED . January 28, 2014

INVENTOR(S) . Inoue et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent 1s extended or adjusted under 35 U.S.C. 154(b)
by 1577 days.

Signed and Sealed this
Twenty-second Day of September, 2015

Tcbatle X Koo

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

