12 United States Patent

Asaad et al.

US008640070B2

(10) Patent No.: US 8.640,070 B2
45) Date of Patent: Jan. 28, 2014

(54) METHOD AND INFRASTRUCTURE FOR

(75)

(73)

(%)

(21)

(22)

(65)

(1)
(52)

(58)

(56)

CYCLE-REPRODUCIBLE SIMULATION ON
LARGE SCALE DIGITAL CIRCUITS ON A

COORDINATED SET OF

FIELD-PROGRAMMABLE GATE ARRAYS

(FPGAS)

Inventors: Sameh W Asaad, Briarcliftf Manor, NY
(US); Ralph E Bellofatto, Ridgefield,
CT (US); Bernard Brezzo, Somers, NY

(US); Charles L. Haymes, Fair Lawn, NJ

(US); Mohit Kapur, Sleepy Hollow, NY
(US); Benjamin D Parker, Peekskill,

NY (US); Thomas Roewer, Danbury,
CT (US); Jose A Tierno, Stamford, CT

(US)

Assignee: International Business Machines

Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 507 days.
Appl. No.: 12/941,834

Filed: Nov. 8, 2010

Prior Publication Data

US 2012/0117413 Al May 10, 2012

Int. CI.

GO6F 17/50 (2006.01)

U.S. CL

USPC s, 716/116; 716/106; 716/117

Field of Classification Search

USPC e, 716/106, 116, 117

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,550,839 A 8/1996 Buch
6,421,251 Bl 7/2002 Lin

100
BALANCED 106 \
CLOCK TREE - 1. -

ST, BALANCED

199 -~

Fal/ e ™\, CLOCK /RESET

TRAGES

6,484,280 B1 11/2002 Moberly
7,323,771 B2 1/2008 Fujita
7,424,416 Bl 9/2008 Cavanagh

(Continued)

FOREIGN PATENT DOCUMENTS

WO W0O2006012335 5/2006

OTHER PUBLICATIONS

Dietmar Tutsch, et al., “CINSim-A Component based Interconnec-

tion network simulator for Modeling Dynamic Reconfiguration”,
Proceedings 12th Intern’t Conference ASMTA 2005.

Primary Examiner — Thuan Do
Assistant Examiner — Mohammed Alam

(74) Attorney, Agent, or Firm — Anne V. Dougherty;
Otterstedt, Ellenbogen & Kammer, LLP

(57) ABSTRACT

A plurality of target field programmable gate arrays are inter-
connected 1n accordance with a connection topology and map
portions of a target system. A control module 1s coupled to the
plurality of target field programmable gate arrays. A balanced
clock distribution network 1s configured to distribute a refer-
ence clock signal, and a balanced reset distribution network 1s
coupled to the control module and configured to distribute a
reset signal to the plurality of target field programmable gate
arrays. The control module and the balanced reset distribution
network are cooperatively configured to initiate and control a
simulation of the target system with the plurality of target
field programmable gate arrays. A plurality of local clock
control state machines reside 1n the target field programmable
gate arrays. The local clock control state machines are
coupled to the balanced clock distribution network and obtain
the reference clock signal therefrom. The plurality of local
clock control state machines are configured to generate a set
of synchromized free-running and stoppable clocks to main-
tain cycle-accurate and cycle-reproducible execution of the
simulation of the target system. A method 1s also provided.

20 Claims, 8 Drawing Sheets

GLosAL | / :I

CLOCK |

SOURCE | \ =] J.-—~
\

\ Fr

\\\ HF

|
i
BALANCED _.f".[‘]::l

RESET TREE

\‘-__ _-,..-F

PARALLEL \
BUS INTERFACE 110

NETWORK

/ 0
BITWISE M e
118 CONTROL
§ 0 SIGNAIS /

- (;
GLOBAL T =%
HOST CONTROL —/\
INTERFACE P\

g,

ARSI
HOST CONTROL COMPUTER

n SOURCE SYNCHRONOUS
LOCAL HOST BITWISE_CONTROL SIGNALS SERIAL DATA LINKS FOR
NTERFACE. IPARALLEL 1/F u 102 COMMUNICATION BETWEEN

— 60§ PARTITIONED DUT MACROS
LOCAL NACK e
1 1] CONTROL FPGA[_ | TARGET g
CONFIGURATION | FPGA
NTERFACE > 113
GD BITWISE CONTROL SIGNALS 112
Lﬁhrig? PARALLEL I/F | 102
G0 §
LOCAL . |
EUNTRDL FPGA _| TARGET ROUTER
14 CONFICURATION | FPGA rpoa [~ 104
INTERFACE
o I ——
199 ' 1z
1 BITWISE CONTROL SIGNALS :
ocaL HosT e l TS 113
INTERFACE = l 0 102
LOCAL [NACK
114~ CONTROL FPGA TARGET
i A~ CONFIGURATION | FPGA
. INTERFACE

US 8,640,070 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2004/0078179 Al
2005/0131670 AlL*

4/2004 Fuji
6/2005 Wang etal.ococovvnnnn.... 703/23

2005/0289485 Al
2006/0117274 Al*
2007/0164785 Al
2012/0117413 Al*

* cited by examiner

12/2005
6/2006
7/2007
5/2012

Willis
Tseng et al.
He

Asaad et al.

...................... :‘16/1

***************** 713/501

US 8,640,070 B2

Sheet 1 of 8

Jan. 28, 2014

U.S. Patent

d11NdA0D "104INOJ 150H

1V4Y3IN 911 -
¥odd | NOLLY¥N9IINGD
vl |~ v9dd TOMINOD |~} MJOMLIN
TN 907 1INY3HLI 1189
09
20! 10V443INI JOV44IINI SN
1<l . AREIEE 1SOH 1207 . TITIVYYd
” STYNIIS TOMINOD ISIMLIG mmm— | 2]
: «—— V4079
_ JOVAYILNI) wu%_m _
_
vl Vodi Vod1 [NOILYYNIIANOD ’ ISIMLIG B
431N0Y 1394v1
_ A — Nk Tk
_ - \ 77 QIONVVE
10V443INI . — P
1SOH 201 \ A N
09 \ /7 \
- _ wc_.W/.......I\\M\ \ | 308n0s
ol 7/ L 010
N SLER SIVHL | ! | a0
Vodi | NOILYYN9IINOD 1357 \v_oo._o \ / 7
. L300 [~ lvadd T | e S A LD
-~ XVN 01 | Y - TRL00T)
SONOVA 1Nd QINOILILYY 09 E TV AN 4/ 901 Q3ONVIVE
NIIMLIE NOILYDINNWNOD 20! 1/1 1ITVYVd 661 0oL
1SOH 201
HO4 SYNIT VIVa TYIY3S)
SNONONHANAS 39MNOS SIVNIIS 1081INOO iISIMLIE] \ Q .N RN

US 8,640,070 B2

Sheet 2 of 8

Jan. 28, 2014

U.S. Patent

Zam SYD0TD QIZINOUHONAS
SN TYIN3S 777 A
ININNNY-3341 -
100 Y07 WS SYI0TD ININNNY-1344 N
E\ 1353
100 V1va VNS - bLC T 1
-— (318vdd0LS) LINN
NOLLILYYd SE—— NoUwIINaO "
— I oy 90T
NI VLVQ TVIN3S —» S¥207)
V9dd 1394VL . 116Vdd0L5
10N NOMA
NI ¥20T1D TVIN3S (8¢ e l et Y ===—~ S¥201
11907 INAS Q3SVE-04l4 e_m%d QIZINOYHONAS
777 T ININNNY-341
ity ATIOUIND O/I L—E—{ TO4INOD XOVN
kbl 4O/ANY ANONIN ——] NOLLNOIX: 04INOD LSOH T¥90T
SNONOYHONASY §22 7 NOLLVZIVILING AMOWIN L6722

1 (S)301A30 0/1 ¥0/aNV
P << AYONIN TYNY3LX3

4/8_
¢ Ild

US 8,640,070 B2

i A
|_I_|JJI_| v
" 2 L S¥om
| T18YddOLS
_ _.x
- m 7
- 4.9NAS 09
2
= 09
7 P,
_ .vx)
s " x| S0
S | ONINNNY-33¥
o 1X
S "
= " ’
- AS 1S yS ¢S A 1S yS 0S m AS 1S
I/ \\
RN 7 E 9IA

— —
,lll‘\

U.S. Patent

US 8,640,070 B2

Sheet 4 of 8

Jan. 28, 2014

U.S. Patent

(NYWAOD 09

JITIONINOD %2010 | 09 [3/1 LSOH

L8 SNLVIS

2 4TIV

J144
0T

14/ ONINNNY-34
N0

118Vdd01S

AOVN

144}

XOd1IVN LNdNI

(3718VddOLS)
NOILILYYd _
{Nd XOGTYW 1ndLNO m
_
0ZZ A4S T,o:,
2 IN |

US 8,640,070 B2

ONVANOD 09
8} i/1 1SOk _
118 SNIVIS
N Ly

_

" TVNOIS 09 m

S —_ |

. | 4ITIONINO 44 “

2 %2019 17001 %201 _

7 ONINNNY-133 "

NJ010 |

7 4ITIONINOD _

] o W | b YN TI6VddOLS e m

S 0T (318vddoLs) _

" 2 N avadols | b NOLILNV 1na XOGTIVA LneN1-

5 7 RO _
—
o~

- 7 mmv__m_.ﬂ_..“_m_n_%“_._.m._w:o - YOATVN 1Nd1NO

1SS 68 0

G OId

U.S. Patent

U.S. Patent Jan. 28, 2014 Sheet 6 of 8 US 8,640,070 B2

riG. 6

600

620

ﬁ
680 \
<l
(@

060

635

690

U.S. Patent Jan. 28, 2014 Sheet 7 of 8 US 8,640,070 B2

FIG. 7
712
N T0/FROM
702 710 | NETWORK I/F |«—f= COMPUTER
- NETWORK
704 MEDIA 1/F
716 718

706~ DISPLAY

L --------

————————

708~ KEYBOARD

| S —

L1 L__J

U.S. Patent

Jan. 28, 2014 Sheet 8 of 8

riG. &
B02

PROGRAM TARGET FPGAS

INITIALIZE STATE MACHINES

TRAIN COMMUNICATION LINKS

LOAD TEST CODE

RECEIVE COMMAND
10 START SIMULATON

TRANSLATE COMMAND
SIMULATE

(CONTINUE)— 820

riG. 9
RUN)~ 902

ENOUGH
CYCLES ELAPSED

FOR SNAPSHOT
!

YES

TAKE SNAPSHOT

PROBLEM?

YES

NOTE LAST OK SNAPSHOT AND
FIRST POST-PROBLEM SNAPSHOT
TO RE-RUN AT FINER GRANULARITY

804

PROGRAM CONTROL FPGAS if 806

808

810

812

814

816

818

304

306

908

910

US 8,640,070 B2

US 8,640,070 B2

1

METHOD AND INFRASTRUCTURE FOR
CYCLE-REPRODUCIBLE SIMULATION ON
LARGE SCALE DIGITAL CIRCUITS ON A
COORDINATED SET OF
FIELD-PROGRAMMABLE GATE ARRAYS
(FPGAS)

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMEN'T

This invention was made with Government support under
Contract No. B554331 awarded by the Department of Energy.
The Government has certain rights in this imnvention.

FIELD OF THE INVENTION

The present invention relates to the electrical, electronic

and computer arts, and, more particularly, to circuit simula-
tion and the like.

BACKGROUND OF THE INVENTION

Electronic circuits can be simulated using mathematical
techniques. Because of the complexity and high tooling costs
associated with integrated circuits (ICs), stmulation 1s widely
used 1n IC design. Current digital stmulators include those
based on the Verilog hardware description language (HDL)
and the VHDL (VHSIC hardware description language;
VHSIC: very-high-speed integrated circuit) hardware
description language.

Field-Programmable Gate Arrays (FPGAs) are often used
to stmulate digital circuits. The VHDL and/or Verilog code
that describes the digital logic can be synthesized for an
FPGA platform, and then run for a very large number of
cycles to observe 1ts behavior.

SUMMARY OF THE INVENTION

Principles of the mvention provide techniques for cycle-
reproducible simulation on large scale digital circuits on a
coordinated set of FPGAs. In one aspect, an exemplary appa-
ratus includes a plurality of target field programmable gate
arrays interconnected 1n accordance with a connection topol-
ogy and mapping portions of a target system; a control mod-
ule coupled to the plurality of target field programmable gate
arrays; a balanced clock distribution network configured to
distribute a reference clock signal; and a balanced reset dis-
tribution network coupled to the control module and config-
ured to distribute a reset signal to the plurality of target field
programmable gate arrays. The control module and the bal-
anced reset distribution network are cooperatively configured
to 1nitiate and control a simulation of the target system with
the plurality of target field programmable gate arrays. A plu-
rality of local clock control state machines reside 1n the target
field programmable gate arrays. The local clock control state
machines are coupled to the balanced clock distribution net-
work and obtain the reference clock signal therefrom. The
plurality of local clock control state machines are configured
to generate a set of synchronized free-running and stoppable
clocks to maintain cycle-accurate and cycle-reproducible
execution of the simulation of the target system.

In another aspect, an exemplary method includes program-
ming a plurality of target field programmable gate arrays to
map portions of a target system; mitializing a plurality of
local clock control state machines residing in the target field
programmable gate arrays; and training serial communica-
tion links which interconnect the plurality of target field pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

grammable gate arrays in accordance with a connection
topology, such that the links are free-running and synchro-

nized, and configured to guarantee transier of a new sample of
multiplexed target system signals between two communicat-
ing ones ol the plurality of target field programmable gate
arrays 1n one target system clock cycle. Additional steps
include loading test code for conducting a simulation of the
target system 1nto at least one external memory device acces-
sible to the plurality of target field programmable gate arrays;
and simulating the target system with the plurality of target
field programmable gate arrays, 1n a cycle-reproducible man-
ner, under control of the test code.

As used herein, “facilitating” an action includes performs-
ing the action, making the action easier, helping to carry the
action out, or causing the action to be performed. Thus, by
way of example and not limitation, instructions executing on
one processor might facilitate an action carried out by mstruc-
tions executing on a remote processor, by sending appropriate
data or commands to cause or aid the action to be performed.
For the avoidance of doubt, where an actor facilitates an
action by other than performing the action, the action 1s
nevertheless performed by some entity or combination of
entities.

One or more embodiments of the invention or elements
thereof can be implemented 1n the form of a computer pro-
gram product including a computer readable storage medium
with computer readable program code configured to perform
the method steps indicated. Furthermore, one or more
embodiments of the invention or elements thereof can be
implemented 1n the form of a system (or apparatus) including
a memory, and at least one processor that 1s coupled to the
memory and operative to perform exemplary method steps.
Yet further, in another aspect, one or more embodiments of
the invention or elements thereof can be implemented 1n the
form of means for carrying out one or more of the method
steps described herein; the means can include (1) hardware
module(s), (11) software module(s), or (111) a combination of
hardware and software modules; any of (1)-(111) implement the
specific techniques set forth herein, and the software modules
are stored 1n a computer readable storage medium (or mul-
tiple such media).

Some embodiments of the invention are directed to design
structures for circuits used 1n simulation of integrated circuit
designs and/or to the circuit designs.

Techniques of the present invention can provide substantial
beneficial techmical effects. For example, one or more
embodiments provide high-speed, cycle-accurate simulation.

These and other features and advantages of the present
invention will become apparent from the following detailed
description of illustrative embodiments thereot, which 1s to
be read 1in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an exemplary system, according to an aspect
of the invention;

FIG. 2 depicts an exemplary target FPGA architecture,
according to an aspect of the invention;

FIG. 3 shows exemplary cycle-reproducible execution
control using free-running (inirastructure) and stoppable
(DUT) clocks, according to an aspect of the invention;

FIG. 4 shows exemplary cycle-reproducible communica-
tion and/or synchronization between an FPGA system con-
tamning a DUT and an external, variable-latency system,
according to an aspect of the invention;

FIG. 5 shows exemplary cycle-reproducible communica-
tion and/or synchronization between an FPGA system con-

US 8,640,070 B2

3

taining a DUT and an external, variable-latency system, in a
case with multiple target FPGAs, according to an aspect of the
invention;

FIG. 6 15 a flow diagram of a design process used 1n semi-
conductor design, manufacture, and/or test;

FIG. 7 depicts a computer system that may be useful in
implementing one or more aspects and/or elements of the
invention; and

FIGS. 8 and 9 are flow charts illustrating exemplary
method steps of aspects of the 1nvention.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

(L]
Y

ERRED

Simulation of large digital circuits can be efficiently imple-
mented with “cycle simulators,” 1in which only events at latch
boundaries are computed. Even though cycle simulators are
usually implemented in software, there are many types of
hardware accelerators that significantly increase the perfor-
mance of the simulator.

Accelerating the simulation may be desirable for a number
of reasons. The number of simulations to be performed to
validate a large digital chip 1s very large. To complete those
simulations in a reasonable time, a large number of computers
have to be employed, with the corresponding associated cost.
An accelerated simulator reduces this number. Furthermore,
it 1s often necessary to simulate a circuit for a very long time
before getting to the point of interest. This long simulation 1s
a sequential process that may take several days for a software
implementation, and cannot be sped up by just using more
computers. One or more embodiments reduce this latency to
the point of interest (that 1s, the latency 1s low enough such
that the simulation speed is hlgh enough to compare favorably
with alternatives). By way of explanation, in a cycle-accurate
system, added latency results 1n a penalty 1in cycle time. Since
cycle accuracy 1s desired, information should be propagated
everywhere, and the longer the information takes to get every-
where, the slower the system should be run.

One significant aspect of cycle simulators 1s “Cycle Repro-
ducibility.” Every time that the stmulation 1s performed with
exactly the same stimulus, exactly the same results should be
obtained by the simulator. In some 1nstances, for example, the
system might be running the simulation at different levels of
optimization. At the highest level of optimization, the simu-
lation runs very fast, and 1s used to check that nothing is
wrong. If something 1s wrong, though, and the optimized
simulation flags it, 1t 1s desirable to reproduce this stmulation
at a lower level of optimization that leaves a good trace for
circuit debugging. The two simulations should behave
exactly the same, or 1t would not be feasible to debug the
circuit 1n this manner. Even though this cycle reproducibility
property 1s usually easy to ensure in software implementa-
tions of the simulator, 1t becomes a significant 1ssue when the
soltware technique 1s replaced with a hardware accelerator
technique. In one or more cases, this aspect 1s one of the more
severe limitations on how much 1t 1s possible to speed-up the
simulation of a digital circuit.

FPGAs are often used to simulate digital circuits. The
VHDL and/or Verilog code (or other similar code) that
describes the digital logic can be synthesized for an FPGA
platform, and then run for a very large number of cycles to
observe its behavior. In one or more cases, this requires sig-
nificant work and infrastructure. Large digital circuits are
typically much larger than that which can be implemented
into a single FPGA, requiring anywhere between 10 and 100
of the largest FPGAs available in current technology. Further-
more, 1n one or more cases, “just running a large number of

10

15

20

25

30

35

40

45

50

55

60

65

4

cycles™ 1s inappropriate. It 1s often desirable to single step,
create traces, modily register values, and/or carry out any one,
some, or all of the other operations that are common in a
modern simulation environment.

A simulator implemented using a large number of FPGAs
typically requires that all of these FPGAs are coordinated in
such a way that the different parts of the digital circuit under
test are 1n lockstep, and remain 1n lockstep even when asyn-
chronous simulation events might be occurring: a request for
attention from one FPGA, for example, needs to propagate to
all of the FPGAs in the simulator by the end of the current
cycle, so that cycle-accurate information 1s preserved and can
be scanned (or otherwise read) out of the simulator. This
represents one manner in which assertion, print statements,
and single stepping, among other features, can be 1mple-
mented 1n the simulator.

Because FPGAs typically have a very limited amount of
iput-output (I/0) relative to what would be available
between two sub-circuits implemented on the same chip, the
simulator infrastructure has to make up for this deficiency; for
example, by time-multiplexing the available I/O to what 1s
necessary to implement the full connectivity required by the
design. Many arrangements are possible, but the basic prop-
erties of cycle-reproducibility and single-cycle reaction time
to simulator events are preferably guaranteed.

One or more embodiments include a number of circuits and
synchronization protocols to be implemented in an FPGA
simulator infrastructure, which allow a large number of
FPGASs to synchronize on a cycle-by-cycle basis, allow for
single stepping, allow any FPGA 1n the system to stop the
simulation by the end of the current cycle, and/or guarantee
cycle-reproducibility of the simulation independently of how
it 15 being run.

In one or more stances, the circuits used for synchroni-
zation can be broken up into the following categories; namely,
high-speed clock, startup circuits, continuously running cir-
cuits, and circuits running only during simulation. Startup
circuits create a global synchronous state at the beginning of
the simulation. They include global reset synchronization,
global clock synchronization, serial link bring-up, and the
like. Continuously running circuits start running after the
start-up circuits have finished initial synchronization, and
keep running whether the simulation 1s advancing or not.
These circuits include the serial links themselves, clock hand-
shake sampling, simulation command processing, and the
like. Circuits running only during simulation are active only
while the simulation 1s active. They include all of the func-
tional stoppable clocks, simulation counters, and the like.

High Speed Clock: A high speed clock 1s used pervasively
in one or more embodiments of the simulator. This high speed
clock 1s centrally generated and propagated to all FPGAs 1n
the system. Global signals are synchromized to this clock.
Serial links use this clock as the highest available clock rate 1n
the system.

Start-up circuits: In one or more embodiments, a global
reset signal 1s sent to every FPGA 1n the system. This global
reset signal 1s synchronized with the High Speed Clock. No
assumption 1s made as to whether all FPGAs recetve this
signal at the same time. An allowance 1s made for plus/minus
one High Speed clock cycle, to eliminate the dependency of
the system on global synchrony. This global reset signal resets
and starts the start-up infrastructure: divided down clocks,
serial links, and the like. From this reset signal, it 1s known
that all systems 1n the simulator have started within plus/
minus one high-speed clock cycle. Serial link bring-up can
occur at this point. In one or more embodiments, the serial
link protocol will contain enough elasticity to account for that

US 8,640,070 B2

S

clock cycle of uncertainty. All divided down clocks are syn-
chronized across FPGAs to within plus/minus one high speed
clock cycle as well, and the serial links absorb the difference.

Continuously Running Circuits: The nature of the continu-
ously running circuits 1s varied, but it includes everything that
cannot be stopped. Serial links, after they have been brought
up, typically have to stay up. If the simulator has memory
links as well, those typically also need to be continuously
maintained (for link alignment, refresh, and other similar

1ssues). Other continuously running circuits include the clock
handshake circuits, and the simulation commands circuits.
Clock handshake starts and stops the global clock from every
FPGA. Because of their very nature, in one or more embodi-
ments, they are always active. In at least some instances, there
are two parts to the clock handshake. At the end of every
simulation cycle, a signal 1s generated 1n every FPGA 1ndi-
cating whether any event happened that requires stopping the
simulation clock. IT no event happened, the stmulation clock
remains under central control. If some event happened, all of
the clocks are stopped, and, depending on implementation,
soltware control may be necessary to service that particular
event.

Circuits Running During Simulation Only: The device
under test (DUT) typically requires that a number of clock
signals be generated, 1n the same way as a cycle simulator will
generate clock signals based on the simulation clock. These
signals are active only when the simulation 1s active. To keep
track of the simulation state, counters are used to count the
number of cycles that have already occurred. Simulation con-
trol allows these cycles to progress one by one (single step) or
free runming. In one or more embodiments, because all of
these cycles are interlocked, and because no cycles are unac-
counted for, the state of the simulation 1s dependent exclu-
stvely on the cycle counter, as there 1s no non-determinism
left 1n the system.

One or more embodiments thus allow for cycle-reproduc-
ible simulation of very large digital circuits on a multi-FPGA
based system, which 1s scalable and controllable on a cycle-
by-cycle basis. Furthermore, one or more embodiments pro-
vide a simulating environment including FPGAs and having,
cycle-accurate and cycle-reproducible behavior for a large set
of FPGAs for mapping a target system. In addition, one or
more embodiments advantageously allow software develop-
ers to verily designs prior to construction of a computing
machine, such as a massively parallel supercomputer or the
like.

Further, one or more embodiments provide cycle-repro-
ducible simulation of digital circuits using an FPGA-based
hardware accelerator, with reduced power consumption,
reduced cost, and/or enhanced speed (up to several orders of
magnitude) as compared to current techniques. Advanta-
geously, one or more mstances allow for controllable and
observable efficient simulation of a large digital system by
partitioning the circuit among multiple FPGAs, and provid-
ing an inirastructure that allows for the synchronization of a
very large group of FPGAs and that removes non-determin-
1sm of the system.

Reference should now be had to FIG. 1, which depicts an
exemplary system 100, according to an aspect of the mven-
tion. One or more embodiments achieve cycle-accurate and
cycle-reproducible behavior on a large set of FPGA devices.
As seen 1n FIG. 1, the exemplary system 100 includes a
number of “target” FPGA devices 102 (discussed further
below 1n connection with FIG. 2) for mapping partitions of
the simulated device-under-test (DUT), 1.e., the target sys-
tem.

10

15

20

25

30

35

40

45

50

55

60

65

6

In some 1nstances, router FPGA 104 can also be used to
map portions of the DUT, 1.e., router FPGA 104, 1n at least
some 1nstances, need not be used exclusively for through-
channel routing. Through-channel routing using router
FPGA 104 maintains the cycle-accurate behavior of the sys-
tem without performance degradation by avoiding the neces-
sity to de-multiplex the signals down to the final (slow) DUT
clock rates.

Balanced (low skew) clock and reset networks 106, 108
help achieve a high performance cycle-accurate and cycle-
reproducible system. In one or more embodiments, cycle-
reproducible execution control 1s provided using a global
controller such as Global Control FPGA 110 and a set of
control and/or status signals (e.g., go/nack).

FIG. 2 depicts an exemplary architecture of a “target
FPGA device 102. The DUT (here, DUT partition 220) can be
stopped at any DUT clock cycle, while the infrastructure
logic (discussed elsewhere herein) 1s free-running. The DUT
resumes when the same relationship (state) of clock wave-
forms repeats. In one or more embodiments, lock-step, free
running, external interfaces are synchronized using wait
states. Wait states (configurable) are proportional to the worst
case skew 1n the system clock and reset networks 106, 108.
Fully asynchronous external interfaces are synchronized
using first-in-first-out (FIFO) structures 222. Assuming that
external interfaces run at a much higher frequency, the data 1s
ready in 1 DUT clock. The architecture can also be employed
with lower external frequencies by adding enough watit states
to guarantee cycle-reproducible behavior (sacrificing cycle-
accuracy). In addition to the target FPGA devices 102, the
exemplary system also includes a set of point-to-point free
running serial communication links 112 and 113 that connect
the target FPGA devices 102 with each other according to an
approprate topology. Ideally, the connection topology mim-
ics that of the DU'T architecture, but this is not a requirement.

In some 1nstances, optional free running external memory
(e.g2. SRAM or DRAM) and/or IO devices 224 and/or inter-
face(s) 223 to external memory and/or I/O devices are pro-
vided. Note that, in the example, memory controller 223 1s
between FIFO-based sync logic 222 and external memory
devices 224, within an asynchronous, high-speed, free-run-
ning clock domain. Execution control block 225 interacts
with a corresponding local host control FPGA 114 and 1s
configured to return the nack signal thereto. Execution con-
trol block 225 also carries out memory initialization via
memory controller 223.

Additional exemplary details regarding data links 112, 113
are provided at the right-hand side of FIG. 2. Note the serial
clock out, as well as the serial data out resulting from multi-
plexer 281 and senializer 283. Note also the serial data 1n and
the serial clock 1n from a remote target FPGA 102. The serial
data 1 1s provided to deserializer 285 and synchronizer-
demultiplexer 287. Note that the serial clock in can be inputto
a divider block 289 to obtain derived clocks with lower fre-
quencies.

As noted, 1n some cases, optional FPGA devices 1n the
system act as “router” devices 104, to increase routability
beyond direct point-to-point links 112 (as indicated at 113,
source synchronous serial data links for communication
between partitioned DUT macros). Single stage and/or mul-
tiple routing stages can be employed, providing a trade-oif
between routing flexibility and system performance.

In one or more embodiments, a hierarchical network of
“control” FPGA devices 1s provided for controlling the con-
figuration and execution of the system. The control hierarchy
has a single global control device (e.g., global control FPGA
110 interfacing with host control computer 116 through glo-

22

US 8,640,070 B2

7

bal host interface 118) and one or more local control devices
114. In one or more 1nstances, the global control device 110 1s
the central point of system control functions, including start-
ing, stopping, and single-stepping the simulation under host
soltware control (e.g., software running on host 116). Global
control device 110 also recerves and aggregates service
request events (nack) from all local control devices 114 to
stop simulation for various service and/or error reporting
events coming from the target FPGA devices 102. The local
control FPGA devices 114 are responsible for direct control
of the subset of target FPGA devices 102 they are connected
to, including downloading target FPGA configuration,
memory 1mage mitialization, and forwarding system control
commands from and to the global control device 110. Note
that local control FPGAs 114 can, in some cases, control more
than one target FPGA 102.

One or more embodiments also imnclude a balanced clock
distribution network that distributes a reference clock (e.g.,
global clock source 107) to all FPGA devices 1n the system
with a low skew. This reference clock can either be the highest
clock frequency 1n the system, or a reference to generate the
highest clock frequency 1n the system using phase-locked
loop (PLL) units in each FPGA device as the first stage of
local clock generation. Note balanced clock tree 106 with
balanced clock/reset traces to local control FPGA 114 and
target FPGA 102. In one or more 1nstances, a balanced reset
distribution network 1s provided, which distributes a level-
sensitive reset signal to all FPGA devices 1n the system with
a low skew. Note balanced reset tree 108 with balanced clock/
reset traces to local control FPGA 114 and target FPGA 102
(to avoid cluttering the drawing, some traces are shown ema-
nating from 108 and some from 106). Note also clock gen-
eration unit 226 1n FIG. 2, which can include the atoremen-
tioned PLL, numbered as 279.

Sti1ll with reference to FIG. 1, note that in the 1llustrative
embodiment, global host interface 118 1s provided with a
parallel bus iterface to global control FPGA 110, and also
provides bitwise control signals thereto. Host control com-
puter 116 1s coupled to local host interfaces 119; for example,
via a Gigabit Ethernet network. Furthermore, each local host
interface 199 is provided with a parallel interface to the cor-
responding local control FPGA 114, and also provides bit-
wise control signals thereto. Each local control FPGA 114 1s
provided with a configuration intertace to the corresponding
target FPGA 102, and can send the go signal thereto and
receive the nack signal therefrom.

In some cases, as seen 1n FIG. 2, local clock control state
machines 226 reside in the target FPGA devices 102. These
are 1dentical circuits distributed one 1n each target FPGA.
FIG. 3 shows synchronizing free-running clock signals with
stoppable clock signals. As seen therein, clock phases are
generated using a synchronous state machine controller 226
so they all run 1n lockstep (simplified version with four states
S1, S2, S3, S4 shown for clarity). In one or more instances,
state machine controller 226 1s quite flexible, enabling the
generation of any rational set of clock frequencies while
maintaining phase. In at least some cases, the “go” signal
from the global controller 110 can be asserted and/or de-
asserted at any time to start and/or stop the execution of the
simulation. As seen at D1 1n FIG. 3, internal to the clock
controller, the de-assertion of the go signal 1s delayed to the
first mactive portion (low) of the clock, avoiding potential
clock pulse glitches. Furthermore, as also seen 1n FIG. 3, the
rising edge of the go signal 1s delayed by D2 to allow the
stoppable clocks to resume at the correct state. In this figure,
clocks stopped after S2 and can only be resumed to continue
with S3. Derived clocks with lower frequencies (e.g. x2, x4

10

15

20

25

30

35

40

45

50

55

60

65

8

(as compared to x1)) are produced by dropping pulses, rather
than keeping a 50% duty cycle. The advantage of this scheme
1s to guarantee time periods when all clocks are inactive
(low), which serve as opportune windows 1n time to start
and/or stop the clock state machine in a glitch-free manner.

In addition to the global go signal, unit 226 also receives a
ret clock signal from 106, 107 and can receive a reset signal
from 108.

In one or more 1mstances, a significant purpose of the state
machines 226 1s to generate a set of synchronized free-run-
ning and stoppable clocks 227, 229 to maintain cycle-accu-
rate and cycle-reproducible execution of the target simula-
tion, as shown i FIG. 4, which depicts exemplary cycle-
reproducible commumnication and/or synchromization
between an FPGA system containing a DUT and an external,
variable-latency system, according to an aspect of the inven-
tion. Note that elements to the left of line 340 represent
variable latency and/or asynchronous execution, while ele-
ments to the right of line 340 represent cycle-reproducible
execution (e.g., mm DUT partition 220). In one or more
embodiments, one aspect ivolves sending data from DUT
220 to host 116. DUT 220 saves the data 1n output mailbox
342. DUT 220 asserts nack to clock controller 226. Clock
controller 226 stops the DUT clock. Note that the number of
DUT clock cycles needed from the assertion of the DUT nack
to stopping the DUT clock depends on the system implemen-
tation, but should be fixed and reproducible. The clock con-
troller 226 can typically only proceed to alert the host system
alter the DUT clock has stopped, to avoid any potential race
condition.

Clock controller 226 signals alert to host 116 by setting a
host readable status bit 1n Host interface (I/F) 118. Host 116
reads data from output mailbox 342 asynchronously. Host
116 1ssues a “go” command to Host I/F 118. Host I/F 118
raises a “go” signal to clock controller 226 to resume DUT
operation. Clock controller 226 resumes clock to DUT 220 1n
a cycle-reproducible manner as described before.

In one or more embodiments, another aspect involves send-
ing data from host 116 to DUT 220. Host 116 puts the FPGA
simulator in an 1dle state. Note that the FPGA system 1s under
the control of the host system 116 from the first cycle. The
host therefore has full knowledge of the current cycle count of

the stmulated DUT clock at any time and can interrogate the
status of the FPGA system by reading the appropriate status
registers in the host I'F 118 of the FPGA system. The go
signal 1s de-asserted from host I/'F 118 to clock controller 226.
The host sends data to mput mailbox 344 asynchronously.
Host 116 sends control commands instructing infrastructure
logic 490 to use the data. Infrastructure logic 490 resides 1n
the FPGA system to handle the incoming host data according
to the system needs. Host 116 asserts the “go” command to
resume DUT operation.

A non-limiting exemplary sequence of operation will now
be described. Upon system power-on, the host control soft-
ware 1n host 116 downloads the configuration of the global
control FPGA device 110, followed by that of the local con-
trol FPGA devices 114, and finally the target FPGA devices
102. The host control software then sends a hardware reset
command that gets propagated as a level sensitive signal on
the reset network to all FPGA devices 1n the system. This
hardware reset 1s used to initialize all clock control state
machines, start the training sequence of all serial communi-
cation links 1n the system, and the imitialization of external
DRAM interfaces. The completion of the link mitialization
sequence and the DRAM subsystem initialization 1s commu-

US 8,640,070 B2

9

nicated back to the host controller by setting corresponding,
status bits readable by the host control software 1n a polling
tashion.

Upon successiul completion of the initialization sequence,
all links are free-running and synchromzed, guaranteeing the
transier ol anew sample of multiplexed DU'T signals between
two communicating target FPGAs 1 one DUT clock cycle.
All DUT clocks are stopped (in 1dle state) awaiting further
commands from the host. External DRAM interfaces are
initialized and ready for use.

The host control software then typically downloads the test
code onto the external DRAM, using a back door accessible
through the network of control FPGAs. Upon completion of
this step, the host control software sends commands to start
the simulation execution of the target system, e.g. “Run 1000
cycles.” The global control FPGA translates this command to
a “go0” pulse that has a duration of 1000 DUT clock cycles.
The local control FPGAs perform the fine grain timing to
carry this command through in a cycle-reproducible manner
as explained in the text accompanying FIG. 3.

While the FPGA system 1s running, the host control soft-
ware can read the current status at any time. This includes
information on the current cycle of execution, as well as status
on the proper operation of the links. If an exception occurs 1n
the target system resulting in a “nack’ signal being asserted,
the DUT clocks stop and the appropriate status bits arc set to
inform the host controller. Again, this happens 1n a cycle-
reproducible manner as detailed 1n FIGS. 4 and 5 and accom-
panying text.

In this regard, FI1G. 5 shows exemplary cycle-reproducible
communication and/or synchronization between an FPGA
system containing a DUT and an external, variable-latency
system, 1n a case with multiple target FPGAs, according to an
aspect of the mvention. In one or more embodiments, there
are one or more changes relative to a single target FPGA case.
In particular, different DUT partitions 555. 357 are mapped to
different target FPGA devices. The partitions are in commu-
nication with mailboxes 342, 344 via data network 559. Any
DUT partition can raise “nack” to request service (e.g.,
nackl, nack2). Nacks from target FPGA devices are routed to
the host I'F 118, which merges all nack sources. The merged
nack 1s used to stop all local clock controllers by de-asserting
the go signal between the host I'F 118 and local controllers
551, 553.

Various exemplary applications will now be discussed.

Run for N cycles: Host system 116 sends a command to
global execution controller 110 to run for N cycles. Global
execution controller will raise the “go” signal for the specified
number of DUT cycles, then de-assert go. Local clock con-
trollers 551, 553 will start and/or stop the clocks to the DUT
synchronously to achieve the desired N clock cycles of execu-
tion.

Single-step: Single step can be implemented, for example,
as “Run for 1 cycle.”

Breakpoint: Host controller 116 programs infrastructure
logic with the conditions that the system should break on.
Infrastructure logic, discussed elsewhere herein, implements
a state machine controller that raises “nack’ to global clock
control when the break condition 1s met.

Cycle-reproducible “printf”: Printing from a CPU model
running as DUT on the FPGA platform uses the mailbox to
store the print data 1n the output mailbox 342, and then raise
“nack’ to alert the host system. During a printf, an asynchro-
nous commumnication takes place; 1n a real system, the same 1s
not cycle-reproducible. However, in one or more embodi-
ments, cycle-reproducibility with respect to a printf 1s pos-
sible, as whenever the machine 1s stopped, it 1s known when

10

15

20

25

30

35

40

45

50

55

60

65

10

the printf occurs and in which cycle (occurs 1n same cycle).
Note the alert in FI1G. 4, which can be used to synchronize the
output mailbox 342. When a printf output operation occurs,
an alert 1s generated, and no other processing occurs until the
printt 1s handled, thus achieving cycle reproducibility.

Cycle-reproducible JTAG communication between host
and DUT: JTAG 1s part of the DUT; when simulating the
DUT, JTAG should also be simulated. In some instances, the
JTAG link 1s used to program the DUT; 1.e., use the 51mulat0r
to program 1tself.

It should be noted that a replay of the same test under the
same 1n1tial conditions should result 1n an 1dentical execution
trace by the system. This 1s achieved by removing all uncer-
tainties from the clocking and external stimuli from the sys-
tem, which 1s a significant aspect of one or more embodi-
ments. Cycle-reproducible behavior 1s an important feature
for debugging subtle bugs in the target DU, whereby the
system can re-run the same test and collect waveform trace
samples at varying granularity. Typically, one would collect
short snapshots at regular intervals 1n the beginning to help
narrow down the period where the fault originates. When the
region of interest has been 1dentified, a more complete wave-
form trace in this (short) region 1s generated by another
replay. This 1s then used to uncover the bug. In the absence of
cycle reproducible operation, this replay would not be pos-
sible, rendering the debug of the DUT much harder. A brute-
force complete wavelorm generation of the whole simulation
1s impractical because of the reduced execution while gener-
ating waveforms.

As noted, one or more embodiments provide high-speed.,
cycle-accurate simulation. For example, 1n the case of a
microprocessor, actual software can be run (such as booting
an operating system or simulating execution of a large piece
of code). Heretolore, these types of functions could not be
performed in a cycle-accurate manner. Typically, quite a
number of cycles occur before a program begins to carry out
instructions of interest, but prior techniques have typically
involved conducting only a very short simulation. Embodi-
ments of the invention have, 1 experiments, successiully
simulated booting of the Linux® operating system (regis-
tered mark of Linus Torvalds) on a microprocessor.

Given the discussion thus far, 1t will be appreciated that, 1n
general terms, an exemplary apparatus, according to an aspect
of the invention, includes a plurality of target field program-
mable gate arrays 102 interconnected in accordance with a
connection topology and mapping portions of a target system,
as well as a control module coupled to the plurality of target
field programmable gate arrays. In a non-limiting example,
the control module includes a host control computer 116
executing host control software, a global control field pro-
grammable gate array 110 coupled to the host control com-
puter, and at least a first local control field programmable gate
array 114 coupled to the global control field programmable
gate array and at least a first portion of the plurality of target
field programmable gate arrays 102. Additional elements
include a balanced clock distribution network 106 configured
to distribute a reference clock signal 107, and a balanced reset
distribution network 108 coupled to the control module and
configured to distribute a reset signal to the plurality of target
field programmable gate arrays.

The control module and the balanced reset distribution
network are cooperatively configured to initiate and control a
simulation of the target system with the plurality of target
field programmable gate arrays.

Also included are a plurality of local clock control state
machines 226 residing 1n the target field programmable gate
arrays 102. The local clock control state machines are

US 8,640,070 B2

11

coupled to the balanced clock distribution network and
obtaining the reference clock signal theretfrom. The plurality
ol local clock control state machines are configured to gen-
erate a set of synchronized free-running and stoppable clocks
227, 229 to maintain cycle-accurate and cycle-reproducible
execution of the simulation of the target system.

In some cases, the apparatus further includes a set of point-
to-point free running serial communication links 112. The set
of point-to-point free running serial commumnication links
interconnect the plurality of target field programmable gate
arrays 102 1n accordance with the connection topology.

In some embodiments, the connection topology mimics
that of the target system.

As noted, in some cases, the control module 1n turn
includes a host control computer 116 executing host control
software, a global control field programmable gate array 110
coupled to the host control computer, and at least a first local
control field programmable gate array 114 coupled to the
global control field programmable gate array and at least a
first portion of the plurality of target field programmable gate
arrays. In at least some such cases, the global control field
programmable gate array 110 1s configured to 1nitiate, stop,
and single-step the simulation of the target system under
control of the host control software, and the at least first local
control field programmable gate array 114 1s configured to
directly control the at least first portion of the plurality of
target field programmable gate arrays and to forward system
control commands from and to the global control field pro-
grammable gate array.

In some cases, there are two or more local control field
programmable gate arrays 114 coupled to the global control
field programmable gate array 110; each can control one or
more of the target field programmable gate arrays 102. In at
least some such cases, the global control field programmable
gate array 110 1s further configured to receive and aggregate
service request events from the local control field program-
mable gate arrays, and to stop simulation for at least one of
service and error reporting events emanating from the plural-
ity of target field programmable gate arrays, and the local
control field programmable gate arrays are responsible for
direct control of corresponding portions (one or more) of the
plurality of target ficld programmable gate arrays.

In at least some cases, direct control of the corresponding,
portions of the plurality of target field programmable gate
arrays by the local control field programmable gate arrays
includes downloading target field programmable gate array
configuration and memory 1image imtialization.

In one or more embodiments, the balanced clock distribu-
tion network 106 distributes the reference clock signal 107
with a low skew, and the balanced reset distribution network
108 distributes the reset signal with a low skew; the reset
signal 1s, 1n one or more instances, a level-sensitive reset
signal. As used, herein, “low skew™ 1s relative to the reference
clock signal, such that the total skew of the balanced reset
distribution network 108, from the earliest arriving to the
latest arriving, 1s small relative to the cycle time of the refer-
ence clock signal, so that 1t can be guaranteed that 1t arrives
everywhere 1n more or less the same reference clock cycle.

In some 1nstances, the reference clock signal 107 1s the
highest clock frequency in the apparatus; in other instances,
the reference clock signal 107 1s a reference to generate a
highest clock frequency in the apparatus. In the latter
instances, the apparatus further includes a plurality of phase-
locked loops 279 1n the plurality of target field programmable
gate arrays 102; the plurality of phase-locked loops generate
the highest clock frequency from the reference.

10

15

20

25

30

35

40

45

50

55

60

65

12

Some embodiments include at least one external memory
device 224 accessible to the plurality of target field program-
mable gate arrays 102 and containing test code for conducting
the simulation of the target system.

Some stances iclude at least one router field program-
mable gate array 104 1nterconnecting at least a portion of the
target field programmable gate arrays 102.

Furthermore, reference should now be had to the flow chart
of FIG. 8, which begins 1n step 802. Given the discussion thus
tar, 1t will be appreciated that, 1n general terms, an exemplary
method, according to another aspect of the invention,
includes the step 804 of programming a plurality of target
field programmable gate arrays 102 to map portions of a
target system; the step 808 of mitializing a plurality of local
clock control state machines 226 residing 1n the target field
programmable gate arrays, and the step 810 of traiming serial
communication links 112 which interconnect the plurality of
target field programmable gate arrays in accordance with a
connection topology.

The links 112 are free-running and synchronized, and con-
figured to guarantee transier ol a new sample of multiplexed
target system signals between two communicating ones of the
target field programmable gate arrays 102 1n one target sys-
tem clock cycle.

Additional steps include step 812, loading test code for
conducting a stmulation of the target system into at least one
external memory device 224 accessible to the plurality of
target field programmable gate arrays; and step 818, stmulat-
ing the target system with the plurality of target field pro-
grammable gate arrays 102, 1n a cycle-reproducible manner,
under control of the test code. Processing continues at 8120

An optional additional step 806 includes programming a
global control field programmable gate array 110 and at least
a first local control field programmable gate array 114. The
global control field programmable gate array 1s coupled to a
host control computer 116, and the at least first local control
field programmable gate array 114 1s coupled to the global
control field programmable gate array and at least a first
portion of the plurality of target field programmable gate
arrays. Other optional additional steps include step 814,
receiving, at the global control field programmable gate array
110, from the host control computer 116, a command to start
the simulating step by running a predetermined number of
clock cycles; and step 816, translating the command to start
the simulating step to a “go” pulse that has a duration corre-
sponding to the predetermined number of clock cycles, using
the global control field programmable gate array 110.

In one or more 1nstances: (1) the programming of the plu-
rality of target field programmable gate arrays, and (1) the
programming of the global control field programmable gate
array and the at least first local control field programmable
gate array, mnclude downloading (programming instructions
or the like) from the host control computer.

In some 1nstances, the simulating includes collecting short
snapshots at regular intervals to 1dentity a period where a fault
originates, and obtaining a more complete waveform trace 1n
the 1dentified period where the fault occurs, via a simulation
replay at a finer granularnty. For example, instead of taking a
complete trace of the simulation, which takes a long time,
take a snapshot every predetermined number of cycles (e.g.,
several thousand). Then, {ind the first snapshot where the fault
occurs, and conduct a complete trace (cycle-by-cycle snap-
shots) between the last snapshot where everything was OK
and the first snapshot where the fault was noted. Without
cycle-reproducible simulation, this technique 1s not feasible.
Refer to FIG. 9. As at 902, run the simulation, and check
periodically, as per decision block 904, whether suificient

US 8,640,070 B2

13

cycles have passed such that a snapshot 1s to be taken. I not,
as per the NO arrow, continue to run. ITYES, take the snapshot
in step 906. In 908, check and see if a problem has occurred
since the last snapshot; if not, as per the NO arrow, continue
to run, whereas 11 there has been a problem, 1n 910, note the
last snapshot before the fault and the first snapshot after the
fault to allow the simulation replay at finer granulanity.

Techniques described herein can be used 1n the design
and/or simulation of integrated circuit chips. The resulting
integrated circuit chips can be distributed by the fabricator 1n
raw waler form (that is, as a single walfer that has multiple
unpackaged chips), as a bare die, or in a packaged form. In the
latter case the chip 1s mounted 1n a single chip package (such
as a plastic carrier, with leads that are affixed to a motherboard
or other higher level carrier) or 1n a multichip package (such
as a ceramic carrier that has either or both surface intercon-
nections or buried interconnections). In any case the chip 1s
then integrated with other chips, discrete circuit elements,
and/or other signal processing devices as part of either (a) an
intermediate product, such as a motherboard, or (b) an end
product. The end product can be any product that includes
integrated circuit chips, ranging from toys and other low-end
applications to advanced computer products having a display,
a keyboard or other input device, and a central processor.

FI1G. 6 shows a block diagram of an exemplary design tlow
600 used for example, 1n semiconductor IC logic design,
simulation, test, layout, and manufacture. Design tflow 600
includes processes, machines and/or mechanisms for pro-
cessing design structures or devices to generate logically or
otherwise functionally equivalent representations of the
design structures and/or devices described above and shown
in FIGS. 1-5 (and/or circuits simulated using techniques
described with respect to FIGS. 1-5). The design structures
processed and/or generated by design flow 600 may be
encoded on machine-readable transmission or storage media
to include data and/or instructions that when executed or
otherwise processed on a data processing system generate a
logically, structurally, mechanically, or otherwise function-
ally equivalent representation of hardware components, cir-
cuits, devices, or systems. Machines include, but are not
limited to, any machine used 1n an IC design process, such as
designing, manufacturing, or simulating a circuit, compo-
nent, device, or system. For example, machines may include:
lithography machines, machines and/or equipment for gen-
crating masks (e.g. e-beam writers), computers or equipment
for simulating design structures, any apparatus used in the
manufacturing or test process, or any machines for program-
ming functionally equivalent representations of the design
structures 1into any medium (e.g. a machine for programming
a programmable gate array).

Design flow 600 may vary depending on the type of rep-
resentation being designed. For example, a design flow 600
for building an application specific IC (ASIC) may differ
from a design flow 600 for designing a standard component or
from a design tflow 600 for instantiating the design into a
programmable array, for example a programmable gate array
(PGA) or afield programmable gate array (FPGA) offered by
Altera® Inc. or Xilinx® Inc. FIG. 6 illustrates multiple such
design structures including an input design structure 620 that
1s preferably processed by a design process 610. Design struc-
ture 620 may be a logical simulation design structure gener-
ated and processed by design process 610 to produce a logi-
cally equivalent functional representation of a hardware
device. Design structure 620 may also or alternatively com-
prise data and/or program instructions that when processed
by design process 610, generate a functional representation of
the physical structure of a hardware device. Whether repre-

10

15

20

25

30

35

40

45

50

55

60

65

14

senting functional and/or structural design features, design
structure 620 may be generated using electronic computer-
aided design (ECAD) such as implemented by a core devel-
oper/designer. When encoded on a machine-readable data
transmission, gate array, or storage medium, design structure
620 may be accessed and processed by one or more hardware
and/or software modules within design process 610 to simu-
late or otherwise functionally represent an electronic compo-
nent, circuit, electronic or logic module, apparatus, device, or
system such as those shown in FIGS. 1-5 (and/or circuits
simulated using techniques described with respect to FIGS.
1-5). As such, design structure 620 may comprise files or
other data structures including human and/or machine-read-
able source code, compiled structures, and computer-execut-
able code structures that when processed by a design or simu-
lation data processing system, functionally simulate or
otherwise represent circuits or other levels of hardware logic
design. Such data structures may include hardware-descrip-
tion language (HDL) design entities or other data structures
conforming to and/or compatible with lower-level HDL
design languages such as Verilog and VHDL, and/or higher
level design languages such as C or C++.

Design process 610 preferably employs and incorporates
hardware and/or software modules for synthesizing, translat-
ing, or otherwise processing a design/simulation functional
equivalent of the components, circuits, devices, or logic struc-
tures shown 1 FIGS. 1-5 (and/or circuits simulated using
techniques described with respect to FIGS. 1-5) to generate a
Netlist 680 which may contain design structures such as
design structure 620. Netlist 680 may comprise, for example,
compiled or otherwise processed data structures representing
a list of wires, discrete components, logic gates, control cir-
cuits. I/O devices, models, etc. that describes the connections
to other elements and circuits 1n an integrated circuit design.
Netlist 680 may be synthesized using an iterative process in
which netlist 680 1s resynthesized one or more times depend-
ing on design specifications and parameters for the device. As
with other design structure types described herein, netlist 680
may be recorded on a machine-readable data storage medium
or programmed 1nto a programmable gate array. The medium
may be a non-volatile storage medium such as a magnetic or
optical disk drive, a programmable gate array, a compact
flash, or other flash memory. Additionally, or in the alterna-
tive, the medium may be a system or cache memory, butler
space, or e¢lectrically or optically conductive devices and
materials on which data packets may be transmitted and inter-
mediately stored via the Internet, or other networking suitable
means.

Design process 610 may include hardware and software
modules for processing a variety of input data structure types
including Netlist 680. Such data structure types may reside,
for example, within library elements 630 and include a set of
commonly used elements, circuits, and devices, including
models, layouts, and symbolic representations, for a given
manufacturing technology (e.g., different technology nodes,
32 nm, 45 nm, 90 nm, etc.). The data structure types may
further include design specifications 640, characterization
data 650, verification data 660, design rules 670, and test data
files 685 which may include input test patterns, output test
results, and other testing information. Design process 610
may further include, for example, standard mechanical
design processes such as stress analysis, thermal analysis,
mechanical event simulation, process simulation for opera-
tions such as casting, molding, and die press forming, etc.
One of ordinary skill 1n the art of mechanical design can
appreciate the extent of possible mechanical design tools and
applications used 1n design process 610 without deviating

US 8,640,070 B2

15

from the scope and spirit of the invention. Design process 610
may also include modules for performing standard circuit
design processes such as timing analysis, verification, design
rule checking, place and route operations, eftc.

Design process 610 employs and incorporates logic and
physical design tools such as HDL compilers and simulation
model build tools to process design structure 620 together
with some or all of the depicted supporting data structures
along with any additional mechanical design or data (1t appli-
cable), to generate a second design structure 690. Design
structure 690 resides on a storage medium or programmable
gate array 1n a data format used for the exchange of data of
mechanical devices and structures (e.g.

information stored in an IGES, DXF, Parasolid XT, JT.
DRG, or any other suitable format for storing or rendering
such mechanical design structures). Similar to design struc-
ture 620, design structure 690 preferably comprises one or
more files, data structures, or other computer-encoded data or
instructions that reside on transmission or data storage media
and that when processed by an ECAD system generate a
logically or otherwise functionally equivalent form of one or
more of the embodiments of the invention shown in FIGS. 1-5
(and/or circuits simulated using techniques described with
respect to FIGS. 1-5). In one embodiment, design structure
690 may comprise a compiled, executable HDL simulation
model that functionally simulates the devices shown 1n FIGS.
1-5 (and/or circuits simulated using technmiques described
with respect to FIGS. 1-5).

Design structure 690 may also employ a data format used
for the exchange of layout data of integrated circuits and/or
symbolic data format (e.g. information stored i a GDSII
(GDS2), GL1, OASIS, map files, or any other suitable format
for storing such design data structures). Design structure 690
may comprise information such as, for example, symbolic
data, map files, test data files, design content files, manufac-
turing data, layout parameters, wires, levels of metal, vias,
shapes, data for routing through the manufacturing line, and
any other data required by a manufacturer or other designer/
developer to produce a device or structure as described above
and shown 1 FIGS. 1-5 (and/or circuits simulated using
techniques described with respect to FIGS. 1-5). Design
structure 690 may then proceed to a stage 695 where, for
example, design structure 690: proceeds to tape-out, 1is
released to manufacturing, 1s released to a mask house, 1s sent
to another design house, 1s sent back to the customer, etc.
Exemplary System and Article of Manufacture Details

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Furthermore, aspects of the
present invention may take the form of a computer program
product embodied 1 one or more computer readable
medium(s) having computer readable program code embod-
ied thereon. In some instances, soitware resides on computer
116 and translates the simulation commands from the user
into the simulator commands, as well as programming the
various FPGAs 1n the system, interpretation of the input and
output mailboxes, and scanning and generation of the snap-
shots.

One or more embodiments of the invention, or elements
thereol, can be implemented 1n the form of an apparatus
including a memory and at least one processor that 1s coupled
to the memory and operative to perform exemplary method
steps.

One or more embodiments can make use of software run-
ning on a general purpose computer or workstation. With
retference to FIG. 7, such an implementation might employ,
for example, a processor 702, a memory 704, and an mput/

5

10

15

20

25

30

35

40

45

50

55

60

65

16

output interface formed, for example, by a display 706 and a
keyboard 708. The term “processor” as used herein 1s
intended to include any processing device, such as, for
example, one that includes a CPU (central processing unit)
and/or other forms of processing circuitry. Further, the term
“processor’ may refer to more than one individual processor.
The term “memory” 1s mtended to include memory associ-
ated with a processor or CPU, such as, for example, RAM
(random access memory), ROM (read only memory), a fixed
memory device (for example, hard drive), a removable
memory device (for example, diskette), a flash memory and
the like. In addition, the phrase “input/output interface” as
used herein, 1s intended to include, for example, one or more
mechanisms for inputting data to the processing unit (for
example, mouse), and one or more mechanisms for providing
results associated with the processing unit (for example,
printer). The processor 702, memory 704, and mput/output
interface such as display 706 and keyboard 708 can be inter-
connected, for example, via bus 710 as part of a data process-
ing umt 712. Suitable interconnections, for example via bus
710, can also be provided to a network interface 714, such as
a network card, which can be provided to interface with a
computer network, and to a media interface 716, such as a
diskette or CD-ROM drive, which can be provided to inter-
face with media 718.

Accordingly, computer software including instructions or
code for performing the methodologies of the mvention, as
described herein, may be stored 1n one or more of the asso-
ciated memory devices (for example, ROM, fixed or remov-
able memory) and, when ready to be utilized, loaded in part or
in whole (for example, into RAM) and implemented by a
CPU. Such software could include, but 1s not limited to,
firmware, resident software, microcode, and the like.

A data processing system suitable for storing and/or
executing program code will include at least one processor
702 coupled directly or indirectly to memory elements 704
through a system bus 710. The memory elements can include
local memory employed during actual implementation of the
program code, bulk storage, and cache memories which pro-
vide temporary storage of at least some program code 1n order
to reduce the number of times code must be retrieved from
bulk storage during implementation.

Input/output or I/O devices (including but not limited to
keyboards 708, displays 706, pointing devices, and the like)
can be coupled to the system either directly (such as via bus
710) or through intervening 1/O controllers (omitted for clar-
ity).

Network adapters such as network interface 714 may also
be coupled to the system to enable the data processing system
to become coupled to other data processing systems or remote
printers or storage devices through intervening private or
public networks. Modems, cable modem and Ethernet cards
are just a few of the currently available types of network
adapters.

As used herein, including the claims, z “server” includes a
physical data processing system (for example, system 712 as
shown 1n FIG. 7) running a server program. It will be under-
stood that such a physical server may or may not include a
display and keyboard.

As noted, aspects of the present mvention may take the
form of a computer program product embodied in one or more
computer readable medium(s) having computer readable pro-
gram code embodied thereon. Any combination of one or
more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable sig-
nal medium or a computer readable storage medium. A com-
puter readable storage medium may be, for example, but not

US 8,640,070 B2

17

limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or
any suitable combination of the foregoing. Media block 718
1s a non-limiting example. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an 1struction execution system, apparatus,
or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including,
but not limited to wireless, wireline, optical fiber cable, RF,
etc. or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including,
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. One or more embodi-
ments employ a hardware description language such as Ver-
1log or VHDL. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and/or computer program
products according to embodiments of the invention. It waill
be understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart illustrations and/or block diagrams, can be 1mple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified 1n the tlowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function 1n a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified 1n the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-

10

15

20

25

30

35

40

45

50

55

60

65

18

tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, 1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

It should be noted that any of the methods described herein
can include an additional step of providing a system compris-
ing distinct software modules embodied on a computer read-
able storage medium; the modules can include, for example,
any or all of the elements depicted 1n the block diagrams
and/or described herein; by way of example and not limita-
tion, an mput command interpretation module, a network
interface module, a data upload module, a data download
module, and a command execution module. The method steps
can then be carried out using the distinct software modules
and/or sub-modules of the system, as described above,
executing on one or more hardware processors 702. Further,
a computer program product can include a computer-readable
storage medium with code adapted to be implemented to
carry out one or more method steps described herein, includ-
ing the provision of the system with the distinct software
modules. In some instances, the distinct software modules
reside on computer 116 and translate the simulation com-
mands from the user into the simulator commands, as well as
programming the various FPGAs 1n the system, interpreting
of the input and output mailboxes, and scanning and genera-
tion of the snapshots.

In any case, 1t should be understood that the components
illustrated herein may be implemented in various forms of
hardware, software, or combinations thereof; for example,
application specific integrated circuit(s) (ASICS), functional
circuitry, one or more appropriately programmed general pur-
pose digital computers with associated memory, and the like.
Given the teachings of the invention provided herein, one of
ordinary skill in the related art will be able to contemplate
other implementations of the components of the invention.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
turther understood that the terms “comprises™ and/or “com-
prising,” when used 1n this specification, specity the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
clements, components, and/or groups thereof.

US 8,640,070 B2

19

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements 1n the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present mvention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the invention 1n the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described 1n order to best explain the principles of the mven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What 1s claimed 1s:

1. An apparatus comprising:

a plurality of target field programmable gate arrays inter-
connected 1n accordance with a connection topology and
mapping portions of a target system;

a control module coupled to said plurality of target field
programmable gate arrays;

a balanced clock distribution network configured to dis-
tribute a reference clock signal;

a balanced reset distribution network coupled to said con-
trol module and configured to distribute a reset signal to
said plurality of target field programmable gate arrays,
said control module and said balanced reset distribution
network being cooperatively configured to initiate and
control a stmulation of said target system with said plu-
rality of target field programmable gate arrays; and

a plurality of local clock control state machines residing in
said target field programmable gate arrays, said local
clock control state machines being coupled to said bal-
anced clock distribution network and obtaining said ret-
erence clock signal therefrom, said plurality of local
clock control state machines being configured to gener-
ate a set of stoppable clocks and a set of free-running
clocks synchronized to the stoppable clocks to maintain
cycle-accurate and cycle-reproducible execution of said
simulation of said target system.

2. The apparatus of claim 1, further comprising a set of
point-to-point free running serial communication links,
wherein said set of point-to-point free running serial commu-
nication links iterconnect said plurality of target field pro-
grammable gate arrays in accordance with said connection
topology.

3. The apparatus of claim 2, wherein said connection topol-
ogy mimics that of said target system.

4. The apparatus of claim 2, wherein said control module in
turn comprises:

a host control computer executing host control software;

a global control field programmable gate array coupled to
said host control computer; and

at least a first local control field programmable gate array
coupled to said global control field programmable gate
array and at least a first portion of said plurality of target
field programmable gate arrays;

wherein:

said global control field programmable gate array 1s con-
figured to mnitiate, stop, and single-step said simulation
of said target system under control of said host control
software; and

said at least first local control field programmable gate
array 1s configured to directly control said at least first
portion of said plurality of target field programmable

5

10

15

20

25

30

35

40

45

50

55

60

65

20

gate arrays and to forward system control commands
from and to said global control field programmable gate
array.

5. The apparatus of claim 4, further comprising at least a
second local control field programmable gate array coupled
to said global control field programmable gate array and at
least a second portion of said plurality of target field program-
mable gate arrays, wherein:

said global control field programmable gate array 1s further

configured to recerve and aggregate service request
events from said at least first and second local control
field programmable gate arrays, and to stop simulation
for at least one of service and error reporting events
emanating from said plurality of target field program-
mable gate arrays; and

said at least first and second local control field program-

mable gate arrays are responsible for direct control of
said first and second portions of said plurality of target
field programmable gate arrays, respectively.

6. The apparatus of claim 5, wherein said direct control of
said first and second portions of said plurality of target field
programmable gate arrays by said at least first and second
local control field programmable gate arrays comprises
downloading target field programmable gate array configu-
ration and memory 1mage initialization.

7. The apparatus of claam 4, wherein said host control
soltware comprises distinct software modules, each of said
distinct soitware modules being embodied on a computer-
readable storage medium, and wherein said distinct software
modules comprise an iput command interpretation module,
a network interface module, a data upload module, a data
download module, and a command execution module.

8. The apparatus of claim 2, wherein: said balanced clock
distribution network distributes said reference clock signal
with a low skew; and

said balanced reset distribution network distributes said

reset signal with a low skew, said reset signal comprising
a level-sensitive reset signal.

9. The apparatus of claim 8, wherein said reference clock
signal comprises a highest clock frequency 1n said apparatus.

10. The apparatus of claim 8, wherein said reference clock
signal comprises a reference to generate a highest clock tre-
quency 1n said apparatus, further comprising a plurality of
phase-locked loops 1n said plurality of target field program-
mable gate arrays, said plurality of phase-locked loops gen-
erating said highest clock frequency from said reference.

11. The apparatus of claim 2, further comprising at least
one external memory device accessible to said plurality of
target field programmable gate arrays and containing test
code for conducting said simulation of said target system.

12. The apparatus of claim 2, further comprising at least
one router field programmable gate array interconnecting at
least a portion of said target field programmable gate arrays.

13. A method comprising:

programming, by a processor, a plurality of target field

programmable gate arrays to map portions of a target
system:
imtializing a plurality of local clock control state machines
residing 1n said target field programmable gate arrays;

training serial commumnication links which interconnect
said plurality of target field programmable gate arrays 1n
accordance with a connection topology, such that said
links are free-running and synchronized, and configured
to guarantee transier ol a new sample of multiplexed
target system signals between two communicating ones
of said plurality of target field programmable gate arrays
in one target system clock cycle;

US 8,640,070 B2

21

loading test code for conducting a simulation of said target
system 1nto at least one external memory device acces-
sible to said plurality of target field programmable gate
arrays; and

simulating said target system with said plurality of target
field programmable gate arrays, 1n a cycle-reproducible
manner, under control of said test code,

wherein said plurality of target field programmable gate
arrays each comprises a local clock generation unit and
a device under test partition of said test system, said local
clock generation unit generating a set of stoppable
clocks supplied to said device under test partition and a
set of free-running clocks, wherein said set of free-
running clocks are synchronized to said set of stoppable
clocks and each of said plurality of target field program-
mable gate arrays runs in lockstep according to said
free-running clocks.

14. The method of claim 13, further comprising;:

programming a global control field programmable gate
array and at least a first local control field programmable
gate array, said global control field programmable gate
array being coupled to a host control computer, said at
least first local control field programmable gate array
being coupled to said global control field programmable
gate array and at least a first portion of said plurality of
target field programmable gate arrays;

receiving, at said global control field programmable gate
array, from said host control computer, a command to
start said simulating step by running a predetermined
number of clock cycles; and

translating said command to start said simulating step to a
“00” pulse that has a duration corresponding to said
predetermined number of clock cycles, using said global
control field programmable gate array.

15. The method of claim 14, wherein: said programming of

said plurality of target field programmable gate arrays, and
said programming of said global control field programmable
gate array and said at least first local control field program-
mable gate array, comprises downloading from said host con-
trol computer.

16. The method of claim 13, wherein said simulating com-

Prises:

collecting short snapshots at regular intervals to identity a
period where a fault originates; and

obtaining a more complete wavelorm trace 1n said 1denti-
fied period where said fault occurs, via a simulation
replay at a finer granularity.

17. An apparatus comprising:

means for programming a plurality of target field program-
mable gate arrays to map portions of a target system;

means for iitializing a plurality of local clock control state
machines residing 1n said target field programmable gate
arrays;

means for training serial communication links which inter-
connect said plurality of target field programmable gate
arrays 1n accordance with a connection topology, such

10

15

20

25

30

35

40

45

50

55

22

that said links are free-running and synchronized, and
configured to guarantee transier of a new sample of
multiplexed target system signals between two commu-
nicating ones of said plurality of target field program-
mable gate arrays in one target system clock cycle;

means for loading test code for conducting a simulation of
said target system 1nto at least one external memory
device accessible to said plurality of target field pro-
grammable gate arrays; and

means for simulating said target system with said plurality
of target field programmable gate arrays, 1 a cycle-
reproducible manner, under control of said test code,

wherein said plurality of target field programmable gate
arrays each comprises a local clock generation unit and
a device under test partition of said test system, said local
clock generation unit generating a set ol stoppable
clocks supplied to said device under test partition and a
set of free-running clocks, wherein said set of free-
running clocks are synchronized to said set of stoppable
clocks and each of said plurality of target field program-
mable gate arrays runs in lockstep according to said
free-running clocks.

18. The apparatus of claim 17, further comprising:

means for programming a global control field program-
mable gate array and at least a first local control field
programmable gate array, said global control field pro-
grammable gate array being coupled to a host control
computer, said at least first local control field program-
mable gate array being coupled to said global control
field programmable gate array and at least a first portion
of said plurality of target field programmable gate
arrays;

means for recerving, at said global control field program-
mable gate array, from said host control computer, a
command to start said simulating step by running a
predetermined number of clock cycles; and

means for translating said command to start said simulat-
ing step to a “go” pulse that has a duration corresponding
to said predetermined number of clock cycles, using said
global control field programmable gate array.

19. The apparatus of claim 18, wherein:

said means for programming of said plurality of target field
programmable gate arrays, and said means for program-
ming of said global control field programmable gate
array and said at least first local control field program-
mable gate array, comprise means for downloading from
said host control computer.

20. The apparatus of claim 17, wherein said means for

simulating comprise:

means for collecting short snapshots at regular intervals to
identily a period where a fault originates; and

means for obtaining a more complete waveform trace 1n
said 1dentified period where said fault occurs, via a simu-
lation replay at a finer granularity.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

