12 United States Patent

US008640113B2

(10) Patent No.: US 8,640,113 B2

Silvera et al. 45) Date of Patent: Jan. 28, 2014
(54) SETIMP/LONGJMP FOR SPECULATIVE 7,634,765 B2* 12/2009 Ghiyaetal. 717/140
EXECUTION FRAMEWORKS 2004/0168156 Al* §2004 Hundtetal ... 717/130
2006/0047681 Al* 3/2006 Ghiyaetal. 707/102
1
(75) Inventors: Raul Esteban Silvera, Woodbridge 2008/0222616 Al 9/2008 Chengetal. 717/137
(CA); Kai-Ting Amy Wang, North York
OTHER PUBLICATIONS

(CA); Peng Wu, Mt. Kisco, NY (US);
Mark Wayne Yamashita, Toronto (CA);
Xiaotong Zhuang, White Plains, NY
(US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 496 days.

(21) Appl. No.: 13/026,702

(22) Filed: Feb. 14, 2011
(65) Prior Publication Data
US 2011/0289303 Al Nov. 24, 2011
(30) Foreign Application Priority Data
May 19, 2010 (CA) oo 27702354
(51) Imt. CL.
GO6F 9/45 (2006.01)
(52) U.S. CL
USPC 717/151; 717/132; 717/133; 717/1356
(58) Field of Classification Search
USPC .. 717/131, 132, 154, 156

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,995,752 A * 11/1999 Chaoetal. 717/114
6,104,873 A * §/2000 Chaoetal. 717/114
/7~ Start
82/
‘__
Identify calls to

setjmpflongimp to
form identified calls
to setimpflongjma
804

L

Determine a |
control flow path
between a call to

a setimp and a
longimp
_ B0B

-

Replace calis to
setimpAongimp

with calls to
improved_satimp !
and 5
improved_longimp
808 |

'

Crestea |
context data

Lattner et al., “LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation”, 2004 .*

Dean et al., “Vortex: An Optimizing Compiler for Object-Oriented
Languages™, 1996.*

* cited by examiner
Primary Examiner — Phillip H Nguyen

(74) Attorney, Agent, or
VanlLeeuwen; Jeanine S. Ray

Firm — VanlLLeeuwen &

(57) ABSTRACT

A process for check pointing in speculative execution frame-
works, 1dentifies calls to a set of setymp/longymp instructions

to form 1dentified calls to setymp/longimp, determines a con-
trol flow path between a call to a setymp and a longjmp pair of
instructions in the identified calls to setymp/longimp and
replaces calls to the setymp/longjmp pair of mstructions with
calls to an improved_setjmp and improved_longymp instruc-
tion pair. The process creates a context data structure in
memory, computes a non-volatile save/restore set and
replaces the call to improved_setymp of the setymp/longimp
pair of instructions with 1nstructions to save all required non-
volatile and special purpose registers and replaces a call to
improved_longymp ofthe setymp/longjmp pair of instructions
with mstructions to restore all required non-volatile and spe-
cial purpose registers and to branch to an instruction 1mme-
diately following a block of code containing the call to
improved_setymp.

20 Claims, 8 Drawing Sheets

End
C 818
A

Replace a call t¢
improved_fongimp with
instructions to restore ali
required non-volatile and |
Ispecial purpose registers and;
to branch to an instruction
immediately following a block
of coda containing tha call to
improved_setimp
§16
'y
I
Replace the call to
improved_setimp with
instructions to save all
required non-vokatile
and special purpose
registers
814

Compute 5 non-
volatile save/

structure in
Memory
810

-

restore set
812

-

U.S. Patent Jan. 28, 2014 Sheet 1 of 8 US 8,640,113 B2

. -._..q.q..'-.-q'q-'-ﬁq---n-qr---l--r-l-r ---r--r-‘--v-"li'ﬁ'll""‘:l‘lv‘"lli'r

BT AR A N rm i q-qr-i--r-u-r----‘ h---‘-'i-r'ﬁ.'--"‘h‘l-"‘h-- Yo Wt "-"'n-“'-"'."'-.""..-'.'-."..!'l.'.._!i:T."t'l:‘-r'-'l.--aravaol--.tq--l.-a-—a--rv"---v--n-’----":--‘-"--d“-"h-'"-*-“"‘"-"""'""’"""'-'f‘-"-'*-‘
R e A N L R Ly - - AL - LT,

.-'- "N LA EER W.‘l- s lll-"lll-"lll- ln-'-"-"'-"- -

. ' .
= omk wir droul a2 A

L]
1
. . ¥
'1 . '
5 I b
e i
: CF- 1
- b i
3 ' ¥ :
. > .
) > L h ;
1 + . : f
‘. ¥ e . . . e e e e e e e e e e e e e e e e e . " . 1
:l_ ' -.-._. ' .';"';'.."."-"."."-'—.'—.'—:—:*:*:*:*I. ' : ,._-..,-._l-;-..- ihili‘l--f_:I.-I.-I_#.-I.#_#ri_-I_-I_'_'_'_1_#_#_-ﬁ_# L ::l s -"-" 2T e e e T * -'-"-"-"-"-'-'-'--'--‘-" "' - '1-1-.1-' o E o, . . s '.f: . : . ¥
¥ o ' : v ¥ R 5 :
‘- ! ¥ 'y ¥ H : ¥
C- 1 . ha - " -4 I
:|. . 1 "_. i [l:‘ . . -
e 1 : .:. R " . b
. ¢ ¥) v a8 2
.Hr. Pﬁ@c ES &‘ R ‘.. .‘ I.. ..-.. }.- | {
A Y LS Y T s T x, v - i- L
. . L8 . X, ‘u - . -
3 o s i ’
e e T T T e T T " ¥ H x, . *'. '". . b
- ' 4 ! v S » .
e . L] + = s
. . ¥ ‘. ‘_I . - .. &
T ¥ . 1 . S .. L]
. . i 1, b/ u s . i
n § i ,:. - 3 !
T . : i J Pl | . R
| 5 g " - . 33 A 3 "
.+l . - i W ' v .- W .
w a ‘. » » v i . v :
.]] - . i N "
™ . - V- 1 * ': L . $. "
T - .- * . - -
K u - " b L A A
L . : Y . ﬁ 3
..'n._. .- . . : L ,,: . u
."': :’.....Mt.‘**##-* _.__.-.......J"I'M-J-’_ -:h i.:M_‘.***.**.#.'.' _____ .-.--._.”;h.b...*....--_'_'_‘_'_'_'""'“ﬁ . -i-l_-l_i.-I-L-I-I"P*'###’#--#b**hﬁ-‘-‘-"‘?‘-"-‘?-'l!--"""'t"m'“l'“l‘. . . . {
- . e e O AN - "
4 .. . - .
Ty ¥ t'h‘.- .' h"-.- a
- - - u - " - .
 m- el el A e el R RENENELESEN T TREEE -] .
F- iibhh#lllllﬂll###hl-ﬁ-ﬁli' u-h‘-WJJ-hWhhhM t-‘-‘-‘**-"’*-“‘"""":ﬂ =rutt - "
.-|. . J,T. i-... . :".l‘:' r
o " . *
e - . 'I'-"h“.“.}- -
e ety @eRSR T W R . . e' el . - -
- "... I. LY) . -
- » :: '_.. -
e [
a -
-w '
-m W
C L
Lo _ L
"y 'l-.'r_ﬂr,-r, N Ir . ,.:__:,-d.-dr _:.
' - - : s
. -‘: . a ¥ "
L . . N - . ~0. . w v . .
: “u*_ .. ',.!'P ":.-.‘: ' R '.." :F':"‘*' . :
R S e, o ot .
R w .*.,.f . - .-.! . .."' . - L o .-
| "Har' - .'. . ".!" L3 '..‘1,‘ LT o
' R - B ot et o e " L
4 *'*"'--———*'r******'WF*‘*‘-‘-.'-.-Wﬂ?‘f‘f‘?‘*‘fﬁf‘f‘ﬂﬁ"ﬁ"""”“"""""'""""“"'""‘""" RS R AR T h***'- '
<N A A S
' 0
. ; . .“. ..._
. - *_*_’__’__’ . gt V-
: :- [Py .“" e e h‘. PR ‘ ‘- l :. - - iTl_lTl_l_l- . 'l-"'l-"l-"l"'l-"l-'-'-'_"l-_ ‘.‘-.‘-.‘""‘-"'.'.."-'..'.."-' T' e A b kA E R * ‘ - ‘ - ‘.___.___.__.f.._._._-l.f_......q.q.q-q‘q_q‘ ‘q_-r_q._.ﬁ_q_ﬂ-_f-_‘l-_'l.l1....'.‘...‘.‘.....Illll.l . i il el ol el _i\f-l\:-l--ll-.-ll'll. ll_-q-_.l-_.l-_.l-_.-.l-.- - [3] - - lr l- ' La '."l-p'l] :l - .""'f ; . :‘
S . ' P - v
s P
e . “r .
e T o "
‘ . - .. . 1_.-
Rl L £
e L . I) iy .-
:- o .."-.-"-.; ’ .;-"- sy -_:'- bl R : .
. . . . -
- Ca P S : i
..l . l l '..
d] [] . T
- b - s . 5
. [v ca K .
_1: ¥ ¥ x L .-
¥ b v p o K L
- R ..:. o e e 1-; 5
. " BN | - - - . n
. ORI g, it ‘-‘" ..
n .. -\.-l:‘ ;','. .. e ..-r
. - . . - . . a
3 ~ o . :
I .".. - . p‘ - ‘F- L P '
u > | ‘.‘ J
" .- . - . - et . .] .
.o I . .*. .. K-
o n“‘ - : . - .o Y- X o .
. eI:_‘;I':..' . . i W chnhegch, .
; h“-‘#-ﬁ##thﬁii*-------\-m e } .‘|: e .'-.‘.*.‘.‘.*--.1.1.1.1'1‘ . -”-l.n. . e e s‘..-l‘.‘: . . .r-.._..*b....."‘ ‘.I‘-'F-.' '.‘l i :: . ;.:
.E : - . I,l e r: . l' 1: .
L a1 LB . . .- L s .'
-:' o [} 4. . ' o -
o - L} A ¥ " Loy 5
g : ¥ = IO : T ' . .
.) & PR s i
.i . E . - - . . LIS 5 . ',... : . a i .. - "'I.'
. ¥ e 'l . K- -hg - . [: . 1,
. ,..‘ [e .o Y h . . =T . - W ' . .-
‘.' C - i . - S I - . w T . . WO - ",) " Lt .. -
1, K- ! _.: ' " " T - . e i, :: '
; X i R : 35 - . %
N . ¥ N . . n .
S , A o 3 a 3] 1 . . v
'y . ‘. Lo) o -l - i .- . L .
N) -‘. R . . -y . -1 . })
L= L3 -* -|. : . 'I .
.2 .o A . - gy - . -7 - .
ki A 3 : 13 | : ; 3
. n . <= . .1, ' - . K £ -) =
l:‘ .: ' - . L {8 _ : -0 B' . 3"
4 -, ST S RN omn o | K 3
o o . 1 . i .
- |. . 1: - : . l' i F._
. .I. . I .. P . l . . ‘ ‘.
. .." 1'_. : . -k .. ."'1, :.
o i T e T T -
: e T N 'I'—_"-_"I*_"I'_'-l'_"l-_'-'-'1":: l"l:"'='ﬂ"'ﬂ"‘ﬂ"'I-""l-"l"l'n"'-'n'-"'-"'-"'r"'-"'-"-"-"'-"'-""-*-*-"""'" il -""" =tn el e e A A R A o { .
T .
-'I. .\..)
- L 3
] L]
- "+

- e e a a
B o B e e

A

Data ?m&aasaﬁg by stem 100

- o

a 4 1r

7 » . -_I.* o vk ol Bl e e m e b w -
i -i-q.'--l."- wq.'.wp......'!'.r,ﬁ-g-rﬁ.h.p-\..r -‘-f—_..h.;iiﬂ!.i-ll-.ﬂ--‘-'—'-#rnilri'p -u..-.:p-...‘.pﬂ‘-.-,-.-ln-r‘-’-ﬁi’,fﬁ-‘r-\““--l NN l!.:-.-‘!_‘_ﬂ..T'II_-'T..-_-‘"FT.h-h_ i|-l-j-l1-1-l--l--r.i|-I1.i-l--...lr-i-l------p-’-q-'-?-"— B SR -.‘H'i-l-‘..-'-r"-l-"'-"q--p‘ |...-| -

'_1_:-1‘. e
4 -
'.:l.'in Lo SR %
b Ll | dyrpymaeady”
|] .
. .
k- i
] i]
[.
-k ‘
s A
' !
L Y
. l!"‘l--ll--il--il -'
. r***ﬁqquwqu‘q‘ﬂ.‘.'ﬂb‘i‘h‘ﬂw et -'-r"'-"'-"-"’-*-'-*-'-"-'-‘-"-'-‘-W--"--"-r'-'-r'-' i, ‘r*w‘t"t‘.".".*."‘."'."."""‘""""""""""‘1"‘1"‘*" .

'-I-‘--_--_-I-_i

."f
"-

._,-._
o

L

i
4
i :
. -
. .
4 :'.’: B .
,‘ LA a —
L ¥, A [
“ o o .
LI L P .n Ty
N v . s
: . PROGRAM |
: S 3
% 9, N g
M i " e
0 0 0 0 0 -. - ‘-
l{. oy 1
At : CQDE : £
\; i ¥ A
L | L]
h i 5 g
T et .Y -',,'.
o q : s o
"q. . ol el ol e A - N - h
ST i it o o
"‘L‘ .:. r"‘ .
N I
rr"‘-.f_- e E o
_A-‘..‘.h:f-.‘--.-----.--.----------‘lillii.l-.bl-lil-i----‘,‘

) el . . "-.-'
. . -
) "'._—l_ .'_..‘--_. -

o "":*-'Ir'lt LE T -'i'**"“‘,

R R Ll L e N N N I R o oy o Al

'l.'l."\.'r'r'r—
Pt Pl el

e oy e w e e d l p p e e e e e e e e e e e e e e e ot

= - 6N

--L--L-r-ll'dr'#-r_-'iri,r-,r-hhhhh

. wt_h_h,mumtii#t###iihi** TR T 'Flrlr'-‘r‘-'-'-

U.S. Patent Jan. 28, 2014 Sheet 2 of 8 US 8,640,113 B2

l improved
l setjump/ B
longjump %
functions Fruned control
l 202 | flow graph
- 206 |
e g
‘ | improved stack
§mpmv@d | 208
.~ compiler | |

; 204

-Sulalbmpilainabiii ipianianinninninniebpiniopmpuininll] Sl L S ey pninynisiminisimie’ gt SRR SRS SRy AR Lo DR RETHROTRET

Framework 200

U.S. Patent Jan. 28, 2014 Sheet 3 of 8 US 8,640,113 B2

: " fjj 0 g %E‘; % ﬁ:i %g iﬁ 43 13 ; E s

s
]
L
Lé
£
iy

iy buf envs setimpdongimp

%

P

LT

; REAVE ;éﬁﬁé‘ﬁ ﬂtﬁ&}m%iﬁilﬁ E%Qiﬁﬁﬁgﬁ i
serimy (env
s CELALT LIANZACLLON

Lregnore Live volatile redglisters>
3 {
§ ﬁ:tf&ﬁﬁﬁﬂﬁti{?ﬁb WO B R E R W e PO, T A
. e
; . ¢ oeng transactiony
¥
} .. . _x ¢ {
<gave live volatile reglisterss: if {conflict)
<end transacbtions X
? > longimp ()
¢}
R OB R e S ME B S R SR W S PR W R N S e W
CTestohre L1ve VOIATL.le regisnerss
]
&12"""? "ﬁc : w8 *
int fooll using improved
: e "
L setimpiongimp
yoid *buff; 1 it

<save live volatlle reglsters>» -
<ztore 8F, TOC, LR to context structurer
«gtore non-volatlile reglsters o puffsT

GoLo start;

:
%
:
:
;
:

regtore! J—
<restorg non-vplatile registers from buffy é
BLAYYL! :

<ELATT Transacoiond
Srestore Live volatile regLrstarsy 3

‘E J
e : : o
¢ P & w
<transaction> : {Eﬁd ransaction
#
} o ; if feonflict)
¢save live volatile registers> : ;zzﬁzﬁx% S¥,
cend tranzactions - ?ﬁg o
¥ eontaxt
&) . v y e’
crestore live volatile reglisters» i structure
% ' nranch te
: rostore
)

U.S. Patent Jan. 28, 2014 Sheet 4 of 8 US 8,640,113 B2

. L -

nnn

...

r——— ML T U W P
e h-f :
N
4
.I,!.‘: |
ol
L

i e o}

- - L e e e T e T T T T

[
1111111111111111111111111 = h = @ 7 m 7 ®m 7 7 = 77 =~ m 7 = % = 3 7 7 = = = g = = = = 939 3 73 7 8 39+ = &k 5 = q 5 - =

. - =N
m. CE 1 R e o —_— g,

nfafas et e a et el

111

ia

. T
-------- - -|-| - 1 = --------r-------l.---‘--
|||||| . 1 o A= 1 = 711 =179 7%7=@®m171"=@m11
e T T L ek e e e e g e M L L L e o W
---]
. e J

N RN EEEENEEE R EEE N N N e
111
- B " & = = B = b b b = = m 2 8 % 17 7 8 8 = = n mw3111 e ~- e =1 s 1w m w1117k omow w1k ks kosonom komomomon ko konom s 3

. R N N T T T N A N R o L N P B N N T N N] -
B . A . " I I L I I I T I N T A R = = = = =2 32 m = =271717®m717=-8281717778 715 k2878178 m a0
. T = 17 m 1871117171191 ks b ew Fgle s 1 s ks n B b u b bon b s nw b on b u b b b b b » 8 8 77 8 8 8 5 8 8 ®n 7] iy
------ - m 1 m m 171777 em1E= 1= 1= = = . % 11 171717 m 171 m 78 s s ==k 1 ks s m1ork kFsammiEmE1EEnE
--] ol

" bk m = b = 7 8 @ 8 28 7 @ 8 = 1% 7 s = h v E - "= = 1 ®m = 1 = 7 1 % 7137 &8 3771 e s b s kv e s« b kb ks s Fs s os b« b b= b3

lll

- f:::j::::Z:Z:{ ::'.;-.:.-] :.- ,':.' O -. ''''''''' RO IO 4 "-
S ERa FEENS bragsadip bl §

-1---1-1-11"-1----|---'|-‘----'l‘----"---‘-'|'|'|lI.1I'|l1'|'|11'|1'|1'|--'|11h1l# lllllllll

111
--
--
111
111

(Prior art)

U.S. Patent Jan. 28, 2014 Sheet 5 of 8 US 8,640,113 B2

Runtitne Uodel 1o

e e e o e o e s e e o o e e el e e e e e e e o A e e e O e A e S S -lulnlulh-nlulh-nlululn:q- A A A A . A A A . A A o e el e B e e

A 7177 - 1717 E 7171717177 m 87 8= 778 =777 m 171 e e s s m s m ks osmEE7E1Eh = sk =EEIETEEEIE - E17EEATIITATETT" 1T EE R
111

Fé 'E;E,,,é .. :jf- ,,,,,,,,,,,,,,,,,,,, 1:::::x:q: _ é

-,

111

e e, b,
-
r
.-
-I'"

FEas AN Sues Al : L R N 3.
....................... ::::ﬁiﬁ:;Z:?Fﬁ%?:ﬁ%fgﬁ}}.!_'-%%:::::::.':.‘:f:.";g% 12 ::::::'gé:::::i t‘{,}gﬁ@ "b_:""';"-'-'3:3:::5:3:5:::3:::3:::::1:::3:5:5:3:3:3:1:3:1:1:1:3:1:3:3:3

-- r A =
11 .d X n b on

,,
...
--

it o,

A

5

R R IS e s f;i;{,:»:gzgagzgzgzgzzzii R

d HW

--

--

111

11
111

' R o om0 L o e
:
;

1111111111111111111111
111
111

:
; e, e wale e ek e e e e by e b alpha mim ey ey et e . ekl kgt wharaie yha sl ot et wiey et o ety sl whwmhmhmhmhhwhuht Aty s Nohuhuts et Aataty. Asishehahahata’ st whwhuty NuhuhuAatet shats”

U.S. Patent Jan. 28, 2014 Sheet 6 of 8 US 8,640,113 B2

Improved_longjmp

U.S. Patent Jan. 28, 2014 Sheet 7 of 8 US 8,640,113 B2

Eﬁiﬁ--ﬂmiﬁ
Em&ﬁﬁﬁmmhﬁﬁ

U.S. Patent Jan. 28, 2014 Sheet 8 of 8 US 8,640,113 B2

S Start
802

o ﬁ@ﬁt;@(ﬁa st | et oS

- setimp/longimp to | | Replace a call to E
form identified calls improved_longjmp with
- to setimp/longjmp instructions to restore all
804 - required non-volatile and
T - special purpose registers and
Iy | i O ﬁ ran ﬁh t O an ; n St F1J Cﬁ@ "
e T immediately following a block !
| mii?rg::{e;m | of ma%@ containing ?ﬁe call to
between a call to mproved_seymp
a setimp %mﬁ a L .. Wilg B
| longimp ;:
s R B
iwm Replace the call to |
' Replace m;gg?:? | improved_setjmp with
| %ﬁmﬁmﬁgﬁmﬁ instructions to save all
i with calls to ? g required f}@ﬁwm%@m
improved_setimp | and mmfai purpose |
and | § registers |
1 improved_longjmp ; o A
263 |
i
§ SO R
:é:ii:ta | | Compute a non- |
structure in -+ e o Vvolatile save/ |
memory restore set 3
810 s

US 8,640,113 B2

1

SETJMP/LONGJIJMP FOR SPECULATIVE
EXECUTION FRAMEWORKS

RELATED APPLICATION

This application 1s based on and claims the benefit of

priority from Canadian Patent Application 2702334, filed
May 19, 2010.

BACKGROUND

This disclosure relates generally to mstruction processing,
mechanisms 1n a data processing system and more specifi-
cally to an improved 1nstruction processing of a pair of set-

1mp/longimp instructions in the data processing system.

A next generation supercomputer introduces hardware
speculation support. Speculative data (1n memory) 1s butfered
in a L2 cache and discarded when a thread rolls back. How-
ever, backup and restoration of register states 1s typically left
to software processes. A typical most straight-forward
method of saving and restoring registers, as well as perform-
ing a control flow change of rolling-back, 1s via system setjmp
and longymp routines for example, as used 1n hardware ven-

dor supplied support for software transactional memory
(STM) and as well as 1n hardware vendor supplied runtime

support.

In a typical compiler and symmetric multiprocessing
(SMP) runtime implementation for speculation support, sys-
tem setymp/longimp calls can be very ineflicient. For
example, setymp/longimp instructions are implemented as
calls to a pre-compiled standard C language library function.
Prior to the call, the caller must save all volatile registers and
after the call these registers must be restored. In the setjmp
function itselt, all non-volatile registers are saved to memory,
regardless of whether registers are live at the time of the call.
In some hardware implementations there are a total of 36
non-volatile registers.

Similarly, system longimp restores all non-volatile regis-
ters regardless of whether the registers are live. The setymp
overhead 1s incurred every time a transaction or speculative
region 1s entered, regardless of whether the transaction/
speculative region 1s rolled back. This overhead can be sig-
nificant for small transactions that have few live-in registers.
A common case scenario occurs in transactional memory
because the transactional memory 1s often used as an alterna-
tive to traditional critical sections, which are typically very
small. There 1s therefore a need to reduce the metficiency of
the current setjmp/longjmp 1implementations.

BRIEF SUMMARY

An approach 1s provided for hardware check pointing 1n
speculative execution frameworks that identifies calls to a set
of setyjmp/longimp 1nstructions to form identified calls to
setymp/longymp, determines a control tlow path between a
call to a setymp and a longgmp pair of instructions in the
identified calls to setymp/longymp and replaces calls to the
setimp/longimp pair ol instructions with calls to an
improved_setymp and improved_longymp instruction pair.
The approach further creates a context data structure in
memory, computes a non-volatile save/restore set and
replaces the call to improved_setimp of the setymp/longimp
pair of istructions with mstructions to save all required non-
volatile and special purpose registers and replaces a call to
improved_longjmp ofthe setimp/longjmp pair of instructions
with mstructions to restore all required non-volatile and spe-

10

15

20

25

30

35

40

45

50

55

60

65

2

cial purpose registers and to branch to an instruction 1mme-
diately following a block of code containing the call to

improved_setymp.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of this disclosure, ret-
erence 1s now made to the following brief description, taken
in conjunction with the accompanying drawings and detailed
description, wherein like reference numerals represent like
parts.

FIG. 1 1s a block diagram of an exemplary data processing
system operable for various embodiments of the disclosure;

FIG. 2; 1s a block diagram of components of a speculative
execution framework in accordance with various embodi-
ments of the disclosure;

FIG. 3 1s a code snippet example of an improved instruction
pair of the speculative execution framework of FIG. 2, n
accordance with one embodiment of the disclosure;

FIG. 4 15 a block diagram of a traditional runtime call to a
longymp function, 1n accordance with the disclosure;

FIG. 5 1s a code snippet example of a function split of an
end hardware transaction using the speculative execution
framework of FIG. 2, 1n accordance with one embodiment of
the disclosure;

FIG. 6 1s a block diagram of saved set of registers compu-
tation example in the speculative execution framework of
FIG. 2, 1n accordance with one embodiment of the disclosure;

FIG. 7 1s a block diagram of an overview of a saved set of
registers computation using the speculative execution frame-
work of FIG. 2, in accordance with one embodiment of the
disclosure:

FIG. 8 1s a flowchart of a setjmp/longymp process using the
speculative execution framework of FIG. 2, 1n accordance
with one embodiment of the disclosure.

DETAILED DESCRIPTION

Although an 1llustrative implementation of one or more
embodiments 1s provided below, the disclosed systems and/or
methods may be implemented using any number of tech-
niques. This disclosure should in no way be limited to the
illustrative implementations, drawings, and techniques 1llus-
trated below, including the exemplary designs and implemen-
tations 1llustrated and described herein, but may be modified
within the scope of the appended claims along with their full
scope of equivalents.

As will be appreciated by one skilled 1n the art, the present
disclosure may be embodied as a system, method or computer
program product. Accordingly, the present disclosure may
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module,” or “system.” Furthermore, the
present invention may take the form of a computer program
product tangibly embodied in any medium of expression with
computer usable program code embodied in the medium.

Computer program code for carrying out operations of the
present disclosure may be written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Java™, Smalltalk, C++,
or the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. Java and all Java-based trademarks
and logos are trademarks of Sun Microsystems, Inc., 1n the
United States, other countries or both. The program code may

US 8,640,113 B2

3

execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soitware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer 53
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

The present disclosure 1s described below with reference to 10
flowchart illustrations and/or block diagrams of methods,
apparatus, systems, and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart i1llustrations and/or block
diagrams, and combinations of blocks in the flowchart 1llus- 15
trations and/or block diagrams, can be implemented by com-
puter program instructions.

These computer program mstructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus 20
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks. These computer program 25
instructions may also be stored in a computer readable
medium that can direct a computer or other programmable
data processing apparatus to function 1n a particular manner,
such that the instructions stored in the computer readable
medium produce an article of manufacture including instruc- 30
tion means which implement the function/act specified in the
flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per- 35
formed on the computer or other programmable apparatus to
produce a computer-implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the tlowchart and/or block diagram 40
block or blocks.

Turning now to FIG. 1 a block diagram of an exemplary
data processing system operable for various embodiments of
the disclosure 1s presented. In this illustrative example, data
processing system 100 includes communications fabric 102, 45
which provides communications between processor unit 104,
memory 106, persistent storage 108, communications unit
110, input/output (I/O) unit 112, and display 114.

Processor unit 104 serves to execute mnstructions for soft-
ware that may be loaded into memory 106. Processor unit 104 50
may be a set of one or more processors or may be a multi-
processor core, depending on the particular implementation.
Further, processor unit 104 may be implemented using one or
more heterogeneous processor systems in which a main pro-
cessor 1s present with secondary processors on a single chip. 55
As another 1llustrative example, processor unit 104 may be a
symmetric multi-processor system containing multiple pro-
cessors of the same type.

Memory 106 and persistent storage 108 are examples of
storage devices 116. A storage device 1s any piece ol hardware 60
that 1s capable of storing information, such as, for example
without limitation, data, program code in functional form,
and/or other suitable information either on a temporary basis
and/or a permanent basis. Memory 106, 1n these examples,
may be, for example, a random access memory or any other 65
suitable volatile or non-volatile storage device. Persistent
storage 108 may take various forms depending on the par-

4

ticular implementation. For example, persistent storage 108
may contain one or more components or devices. For
example, persistent storage 108 may be a hard drive, a flash
memory, a rewritable optical disk, a rewritable magnetic tape,
or some combination of the above. The media used by per-
sistent storage 108 also may be removable. For example, a
removable hard drive may be used for persistent storage 108.

Communications unit 110, 1n these examples, provides for
communications with other data processing systems or
devices. In these examples, communications unit 110 1s a
network interface card. Communications unit 110 may pro-
vide communications through the use of either or both physi-
cal and wireless communications links.

Input/output unit 112 allows for input and output of data
with other devices that may be connected to data processing
system 100. For example, input/output unit 112 may provide
a connection for user iput through a keyboard, a mouse,
and/or some other suitable input device. Further, input/output
unmit 112 may send output to a printer. Display 114 provides a
mechanism to display information to a user.

Instructions for the operating system, applications and/or
programs may be located in storage devices 116, which are in
communication with processor unit 104 through communi-
cations fabric 102. In these illustrative examples the mstruc-
tions are 1n a functional form on persistent storage 108. These
instructions may be loaded into memory 106 for execution by
processor unit 104. The processes of the different embodi-
ments may be performed by processor unit 104 using com-
puter-implemented 1nstructions, which may be located 1n a
memory, such as memory 106.

These mnstructions are referred to as program code, com-
puter usable program code, or computer readable program
code that may be read and executed by a processor 1n proces-
sor unit 104. The program code 1n the different embodiments
may be embodied on different physical or tangible computer
readable media, such as memory 106 or persistent storage
108.

Program code 118 1s located 1n a functional form on com-
puter readable media 120 that 1s selectively removable and
may be loaded onto or transterred to data processing system
100 for execution by processor unit 104. Program code 118
and computer readable media 120 form computer program
product 122 1n these examples. In one example, computer
readable media 120 may be 1n a tangible form, such as, for
example, an optical or magnetic disc that 1s inserted or placed
into a drive or other device that 1s part of persistent storage
108 for transfer onto a storage device, such as a hard drive that
1s part of persistent storage 108. In a tangible form, computer
readable media 120 also may take the form of a persistent
storage, such as a hard drive, a thumb drive, or a flash memory
that 1s connected to data processing system 100. The tangible
form of computer readable media 120 1s also referred to as
computer recordable storage media. In some mstances, com-
puter readable media 120 may not be removable.

Alternatively, program code 118 may be transferred to data
processing system 100 from computer readable media 120
through a communications link to communications unit 110
and/or through a connection to mput/output umt 112. The
communications link and/or the connection may be physical
or wireless 1n the 1llustrative examples. The computer read-
able media also may take the form of non-tangible media,
such as communications links or wireless transmissions con-
taining the program code.

In some 1illustrative embodiments, program code 118 may
be downloaded over a network to persistent storage 108 from
another device or data processing system for use within data
processing system 100. For instance, program code stored in

US 8,640,113 B2

S

a computer readable storage medium 1n a server data process-
ing system may be downloaded over a network from the
server to data processing system 100. The data processing
system providing program code 118 may be a server com-
puter, a client computer, or some other device capable of
storing and transmitting program code 118.

The different components illustrated for data processing
system 100 are not meant to provide architectural limitations
to the manner 1n which different embodiments may be imple-
mented. The different illustrative embodiments may be
implemented 1n a data processing system including compo-
nents 1n addition to or 1n place of those 1llustrated for data
processing system 100. Other components shown in FIG. 1
can be varied from the 1llustrative examples shown. The dii-
ferent embodiments may be implemented using any hardware
device or system capable of executing program code. As one
example, the data processing system may include organic
components integrated with inorganic components and/or
may be comprised entirely of organic components excluding,
a human being. For example, a storage device may be com-
prised of an organic semiconductor.

As another example, a storage device in data processing
system 100 may be any hardware apparatus that may store
data. Memory 106, persistent storage 108 and computer read-
able media 120 are examples of storage devices 1n a tangible
form.

In another example, a bus system may be used to imple-
ment communications fabric 102 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using any
suitable type of architecture that provides for a transfer of data
between different components or devices attached to the bus
system. Additionally, a communications unit may include one
or more devices used to transmit and receive data, such as a
modem or a network adapter. Further, a memory may be, for
example, memory 106 or a cache such as found 1n an interface
and memory controller hub that may be present in communi-
cations fabric 102.

According to an illustrative embodiment, a computer-
implemented process for hardware check pointing 1n specu-
lative execution frameworks 1s presented. Using data process-
ing system 100 of FIG. 1 as an example, an illustrative
embodiment provides the computer-implemented process
stored 1n memory 106, executed by processor unit 104, for a
computer-implemented process for hardware check pointing
in speculative execution frameworks, 1dentifies calls to a set
of setymp/longymp instructions to form identified calls to
setimp/longymp. Processor unit 104 determines a control tlow
path between a call to a setymp and a longymp pair of mnstruc-
tions 1n the identified calls to setimp/longimp and replaces
calls to the setymp/longymp pair of instructions with calls to an
improved_setymp and improved_longymp struction pair.
Processor unit 104 further creates a context data structure 1n
memory, such as memory 106 or storage devices 116, com-
putes a non-volatile save/restore set and replaces the call to
improved_setimp of the setymp/longgmp pair of instructions
with instructions to save all required non-volatile and special
purpose registers. Processor unit 104 turther replaces a call to
improved_longjmp ofthe setimp/longjmp pair of instructions
with mstructions to restore all required non-volatile and spe-
cial purpose registers and to branch to an instruction imme-
diately following a block of code containing the call to
improved_setymp.

In an alternative embodiment, program code 118 contain-
ing the computer-implemented process may be stored within
computer readable media 120 as computer program product
122. In another illustrative embodiment, the process for hard-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

ware check pomting 1 speculative execution frameworks
may be implemented in an apparatus comprising a commu-
nications fabric, a memory connected to the communications
fabric, wherein the memory contains computer executable
program code, a communications unit connected to the com-
munications fabric, an mput/output unit connected to the
communications fabric, a display connected to the commu-
nications fabric, and a processor unit connected to the com-
munications fabric. The processor unit of the apparatus
executes the computer executable program code to direct the
apparatus to perform the process.

With reference to FIG. 2, a block diagram of components
of a speculative execution framework in accordance with
various embodiments of the disclosure is presented. Frame-
work 200 1s an example of a speculative execution framework
in accordance with an embodiment of the disclosure.

Framework 200 comprises a number of components
including improved setymp/longymp functions 202, improved
compiler 204, pruned control flow graph 206 and improved
stack 208.

Framework 200 provides a capability to reduce the setymp
and longymp 1nstruction processing overhead by only saving
and restoring a minimal set of hardware registers necessary to
maintain program consistency for rollbacks. In a worst case
ol a rare set of scenarios, improved setymp/longimp 202 1s
forced to default to perform in a traditional behaviour by
saving and restoring a full set of non-volatile registers. Typi-
cally speculative rollback 1s a usage of the disclosed specu-
lative execution framework, but the disclosed speculative
execution framework 1s generally applicable to other user
programs requiring system setjmp and longjmp functions.

Improved setymp/longimp 202 1mplementation using
speculative execution frameworks such as framework 200 1s
elfective in the context of rollback for hardware transactional
memory (HTM) and thread level speculation (TLS). A prob-
lem typically solved by this technique 1s uncertainty regard-
ing the state of non-volatile registers when a runtime function
calls longymp. For hardware transactional memory and thread
level speculation, the runtime 1s responsible for restoring the
state of the program back to the point of setymp. When a
runtime function calls improved_longymp, the run-time func-
tion will not execute an epilogue of the function, and will
therefore not restore the non-volatile registers used 1n the
function. The process using an improved setymp/longjmp
function provides a method to split a runtime function into
two new functions comprising a parent and a child. The parent
function, which can call longjmp, 1s constructed such that
parent function will not use any non-volatile registers.

Improved compiler 204 provides a capability to identily
calls to traditional setymp/longimp 1nstructions and replace
the 1dentified traditional setjmp/longimp instructions with
istructions of mmproved setimp/longimp 202. Improved
compiler 204 uses pruned control tlow graph 206. The typical
control flow graph has been examined specifically to identity
calls to setyimp/longymp. The resulting control tlow graph 1s
reduced to focus on the identified nodes and paths associated
with the i1dentified calls to setjmp/longymp.

Improved stack 208 accommodates a context data structure
in memory to contain elements necessary for the improved
process. The context data structure comprises elements
including a stack pointer, table of contents pointer and a
return address.

Framework 200 thus provides a capability to perform hard-
ware check-pointing for speculative execution frameworks
by implementing an improved version of a setymp/longimp
construct. The improved setymp/longimp typically reduces
overhead of saving and restoring non-volatile registers by

US 8,640,113 B2

7

determining a reduced set of registers that must be saved and
restored, while still maintaining program consistency when a
rollback occurs. Framework 200 generalizes the improved
setymp/longjmp implementation to replace the traditional set-
1mp/longimp implementation.

A Tunction splitting 1s used to ensure a given function will
not use any non-volatile registers. The function splitting of
framework 200 enables a program to call runtime routines
without compromising the state of the non-volatile registers.

With reference to FIG. 3 a code snippet example of an
improved istruction pair of the speculative execution frame-
work of FIG. 2, in accordance with one embodiment of the
disclosure 1s presented. FIG. 3 shows a C-style pseudo code
snippet of a function foo, which contains a transactional
region. Code snippet 300 provides a first portion 1n which 1s
an example using traditional setymp/longimp 302 and a sec-
ond portion using improved setymp/longimp 308. A context
structure 1n second portion 308 1s passed to end transaction or
the low level interrupt handler to facility branching back.

A setymp/longymp construct provides a means for complex
control tflow. The setjmp/longymp construct works by calling
setymp to save the state of the program, element 304, then later
calling longymp, element 306, to restore register states cap-
tured at the point of setjmp and resuming execution at the
instruction immediately following the call to setimp. A typi-
cal call to setymp 1nvolves the following sequence:

save live volatile registers

call setymp and pass 1n the address of a bufler to save

register values

save all non-volatile general purpose registers and floating

point registers save special purpose registers: Stack
Pointer, Table Of Contents, thread ID and Link Register

will return O

on return from setymp, restore live volatile registers.

A typical call to longymp, element 306 involves the follow-
Ing sequence:

save live volatile registers

call longymp, passing as an argument the address of the

butiler where the register values are saved

restore all non-volatile general purpose and floating point

registers

restore special purpose registers: Stack Pointer, Table Of

Contents, thread ID return a value not equal to O
branch to the Link Register saved by setymp, for example,
the instruction immediately following setymp.

The process by which the traditional setymp/longimp con-
struct 1s replaced by the improved setymp/longimp 308 1s
transparent to the user. The compiler will use a bulfer argu-
ment to properly pair each longgmp with an appropriate set-
1mp instruction. The compiler reserves space on a local stack
for each setjmp 1nstantiation to save the non-volatile registers
and special purpose registers. When setymp/longymp 1s used
for transactional memory or thread level speculation, we use
a separate buller for the context structure to save the stack
pointer, the table of contents (TOC) pointer and the return
address. These registers are treated specially because the
registers are live-in to the transaction and may be clobbered
by a runtime call that contains the longymp, for example, the
runtime call to end a transaction. The process replaces the call
to 1mproved_setimp with instructions to save all required
non-volatile element 312 and special purpose registers, ele-
ment 310. A restore point, element 314 restores non-volatile
registers from the builer. The process replaces the call to
improved_longjmp with instructions to restore all non-vola-
tile and special purpose registers and branch to the instruction
immediately following the improve_setimp block of code,
clement 316.

10

15

20

25

30

35

40

45

50

55

60

65

8

A prerequisite for an improved setymp/longimp 308 pair to
replace a traditional setymp/longgmp 302 implementation
requires the compiler, such as improved compiler 204 of
framework 200 of FIG. 2 to determine the control flow path
between a pair of setjmp and longymp calls, for example 1n
pruned control flow graph 206 also of framework 200 of FIG.
2. Without analyzing the control flow path, the compiler 1s
unable to determine the minimal set of non-volatile registers
to be saved and restored to maintain program consistency.

With reference to FIG. 4, a block diagram of a traditional
runtime call to a longgmp function, i accordance with the
disclosure 1s presented. Process 400 1s an example of a tradi-
tional call during runtime by a hardware function to use a
longgmp function.

Element 402 starts a sequence of processing a hardware
transaction comprising a start hardware instruction, a trans-
action code region containing transaction code followed by
an end hardware transaction, element 404. Runtime code 406
describes a process 1 which the end hardware transaction
includes within a prolog a call to longymp function.

A typical compiler implements transactional regions by
iserting two calls, for example, a Begin HW Transaction at
the beginning of a transactional region and a End HW Trans-
action at the end of the transactional region. These routines
are part of a dynamic library, such as a transactional memory
runtime library, and implement operations to imtiate and
commit hardware transactions, backup program states and
rollback execution in the event of an abort. For software
modularity, register usage of runtime routines 1s typically not
made available to the compiler. The END HW Transaction
routine mvokes a traditional longimp function and may
modily non-volatile registers prior to calling longymp. The
situation could be problematic for the compiler performing
setimp/longimp optimization because the routine breaks a
prerequisite of the compiler to have information on register
usage between calls of setjmp and longymp.

Calling the Begin HW Transaction and End HW Transac-
tion routines 1n a speculative region requires maintaiming the
consistency of all non-volatile registers. Saving and restoring
of all non-volatile registers 1s typically required because
when a longimp occurs 1in a runtime routine, non-volatile
registers the routine needs to restore (typically performed
within a function epilogue), cannot be restored because the
epilogue portion has not executed. A function fission tech-
nique solves this problem by ensuring that Begin HW Trans-
action and End HW Transaction do not leave any non-volatile
registers ‘unrestored’ before calling longjmp.

With reference to FIG. 5, a code snippet of a function split
example of an end hardware transaction using the speculative
execution framework of FIG. 2, in accordance with one
embodiment of the disclosure i1s presented. Transformation
500 1s an example of runtime code transformed 1n accordance
with framework 200 of FIG. 2.

To address the problem i1n which registers may not be
restored because the epilogue portion of the transaction has
not executed, the END HW Transaction routine 1s structured
to ensure non-volatile registers are never clobbered prior to a
call to longymp. To ensure this condition, transform 500
extracts code from the End HW Transaction function as
shown 1n runtime code 502 1nto two new functions of runtime
code 504 1n a function fission technique.

A first portion 506 contains a lightweight routine having
only a call to longymp and operations that the longjmp call
depends upon. A second portion 508 contains prolog code as
betore. The second portion 508 contains the substance of
END HW Transaction, which 1s the code used to determine
when a roll back 1s required. The function splitting oftloads

US 8,640,113 B2

9

the bulk of the computation to second portion 508, so first
portion 506 will be small and not need to use any non-volatile
registers. Runtime code 506 can be coded using inline assem-
bler code to ensure no clobbering of non-volatile registers
OCCUrs.

With reference to FIG. 6, a block diagram of a saved set of
registers computation example in the speculative execution
framework of FIG. 2, 1n accordance with one embodiment of
the disclosure 1s presented. Computation 600 1s an example of
determining a save set of registers in accordance with frame-
work 200 of FIG. 2.

A set ol non-volatile registers that must be saved and
restored by improved setymp/longimp 202 of F1G. 21s asetof
live-in non-volatile registers, which may have a different
value at a call to longymp from a value at a call to setjmp.

Aterm clobbered set, , 1s defined as a set ot all non-volatile
registers that may have a value at instruction b that differs
from a value at instruction a. In other words, a register r 1s
included 1n clobbered set,, ;, 1f and only if there exists a path
from mstruction a to instruction b where the final definition of
register r 1s to a value not known to be the value of register r
at 1nstruction a.

A live-in set 1s defined as a set of non-volatile registers that
are live at instruction a. A term save set, , 1s defined as the
intersection ot the live-in set, and clobbered set, ,. A save
set,, may then be expressed as, save set,,=live-in
set,,(clobbered set,, .

For a given setjmp 1nstruction, the compiler computes save
set,, ,, where a1s the call to setymp and b 1s the call to longymp.
When multiple calls to longymp exist, a separate save set 1s
computed for each longymp, and the set of non-volatile reg-
isters that must be saved and restored 1s calculated as the
union of all save sets.

For example a save set, , for improved_setymp 602 and
improved_longjmp 604 assumes that registers are not defined
to values at improved_setymp 604 as the same values as at
improved_setymp 602. A live-in set 1s given as live-in
set={grl5, gr17, grl9, gr20, gr21, gr22, gr23} and a clob-
bered set={grl4, grl6, grl17, grl8, gr22, gr23}. Therefore a
computed save set is expressed as save set={grl7, gr22,
gr23}. The set of non-volatile registers to be saved and
restored is accordingly {grl7, gr22, gr23}.

With regard to FIG. 7, a block diagram of an overview of a
process ol computing a saved set of registers using the specu-
lative execution framework of FIG. 2, in accordance with one
embodiment of the disclosure 1s presented. Process 700 1s an
example of a computation for computing a minimal save set
ol non-volatile registers to be saved and restored according to
framework 200 of FIG. 2.

Process 700 1s an overview of a basic process used to
compute a save set of the non-volatile registers of the disclo-
sure. Given a pair of setymp/longymp points, CFG pruning
702 1s performed on the control tlow graph to prune, or
remove, irrelevant node data. For example, only nodes on
paths from setymp to longymp instructions are of interest. A
pruned control flow graph reduces the amount of data to
traverse and process.

For each varniable definition, a calculation of a reaching
definition 704 1s performed 1n which 11 the variable definition
can reach the longymp, the vanable 1s put into the defined
variable set 706. When a value 1s written to, the action does
not necessarily mean that the value 1s changed. Therefore a
value analysis 708 1s performed to identify variables that keep
the same value when longymp 1s reached. There are typically
two cases 1n which a same value may be maintained. In a first
case, a variable may go through a series of algebraic opera-
tions and maintain the same value. For example, a variable X

10

15

20

25

30

35

40

45

50

55

60

65

10

could be incremented by 1, then decremented by 1, resulting
in the same value. In a second case, spill code 1dentification
710 occurs 1n which registers used for spill code contain a
result with the same value. A union of the first case and the
second case 712 produces a same value set 714. All defined
variables 1n defined variable set 706 are processed in a minus
operation 716 using same value variables set 714 to yield
clobbered set 718. Clobbered set 718 1s intersected 722 with
a live-1n set 720 to generate save set 724.

In general, an expression tree 1s built for a vanable that
involves multiple (write) operations. An attempt 1s made to
determine whether the operations can be completely offset to
produce the same value.

When register usage at a particular point in the code
exceeds a number of registers available, the compiler may
choose to save a value to memory, referred to as spill, and
restore the value at a later time. Provided that there 1s no
interleaving call to longymp, any definitions between the spill
and restore can be disregarded. Because the analysis for non-
volatile register save/restore reduction 1s performed after reg-
ister allocation, the process provides an opportunity to rec-
ognize these sequences. Determining the reduced set of non-
volatile registers to save and restore 1s done after register
allocation. This process of determination enables the com-
piler to perform the evaluation on actual hardware registers,
thus removing a need to use aliasing information.

With regard to non-volatile registers, when a function 1s
called, all non-volatile registers are saved by the callee 1n a
prologue and restored by the callee 1n an associated epilogue.
When both prologue and epilogue are executed, any non-
volatile registers used 1n the function should have the same
value as prior to the function call.

There are typically three scenarios to consider when deal-
ing with function calls. A trivial case occurs when the com-
piler 1s assured that no call to longymp will occur within the
function. In this case, the compiler may therefore ignore the
function call when calculating the clobbered set.

In a second scenario when a function call 1ssues a call to
longgmp a compiler capable of interprocedural analysis has
the ability to incorporate the function call into the analysis of
the improved setymp/longgmp implementation. For a function
f, the compiler computes the save set,, , where a is the setjmp
call and b 1s the call to function F. The compiler also computes
save set_ ; where ¢ 1s a first instruction of function f and d s
the call to longymp. The save set for the longymp contained in
function f 1s expressed as: save save set, ;~save set, , U save
set.. ;-

A third scenario occurs when the compiler does not have
access to the body of the called function, and only has access
to a declaration of the called function. This scenario may
occur when using a shared library or linking to third party
code. A conservative approach would assume all non-volatile
registers are defined at the function call 1n case a longimp
occurs within the function. One approach to the scenario uses
aliasing information to determine whether the function call
has access to a buller used to store saved registers. When the
function call does not have access to the bufler, there 1s no
possibility of calling longymp and the function may be disre-
garded for non-volatile register save/restore reduction pur-
poses. When a function does have the ability to access the
register buller, the compiler 1s forced to assume that the
function may call longjmp, and the compiler must save and
restore all non-volatile registers, similar to the traditional
implementation.

The technique presented in this disclosure to reduce the
number of non-volatile registers that must be saved and
restored can also be applied 1n a modified fashion to volatile

US 8,640,113 B2

11

registers. Typically, a register allocator will save and restore
all volatile registers around a call instruction, such as the call
to improved setymp. Register resurrection

optimization [6] describes a method whereby volatile regis-
ters unused by a callee function are made available to the
caller function by augmenting the call instruction to reflect
the actual register usage of the callee function. Because
improved setymp 1s treated as a call the instruction may be
augmented to reflect actual register usage of the final imstruc-
tion sequence, which will compose improved setymp. There-
fore, volatile registers not used by improved setymp are per-
mitted to remain live across the call to improved setymp. This
does not apply to special purpose registers such as the stack
pointer and the table of contents pointer. Any volatile register
that 1s allowed to remain live across the call will then be
treated much like a non-volatile register when computing the
save/restore register set. When the volatile register that 1s live
across 1mproved setjmp exists in the save set for the setymp/
longgmp instruction sequence, the described process will save
and restore the register to maintain program consistency.

The concept of save set computation shares some similarity
with previous solutions. A most noticeable difference 1s that
the save set computation 1s performed on hardware registers,
not symbolic registers since memory check pointing 1s not
needed for hardware transaction memory. Another difference
1s the save set 1s only computed for non-volatile registers.
Volatile register check pointing 1s performed by the register
allocator, which restores all volatile registers live at
improved_setymp. This 1s an aflect of keeping 1m-
proved_setymp as a call through the compilation process until
alter register allocation. Yet another difference 1s that previ-
ous solutions do not attempt to identify variables with the
same value even when the variables are modified. The 1den-
tification process sharply contrasts with previous solutions in
which all register check pointing 1s performed using tradi-
tional setymp/longymp.

With reference to FIG. 8 a flowchart of an improved set-
1mp/longimp process using the speculative execution frame-
work of FIG. 2, in accordance with one embodiment of the
disclosure 1s presented. Process 800 1s an example of a pro-
cess using the improved setyjmp/longymp process using the
speculative execution framework 200 of FIG. 2.

Process 800 starts (step 802) and identifies calls to setjmp/
longymp to form 1dentified calls to setymp/longjmp (step 804).
The i1dentified calls to setimp/longgmp i1dentify the calls at
compile time to the traditional forms of setjmp/longjmp
instructions. Identification 1s performed with the context of a
pruned control flow graph. For the identified calls to setjmp/
longgmp process 800 determines a control tlow path between
a call to a setymp and a longymp pair of instructions (step 806).
A compiler typically maintains a correspondence between a
setymp 1nstruction and associated longymp 1nstruction.

Process 800 replaces calls to setymp/longgmp with calls to
improved_setimp and improved_longimp (step 808). The
identified calls to traditional setjmp/longymp instructions are
accordingly replaced with calls to improved versions of set-
1mp/longymp instructions. Process 800 further creates a con-
text data structure in memory (step 810). The context data
structure 1s used to store context sensitive data associated
with the improved instructions. The stored information typi-
cally includes a stack pointer, table of contents pointer and a
return address.

Process 800 computes a non-volatile save/restore set (step
812). The computation of the non-volatile save/restore set, 1n
one embodiment, 1s calculated according to process 700 of

FIG. 7.

10

15

20

25

30

35

40

45

50

55

60

65

12

Process 800 replaces the call to improved_setjmp with
instructions to save all required non-volatile and special pur-
pose registers (step 814). Step 814 1s the first part of the
two-part function splitting process described in the transior-
mation process 500 of FIG. 5. Process 800 further replaces a
call to 1mproved_longymp with instructions to restore all
required non-volatile and special purpose registers and to
branch to an instruction immediately following a block of
code containing the call to improved_setymp (step 816). Step
816 1s the second part of the two-part Tunction splitting pro-
cess described in the transformation process 500 of FIG. 5.
Process 800 terminates (step 818).

Thus 1s presented a process for performing hardware reg-
1ster check pointing for speculative execution models using
an improved version of setymp/longymp nstruction pairs. The
process presented enables the improved version of setjmp/
longymp instructions to save and restore a reduced number of
registers to typically improve performance. The generalized
improved setymp/longimp process may also be applicable
outside the speculative context 1n which embodiments are
described. The described embodiments are typically robust
enough to replace traditional setimp/longimp implementa-
tion while enabling traditional setymp/longjmp 1mplementa-
tion as a fall back alternative. A function splitting technique
referred to as function fission also described in the example
embodiments splits runtime routines that initiate or terminate
speculation. Through this technique assurance of the state of
non-volatile registers when 1n the routine 1s provided.

The tflowchart and block diagrams 1n the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing a specified logical function. It
should also be noted that, 1n some alternative implementa-
tions, the functions noted 1n the block might occur out of the
order noted 1n the figures. For example, two blocks shown 1n
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart 1llustration, and combinations of blocks 1n the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the invention 1n the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill 1n the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described 1n order to best explain the principles of the mnven-
tion and the practical application, and to enable others of
ordinary skill 1n the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

The mvention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a

US 8,640,113 B2

13

preferred embodiment, the invention 1s implemented 1n soft-
ware, which includes but 1s not limited to firmware, resident
soltware, microcode, and other software media that may be
recognized by one skilled in the art.

It 1s important to note that while the present invention has
been described 1n the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed 1n the form of a computer read-
able medium of 1nstructions and a variety of forms and that
the present invention applies equally regardless of the par-
ticular type of signal bearing media actually used to carry out
the distribution. Examples of computer readable media
include recordable-type media, such as a floppy disk, a hard
disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmis-
sion-type media, such as digital and analog communications
links, wired or wireless communications links using trans-
mission forms, such as, for example, radio frequency and
light wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual use
in a particular data processing system.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening 1I/0O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems, and Ethernet cards are just a few of the cur-
rently available types of network adapters.

The description of the present invention has been presented
for purposes of 1illustration and description, and 1s not
intended to be exhaustive or limited to the ivention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill 1n the art. The embodiment
was chosen and described 1n order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

The mvention claimed 1s:

1. A computer-implemented process for check pointing 1n
speculative execution Iframeworks, the computer-imple-
mented process comprising;

identifying a call to a set of setymp/longymp instructions,

the set of setjmp/longymp nstructions comprising a set-
1mp and a longymp pair of istructions;
determining a control flow path between a call to the setjmp
and the longymp pair of instructions in the identified call;

replacing the call to the setimp and the longymp pair of
instructions with a call to an improved_setimp and an
improved_longymp instruction pair;

creating a context data structure in memory;

computing a non-volatile save/restore set;

replacing the call to the improved_setymp 1nstruction with

istructions to save a plurality of required non-volatile
registers and a plurality of special purpose registers; and

10

15

20

25

30

35

40

45

50

55

60

65

14

replacing the call to the improved_longimp instruction
with 1nstructions to restore the plurality of required non-
volatile registers and the plurality of special purpose
registers and to branch to an instruction immediately
following a block of code contaiming the call to the
improved_setymp instruction.

2. The computer-implemented process of claim 1, wherein
identifying a call to a set of setymp/longimp 1nstructions fur-
ther comprises:

identifying a plurality of calls to a plurality of sets of
setymp/longimp nstructions during a compilation using,
a compiler; and

using a buffer argument to properly pair each longymp
instruction with an appropriate setymp instruction.

3. The computer-implemented process of claim 1, wherein
determining a control flow path between a call to the setjmp
and the longymp pair of instructions 1n the identified call
further comprises:

pruning a control flow graph to form a pruned control flow
graph; and

traversing the pruned control flow graph.

4. The computer-implemented process of claim 1, wherein
creating a context data structure in memory further com-
Prises:

allocating a separate butler for the context data structure to
save data wherein the save data includes a stack pointer,
a table of contents (TOC) pointer and a return address.

5. The computer-implemented process of claim 1, wherein
computing a non-volatile save/restore set further comprises:

calculating a reaching definition for each of a plurality of
variable definitions, wherein a variable 1s placed into a
defined vaniable set when the corresponding variable
definition 1s capable of reaching the longymp:;

performing a value analysis to 1dentily one or more vari-
ables that keep the same value when the longimp 1is
reached to form 1dentified variables:

performing a spill code identification, wherein one or more
registers used for spill code contain a result with the
same value, to form 1dentified spill code;

performing a union of the identified variables and the 1den-
tified spill code to produce a same value set;

subtracting the same value set from the defined variable set
to form a clobbered set; and

intersecting the clobbered set with a live-1n set to generate
a save set.

6. The computer-implemented process of claim 1, wherein
identifying a call to a set of setymp/longimp 1nstructions fur-
ther comprises:

reserving space on a local stack for a setymp instantiation to
save non-volatile registers and special purpose registers.

7. The computer-implemented process of claim 1, wherein
replacing the call to the improved_setymp 1nstruction and the
improved_longymp instruction pair further comprises:

splitting a runtime function into a new parent function and
a new child function, wherein the new parent function 1s
capable of calling longymp and wherein the new parent
function 1s 1ncapable of using non-volatile registers.

8. A computer program product for check pointing 1n
speculative execution frameworks, the computer program
product comprising:

a computer recordable-type media containing computer
executable program code stored thereon, the computer
executable program code comprising:

computer executable program code for 1dentifying a calls
to a set of setjmp/longymp 1nstructions, the set of setjmp/
longymp 1nstructions comprising a setymp and a longjmp
pair of mstructions;

US 8,640,113 B2

15

computer executable program code for determining a con-
trol tlow path between a call to the setymp and the
longymp pair of instructions in the 1dentified call;

computer executable program code replacing the call to the
setymp and the longjmp pair of instructions with a call to
an improved_setymp and an improved_longjmp instruc-
tion pair;

computer executable program code for creating a context

data structure 1n memory;

computer executable program code for computing a non-

volatile save/restore set;

computer executable program code for replacing the call to

the 1mproved_setimp instruction with instructions to
save a plurality of required non-volatile registers and a
plurality of special purpose registers; and
computer executable program code for replacing the call to
the improved_longimp instruction with instructions to
restore the plurality of required non-volatile registers
and the plurality of special purpose registers and to
branch to an instruction immediately following a block
of code containing the call to the improved_setimp
instruction.
9. The computer program product of claim 8, wherein
computer executable program code for identifying a call to a
set of setjmp/longymp 1nstructions further comprises:
computer executable program code for identifying a plu-
rality of calls to a plurality of sets of setymp/longjmp
istructions during a compilation using a compiler; and

computer executable program code for using a buifer argu-
ment to properly pair each longymp instruction with an
appropriate setjmp instruction.

10. The computer program product of claim 8, wherein
computer executable program code for determining a control
flow path between a call to the setymp and the longymp pair of
instructions 1n the 1dentified call further comprises:

computer executable program code for pruning a control

flow graph to form a pruned control flow graph; and
computer executable program code for traversing the
pruned control flow graph.

11. The computer program product of claim 8, wherein

computer executable program code for creating a context data
structure 1n memory further comprises:

computer executable program code for allocating a sepa-

rate buller for the context data structure to save data
wherein the save data includes a stack pointer, a table of
contents (TOC) pointer and a return address.

12. The computer program product of claim 8, wherein
computer executable program code for computing a non-
volatile save/restore set further comprises:

computer executable program code for calculating a reach-

ing definition for each of a plurality of variable defini-
tions wherein a variable 1s placed 1nto a defined variable
set when the corresponding variable definition 1s
capable of reaching the longymp;

computer executable program code for performing a value

analysis to 1dentify one or more variables that keep the
same value when the longymp 1s reached to form 1denti-
fled variables:

computer executable program code for performing a spill

code 1dentification, wherein one or more registers used
for spill code contain a result with the same value, to
form 1dentified spill code;

computer executable program code for performing a union

of the 1dentified variables and the 1dentified spill code to
produce a same value set;

5

10

15

20

25

30

35

40

45

50

55

60

65

16

computer executable program code for subtracting the
same value set from the defined variable set to form a
clobbered set; and

computer executable program code for intersecting the
clobbered set with a live-1n set to generate a save set.

13. The computer program product of claim 8, wherein
computer executable program code for 1dentifying the call to
a set of setjmp/longymp 1nstructions further comprises:

computer executable program code for reserving space on
a local stack for each setymp instantiation to save non-
volatile registers and special purpose registers.

14. The computer program product of claim 8, wherein
computer executable program code for replacing the call to
the improved_setymp instruction and the improved_longymp
instruction pair further comprises:

computer executable program code for splitting a runtime
function into a new parent function and a new child
function, wherein the new parent function 1s capable of
calling longjmp and wherein the new parent function 1s
incapable of using non-volatile registers.

15. An apparatus for check pointing in speculative execu-

tion frameworks, the apparatus comprising:

a communications fabric;

a memory connected to the communications {fabric,
wherein the memory contains computer executable pro-
gram code;

a communications unit connected to the communications
fabric;

an input/output unit connected to the communications fab-
ric;

a display connected to the communications fabric; and

a processor unmt connected to the communications fabric,
wherein the processor unit executes the computer
executable program code to direct the apparatus to:

identily a call to a set of setymp/longymp instructions, the
set of setymp/longjmp 1nstructions comprising a setymp
and a longjmp pair of 1nstructions;

determine a control flow path between a call to the setymp
and the longymp pair of instructions 1n the 1dentified call;

replace the call to the setimp and the longymp pair of
instructions with a call to an improved_setymp and an
improved_longymp instruction pair;

create a context data structure in memory;

compute a non-volatile save/restore set;

replace the call to the improved_setymp 1nstruction with
istructions to save a plurality of required non-volatile
registers and a plurality of special purpose registers; and

replace the call to the improved._longymp 1nstruction with
instructions to restore the plurality of required non-vola-
tile registers and the plurality of special purpose regis-
ters and to branch to an mstruction immediately follow-
ing a block of code contamning the call to the
improved_setymp instruction.

16. The apparatus of claim 135, wherein the processor unit
executes the computer executable program code to identify a
call to a set of setymp/longymp instructions further directs the
apparatus to:

identity a plurality of calls to a plurality of sets of setjmp/
longymp nstructions during a compilation using a com-
piler; and

use a builer argument to properly pair each longjmp
instruction with an appropriate setymp instruction.

17. The apparatus of claim 135, wherein the processor unit
executes the computer executable program code to determine
a control flow path between a call to the setjmp and the
longgmp pair of instructions in the identified call further
directs the apparatus to:

US 8,640,113 B2

17 18
prune a control flow graph to form a pruned control tlow perform a spill code 1dentification, wherein one or more
graph; and registers used for spill code contain a result with the
traverse the pruned control tlow graph. same value, to form identified spill code;

18. The apparatus of claim 15, wherein the processor unit
executes the computer executable program code to create a 5
context data structure in memory further directs the apparatus

perform a union of the 1dentified variables and the 1denti-
fied spill code to produce a same value set;

subtract the same value set from the defined variable set to

to:
allocate a separate buffer for the context data structure to form a clobbered set;
save data wherein the save data includes a stack pointer, intersect the clobbered set with a live-1n set to generate a
a table of contents (TOC) pointer and a return address. 0 save set.
19. The apparatus of claim 15, wherein the processor unit 20. The apparatus of claim 15, wherein the processor unit

executes the computer executable program code to compute a
non-volatile save/restore set further directs the apparatus to:
calculate a reaching definition for each of a plurality of
variable definitions, wherein a vanable 1s placed into a
defined variable set when the corresponding variable :
definition 1s capable of reaching the longimp:;
perform a value analysis to 1dentily one or more variables
that keep the same value when the longymp 1s reached to
form 1dentified variables; I S T

executes the computer executable program code to replace
the call to the improved_setymp and the improved_longimp
instruction pair further directs the apparatus to:

5 split a runtime function 1nto a new parent function and a
new child function, wherein the new parent function 1s
capable of calling longimp and wherein the new parent
function 1s incapable of using non-volatile registers.

	Front Page
	Drawings
	Specification
	Claims

