United States Patent

US008635696B1

(12) (10) Patent No.: US 8.635,696 B1
Aziz 45) Date of Patent: Jan. 21, 2014
b/
(54) SYSTEM AND METHOD OF DETECTING 6,487,666 Bl 11/2002 Shanklin et al.
TIME-DELAYED MALICIOUS TRAFFIC 6,493,756 Bl 12/2002 O’Brien et al.
6,550,012 Bl 4/2003 Villa et al.
: : . 6,775,657 Bl 8/2004 Baker
(71) Applicant: FireEye, Inc., Milpitas, CA (US) 6.832.367 Bl 12/2004 Choi et al.
(72) Inventor: Ashar Aziz, Fremont, CA (US) (Continued)
(73) Assignee: FireEye, Inc., Milpitas, CA (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject‘ to any disclaimer_,‘ the term of this %% WO-Ozziggggg }gggg
patent 1s extended or adjusted under 35 WO WO-02/23805 3/20072
U.S.C. 154(b) by O days.
OTHER PUBLICATIONS
(21) Appl. No.: 13/931,631 International Search Report and Written Opinion mailed May 10,
(22) Filed: Jun. 28, 2013 2012 1n Application No. PCT/US12/21916.
(Continued)
Related U.S. Application Data .
| _ o Primary Examiner — Philip Chea
(63) Continuation of application No. 11/096,287, filed on Assistant Examiner — Kendall Dolly
Mar. 31, 2005, now Pat. No. 8,523,036 (74) Attorney, Agent, or Firm — Blakely, Sokoloif, Taylor &
(60) Provisional application No. 60/559,198, filed on Apr. Zatman LLP
1, 2004,
(37) ABSTRACT
(1) Int. CI, A system for detecting a computer worm comprises a traffic
GOoF 21/00 (2013.01) analysis device in communication with a network device. The
e Lo tralllc analysis device can analyze network tralllC receive
(52) U.S.Cl ffic analysis devi ly k traffi ived
USPC 726/23; 726/26; 713/176; 713/193 over a Communication network and duplicate at least Select
(58) Field of Classification Search network communications within the network traffic having
None characteristics associated with one or more computer wormes.
See application file for complete search history. The network device comprises a controller in communication
_ with one or more virtual machines that are configured to
(56) References Cited receive the duplicated network communications from the

U.S. PATENT DOCUMENTS

4,292,580 A 9/1981 Ott et al.
5,175,732 A 12/1992 Hendel et al.
5,440,723 A 8/1995 Arnold et al.
5,657.473 A 8/1997 Killean et al.
5,978.917 A 11/1999 Chi
6,269,330 Bl 7/2001 Cidon et al.
6,298.445 B1 10/2001 Shostack et al.
6,357,008 Bl 3/2002 Nachenberg
6,424,627 Bl 7/2002 Sorhaug et al.

traffic analysis device. The network device may (1) monitor a
behavior of a first virtual machine of the one or more virtual
machines 1n response to processing of the duplicated network
communications within the first virtual machine, (11) identity
an anomalous behavior as an unexpected occurrence 1n the
monitored behavior, and (111) determine, based on the 1denti-
fied anomalous behavior, the presence of the one or more
computer worms in the duplicated network communications.

42 Claims, 4 Drawing Sheets

(smn)
l

400

QOrchestrate predetermined seguence of network
activities in computer network

l

400

Moaniter behaviar of computer network

|

410

Igentify anomalous bahaviar in monitorad behavior to
detact computer worm

415

Generate recovery script for computer worm based
on identifier
(optional)

based on anomalous behavior

|
|

Determine identifier for detecting computer warm |
|

(optianal) :

US 8,635,696 Bl

Page 2
(56) References Cited 2004/0249911 Al 12/2004 Alkhatib et al.
2004/0268147 Al 12/2004 Wiederin et al.
U.S. PATENT DOCUMENTS 2005/0033960 Al 2/2005 Vialen et al.
2005/0033989 Al 2/2005 Poletto et al.
6,895,550 B2 5/2005 Kanchirayappa et al. 2005/0086523 Al 4/2005 Zimmer et al.
6,898,632 B2 5/2005 Gordy et al. 2005/0091513 Al 4/2005 Mitomo et al.
6,981,279 B1* 12/2005 Arnoldetal.c......... 726/22 2005/0091533 Al 4/2005 Omote et al.
7.007.107 Bl 2/2006 Ivchenko et al. 2005/0114663 Al 5/2005 Cornell et al.
7,043,757 B2 5/2006 Hoefelmeyer et al. 2005/0125195 Al 6/2005 Brendel
7069316 Bl 6/2006 Gryaznov 2005/0157662 Al 7/2005 Bingham et al.
7.080.408 Bl 7/2006 Pak et al, 2005/0183143 Al 8/2005 Anderholm et al.
7.093.239 Bl 8/2006 van der Made 2005/0201297 Al 9/2005 Peikari
7.100,201 B2 82006 Izatt 2005/0210533 Al 9/2005 Copeland et al.
7,159,149 B2 1/2007 Spiegel et al. 2005/0238005 Al 10/2005 Chen et al.
7.231.667 B2 6/2007 Jordan 2005/0265331 Al 12/2005 Stolfo
7,240,364 B1 7/2007 Branscomb et al. 2006/0015715 Al 1/2006 Anderson
7240368 Bl 7/2007 Roesch et al. 2006/0021054 Al 1/2006 Costa et al.
7,287,278 B2 10/2007 Liang 2006/0075496 Al 4/2006 Carpenter et al.
7308716 B2 12/2007 Danford et al. 2006/0095968 Al 5/2006 Portolani et al.
7.356,736 B2 4/2008 Natvig 2006/0101516 Al 5/2006 Sudaharan et al.
7,386,888 B2* 6/2008 Liangetal.c.......... 726/23 2006/0101517 Al 5/2006 Banzhof et al.
7392542 B2 6/2008 Bucher 2006/0117385 Al 6/2006 Mester et al.
7418729 B2 82008 Szor 2006/0123477 Al 6/2006 Raghavan et al.
7498300 Bl 9/2008 Drew ef al. 2006/0143709 Al 6/2006 Brooks et al.
7441977 B? 10/2008 Durham et al. 2006/0161983 Al 7/2006 Cothrell et al.
7:4432034 Bl 11/2008 Apap et al. 2006/0161987 Al 7/2006 Levy-Yurista
7.458,098 B2 11/2008 Judge et al. 2006/0164199 Al 7/2006 Gilde et al.
7,464,404 B2 12/2008 Carpenter et al. 2006/0173992 Al 8/2006 Weber et al.
7464.407 B2 12/2008 Nakae et al. 2006/0184632 Al 82006 Marino et al.
7480773 Bl 12009 Reed 2006/0191010 Al 8/2006 Benjamin
7487543 B2 2/2009 Arnold et al. 2006/0221956 Al 10/2006 Narayan et al.
7496960 Bl 2/2009 Chen ef al. 2006/0288417 Al 12/2006 Bookbinder et al.
7496961 B2 2/2009 Zimmer et al. 2007/0006288 Al 1/2007 Mayfield et al.
7.519,990 B1* 4/2009 Xi€ .ooooveevireeeierreeerreeinnns 796/13 2007/0006313 Al 1/2007 Porras et al.
7,523,493 B2 4/2009 Liang et al. 2007/0016951 Al 1/2007 Piccard et al.
7,530,104 Bl 5/2009 Thrower et al. 2007/0033645 Al 2/2007 Jones
7540025 B2 5/2009 Tzadikario 2007/0038943 Al 2/2007 FitzGerald et al.
7,565,550 B2 7/2009 Liang et al. 2007/0064689 Al 3/2007 Shin et al.
7.603,715 B2 10/2009 Costa et al. 2007/0094730 Al 4/2007 Bhikkaji et al.
7.639,714 B2 12/2009 Stolfo et al. 2007/0174915 Al 7/2007 Gribble etal. 726/24
7,644,441 B2 1/2010 Schmid et al. 2007/0192500 A1 82007 Lum
7,676,841 B2 3/2010 Sobchuk et al. 2007/0192858 Al 82007 TLum
7698548 B2 4/2010 Shelest et al. 2007/0198275 Al 8/2007 Malden et al.
7707.633 B2 4/2010 Danford et al. 2007/0250930 Al 10/2007 Aziz et al.
7779463 B2 82010 Stolfo et al. 2007/0271446 Al 11/2007 Nakamura
7,784,097 Bl 8/2010 Stolfo et al. 2008/0005782 Al 1/2008 Aziz
7,849,506 Bl 12/2010 Dansey et al. 2008/0072326 Al 3/2008 Danford et al.
7,904,959 B2 3/2011 Sidiroglou et al. 2008/0080518 Al 4/2008 Hoeflin et al.
7.008.660 B2 3/2011 Bahl 2008/0120722 Al 5/2008 Sima et al.
7.937.761 BL* 5/2011 Bennett ..o 726/23 2008/0141376 Al 6/2008 Clausen et al.
7.996.556 B2 8/2011 Raghavan et al. 2008/0222729 Al 9/2008 Chen et al.
7.996,.905 B2 82011 Arnold et al. 2008/0263665 Al 10/2008 Ma et al.
8.006.305 B2 82011 Aziz 2008/0295172 Al 11/2008 Bohacek
8028338 Bl 9/2011 Schneider et al. 2008/0301810 Al 12/2008 Lehane et al.
8.069.484 B2 11/2011 McMillan et al. 2009/0031423 Al 1/2009 Liu et al.
8.087.086 Bl 12/2011 Lai et al. 2009/0083369 Al 3/2009 Marmor
Q171553 B2 5/2012 Awiz of al 2009/0083855 Al 3/2009 Apap et al.
8375444 B2 2/2013 Aziz et al. 2009/0089879 Al 4/2009 Wang et al.
2001/0047326 Al 11/2001 Broadbent et al. 2009/0094697 Al 4/2009 Provos et al.
2002/0018903 Al 2/2002 Kokubo et al. 2009/0271867 Al 10/2009 Zhang
2002/0038430 A1 3/2002 Edwards et al. 2009/0300761 Al 12/2009 Park et al.
2002/0091819 Al 7/2002 Melchione et al. 2009/0328221 Al 12/2009 Blumfield et al.
2002/0144156 Al 10/2002 Copeland, III 2010/0054278 Al 3/2010 Stolfo et al.
2002/0162015 Al 10/2002 Tang 2010/0077481 Al 3/2010 Poly:akov ct al.
2002/0184528 Al 12/2002 Shevenell et al. 2010/0083376 Al 4/2010 Pereira et al.
2002/0188887 Al 12/2002 Largman et al. 2010/0115621 Al 5/2010 Staniford et al.
2002/0194490 Al 12/2002 Halperin et al. 2010/0192223 Al 7/2010 Ismael et al.
2003/0074578 Al 4/2003 Ford et al. 2010/0251104 AL 9/2010 Massand
2003/0084318 Al 5/2003 Schertz 2010/0281102 Al 11/2010 Chinta et al.
2003/0115483 Al 6/2003 Liang 2010/0281541 Al 11/2010 Stolfo et al.
2003/0188190 Al 10/2003 Aaron et al. 2010/0281542 Al 11/2010 Stolfo et al.
2003/0200460 Al 10/2003 Morota et al. 2010/0287260 Al 11/2010 Peterson et al.
2004/0019832 Al 1/2004 Arnold et al. 2011/0047620 Al 2/2011 Mahaffey et al.
2004/0047356 Al 3/2004 Bauer 2011/0093951 Al 4/2011 Aziz
2004/0083408 Al 4/2004 Spiegel et al. 2011/0099633 Al 4/2011 Aziz
2004/0111531 Al 6/2004 Staniford et al. 2011/0247072 Al 10/2011 Staniford et al.
2004/0165588 Al 8/2004 Pandya 2011/0307955 Al 12/2011 Kaplan et al.
2004/0236963 Al 11/2004 Danford et al. 2011/0314546 Al 12/2011 Aziz etal.
2004/0243349 Al 12/2004 Greifeneder et al. 2012/0079596 Al 3/2012 Thomas et al.

US 8,635,696 Bl
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0084859 Al 4/2012 Radinsky et al.
2012/0174186 Al 7/2012 Aziz et al.
2012/0174218 Al 7/2012 McCoy et al.

OTHER PUBLICATIONS

International Search Report and Written Opinion mailed May 25,

2012 1n Application No. PCT/US12/26402,

IEEFE Xplore Digital Library Sear Results for “detection of unknown
computer worms”. Http//1eeexplore.ieee.org/searchresult.
1sp?SortField=Score&SortOrder=desc&ResultC . . ., (Accessed on
Aug. 28, 2009).

AltaVista Advanced Search Results. “Event Orchestrator”. Http://
www.altavista.com/web/results?Itag=ody&pg=aq
&agmode=aqa=Event+Orchesrator . . ., (Accessed on Sep. 3, 2009).
AltaVista Advanced Search Results. “attackvector identifier”. Http://
www.altavista.com/web/results?Itag=ody&pg=aq
&agmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 15,
2009).

“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar.
2002), 1 page.

Chaudet, C. , et al., “Optimal Positioning of Active and Passive
Monitoring Devices”, International Conference on Emerging Nel-
working Experiments and Technologies, Proceedings of the 2005
ACM Conference on Emerging Network Experiment and Technology,
CoNEX'T 05, Toulousse, France, (Oct. 2005), pp. 71-82.

Costa, M. , et al., “Vigilante: End-to-End Containment of Internet

Worms”, SOSP 05, Association for Computing Machinery, Inc.,
Brighton U.K., (Oct. 23-26, 2005).

Crandall, J.R. , et al., “Mimos:Control Data Attack Prevention
Orthogonal to Memory Model”, 37th International Symposium on
Microarchitecture, Portland, Oregon, (Dec. 2004).

Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm
Signature Detection”, Proceedings of the 13th Usenix Security Sym-

posium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.

Kreibich, C., et al., “Honeycomb-Creating Intrusion Detection Sig-
natures Using Honeypots”, 2nd Workshop on Hot Topics in Networks

(HotNets-11), Boston, USA, (2003).

Kristoff, J., “Botnets, Detection and Mitigation: DNS-Based Tech-
niques”, NU Security Day, (2005), 23 pages.

Margolis, P.E. , “Random House Webster’s ‘Computer & Internet
Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).

Moore, D., etal., “Internet Quarantine: Requirements for Containing
Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003),

pp. 1901-1910.

Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detec-
tion, Analysis, and Signature Generation of Exploits on Commodity
Software”, In Proceedings of the 12th Annual Network and Distrib-
uted System Security, Symposium (NDSS ’05), (Feb. 2005).
Newsome, J. , et al., “Polygraph: Automatically Generating Signa-
tures for Polymorphic Worms”, In Proceedings of the IEEE Sympo-
sium on Security and Privacy, (May 2005).

Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale

Attack Mitigation”, DARPA Information Survivability Conference

and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Silicon Defense, “Worm Containment 1n the Internal Network”,

(Mar. 2003), pp. 1-25.

Singh, S., et al., “Automated Worm Fingerprinting”, Proceedings of
the ACM/USENIX Symposium on Operating System Design and
Implementation, San Francisco, Califormia, (Dec. 2004).

Whyte, et al., “DNS-Based Detection of Scanning Works in an Enter-
prise Network”, Proceedings of the 12th Annual Network and Dis-
tributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propaga-
tion to Defeat Malicious Mobile Code™”, ACSAC Conference, Las
Vegas, NV, USA, (Dec. 2002), pp. 1-9.

U.S. Appl. No. 14/012,945, Non-Final Office Action, mailed Nov. 6,
2013.

* cited by examiner

US 8,635,696 B1

Sheet 1 of 4

Jan. 21, 2014

U.S. Patent

1 Old
v) ———— == ;
 (leuondo) ' (jeuondo) _
| 99IAS(| 901meg |
 Sisheuy » sisAleuy |
| Oijjel ' ael
T HOMON i
L uopesiunwwo) T]
o€l
Aemalec)
gcl
— ; g
m WajSAS WaJSAS WalsAg M
m bundwod undwod Sunndwon L_m__%mmoo
m ¥JOMJeN Jajnduiod

J0SUaS ULIOAA J3Indwo)

SOl

e T T - - r - W e = W oy e e am e R e e n W R M R R R R R b AL A Re o A R k. L — A A A e A W g e e o o w]

001l

US 8,635,696 B1

Sheet 2 of 4

Jan. 21, 2014

U.S. Patent

¢ Ol
YJOM]JSN Jaindwon 0|
A
H A
(-7 =-==== !
e mm—— - 4 v v
,

“ (Jeuondo) i
o |°Nanp uotjenbiyuo) auibug
! “||| GZ¢C - 21EMY0S aseqejeq UONELSaYdIQ0 Jun uonoeIx3
. (jeuondo) Jakejdey Gl¢e 01¢C GOZ 002
| @ousnbag |oo0jold |
“ 02¢

13]|05u0)

GLl

US 8,635,696 B1

Sheet 3 of 4

Jan. 21, 2014

U.S. Patent

losSuag
WLIOAA Jajndwio)

GOl

L

£ Ol

MIOMISN
uonEedIUNWWON

el
A

LUIOAA Jaindwio)

col

_ 10SUaG

LWIOAA J121ndWo9D)

JloIVETS

Gol

GOE

labeuep Josuag |

|

00€

U.S. Patent

Jan. 21, 2014 Sheet 4 of 4

400

Orchestrate predetermined sequence of network
activities iIn computer network

L

405
Monitor behavior of computer network

410
ldentify anomalous behavior in monitored behavior to
detect computer worm |

415
Determine identifier for detecting computer worm

I
I
I
|
based on anomalous behavior :

(optional) :

420 I
Generate recovery script for computer worm based :
on identifier |

(optional) :

End

FIG. 4

US 8,635,696 B1

US 8,635,696 Bl

1

SYSTEM AND METHOD OF DETECTING
TIME-DELAYED MALICIOUS TRAFFIC

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 11/096,287, now U.S. Pat. No. 8,528,086, which
claims the benefit of U.S. provision patent application No.
60/559,198, filed Apr. 1, 2004 and entitled “System and
Method of Detecting Computer Worms,” the entire contents
of both of which are incorporated by reference herein.

BACKGROUND

1. Field of the Invention

The present invention relates generally to computing sys-
tems, and more particularly to systems and methods of detect-
ing computer worms in computer networks.

2. Background Art

Detecting and distinguishing computer worms from ordi-
nary communications traific within a computer network 1s a
challenging problem. Moreover, modern computer worms
operate at an ever increasing level of sophistication and com-
plexity. Consequently, 1t has become increasingly difficult to
detect computer worms.

A computer worm can propagate through a computer net-
work by using active propagation techniques. One active
propagation technique of a computer worm 1s to select target
systems to infect by scanning a network address space of a
computer network (e.g., a scan directed computer worm).
Another active propagation technique of a computer worm 1s
to use topological information from an infected system in a
computer network to actively propagate the computer worm
in the computer network (e.g., a topologically directed com-
puter worm). Still another active propagation technique of a
computer worm 1s to select target systems to infect based on
a previously generated list of target systems (e.g., a hit-list
directed computer worm).

In addition to active propagation techniques, a computer
worm may propagate through a computer network by using,
passive propagation techniques. One passive propagation
technique of a computer worm 1s to attach itself to normal
network communications not initiated by the computer worm
itsell (e.g., a stealthy or passive contagion computer worm).
The computer worm then propagates through the computer
network 1n the context of normal commumnication patterns not
directed by the computer worm.

It 1s anticipated that next-generation computer worms will
have multiple transport vectors, use multiple target selection
techniques, have no previously known signatures, and will
target previously unknown vulnerabilities. It 1s also antici-
pated that next generation computer worms will use a com-
bination of active and passive propagation techniques and
may emit chaif traffic (1.e., spurious traffic generated by the
computer worm) to cloak the communication traffic that car-
ries the actual exploit sequences of the computer worms. This
chaffl traffic will be emitted in order to confuse computer
worm detection systems and to potentially trigger a broad
denial-of-service by an automated response system.

Approaches for detecting computer worms 1n a computer
system include misuse detection and anomaly detection. In
misuse detection, known attack patterns of computer worms
are used to detect the presence of the computer worm. Misuse
detection works reliably for known attack patterns but 1s not
particularly useful for detecting novel attacks. In contrast to
misuse detection, anomaly detection has the ability to detect

10

15

20

25

30

35

40

45

50

55

60

65

2

novel attacks. In anomaly detection, a baseline of normal
behavior 1n a computer network 1s created so that deviations
from this behavior can be flagged as an anomaly. The diifi-
culty inherent 1n this approach 1s that universal definitions of
normal behavior are difficult to obtain. Given this limitation,
anomaly detection approaches strive to minimize false posi-
tive rates ol computer worm detection.

In one suggested computer worm containment system,
detection devices are deployed in a computer network to
monitor outbound network traffic and detect active scan
directed computer worms in the computer network. To
achieve eflective containment of these active computer
worms (as measured by the total infection rate over the entire
population of systems), the detection devices are widely
deployed 1n the computer network 1n an attempt to detect
computer worm traific close to a source of the computer worm
traffic. Once detected, these computer worms are contained
by using an address blacklisting technique. This computer
worm containment system, however, does not have a mecha-
nism for repair and recovery of infected computer networks.

In another suggested computer worm containment system,
the protocols (e.g., network protocols) of network packets are
checked for standards compliance under an assumption that a
computer worm will violate the protocol standards (e.g.,
exploit the protocol standards) 1n order to successtully infect
a computer network. While this approach may be successiul
in some circumstances, this approach 1s limited in other cir-
cumstances. Firstly, 1t 1s possible for a network packet to be
tully compatible with published protocol standard specifica-
tions and still trigger a butler overtlow type of software error
due to the presence of a software bug. Secondly, not all
protocols of interest can be checked for standards compliance
because proprietary or undocumented protocols may be used
in a computer network. Moreover, evolutions of existing pro-
tocols and the introduction of new protocols may lead to high
talse positive rates of computer worm detection when *“good”
behavior cannot be properly and completely distinguished
from *“bad” behavior. Encrypted communications channels
turther complicate protocol checking because protocol com-
pliance cannot be easily validated at the network level for
encrypted tratfic.

In another approach to computer worm containment,
“honey farms” have been proposed. A honey farm includes
“honeypots” that are sensitive to probe attempts 1n a computer
network. One problem with this approach 1s that probe
attempts do not necessarily indicate the presence of a com-
puter worm because there may be legitimate reasons for prob-
ing a computer network. For example, a computer network
can be legitimately probed by scanning an Internet Protocol
(IP) address range to i1dentity poorly configured or rogue
devices in the computer network. Another problem with this
approach 1s that a conventional honey farm does not detect
passive computer worms and does not extract signatures or
transport vectors in the face of chail emitting computer
WOrms.

Another approach to computer worm containment assumes
that computer worm probes are identifiable at a given worm
sensor 1 a computer network because the computer worm
probes will target well known vulnerabilities and thus have
well known signatures which can be detected using a signa-
ture-based 1ntrusion detection system. Although this
approach may work for well known computer worms that
periodically recur, such as the CodeRed computer worm, this
approach does not work for novel computer worm attacks
exploiting a zero-day vulnerability (e.g., a vulnerability that
1s not widely known).

US 8,635,696 Bl

3

One suggested computer worm containment system
attempts to detect computer worms by observing communi-
cation patterns between computer systems in a computer
network. In this system, connection histories between com-
puter systems are analyzed to discover patterns that may
represent a propagation trail of the computer worm. In addi-
tion to false positive related problems, the computer worm
containment system does not distinguish between the actual
transport vector of a computer worm and a transport vector
including a spuriously emitted chaif trail. As a result, stmply
examining malicious traific to determine the transport vector
can lead to a broad demial of service (DOS) attack on the
computer network. Further, the computer worm containment
system does not determine a signature of the computer worm
that can be used to implement content filtering of the com-
puter worm. In addition, the computer worm containment
system does not have the ability to detect stealthy passive
computer worms, which by their very nature cause no anoma-
lous communication patterns.

In light of the above, there exists a need for an effective
system and method of detecting computer worms.

SUMMARY OF THE INVENTION

A computer worm detection system addresses the need for
detecting computer worms. In accordance with various
embodiments, a computer worm sensor 1s coupled to a com-
munication network. The computer worm sensor allows a
computer worm to propagate from the communication net-
work to a computer network 1n the computer worm sensor.
The computer worm sensor orchestrates network activities 1in
the computer network, monitors the behavior of the computer
network, and i1dentifies an anomalous behavior in the moni-
tored behavior to detect a computer worm. Additionally, the
computer worm detection system determines an identifier for
detecting the computer worm based on the anomalous behav-
10T

A system 1n accordance with one embodiment includes a
computer network and a controller 1n communication with
the computer network. The controller 1s configured to orches-
trate a predetermined sequence ol network activities 1n the
computer network, monitor a behavior of the computer net-
work 1n response to the predetermined sequence of network
activities, and 1dentily an anomalous behavior in the moni-
tored behavior to detect the computer worm.

A method 1 accordance with one embodiment includes
orchestrating a predetermined sequence of network activities
in a computer network and monitoring a behavior of the
computer network 1n response to the predetermined sequence
ol network activities. Further, the method comprises 1denti-
tying an anomalous behavior in the monitored behavior to
detect the computer worm.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a computing environment 1n which a worm
sensor can be implemented, 1n accordance with one embodi-
ment of the present invention;

FIG. 2 depicts a controller of a computer worm sensor, in
accordance with one embodiment of the present invention;

FIG. 3 depicts a computer worm detection system, in
accordance with one embodiment of the present invention;
and

FI1G. 4 depicts a tlow chart for a method of detecting com-
puter worms, 1n accordance with one embodiment of the
present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

A computer worm detection system 1n accordance with one
embodiment of the present invention orchestrates network
activities in a computer network and monitors the behavior of
the computer network. The computer worm detection system
detects a computer worm 1n the computer network based on
the monitored behavior of the computer network. Addition-
ally, the computer worm detection system determines an
identifier, such as a signature or a vector, for detecting the
computer worm. The computer worm detection system can
generate a recovery script to disable the computer worm and
repair damage caused by the computer worm.

FIG. 1 depicts an exemplary computing environment 100
in which a computer worm sensor 105 can be implemented, 1n
accordance with one embodiment of the present invention. In
various embodiments, the computer worm sensor 105 func-
tions as a computer worm detection system, as 1s described
more fully herein. The computer worm sensor 103 includes a
controller 115, a computer network 110 (e.g., a hidden net-
work), and a gateway 125 (e.g., a wormhole system). The
computer network 110 includes one or more computing sys-
tems 120 (e.g., hidden systems) 1n communication with each
other. The controller 115 and the gateway 125 are 1n commu-
nication with the computer network 110 and the computing
systems 120. Additionally, the gateway 125 1s communica-
tion with a communication network 130 (e.g., a production
network). The communication network 130 can be a public
computer network (e.g., the Internet) or a private computer
network (e.g., a wireless telecommunication network).

Optionally, the computer worm sensor 105 may include
one or more traffic analysis devices 135 in communication
with the communication network 130. The traific analysis
device 135 analyzes network traific 1n the communication
network 130 to 1dentily network communications character-
istic ol a computer worm. The trailic analysis device 133 can
then selectively duplicate the identified network communica-
tions and provide the duplicated network communications to
the controller 115. The controller 1135 replays the duplicated
network communications in the computer network 110 to
determine whether the network communications include a
computer worm.

The computing systems 120 are computing devices typi-
cally found 1n a computer network. For example, the comput-
ing systems 120 can include computing clients or servers. As
a Turther example, the computing systems 120 can include
gateways and subnets 1n the computer network 110. Each of
the computing systems 120 and the gateway 125 may have
different hardware or soitware profiles.

The gateway 123 allows computer worms to pass from the
communication network 130 to the computer network 110.
The computer worm sensor 105 may include multiple gate-
ways 125 1n communication with multiple communication
networks 130. These communication networks 130 may also
be 1n communication with each other. For example, the com-
munication networks 130 can be part of the Internet or in
communication with the Internet. In one embodiment, each of
the gateways 125 can be 1n communication with multiple
communication networks 130.

The controller 115 controls operation of the computing
systems 120 and the gateway 125 to orchestrate network
activities in the computer worm sensor 105. In one embodi-
ment, the orchestrated network activities are a predetermined
sequence of network activities 1n the computer network 110,
which represents an orchestrated behavior of the computer
network 110. In this embodiment, the controller 115 monaitors
the computer network 110 to determine a monitored behavior

US 8,635,696 Bl

S

of the computer network 110 1n response to the orchestrated
network activities. The controller 115 then compares the
monitored behavior of the computer network 110 with the
predetermined orchestrated behavior to 1dentily an anoma-
lous behavior. The anomalous behavior may include a com-
munication anomaly (e.g., an unexpected network communi-
cation) or an execution anomaly (e.g., an unexpected
execution of computer program code) in the computer net-
work 110. If the controller 1135 1dentifies an anomalous
behavior, the computer network 110 1s deemed 1infected with
a computer worm. In this way, the controller 1135 can detect
the presence of a computer worm in the computer network
110 based on an anomalous behavior of the computer worm 1n
the computer network 110. The controller 115 then creates an
identifier (1.e., a “definition” of the anomalous behavior),
which may be used for detecting the computer worm 1n
another computer network (e.g., the communication network
130).

The 1dentifier determined by the controller 115 for a com-
puter worm 1n the computer network 110 may be a signature
that characterizes an anomalous behavior of the computer
worm. The signature can then be used to detect the computer
worm 1n another computer network (e.g., the communication
network 130). In one embodiment, the signature indicates a
sequence of ports in the computer network 110 along with
data used to exploit each of the ports. The signature may be a
set of tuples {(p,, ¢,), (ps- C5), . . . }, Where p, represents a
Transier Control Protocol (TCP) or a User Datagram Protocol
(UDP) port number, and ¢, 1s signature data contained 1n a
TCP or UDP packet used to exploit a port associated with the
port number. For example, the signature data can be 16-32
bytes of data 1n a data portion of a data packet.

The controller 113 can determine a signature of a computer
worm based on a uniform resource locator (URL), and can
generate the signature by using a URL filtering device, which
represents a specific case of content filtering. For example,
the controller 115 can identily a uniform resource locator
(URL) in data packets of Hyper Text Transier Protocol
(HTTP) traffic and can extract a signature from the URL.
Further, the controller 115 can create a regular expression for
the URL and include the regular expression in the signature.
In this way, a URL filtering device can use the signature to
filter out network tratfic associated with the URL.

Alternatively, the 1dentifier may be a vector (e.g., a propa-
gation vector, an attack vector, or a payload vector) that
characterizes an anomalous behavior of the computer worm
in the computer network 110. For example, the vector can be
a propagation vector (1.e., a transport vector) that character-
1zes a sequence ol paths traveled by the computer worm 1n the
computer network 110. The propagation vector may include a
set {Py. P> Pa» - - - }» Where p, represents a port number (e.g.,
a TCP or UDP port number) in the computer network 110 and
identifies a transport protocol (e.g., TCP or UDP) used by the
computer worm to access the port. Further, the identifier may
be amulti-vector that characterizes multiple propagation vec-
tors for the computer worm. In this way, the vector can char-
acterize a computer worm that uses a variety of techniques to
propagate 1n the computer network 110. These techniques
may include dynamic assignment of probe addresses to the
computing systems 120, network address translation (NAT)
of probe addresses to the computing systems 120, obtaining
topological service information from the computer network
110, or propagating through multiple gateways 125 of the
computer worm sensor 103.

The controller 115 may orchestrate network activities (e.g.,
network communications or computing services) i the com-
puter network 110 based on one or more orchestration pat-

10

15

20

25

30

35

40

45

50

55

60

65

6

terns. In one embodiment, the controller 115 generates a
series of network communications based on an orchestration
pattern to exercise one or more computing services (e.g.,
Telnet, FTP, or SMTP) 1n the computer network 110. In this
embodiment, the orchestration pattern defines an orches-
trated behavior (e.g., an expected behavior) of the computer
network 110. The controller 115 then monitors network
activities 1n the computer network 110 (e.g., the network
communications and computing services accessed by the net-
work communications) to determine the monitored behavior
of the computer network 110, and compares the monitored
behavior with the orchestration pattern. If the monitored
behavior does not match the orchestration pattern, the com-
puter network 110 1s deemed 1infected with a computer worm.
The controller 115 then 1dentifies an anomalous behavior 1n
the monitored behavior (e.g., a network activity in the moni-
tored behavior that does not match the orchestration pattern)
and determines an 1dentifier for the computer worm based on
the anomalous behavior.

In another embodiment, an orchestrated pattern 1s associ-
ated with a type of network communication. In this embodi-
ment, the gateway 125 identifies the type of a network com-
munication received by the gateway 125 from the
communication network 130 before propagating the network
communication to the computer network 110. The controller
115 then selects an orchestration pattern based on the type of
network communication identified by the gateway 125 and
orchestrates network activities 1n the computer network 110
based on the selected orchestration pattern. In the computer
network 110, the network communication accesses one or
more computing systems 120 via one or more ports to access
one or more computing services (€.g., network services) pro-
vided by the computing systems 120. For example, the net-
work commumnication may access an FTP server on one of the
computing systems 120 via a well-known or registered FTP
port number using an appropriate network protocol (e.g., TCP
or UDP). In this example, the orchestration pattern includes
the 1dentity of the computing system 120, the F'TP port num-
ber, and the appropriate network protocol for the FTP server.
If the monitored behavior of the computer network 110 does
not match the orchestrated behavior defined by the orchestra-
tion pattern, the network communication 1s deemed infected
with a computer worm. The controller 115 then determines an
identifier for the computer worm based on the monitored
behavior, as 1s described 1n more detail herein.

The controller 115 orchestrates network activities 1n the
computer network 110 such that detection of anomalous
behavior 1n the computer network 110 1s simple and highly
reliable. All behavior (e.g., network activities) of the com-
puter network 110 that 1s not part of an orchestration pattern
represents an anomalous behavior. In alternative embodi-
ments, the monmitored behavior of the computer network 110
that 1s not part of the orchestration pattern 1s analyzed to
determine whether any of the monitored behavior 1s an
anomalous behavior.

In another embodiment, the controller 115 periodically
orchestrates network activities 1n the computer network 110
to access various computing services (e.g., web servers or file
servers) in the communication network 130. In this way, a
computer worm that has infected one of these computing
services may propagate from the communication network
130 to the computer network 110 via the orchestrated network
activities. The controller 115 then orchestrates network
activities to access the same computing services 1n the com-
puter network 110 and monitors a behavior of the computer
network 110 in response to the orchestrated network activi-
ties. If the computer worm has infected the computer network

US 8,635,696 Bl

7

110, the controller 115 detects the computer worm based on
an anomalous behavior of the computer worm 1n the moni-
tored behavior, as 1s described more fully herein.

In one embodiment, a single orchestration pattern exer-
cises all available computing services 1n the computer net-
work 110. In other embodiments, each orchestration pattern
exercises selected computing services 1n the computer net-
work 110, or the orchestration patterns for the computer net-
work 110 are dynamic (e.g., vary over time). For example, a
user of the computer worm sensor 103 may add, delete, or
modily the orchestration patterns to change the orchestrated
behavior of the computer network 110.

In one embodiment, the controller 115 orchestrates net-
work activities in the computer network 110 to prevent a
computer worm 1n the communication network 130 from
detecting the computer network 110. For example, a com-
puter worm may identily and avoid 1nactive computer net-
works, which may be decoy computer networks deployed for
detecting the computer worm (e.g., the computer network
110). In this embodiment, the controller 115 orchestrates
network activities in the computer network 110 to prevent the
computer worm from avoiding the computer network 110
because of 1nactivity 1n the computer network 110.

In another embodiment, the controller 115 analyzes both
the packet header and the data portion of data packets in
network communications in the computer network 110 to
detect anomalous behavior in the computer network 110. For
example, the controller 115 can compare the packet header
and the data portion of the data packets with an orchestration
pattern to determine whether the data packets constitute
anomalous behavior 1n the computer network 110. Because
the network communication containing the data packets 1s an
orchestrated behavior of the computer network 110, the con-
troller 115 avoids false positive detection of anomalous
behavior 1n the computer network 110, which may occur in
anomaly detection systems operating on unconstrained coms-
puter networks. In this way, the controller 115 reliably detects
computer worms 1n the computer network 110 based on the
anomalous behavior.

To 1llustrate what 1s meant by reliable detection of anoma-
lous behavior, for example, an orchestration pattern may be
used that 1s expected to cause emission of a sequence of data
packets (a, b, ¢, d) in the computer network 110. The control-
ler 115 orchestrates network activities 1n the computer net-
work 110 based on the orchestration pattern and monitors the
behavior (e.g., measures the network traffic) of the computer
network 110. If the momtored behavior (e.g., the measured
network traffic) of the computer network 110 includes a
sequence ol data packets (a, b, ¢, d, ¢, 1), the data packets (e,
1) represent an anomalous behavior (e.g., anomalous tratfic)
in the computer network 110. This anomalous behavior may
be caused by an active computer worm propagating inside the
computer network 110.

As another example, 1f an orchestration pattern 1s expected
to cause emission of a sequence of data packets (a, b, ¢, d) in
the computer network 110, but the monitored behavior
includes a sequence of data packets (a, b', ¢', d), the data
packets (b', ¢') represents an anomalous behavior 1n the com-
puter network 110. This anomalous behavior may be caused
by a passive computer worm propagating inside the computer
network 110.

In various further embodiments, the controller 115 gener-
ates a recovery script for the computer worm, as 1s described
more fully herein. The controller 115 can then execute the
recovery script to disable (e.g., destroy) the computer worm
in the computer worm sensor 105 (e.g., remove the computer
worm from the computing systems 120 and the gateway 1235).

10

15

20

25

30

35

40

45

50

55

60

65

8

Moreover, the controller 115 can output the recovery script
for use 1n disabling the computer worm in other infected
computer networks and systems.

In another embodiment, the controller 115 1dentifies the
source of a computer worm based on a network communica-
tion containing the computer worm. For example, the con-
troller 115 may i1dentify an infected host (e.g., a computing
system) 1n the communication network 130 that generated the
network communication containing the computer worm. In
this example, the controller 115 transmits the recovery script
via the gateway 125 to the host 1n the communication network
130. In turn, the host executes the recovery script to disable
the computer worm 1n the host. In various further embodi-
ments, the recovery scriptis also capable of repairing damage
to the host caused by the computer worm.

The computer worm sensor 105 may store the recovery
script 1n a bootable compact disc (CD) or floppy that can be
loaded 1nto infected hosts (e.g., computing systems) to repair
the infected hosts. For example, the recovery script can
include an operating system for the infected host and repair
scripts that are mvoked as part of the booting process of the
operating system to repair an infected host. Alternatively, the
computer worm sensor 130 may provide the recovery scriptto
an infected computer network (e.g., the communication net-
work 130) so that the computer network 130 can direct
infected hosts 1n the communication network 130 to reboot
and load the operating system in the recovery script.

In another embodiment, the computer worm sensor 105
uses a per-host detection and recovery mechanism to recover
hosts (e.g., computing systems) 1n a computer network (e.g.,
the communication network 130). The computer worm sen-
sor 105 generates a recovery script mcluding a detection
process for detecting the computer worm and a recovery
process for disabling the computer worm and repairing dam-
age caused by the computer worm. The computer worm sen-
sor 105 provides the recovery script to hosts in a computer
network (e.g., the communication network 130) and each host
executes the detection process. If the host detects the com-
puter worm, the host then executes the recovery process. In
this way, a computer worm that performs random corruptive
acts on the different hosts (e.g., computing systems) in the
computer network can be disabled in the computer network
and damage to the computer network caused by the computer
worm can be repaired.

The computer worm sensor 105 may be a single integrated
system, such as a network device or a network appliance,
which 1s deployed in the communication network 130 (e.g.,
commercial or military computer network). Alternatively, the
computer worm sensor 105 may include integrated software
for controlling operation of the computer worm sensor 105,
such that per-host software (e.g., individual software for each
computing system 120 and gateway 125) 1s not required.

The computer worm sensor 105 may be a hardware mod-
ule, such as a combinational logic circuit, a sequential logic
circuit, a programmable logic device, or a computing device,
among others. Alternatively, the computer worm sensor 105
may 1nclude one or more soitware modules containing com-
puter program code, such as a computer program, a software
routine, binary code, or firmware, among others. The soft-
ware code may be contained 1n a permanent memory storage
device such as a compact disc read-only memory (CD-ROM),
a hard disk, or other memory storage device. In various
embodiment, the computer worm sensor 1035 includes both
hardware and software modules.

In various embodiments, the computer worm sensor 105 1s
substantially transparent to the communication network 130
and does not substantially atfect the performance or availabil-

US 8,635,696 Bl

9

ity of the communication network 130. For example, the
soltware in the computer worm sensor 105 may be hidden
such that a computer worm cannot detect the computer worm
sensor 105 by checking for the existence of files (e.g., soft-
ware programs) 1n the computer worm sensor 105 or by
performing a simple signature check of the files. In other
embodiments, the software configuration of the computer
worm sensor 105 1s hidden by employing one or more well-
known polymorphic techniques used by viruses to evade sig-
nature based detection.

In another embodiment, the gateway 125 facilitates propa-
gation of computer worms from the communication network
130 to the computer network 110, with the controller 115
orchestrating network activities in the computer network 110
to actively propagate a computer worm from the communi-
cation network 130 to the computer network 110. For
example, the controller 115 can originate one or more net-
work communications between the computer network 110
and the communication network 130. In this way, a passive
computer worm 1n the communication network 130 can
attach to one of the network communications and propagate
along with the network communication from the communi-
cation network 130 to the computer network 110. Once the
computer worm 1s 1n the computer network 110, the control-
ler 115 can detect the computer worm based on an anomalous
behavior of the computer worm, as 1s described 1n more fully
herein.

In another embodiment, the gateway 125 selectively pre-
vents normal network traffic (e.g., network traffic not gener-
ated by a computer worm) from propagating from the com-
munication network 130 to the computer network 110 to
prevent various anomalies or perturbations in the computer
network 110. In this way, the orchestrated behavior of the
computer network 110 may be simplified and the reliability of
computer worm sensor 105 may be increased. For example,
the gateway 125 can prevent Internet Protocol (IP) data pack-
ets from being routed from the communication network 130
to the computer network 110. Alternatively, the gateway 125
can prevent broadcast and multicast network communica-
tions from being transmitted from the communication net-
work 130 to the computer network 110, prevent communica-
tions generated by remote shell applications (e.g., Telnet) in
the communication network 130 from propagating to the
computer network 110, or exclude various application level
gateways including proxy services that are typically present
in a computer network for application programs 1n the com-
puter network. Such application programs may include a Web
browser, an FTP server and a mail server, and the proxy
services may include the Hypertext Markup Language

(HITML), the File Transier Protocol (F'1P), or the Simple
Mail Transter Protocol (SMTP)).

In another embodiment, the computing systems 120 and
the gateway 125 are virtual computing systems. For example,
the computing systems 120 may be implemented as virtual
systems using machine virtualization technologies such as
VMware™ sold by VMware, Inc. In another embodiment, the
virtual systems include VM soltware profiles and the control-
ler 115 automatically updates the VM soltware profiles to be
representative of the communication network 130. The gate-
way 125 and the computer network 110 may also be imple-
mented as a combination of virtual systems and real systems.

In another embodiment, the computer network 110 1s a
virtual computer network. The computer network 110
includes network device drivers (e.g., special purpose net-
work device drivers) that do not access a physical network,
but instead use software message passing between the differ-
ent virtual computing systems 120 1n the computer network

10

15

20

25

30

35

40

45

50

55

60

65

10

110. The network device drivers may log data packets of
network communications in the computer network 110,
which represent the monitored behavior of the computer net-
work 110.

In various embodiments, the computer worm sensor 105
establishes a software environment of the computer network
110 (e.g., computer programs in the computing systems 120)
to retlect a software environment of a selected computer
network (e.g., the communication network 130). For
example, the computer worm sensor 105 can select a software
environment of a computer network typically attacked by
computer worms (€.g., a soltware environment of a commer-
c1al communication network) and can configure the computer
network 110 to reflect that software environment. In a further
embodiment, the computer worm sensor 105 updates the
soltware environment of the computer network 110 to reflect
changes in the software environment of the selected computer
network. In this way, the computer worm sensor 105 can
clifectively detect a computer worm that targets a recently
deployed software program or software profile in the software
environment (e.g., a widely deployed software profile).

The computer worm sensor 105 may also monitor the
software environment of the selected computer network and
automatically update the software environment of the com-
puter network 110 to reflect the software environment of the
selected computer network. For example, the computer worm
sensor 105 can modily the software environment of the com-
puter network 110 in response to recerving an update for a
soltware program (e.g., a widely used soiftware program) 1n
the software environment of the selected computer network.

In another embodiment, the computer worm sensor 103 has
a probe mechanism to automatically check the version, the
release number, and the patch-level of major operating sys-
tems and application software components installed in the
communication network 130. Additionally, the computer
worm sensor 110 has access to a central repository of up-to-
date versions of the system and application soltware compo-
nents. In this embodiment, the computer worm sensor 110
detects a widely used software component (e.g., software
program) operating in the communication network 130,
downloads the software component from the central reposi-
tory, and automatically deploys the software component in
the computer network 110 (e.g., installs the software compo-
nent 1n the computing systems 120). The computer worm
sensor 105 may coordinate with other computer worm sen-
sors 105 to deploy the software component in the computer
networks 110 of the computer worm sensors 105. In this way,
cach software environment of the computer worm sensors
105 1s modified to contain the software component.

In another embodiment, the computer worm sensors 1035
are automatically updated from a central computing system
(e.g., a computing server) by using a push model. In this
embodiment, the central computing system obtains updated
soltware components and sends the updated software com-
ponents to the computer worm sensors 105. Moreover, the
soltware environments of the computer worm sensors 105
can represent widely deployed software that computer worms
are likely to target. Examples of available commercial tech-
nologies that can aid 1in the automated update of software and
soltware patches 1n a networked environment include NI
products sold by SUN Microsystems, Inc™ and Adaptive
Infrastructure products sold by the Hewlett Packard Com-
pany™.

The computer worm sensor 105 may maintain an original
image of the computer network 110 (e.g., a copy of the origi-
nal file system for each computing system 120) 1n a virtual
machine that 1s 1solated from the computer network 110 and

US 8,635,696 Bl

11

the communication network 130 (e.g., not connected to the
computer network 110 or the communication network 130).
The computer worm sensor 103 obtains a current image of an
infected computing system 120 (e.g., acopy of the current file
system of the computing system 120) and compares the cur-
rent image with the original 1mage of the computer network
110 to identify any discrepancies between these images,
which represent an anomalous behavior of a computer worm
in the imnfected computing system 120.

The computer worm sensor 103 generates a recovery script
based on the discrepancies between the current image and the
original 1image of the computing system 120, which may be
used for disabling the computer worm 1n the infected com-
puting system 120 and repairing damage to the infected com-
puting system 120 caused by the computer worm. For
example, the recovery script may include computer program
code for identilying infected software programs or memory
locations based on the discrepancies, and removing the dis-
crepancies from the infected software programs or memory
locations. The infected computing system 120 can then
execute the recovery script to disable (e.g., destroy) the com-
puter worm and repair any damage to the infected computing,
system 120 caused by the computer worm.

The recovery script may include computer program code
tor replacing the current file system of the computing system
120 with the original file system of the computing system 120
in the original 1mage of the computer network 110. Alterna-
tively, the recovery script may include computer program
code for replacing infected files with the corresponding origi-
nal files of the computing system 120 1n the original image of
the computer network 110. In still another embodiment, the
computer worm sensor 105 includes a file integrity checking
mechanism (e.g., a tripwire) for 1dentifying infected files in
the current file system of the computing system 120. The
recovery script may also include computer program code for
identifying and restoring files modified by a computer worm
to reactivate the computer worm during reboot of the com-
puting system 120 (e.g., reactivate the computer worm after
the computer worm 1s disabled).

In one embodiment, the computer worm sensor 105 occu-
pies a predetermined address space (e.g., an unused address
space) i the commumnication network 130. The communica-
tion network 130 redirects those network communications
directed to the predetermined address space to the computer
worm sensor 105. For example, the communication network
130 can redirect network communications to the computer
worm sensor 105 by using various IP layer redirection tech-
niques. In this way, an active computer worm using a random
IP address scanning technique (e.g., a scan directed computer
worm) can randomly select an address in the predetermined
address space and can infect the computer worm sensor 103
based on the selected address (e.g., transmitting a network
communication containing the computer worm to the
selected address).

An active computer worm can select an address 1n the
predetermined address space based on a previously generated
list of target addresses (e.g., a hit-list directed computer
worm) and can infect a computing system 120 located at the
selected address. Alternatively, an active computer worm can
identify a target computing system 120 located at the selected
address in the predetermined address space based on a previ-
ously generated list of target systems, and then infect the
target computing system 120 based on the selected address.

In various embodiments, the computer worm sensor 105
identifies data packets directed to the predetermined address
space and redirects the data packets to the computer worm
sensor 105 by performing network address translation (NAT)

10

15

20

25

30

35

40

45

50

55

60

65

12

on the data packets. For example, the computer network 110
may perform dynamic NAT on the data packets based on one
or more NAT tables to redirect data packets to one or more
computing systems 120 in the computer network 110. In the
case of a hit-list directed computer worm having a hit-list that
does not have a network address of a computing system 120
in the computer network 110, the computer network 110 can
perform NAT to redirect the hit-list directed computer worm
to one of the computing systems 120. Further, 11 the computer
worm sensor 105 initiates a network communication that 1s
not defined by the orchestrated behavior of the computer
network 110, the computer network 110 can dynamically
redirect the data packets of the network communication to a
computing system 120 1n the computer network 110.

In another embodiment, the computer worm sensor 105
operates 1n conjunction with dynamic host configuration pro-
tocol (DHCP) servers 1n the communication network 130 to
occupy an address space 1n the communication network 130.
In this embodiment, the computer worm sensor 105 commu-
nicates with each DHCP server to determine which IP
addresses are unassigned to a particular subnet associated
with the DHCP server in the communication network 130.
The computer worm sensor 105 then dynamically responds to
network communications directed to those unassigned IP
addresses. For example, the computer worm sensor 103 can
dynamically generate an address resolution protocol (ARP)
response to an ARP request.

In another embodiment, the traffic analysis device 135
analyzes communication traific in the communication net-
work 130 to 1dentily a sequence of network communications
characteristic of a computer worm. The traific analysis device
135 may use one or more well-known worm traffic analysis
techniques to 1dentily a sequence of network communica-
tions in the communication network 130 characteristic of a
computer worm. For example, the traific analysis device 135
may 1dentily a repeating pattern of network communications
based on the destination ports of data packets 1n the commu-
nication network 130. The tratfic analysis device 1335 dupli-
cates one or more network communications in the sequence
ol network communications and provides the duplicated net-
work communications to the controller 115, which emulates
the duplicated network communications in the computer net-
work 110.

The traffic analysis device 135 may 1dentily a sequence of
network communications in the communication network 130
characteristic of a computer worm by using heuristic analysis
techniques (i.e., heuristics) known to those skilled 1n the art.
For example, the traific analysis device 135 may detect a
number of IP address scans, or a number of network commu-
nications to an invalid IP address, occurring within a prede-
termined period. The tratfic analysis device 135 determines
whether the sequence of network communications 1s charac-
teristic of a computer worm by comparing the number of IP
address scans or the number of network communications 1n
the sequence to a heuristics threshold (e.g., one thousand IP
address scans per second).

The tratfic analysis device 135 may lower typical heuristics
thresholds of these heuristic techniques to increase the rate of
computer worm detection, which may also increase the rate of
false positive computer worm detection by the traffic analysis
device 135. Because the computer worm sensor 105 emulates
the duplicated network communications 1n the computer net-
work 110 to determine whether the network communications
include an anomalous behavior of a computer worm, the
computer worm sensor 105 may increase the rate of computer
worm detection without increasing the rate of false positive
worm detection.

US 8,635,696 Bl

13

In another embodiment, the traffic analysis device 135
filters network communications characteristic of a computer
worm 1n the communication network 130 before providing
duplicating network communications to the controller 115.
For example, a host A 1n the commumication network 130 can
send a network communication including an unusual data
byte sequence (e.g., worm code) to a TCP/UDP port of a host
B 1n the communication network 130. In turn, the host B can
send a network communication including a similar unusual
data byte sequence to the same TCP/UDP port of a host C 1n
the communication network 130. In this example, the net-
work communications from host A to host B and from host B
to host C represent a repeating pattern of network communi-
cation. The unusual data byte sequences may be 1dentical data
byte sequences or highly correlated data byte sequences. The
traific analysis device 135 filters the repeating pattern of
network commumnications by using a correlation threshold to
determine whether to duplicate the network communication
and provide the duplicated network communication to the
controller 115.

The traffic analysis device 135 may analyze communica-
tion traffic 1n the communication network 130 for a predeter-
mined period. For example, the predetermined period can be
a number of seconds, minutes, hours, or days. In this way, the
traffic analysis device 133 can detect slow propagating com-
puter worms as well as fast propagating computer worms in
the communication network 130.

The computer worm sensor 105 may contain a computer
worm (e.g., a scanning computer worm) within the computer
network 110 by performing dynamic NAT on an unexpected
network communication originating in the computer network
110 (e.g., an unexpected communication generated by a com-
puting system 120). For example, the computer worm sensor
105 can perform dynamic NAT on data packets of an IP
address range scan originating in the computer network 110
to redirect the data packets to a computing system 120 in the
computer network 110. In this way, the network communica-
tion 1s contained in the computer network 110.

In another embodiment, the computer worm sensor 103 1s
topologically knit into the communication network 130 to
facilitate detection of a topologically directed computer
worm. The controller 115 may use various network services
in the communication network 130 to topologically knit the
computer worm sensor 105 into the communication network
130. For example, the controller 115 may generate a gratu-
itous ARP response including the IP address of a computing
system 120 to the communication network 130 such that a
host 1n the communication network 130 stores the IP address
in an ARP cache. In this way, the controller 115 plants the IP
address of the computing system 120 1nto the communication
network 130 to topologically knit the computing system 120
into the communication network 130.

The ARP response generated by the computer worm sensor
105 may include a media access control (MAC) address and
a corresponding IP address for one or more of the computing
systems 120. A host (e.g., a computing system) in the com-
munication network 130 can then store the MAC and IP
addresses 1n one or more local ARP caches. A topologically
directed computer worm can then access the MAC and IP
addresses 1n the ARP caches and can target the computing
systems 120 based on the MAC or IP addresses.

In various embodiments, the computer worm sensor 105
can accelerate network activities in the computer network
110. In this way, the computer worm sensor 105 can reduce
the time for detecting a time-delayed computer worm (e.g.,
the CodeRed-II computer worm) in the computer network
110. Further, accelerating the network activities in the com-

10

15

20

25

30

35

40

45

50

55

60

65

14

puter network 110 may allow the computer worm sensor 105
to detect the time-delayed computer worm belfore the time-
delayed computer worm causes damage 1n the communica-
tion network 130. The computer worm sensor 105 can then
generate a recovery script for the computer worm and provide
the recovery script to the communication network 130 for
disabling the computer worm in the communication network
130.

The computing system 120 1n the computer network may
accelerate network activities by intercepting time-sensitive
system calls (e.g., “time-of-day” or “sleep” system calls)
generated by a software program executing 1n the computing
system 120 or responses to such systems calls, and modifying,
the systems calls or responses to accelerate execution of the
soltware program. For example, the computing system 120
can modily a parameter of a “sleep” system call to reduce the
execution time of this system call or modify the time or date
1in a response to a “time-oi-day’ system call to a future time or
date. Alternatively, the computing system 120 can identify a
time consuming program loop (e.g., a long, central process-
ing unit intensive while loop) executing in the computing
system 120 and can increase the priority of the software
program contaimng the program loop to accelerate execution
of the program loop.

In various embodiments, the computer worm sensor 105
includes one or more computer programs for identifying
execution anomalies 1n the computing systems 120 (e.g.,
anomalous behavior 1n the computer network 110) and dis-
tinguishing a propagation vector of a computer worm from
spurious traffic (e.g. chail traific) generated by the computer
worm. In one embodiment, the computing systems 120
execute the computing programs to identily execution
anomalies occurring in the computing network 110. The com-
puter worm sensor 105 correlates these execution anomalies
with the monitored behavior of the computer worm to distin-
guish computing processes (€.g., network services) that the
computer worm exploits for propagation purposes from com-
puting processes that only receive bemign network tratffic from
the computer worm. The computer worm sensor 1035 then
determines a propagation vector of the computer worm based
on the computing processes that the computer worm propa-
gates for exploitative purposes. In a further embodiment, each
computing system 120 executing one of the computer pro-
grams function as an intrusion detection system (IDS) by
generating a computer worm intrusion indicator 1n response
to detecting an execution anomaly.

In one embodiment, the computer worm sensor 103 tracks
system call sequences to 1dentily an execution anomaly in the
computing system 120. For example, the computer worm
sensor 105 can use finite state automata techniques to identily
an execution anomaly. Additionally, the computer worm sys-
tem 105 may identily an execution anomaly based on call-
stack information for system calls executed in a computing
system 120. For example, a call-stack execution anomaly
may occur when a computer worm executes system calls from
the stack or the heap of the computing system 120. The
computer worm system 105 may also 1dentify an execution
anomaly based on virtual path identifiers in the call-stack
information.

The computer worm system 105 may monitor transport
level ports of a computing system 120. For example, the
computer worm sensor 105 can momitor systems calls (e.g.,
“bind” or “recvirom” system calls) associated with one or
more transport level ports of a computing process in the
computing system 120 to 1dentily an execution anomaly. If
the computer worm system 105 identifies an execution
anomaly for one of the transport level ports, the computer

US 8,635,696 Bl

15

worm sensor 105 includes the transport level port i the
identifier (e.g., a signature or a vector) of the computer worm,
as 1s described more fully herein.

In another embodiment, the computer worm sensor 105
analyzes binary code (e.g., object code) of a computing pro-
cess 1n the computing system 120 to identily an execution
anomaly. The computer worm system 105 may also analyze
the call stack and the execution stack of the computing system
120 to 1dentity the execution anomaly. For example, the com-
puter worm sensor 105 may perform a static analysis on the
binary code of the computing process to 1dentity possible call
stacks and virtual path identifiers for the computing process.
The computer worm sensor 105 then compares an actual call
stack with the identified call stacks to i1dentify a call stack
execution anomaly 1n the computing system 120. In this way,
the computer worm sensor 105 can reduce the number of false
positive computer worm detections (e.g., detection of com-
puter worms not in the computing system 120) and false
negative computer worm detections (1.e., failure to detect
computer worms in the computing system 120). Moreover, 1f
the computer worm sensor 105 can 1dentify all possible call-
stacks and virtual path identifiers for the computing process,
the computer worm sensor 105 can have a zero false positive
rate of computer worm detection.

In another embodiment, the computer worm sensor 105
identifies one or more anomalous program counters in the call
stack. For example, an anomalous program counter can be the
program counter of a system call generated by worm code of
a computer worm. The computer worm sensor 105 tracks the
anomalous program counters and determines an 1dentifier for
detecting the computer worm based on the anomalous pro-
gram counters. Additionally, the computer worm sensor 1035
may determine whether a memory location (e.g., a memory
address or a memory page) referenced by the program
counter 1s a writable memory location. The computer worm
sensor 105 then determines whether the computer worm has
exploited the memory location. For example, a computer
worm can store worm code mto a memory location by
exploiting a vulnerability of the computing system 120 (e.g.,
a buller overtlow mechanism).

The computer worm sensor 105 may take a snapshot of
data 1n the memory around the memory location referenced
by the anomalous program counter. The computer worm sen-
sor 105 then searches the snapshot for data 1n recent data
packets received by the computing process (e.g., computing,
thread) associated with the anomalous program counter. The
computer worm sensor 1035 searches the snapshot by using a
searching algorithm to compare data 1n the recent data pack-
cts with a sliding window of data (e.g., 16 bytes of data) in the
snapshot. If the computer worm sensor 105 finds a match
between the data in a recent data packet and the data in the
sliding window, the matching data 1s deemed a signature
candidate for the computer worm.

In another embodiment, the computing system 120 tracks
the imtegrity of computing code 1n a computing system 120 to
identily an execution anomaly in the computing system 120.
The computing system 120 associates an integrity value with
data stored 1n the computing system 120 to identify the source
of the data. If the data 1s from a known source (e.g., a com-
puting program) in the computing system 120, the integrity
value 1s set to one, otherwise the integrity value 1s set to zero.
For example, data recerved by the computing system 120 1n a
network communication 1s associated with an itegrity value
of zero. The computing system 120 stores the integrity value
along with the data in the computing system 120, and moni-
tors a program counter 1n the computing system 120 to iden-
tify an execution anomaly based on the integrity value. A

10

15

20

25

30

35

40

45

50

55

60

65

16

program counter having an integrity value of zero indicates
that data from a network communication 1s stored in the
program counter, which represents an execution anomaly in
the computing system 120.

The computing system 120 may use the signature extrac-
tion algorithm to i1dentily a decryption routine in the worm
code of a polymorphic worm, such that the decryption routine
1s deemed a signature candidate of the computer worm. Addi-
tionally, the computer worm sensor 105 may compare signa-
ture candidates i1dentified by the computing systems 120 in
the computer worm sensor 105 to determine an 1dentifier for
detecting the computer worm. For example, the computer
worm sensor 105 can 1dentily common code portions in the
signature candidates to determine an identifier for detecting,
the computer worm. In this way, the computer worm sensor
105 can determine an 1dentifier of a polymorphic worm con-
tamning a mutating decryption routine (e.g., polymorphic
code).

In another embodiment, the computer worm sensor 105
monitors network traffic in the computer network 110 and
compares the monitored network traific with typical network
traffic patterns occurring 1n a computer network to identify
anomalous network tratfic in the computer network 110. The
computer worm sensor 1035 determines signature candidates
based on data packets of the anomalous network traflic (e.g.,
extracts signature candidates from the data packets) and
determines i1dentifiers for detecting the computer worms
based on the signature candidates.

In another embodiment, the computer worm sensor 105
evaluates characteristics of a signature candidate to determine
the quality of the signature candidate, which indicates an
expected level of Talse positive computer worm detection 1n a
computer network (e.g., the commumication network 130).
For example, a signature candidate having a high quality 1s
not contained 1n data packets of typical network traific occur-
ring in the computer network. Characteristics of a signature
candidate include a minimum length of the signature candi-
date (e.g., 16 bytes of data) and an unusual data byte
sequence. In one embodiment, the computer worm sensor
105 performs statistical analysis on the signature candidate to
determine whether the signature candidate includes an
unusual byte sequence. For example, computer worm sensor
105 can determine a correlation between the signature can-
didate and data contained in typical network traffic. In this
example, a low correlation (e.g., zero correlation) indicates a
high quality signature candidate.

In another embodiment, the computer worm sensor 105
identifies execution anomalies by detecting unexpected com-
puting processes 1n the computer network 110 (1.e., comput-
ing processes that are not part of the orchestrated behavior of
the computing network 110). The operating systems 1n the
computing systems 120 may be configured to detect comput-
ing processes that are not 1n a predetermined collection of
computing processes. In another embodiment, a computing
system 120 1s configured as a network server that permits a
host 1n the communication network 130 to remotely executed
commands on the computing system 120. For example, the
original Morris computer worm exploited a debug mode of
sendmail that allowed remote command execution 1n a mail
SErver.

In some cases, the intrusion detection system of the com-
puter worm sensor 1035 detects an active computer worm
based on anomalous network traffic in the computer network
110, but the computer worm sensor 105 does not detect an
execution anomaly caused by a computing process in the
computer network 110. In these cases, the computer worm
sensor 105 determines whether the computer worm has mul-

US 8,635,696 Bl

17

tiple possible transport vectors based on the ports being
accessed by the anomalous network traific in the computer
network 110. If the computer network 110 includes a small
number (e.g., one or two) of ports, the computer worm sensor
105 can use these ports to determine a vector for the computer
worm. Conversely, 1f the computer network 110 includes
many ports (e.g., three or more ports), the computer worm
sensor 105 partitions the computing services 1n the computer
network 110 at appropriate control points to determine those
ports exploited by the computer worm.

The computer worm sensor 105 may randomly blocks
ports ol the computing systems 120 to suppress tratfic to these
blocked ports. Consequently, a computer worm having a
transport vector that requires one or more of the blocked ports
will not be able to mfect a computing system 120 1n which
those ports are blocked. The computer worm sensor 105 then
correlates the anomalous behavior of the computer worm
across the computing systems 120 to determine which ports
the computer worm has used for diversionary purposes (e.g.,
emitting chail) and which ports the computer worm has used
for exploitive purposes. The computer worm sensor 105 then
determines a transport vector of the computer worm based on
the ports that the computer worm has used for exploitive
purposes.

FI1G. 2 depicts an exemplary embodiment of the controller
115. The controller 115 includes an extraction unit 200, an
orchestration engine 2035, a database 210, and a software
configuration unit 2135. The extraction unit 200, the orches-
tration engine 205, the database 210, and the computer net-
work 110 (FIG. 1) are in communication with each other and
with the computer network 110. Optionally, the controller
115 1ncludes a protocol sequence replayer 220 in communi-
cation with the computer network 110 and the traific analysis
device 135 (FIG. 1).

In various embodiments, the orchestration engine 203 con-
trols the state and operation of the computer worm sensor 105
(FIG. 1). In one embodiment, the orchestration engine 205
configures the computing systems 120 (FIG. 1) and the gate-
way 125 (FIG. 1) to operate 1n a predetermined manner in
response to network activities occurring 1n the computer net-
work 110, and generates network activities 1n the computer
network 110 and the communication network 130 (FIG. 1). In
this way, the orchestration engine 205 orchestrates network
activities 1n the computer network 110. For example, the
orchestration engine 205 may orchestrate network activities
in the computer network 110 by generating an orchestration
sequence (e.g., a predetermined sequence of network activi-
ties) among various computing systems 120 1n the computer
network 110, including network traffic that typically occurs
in the communication network 130.

In one embodiment, the orchestration engine 205 sends
orchestration requests (e.g., orchestration patterns) to various
orchestration agents (e.g., computing processes) 1n the com-
puting systems 120. The orchestration agent of a computing,
system 120 performs a periodic sweep of computing services
(e.g., network services) in the computing system 120 that are
potential targets of a computer worm attack. The computing
services 1n the computing system 120 may includes typical
network services (e.g., web service, FTP service, mail ser-
vice, instant messaging, or Kazaa) that are also in the com-
munication network 130.

The orchestration engine 205 may generate a wide variety
of orchestration sequences to exercise a variety of computing
services 1n the computer network 110, or may select orches-
tration patterns to avoid loading the communication network
110 with orchestrated network traffic. Additionally, the
orchestration engine 205 may select the orchestration patters

10

15

20

25

30

35

40

45

50

55

60

65

18

to vary the orchestration sequences. In this way, a computer
worm 1s prevented from scanning the computer network 110
to predict the behavior of the computer network 110.

In various embodiments, the software configuration unit
215 dynamically creates or destroys virtual machines (VMs)
or VM software profiles in the computer network 110, and
may 1nitialize or update the software state of the VMs or VM
soltware profiles. In this way, the software configuration unit
215 configures the computer network 110 such that the con-
troller 115 can orchestrate network activities 1n computer
network 110 based on one or more orchestration patterns. It 1s
to be appreciated that the software configuration unit 215 1s
optional in various embodiments of the computer worm sen-
sor 105.

In various embodiments, the extraction unit 200 deter-
mines an 1dentifier for detecting the computer worm. In these
embodiments, the extraction unit 200 can extract a signature
or a vector of the computer worm based on network activities
(e.g., an anomalous behavior) occurring 1n the computer net-
work 110, for example from data (e.g., data packets) 1n a
network communication.

The database 210 stores data for the computer worm sensor
105, which may include a configuration state of the computer
worm sensor 105. For example, the configuration state may
include orchestration patterns or “golden” software images of
computer programs (1.., original software 1mages uncor-
rupted by a computer worm exploit). The data stored in the
database 210 may also includes 1dentifiers or recovery scripts
for computer worms, or i1dentifiers for the sources of com-
puter worms 1n the communication network 130. The 1denti-
fier for the source of each computer worm may be associated
with the i1dentifier and the recovery script of the computer
WOrm.

The protocol sequence replayer 220 recerves a network
communication from the traflic analysis device 1335 (FIG. 1)
representing a network communication in the communication
network 130 and replays (1.e., duplicates) the network com-
munication in the computer network 110. The protocol
sequence replayer 220 may receive the network communica-
tion from the traffic analysis device 125 via a pnvate
encrypted network (e.g., a virtual private network) within the
communication network 130 or via another communication
network. The controller 115 monitors the behavior of the
computer network 110 1n response to the network communi-
cation to determine a monitored behavior of the computer
network 110 and determine whether the monitored behavior
includes an anomalous behavior, as 1s described more fully
herein.

In one embodiment, the protocol sequence replayer 220
includes a queue 225 for storing network communications.
The queue 225 receives network a communication from the
traffic analysis device 133 and temporarily stores the network
communication until the protocol sequence replayer 220 1s
available to replay the network communication. In another
embodiment, the protocol sequence replayer 220 1s a com-
puting system 120 in the computer network 110. For example,
the protocol sequence replayer 200 may be a computer server
including computer program code for replaying network
communications in the computer network 110.

In another embodiment, the protocol sequence replayer
220 1s 1n communication with a port (e.g., connected to a
network port) of a network device 1in the communication
network 130 and receives duplicated network communica-
tions occurring 1n the communication network 130 from the
port. For example, the port can be a Switched Port Analyzer
(SPAN) port of a network switch or a network router 1n the
communication network 130, which duplicates network trat-

US 8,635,696 Bl

19

fic 1n the communication network 130. In this way, various
types ol active and passive computer worms (e.g., hit-list
directed, topologically-directed, server-directed, and scan-
directed computer worms) may propagate from the commu-
nication network 130 to the computer network 110 via the
duplicated network traffic.

The protocol sequence replayer 220 replays the data pack-
cts 1n the computer network 110 by sending the data packets
to a computing system 120 having the same class (e.g., Linux
or Windows platiorm) as the original target system of the data
packets. In various embodiments, the protocol network
replayer 220 synchronizes any return network traffic gener-
ated by the computing system 120 1n response to the data
packets. The protocol sequence replayer 220 may suppress
(e.g., discard) the return network trailic such that the return
network traffic 1s not transmitted to a host 1n the communi-
cation network 130. In one embodiment, the protocol
sequence replayer 220 replays the data packets by sending the
data packets to the computing system 120 via a TCP connec-
tion or UDP session. In this embodiment, the protocol
sequence replayer 220 synchronizes return network tratfic by
terminating the TCP connection or UDP session.

The protocol sequence replayer 220 may modily destina-
tion IP addresses of data packets 1n the network communica-
tion to one or more IP addresses of the computing systems
120 andreplay (1.e., generate) the modified data packets in the
computer network 110. The controller 115 monitors the
behavior of the computer network 110 1n response to the
modified data packets, and may detect an anomalous behavior
in the monitored behavior, as 1s described more fully herein.
If the controller 115 1dentifies an anomalous behavior, the
computer network 110 1s deemed infected with a computer
worm and the controller 1135 determines an identifier for the
computer worm, as 1s described more fully herein.

The protocol sequence replayer 220 may analyze (e.g.,
examine) data packets in a sequence of network communica-
tions 1n the communication network 130 to 1dentily a session
identifier. The session identifier identifies a communication
session for the sequence of network communications and can
distinguish the network communications in the sequence
from other network communications in the communication
network 130. For example, each communication session in
the communication network 130 can have a unique session
identifier. The protocol sequence replayer 220 may 1dentily
the session identifier based on the communication protocol of
the network communications 1n the sequence. For example,
the session 1dentifier may be 1n a field of a data packet header
as specified by the communication protocol. Alternatively,
the protocol sequence replayer 220 may infer the session
identifier from repeating network communications in the
sequence. For example, the session identifier 1s typically one
of the first fields 1n an application level communication
between a client and a server (e.g., computing system 120)
and 1s repeatedly used in subsequent communications
between the client and the server.

The protocol sequence replayer 220 may modily the ses-
s1on 1dentifier 1n the data packets of the sequence of network
communications. The protocol sequence replayer 220 gener-
ates an 1nitial network communication in the computer net-
work 110 based on a selected network communication in the
sequence, and the computer network 110 (e.g., a computing
system 120) generates a response mcluding a session 1denti-
fier. The protocol sequence replayer 220 then substitutes the
session 1dentifier in the remaining data packets of the network
communication with the session identifier of the response. In
a further embodiment, the protocol sequence replayer 220
dynamically modifies session variables in the data packets, as

10

15

20

25

30

35

40

45

50

55

60

65

20

1s appropriate, to emulate the sequence of network commu-
nications 1n the computer network 110.

The protocol sequence replayer 220 may determine the
soltware or hardware profile of a host (e.g., a computing
system) 1n the communication network 130 to which the data
packets of the network communication are directed. The pro-
tocol sequence replayer 220 then selects a computing system
120 1n the computer network 110 that has the same software
or hardware profile of the host and performs dynamic NAT on
the data packets to redirect the data packets to the selected
computing system 120. Alternatively, the protocol sequence
replayer 220 randomly selects a computing system 120 and
performs dynamic NAT on the data packets to redirect the
data packets to the randomly selected computing system 120.

In one embodiment, the traflic analysis device 135 can
identify a request (1.e., a network communication) from a web
browser to a web server 1n the communication network 130,
and a response (1.¢., a network communication) from the web
server to the web browser. In this case, the response may
include a passive computer worm. The traific analysis device
135 may mspect web tratlic on a selected network link 1n the
communication network 130 to identily the request and
response. For example, the traffic analysis device 135 may
select the network link or identily the request based on a
policy. The protocol sequence replayer 220 orchestrates the
request in the computer network 110 such that a web browser
in a computing system 120 indicates a substantially similar
request. In response to this request, the protocol sequence
replayer 220 generates a response to the web browser 1n the
computing system 120, which 1s substantially similar to the
response generated by the browser in the communication
network 130. The controller 115 then monitors the behavior
of the web browser in the computing system 120 and may
identily an anomalous behavior 1n the monitored behavior. If
the controller 115 1dentifies an anomalous behavior, the com-
puter network 110 1s deemed infected with a passive com-
puter worm.

FIG. 3 depicts an exemplary computer worm detection
system 300. The computer worm detection system 300
includes multiple computer worm sensors 105 and a sensor
manager 305. Each of the computer worm sensors 130 1s in
communication with the sensor manager 305 and the com-
munication network 130. The sensor manager 305 coordi-
nates communications or operations between the computer
worm sensors 105.

In one embodiment, each computer worm sensor 105 ran-
domly blocks one or more ports of the computing systems
120. Accordingly, some of the worm sensors 105 may detect
an anomalous behavior of a computer worm, as 1s described
more fully herein. The worm sensors 105 that detect an
anomalous behavior communicate the anomalous behavior
(e.g., a signature candidate) to the sensor manager 305. In
turn, the sensor manager 305 correlates the anomalous behav-
1ors and determines an 1dentifier (e.g., a transport vector) for
detecting the computer worm.

In some cases, a human intruder (e.g., a computer hacker)
may attempt to exploit vulnerabailities that a computer worm
mould exploit 1n a computer worm sensor 105. The sensor
manager 305 may distinguish an anomalous behavior of a
human intruder from an anomalous behavior of a computer
worm by tracking the number of computing systems 120 in
the computer worm sensors 105 that detect a computer worm
within a given period. If the number of computing systems
120 detecting a computer worm within the given period
exceeds a predetermined threshold, the sensor manager 305
determines that a computer worm caused the anomalous
behavior. Conversely, 11 the number of computing systems

US 8,635,696 Bl

21

120 detecting a computer worm within the given period 1s
equal to or less than the predetermined threshold, the sensor
manager 300 determines that a human intruder caused the
anomalous behavior. In this way, false positive detections of
the computer worm may be decreased.

In one embodiment, each computer worm sensor 105
maintains a list of infected hosts (e.g., computing systems
infected by a computer worm) 1n the communication network
130 and communicates the list to the sensor manager 305. In
this way, computer worm detection system 300 maintains a
list of infected hosts detected by the computer worm sensors

105

FIG. 4 depicts a flow chart for an exemplary method of
detecting computer worms, 1n accordance with one embodi-
ment of the present invention. In step 400, the computer worm
sensor 105 (FIG. 1) orchestrates a sequence of network activi-
ties 1in the computer network 110 (FIG. 1). For example, the
orchestration engine 205 (FIG. 2) of the computer worm
sensor 103 can orchestrate the sequence of network activity in
the computer network 110 based on one or more orchestration
patterns, as 1s described more fully herein.

In step 405, the controller 115 (FIG. 1) of the computer
worm sensor 105 monitors the behavior of the computer
network 110 1n response to the predetermined sequence of
network activity. For example, the orchestration engine 205
(FIG. 2) of the computer worm sensor 105 can monitor the
behavior of the computer network 110. The monitored behav-
1or of the computer network 110 may include one or more
network activities 1n addition to the predetermined sequence
ol network activities or network activities that differ from the
predetermined sequence of network activities.

In step 410, the computer worm sensor 103 1dentifies an
anomalous behavior in the monitored behavior to detect a
computer worm. In one embodiment, the controller 1135 1den-
tifies the anomalous behavior by comparing the predeter-
mined sequence of network activities with network activities
in the monitored behavior. For example, the orchestration
engine 205 of the controller 115 can identify the anomalous
behavior by comparing network activities in the monitored
behavior with one or more orchestration patterns defining the
predetermined sequence of network activities. The computer
worm sensor 1035 evaluates the anomalous behavior to deter-
mine whether the anomalous behavior 1s caused by a com-
puter worm, as 1s described more fully herein.

In step 415, the computer worm sensor 1035 determines an
identifier for detecting the computer worm based on the
anomalous behavior. The identifier may include a signature or
a vector of the computer worm, or both. For example, the
vector can be a transport vector, an attack vector, or a payload
vector. In one embodiment, the extraction unit 200 of the
computer worm sensor 1035 determines the signature of the
computer worm based on one or more signature candidates,
as 1s described more fully herein. It 1s to be appreciated that
step 415 1s optional 1n accordance with various embodiments
of the computer worm sensor 105.

In step 420, the computer worm sensor 105 generates a
recovery script for the computer worm. An infected host (e.g.,
an infected computing system or network) can then execute
the recovery script to disable (e.g., destroy) the computer
worm 1n the infected host or repair damage to the host caused
by the computer worm. The computer worm sensor 105 may
also 1dentity a host 1in the communication network 130 that 1s
the source of the computer worm and provides the recovery
script to the host such that the host can disable the computer
worm and repair damage to the host caused by the computer
WOrm.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

In one embodiment, the controller 115 determines a current
image of the file system in the computer network 120, and
compares the current image with an original image of the file
system 1n the computer network 120 to 1dentify any discrep-
ancies between the current image and the original image. The
controller 115 then generates the recovery script based on
these discrepancies. The recovery script includes computer
program code for identifying infected soiftware programs or
memory locations based on the discrepancies, and removing
the discrepancies from infected software programs or
memory locations.

The embodiments discussed herein are illustrative of the
present invention. As these embodiments of the present inven-
tion are described with reference to illustrations, various
modifications or adaptations of the methods and/or specific
structures described may become apparent to those skilled 1n
the art. All such modifications, adaptations, or variations that
rely upon the teachings of the present invention, and through
which these teachings have advanced the art, are considered
to be within the spirit and scope of the present invention.
Hence, these descriptions and drawings should not be con-
sidered 1in a limiting sense, as it 1s understood that the present
invention 1s in no way limited to only the embodiments 1llus-
trated.

The mvention claimed 1s:

1. A system comprising;:

a traffic device configured to receive network tratfic over a

communication network:; and

a network device in communication with the traffic device,

the network device comprises a controller 1n communi-
cation with one or more virtual machines that is config-
ured to (1) recerve the network traffic from the traffic
device, (11) monitor a behavior of a first virtual machine
of the one or more virtual machines 1n response to pro-
cessing of the network traffic within the first virtual
machine, (111) identily at least one anomalous behavior
as an unexpected occurrence 1n the monitored behavior
by accelerating activities caused by the network traffic to
reduce time for detecting time-delayed malicious traffic,
and (1v) determine, based on the identified anomalous
behavior, the presence of the time-delayed malicious
traffic 1n the network traffic,

wherein the controller accelerating the activities by at least

intercepting one or more time-sensitive system calls and
moditying one or more responses to the one or more of
the system calls so as to accelerate the activities 1n the
first virtual machine caused by the network traific.

2. The system of claim 1, wherein the one or more time-
sensitive system calls are generated by a software program 1n
response to the network traific, the soitware program being
executed by the first virtual machine.

3. The system of claim 2, wherein the one or more time-
sensitive system calls by the network traffic 1s a time-of-day
system call, and the response to the time-of-day system call
by the first virtual machine 1s to specily at least one of a future
time and future date.

4. The system of claim 1, wherein the controller 1s turther
configured to (1) intercept one or more time-sensitive system
calls generated by a software program 1in response to the
network traific, the software program being executed by the
first virtual machine, and (11) modity the intercepted one or
more time-sensitive system calls so as to accelerate the activi-
ties 1n the first virtual machine caused by the network traffic.

5. The system of claim 4, wherein the one or more time-
sensitive system calls 1s a sleep system call having a time
parameter, which 1s modified so as to accelerate the activities
in the first virtual machine.

US 8,635,696 Bl

23

6. The system of claim 1, wherein the controller 1s further
configured to (1) identify a time consuming program loop
executing 1n the first virtual machine, and (11) accelerate
execution of the time consuming program loop in the first
virtual machine.

7. The system of claim 6, wherein the controller 1s config-
ured to accelerate execution of the time consuming program
loop by increasing a priority of execution of the time consum-
ing program loop 1n the first virtual machine so to accelerate
the activities caused by the network traific 1n the first virtual
machine.

8. The system of claim 1, wherein the traffic device 1s
turther configured to filter the received network traffic by
passing the recerved network tratfic to the network device that
contains at least one characteristic associated with time-de-
layed malicious traffic.

9. The system of claim 8, wherein the traific device 1s
turther configured to pass the recerved network tratfic that
satisiies a heuristic threshold using heuristic analysis.

10. The system of claim 1, wherein the controller 1s further
configured as an intrusion detection system which 1s config-
ured to generate an 1ntrusion alert 1n response to detecting an
anomalous behavior.

11. The system of claim 10, wherein the controller 1s fur-
ther configured to generate a recovery script for the time-
delayed malicious traific to disable the malicious traific
routed over the communication network.

12. The system of claim 1, wherein the malicious tra
includes one or more computer worms.

13. The system of claim 1, wherein the traffic device 1s
physically separate from the network device.

14. The system of claim 1, wherein the traffic device com-
prises a hardware device physically coupled to the commu-
nication network.

15. The system of claim 1, wherein the network device 1s
configured to monitor the behavior of the first virtual machine
by being further configured to orchestrate a plurality of net-
work activities during processing of the received network
traffic within the first virtual machine.

16. A computer implemented method comprising:

monitoring, by a network device, operatively coupled with

a controller, a behavior of network traffic within a first
virtual machine of one or more virtual machines,
wherein the first virtual machine 1s configured to accel-
crate activities caused by the network tratfic during pro-
cessing thereof to reduce time for detecting time-de-
layed malicious traffic;

identifying at least one anomalous behavior as an unex-

pected occurrence 1n the monitored behavior; and
determining the presence of the time-delayed malicious
tratfic based on the anomalous behavior,

wherein accelerating of the activities by the first virtual

machine includes itercepting one or more time-sensi-
tive system calls generated by a software program 1n
response to the network traflic, the software program
being executed by the first virtual machine, and modi-
tying the one or more responses to the one or more of the
system calls so as to accelerate the activities 1n the first
virtual machine caused by the network traffic.

17. The method of claim 16, wherein the one or more
time-sensitive system calls by the network traffic 1s a time-
of-day system call, and the response to the time-oi-day sys-
tem call by the first virtual machine 1s to specily at least one
of a future time and future date.

18. The computer implemented method of claim 16,
wherein prior to monitoring the behavior of the network
traffic, the method further comprising:

T

1C

10

15

20

25

30

35

40

45

50

55

60

65

24

analyzing, by a traific device, network tratfic from a com-
munication network having one or more characteristics
associated with the time-delayed malicious traffic; and

submitting, by the traffic device, the network traffic for
subsequent analysis to at least the first virtual machine of
the one or more virtual machines when the network
traffic from the communication network 1s suspected of
having characteristics associated with the time-delayed
malicious traffic.

19. The computer implemented method of claim 18,
wherein submitting select portions of the network traffic from
the communication network subsequently as the network
traffic when the network traffic from the communication net-
work satisfies a heuristic threshold as determined using heu-
ristics analysis.

20. The computer implemented method of claim 16, fur-
ther comprising generating an intrusion alert 1n response to
detecting the anomalous behavior.

21. The method of claim 20, further including generating a
recovery script for the time-delayed malicious traffic to dis-
able the malicious traffic routed over the communication
network.

22. The computer implemented method of claim 16,
wherein the malicious traffic includes one or more computer
WOrms.

23. The computer implemented method of claim 16, fur-
ther comprising filtering by a traffic device a portion of the
network traffic having the one or more characteristics asso-
ciated with malicious network traific, the portion comprising
the network tratfic submitted subsequently to the first virtual
machine of the one or more virtual machines.

24. The computer implemented method of claim 16, fur-
ther comprising orchestrating network activities 1n the at least
one of the plurality of virtual machines; and wherein moni-
toring behaviors of the at least one of the plurality of virtual
machines comprises monitoring a behavior i response to the
orchestrated network activities.

25. A computer implemented method comprising:

monitoring, by a network device, operatively coupled with

a controller, a behavior of network traffic within a first
virtual machine of one or more virtual machines,
wherein the first virtual machine 1s configured to accel-
erate activities caused by the network tratfic during pro-
cessing thereof to reduce time for detecting time-de-
layed malicious traffic;

identifying at least one anomalous behavior as an unex-

pected occurrence 1n the monitored behavior; and
determining the presence of the time-delayed malicious
tratfic based on the anomalous behavior,

wherein accelerating of the activities by the first virtual

machine includes (1) intercepting one or more time-
sensitive system calls generated by a software program
in response to network traffic, the software program
being executed by the first virtual machine, and (11)
modifying the one or more of the system calls so to
accelerate the activities in the first virtual machine
caused by the network traffic.

26. The computer implemented method of claim 25,
wherein the one or more time-sensitive system calls 1s a sleep
system call, and modilying the one or more system calls

comprises moditying a parameter of the sleep system call by
the first virtual machine so as to accelerate the activities 1n the
first virtual machine.

27. The computer implemented method of claim 25,
wherein prior to monitoring the behavior of the network
traffic, the method further comprising:

US 8,635,696 Bl

25

analyzing, by a traific device, network traffic from a com-
munication network having one or more characteristics
associated with the time-delayed malicious traffic; and

submitting, by the traific device, the network traific for
subsequent analysis to at least the first virtual machine of
the one or more virtual machines when the network
traffic from the communication network is suspected of
having characteristics associated with the time-delayed
malicious tratfic.

28. The computer implemented method of claim 27,
wherein submitting select portions of the network traffic from
the communication network subsequently as the network
traific when the network traffic from the communication net-
work satisfies a heuristic threshold as determined using heu-
ristics analysis.

29. The computer implemented method of claim 25, fur-
ther comprising generating an intrusion alert 1n response to
detecting the anomalous behavior.

30. The method of claim 29, further including generating a

recovery script for the time-delayed malicious traflic to dis-
able the malicious traffic routed over the communication
network.

31. The computer implemented method of claim 285,
wherein the malicious traffic includes one or more computer
WOrms.

32. The computer implemented method of claim 25, fur-
ther comprising filtering by a traffic device a portion of the
network traflic having the one or more characteristics asso-
ciated with malicious network traific, the portion comprising
the network traflic submitted subsequently to the first virtual
machine of the one or more virtual machines.

33. The computer implemented method of claim 25, fur-
ther comprising orchestrating network activities 1n the at least
one of the plurality of virtual machines; and wherein moni-
toring behaviors of the at least one of the plurality of virtual
machines comprises monitoring a behavior i response to the
orchestrated network activities.

34. A computer implemented method comprising;

monitoring, by a network device, operatively coupled with

a controller, a behavior of network traffic within a first
virtual machine ol one or more virtual machines,
wherein the first virtual machine 1s configured to accel-
erate activities caused by the network tratfic during pro-
cessing thereof to reduce time for detecting time-de-
layed malicious traffic;

identifying at least one anomalous behavior as an unex-

pected occurrence 1n the monitored behavior; and
determining the presence of the time-delayed malicious
tratfic based on the anomalous behavior,
wherein accelerating of the activities by the first virtual
machine comprises (1) identilying a time consuming,
program loop executing in the first virtual machine, and
(1) accelerating execution of the time consuming pro-
gram loop 1n the first virtual machine.
35. The computer implemented method of claim 34,
wherein accelerating execution of the time consuming pro-
gram loop comprises increasing a priority of execution of the
time consuming program loop in the first virtual machine so
to accelerate the activities caused by the network traffic 1n the
first virtual machine.
36. A computer implemented method comprising;
analyzing, by a traific device, network traflic recerved over
a communication network;

submitting, by the traffic device, at least select network
traffic within the communication network having one or
more characteristics associated with a time-delayed
malicious traffic for a subsequent analysis; and

5

10

15

20

25

30

35

40

45

50

55

60

65

26

performing the subsequent analysis in a network device
includes, accelerating activities caused by the network
traffic so as to reduce time for detecting time-delayed
malicious traific 1in at least one of a plurality of virtual
machines, identifying one or more anomalous behaviors
as an unexpected occurrence, and determining, based on
the 1dentified anomalous behavior, the presence of the
time-delayed malicious trailic in the network trafiic,

wherein the accelerating of the activities in the at least one
of the plurality of virtual machines includes at least one
of

(A) intercepting one or more time-sensitive system calls

generated by a software program 1n response to the
network traffic, the software program being executed
by the at least one of the plurality of virtual machines,
and eitther (1) modifying the one or more responses to
the one or more of the system calls so as to accelerate
the activities in the at least one of the plurality of
virtual machines or (1) modifying the one or more of
the system calls so to accelerate the activities 1n the at
least one of the plurality of virtual machines, and
(B) identifying a time consuming program loop execut-
ing in the at least one of the plurality of virtual
machines, and (1) accelerating execution of the time
consuming program loop in the at least one of the
plurality of virtual machines.

37. The computer implemented method of claim 36,
wherein performing the subsequent analysis in a network
device further includes: generating a recovery script for the
time-delayed malicious traffic, and generating an intrusion
alert 1n response to detecting the anomalous behavior.

38. A system comprising;

a traffic device configured to receive network trailic over a

communication network; and

a network device in communication with the traffic device,

the network device comprises a controller 1n communi-
cation with one or more virtual machines that is config-
ured to (1) recerve the network traffic from the traffic
device, (11) monitor a behavior of a first virtual machine
of the one or more virtual machines 1n response to pro-
cessing ol the network traffic within the first virtual
machine, (111) 1dentify at least one anomalous behavior
as an unexpected occurrence 1n the monitored behavior
by accelerating activities caused by the network trafiic to
reduce time for detecting time-delayed malicious traflic,
and (1v) determine, based on the identified anomalous
behavior, the presence of the time-delayed malicious
traffic 1n the network traffic,

wherein the controller to accelerate the activities by at least

intercepting one or more time-sensitive system calls and
moditying the intercepted one or more time-sensitive
system calls so as to accelerate the activities 1n the first
virtual machine caused by the network traffic.

39. The system of claim 38, wherein the controller inter-
cepting the one or more time-sensitive system calls that are
generated by a software program 1n response to the network
traffic, the software program being executed by the first vir-
tual machine.

40. The system of claim 38, wherein the one or more
time-sensitive system calls 1s a sleep system call having a time
parameter, which 1s modified so as to reduce time for detect-
ing time-delayed malicious traffic.

41. A system comprising;

a traffic device configured to receive network traflic over a

communication network:; and

a network device in communication with the traffic device,

the network device comprises a controller 1n communi-

US 8,635,696 Bl

27

cation with one or more virtual machines that 1s config-
ured to (1) receive the network traific from the traific
device, (11) monitor a behavior of a first virtual machine
of the one or more virtual machines 1n response to pro-
cessing of the network traffic within the first virtual
machine, (111) identily at least one anomalous behavior
as an unexpected occurrence 1n the monitored behavior
by at least (a) identifying a time consuming program
loop executing 1n the first virtual machine, and (b) accel-
erating execution of the time consuming program loop 1n
the first virtual machine i1n order to reduce time for
detecting time-delayed malicious traffic, and (1v) deter-
mine, based on the identified anomalous behavior, the
presence ol the time-delayed malicious traffic i the
network traffic.

42. The system of claim 41, wherein the controller 1s con-
figured to accelerate execution of the time consuming pro-
gram loop by increasing a priority of execution of the time
consuming program loop 1n the first virtual machine.

G x e Gx o

10

15

20

28

	Front Page
	Drawings
	Specification
	Claims

