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MULTI-REGIME DETECTION IN
STREAMING DATA

BACKGROUND

Sensors are commonly used to collect data in real-time.
This data is also referred to as time series data, streaming data,
and/or data streams, and represents a substantially continuous
flow of data. For example, modern industrial facilities often
have multiple sensors to gather a wide variety of data types for
monitoring the state or condition of various operations at the
facility. The streaming data may be analyzed to detect
“events” and thus warn of impending failures.

By way of illustration, the o1l and gas industry often equips
o1l and gas wells with thousands of sensors and gauges to
measure tlow rates, pressure, and temperature, among other
parameters. Any variations in flow rate, pressure and/or tem-
perature may indicate an 1ssue that needs to be addressed in
order to avoid a partial or even complete shutdown of the o1l
well, which can lead to lost productivity and lower profit
margins.

But data collected from these sensors can be “noisy,” the
data often does not have a constant amplitude, and the data
can be plagued by shiits in the mean. These aspects of the data
make 1t difficult to accurately model the data stream and
extractrelevant events. In addition, quickly detecting changes
can be difficult in a real-time or “online” environment, due to
the reliance on intensive mathematical analysis which can
take significant time to compute. In addition, frequency
domain approaches often use a window of data to estimate
spectral features. But waiting to gather enough data to popu-
late a window to analyze can result in delays detecting events.
Other techniques extract time domain features from the time
series and make decisions based on statistical models. But
these models often have to be manually “hand-craited” based
on the type of data stream, and thus can fail if the type of data
stream changes.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a high-level illustration of an example networked
computer system which may be implemented for multi-re-
gime detection in streaming data.

FI1G. 2 1s an overview diagram 1illustrating multiple regime
detection in a modified reconstructed phase space with a
cross-correntropy similarity measure.

FIG. 3 1s a processing diagram 1llustrating online regime
detection 1n a modified embedding space with cross-corren-
tropy.

FI1G. 4 1s a plot showing an example training data set.

FIG. 5a are plots showing a first data set similar 1n mean
and amplitude to the training set.

FIG. 56 are plots showing a second data set including
scaled and translated versions of the oscillation.

FIG. 6 1s a plot showing immediate detection following
onset of oscillation.

FI1G. 7 1s a flowchart illustrating example operations which

may be implemented multi-regime detection 1n streaming,
data.

DETAILED DESCRIPTION

Detecting different regimes 1n streaming data can be used
to 1ssue an alert in advance of an event so that corrective
action can be taken before the event leads to a disruption.
While analyzing the streaming data on the macro-level (e.g.,
flow rate), there are a number of underlying factors within a
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2

typical data stream which can be detected even earlier. For
example, there are a number of underlying factors that can
induce tremendous variability 1n the data stream and can be
detected before producing varying flow regimes. These fac-
tors may include, but are not limited to, fluid composition, o1l
viscosity, compressibility, and specific gravity. Any change in
these factors may produce a change 1n flow regime and thus
may indicate a potential problem with the o1l well. Of course,
data streams are not limited to the o1l and gas industry and the
techniques described herein have application 1n a wide vari-
ety of fields.

The systems and methods described herein enable multi-
regime detection in streaming data. In an example, the time
series 1s represented in the phase space using a modified
embedding technique, which 1s invariant to translation and
scale. The embedding function 1s referred to herein as a
“modified embedding” because the representation 1s not an
embedding in the strict mathematical sense. Incoming trajec-
tory segments irom the data stream are compared to an
embedded training set 1n a modified embedding space. The
comparison 1s made 1n the sense of a similarity measure that
compares points in the trajectory at corresponding times. The
comparison may use cross-correntropy, which can be thought
of as a generalized correlation function. Cross-correntropy
enables the time structure of trajectories which sit on a sphere
in the modified embedding space to be fully exploited, result-
ing in shorter detector reaction times.

Accordingly, the systems and methods disclosed herein
can be used 1n online, multi-regime, and/or non-stationary
environments for fast and early detection of changes in
regime. The embedding function provides translation invari-
ance and scale invariance. The techniques can also be applied
to non-linear oscillations.

Belore continuing, 1t 1s noted that as used herein, the terms
“includes” and “including” mean, but 1s not limited to,
“includes™ or “including” and “includes at least” or “includ-
ing at least.” The term “based on” means “based on” and
“based at least in part on.”

FIG. 1 1s a high-level block diagram of an example net-
worked computer system 100 which may be implemented for
multi-regime detection in streaming data. System 100 may be
implemented with any of a wide variety of computing devices
110, such as, but not limited to, server computers, blade
servers, and appliances (e.g., devices dedicated to providing a
computing service), to name only a few examples. Each of the
computing devices may include memory, storage, and a
degree of data processing capability at least suificient to man-
age a communications connection either directly with one
another or indirectly (e.g., via a network). At least one of the
computing devices 1s also configured with suilicient process-
ing capability to execute program code for carrying out the
operations described herein.

In an example, the computing device 110 may receive
streaming data from one or more source 120, such as sensors
125a-c. For purposes of illustration, the sensors shown 1n
FIG. 1 are used to gather flow rate data from o1l well(s).
However, 1t 1s noted that data streams are not limited to use 1n
the o1l and gas industry, and can include other sources. Other
sources of streaming data may include weather data, vehicle
traffic, network traific for a data center, electricity for a smart
orid, water measurements for a treatment facility, and even
vitality data for a person or biological system, to name only a
few examples of streaming data.

There 1s no limit to the type or amount of data that may be
provided by a source. In addition, the content may include
unprocessed or “raw’ data, or the content may undergo at
least some level of processing. For example, data may be
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filtered prior to executing the operations described herein to
reduce noise ijected into the data stream which 1s not repre-
sentative of actual data from the sensor(s).

The data stream may be accessed for online data process-
ing by a computing device 110 configured as a server com-
puter with computer-readable storage 115. Program code 130
executing on the computing device 110 may analyze the
streaming data and 1ssue alerts, e.g., indicative of a change 1n
regime 1n the data stream. Program code 130 may also include
interfaces to application programming interfaces (APIs) and
related support infrastructure, including hosted monitoring,
services 1035 which can be used to provide the alerts 135 to a
facility operator or other customer based on the change 1n
regime so that additional monitoring and/or corrective action
can be taken 1n a timely manner.

Although, 1t 1s noted that the operations described herein
may be executed by program code 130 residing on a server
device, other computing devices may also be implemented.
Other computing devices may include, but are not limited to
a personal computer, a tablet or other mobile device. In an
example, mobile devices used on-site by an end-user 140 such
as a facility operator may be implemented 1n conjunction with
a “back-end” computer system having more processing capa-
bility, such as the server computer 110, or a plurality of server
components in a data center or “cloud computing” environ-
ment.

The system 100 may also include a communication net-
work 150, such as a local area network (LAN) and/or wide
arca network (WAN). In one example, the network 150
includes the Internet or other mobile communications net-
work (e.g., a 3G or 4G mobile device network). Network 150
may also provide greater accessibility for use 1n distributed
environments, for example, where more than one source 1s
providing the streaming data. The various sensor(s) and com-
puting device(s) may be provided on the network 150 via a
communication connection, such as via an Internet service
provider (ISP). Inthis regard, access may be provided directly
via the network 150, or via an agent, such as another network.
Such an implementation may be particularly desirable where
an operator 1s responsible for monitoring multiple, geo-
graphically distributed production sites, for example, 1n the
o1l and gas or other industries.

As mentioned above, the program code 130 may be
executed by any suitable computing device to analyze data
stream. In addition, the program code may analyze one or
more than one data stream. The operations described herein
are not limited to any specific implementation with any par-
ticular type of program code. In an example, the program
code may be implemented in machine-readable instructions
(such as but not limited to, software or firmware). The
machine-readable 1nstructions may be stored on a non-tran-
sient computer readable medium and are executable by one or
more processor to perform the operations described herein. It
1s noted, however, that the components shown herein are
provided only for purposes of 1llustration of an example oper-
ating environment, and are not imtended to limit implemen-
tation to any particular system.

The program code executes the function of the architecture
of machine readable instructions as self-contained modules.
These modules can be integrated within a self-standing tool,
or may be implemented as agents that run on top of an existing
program code. Operations performed by executing the pro-
gram code can be understood with reference to FIG. 2.

FIG. 2 1s an overview diagram 200 illustrating multiple
regime detection in a modified reconstructed phase space
with a cross-correntropy similarity measure. Streaming data
210 1s shown as 1t may be received from a source. For
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4

example, the streaming data 210 may include both macro and
micro data related to tlow rate for an o1l or gas well. A change
in regime for any of this data may be indicative of a potential
or pending 1ssue that should be addressed.

For each data stream sample, a vector 1s created 220 with
clements that are linear combinations of time delayed
samples. The last vector element 1s subtracted 230 from the
other vector elements to induce mean independence. The

result 1s an embedded data trajectory (X) 240. The embedde

data trajectory (X) 240 1s compared with data trajectories
representing various regimes of interest 250a-¢, generated
using a training set.

Each regime (1) has an associated embedded training set
(Y,), where CE 1s the sample cross-correntropy between argu-
ments. The regime with the largest cross-correntropy
between the streaming data trajectory (X) and the embedded
regime training set (Y,) 1s selected at 260. It can be seen by
visual inspection that the example embedded data trajectory
240 shown 1n FIG. 2 1s a closest fit with the known data
trajectory 250a.

Once the data trajectory 1s found, a decision 1s made 270
whether to 1ssue an alert. For purposes of illustration, the data
trajectory 250a for Regime 1 may represent normal or
expected flow regimes, and Regime 2 through Regime n
indicate various types ol potential problems that warrants
turther monitoring or closer inspection. In the example above,
where the streaming data 210 was found to correspond to
Regime 1, then no alert needs to be 1ssued because Regime 1
1s considered normal or expected flow regimes. But 1f analysis
indicates that streaming data 210 has changed to one of the
other Regimes 2-x, then an alert may be 1ssued based on the
particular regime.

Having generally described the operating environment and
execution of example program code, attention 1s now drawn
to FI1G. 3 for a more detailed explanation of processing which
may be implemented by the program code during execution
of the modified embedding for multi-regime detection 1n
non-stationary, streaming data.

FIG. 3 1s a processing diagram 300 illustrating online
regime detection 1n a modified embedding space with cross-
correntropy. A training set 310 1s selected, and then embed-
ding parameters 320 are determined. An embedding 1s a map
from an m-dimensional manifold to a (2 m+1)-dimensional
Euclidean space, where every point on the original manifold
has a unique 1image 1n the higher dimensional space. Takens
Embedding Theorem provides a means of reconstructing the
phase space of a multi-dimensional dynamical system from
the time delays of a single series of measurements. Consider
a discrete time series with x being the value at time n. Then,
at each time n, we can build a vector:

x(ﬂ) :[ A Ao - - - Ap—2 nﬂ:]

In the above equation, m 1s the embedding dimension and
r 1s the time delay. The limit set of the trajectories (the attrac-
tor) is embedded in the manifold created by the x” values.

The time delay may be determined by finding the first time
lag that produces a local minima 1n a dependence measure
between x and x,__, such as autocorrelation or mutual infor-
mation. The selection of T 1s flexible and chosen such that the
components of x*” values are not correlated. After the time-
delay, T 1s fixed, and the embedding dimension m 1s estimated
by algorithms such as GrassbergerProcaccia, which approxi-
mates the correlation dimension. Time delay embedding 330
(F1G. 3) preserves dynamical mnvariants such as entropy,
dimensional, and Lyapunov exponents, which are used to
analyze the underlying physical system.
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In the case of regime detection, the properties of the system
are of less concern than changes 1n the reconstructed trajec-
tories produced by noise, amplitude scaling, and shifting
means 1n the input streaming data. The data can be normal-
1zed, but 1f the data 1s time varying, these normalizations are
implemented online in the test set. Instead of these prepro-
cessing approaches (that are normally ad-hoc), the systems
and methods described include invariance to these aspects
directly 1n the embedding framework, with the advantage of
fast online operation and also of a sound mathematical foun-
dation. The program code operates with a modified embed-
ding space in which the points x and ax+b are indistinguish-
able, where a 1s a scaling factor, and b 1s the translation.

Symbolic dynamics are used to provide accurate represen-
tations ol reconstructed attractors. In particular, encoding
time delay embedding vectors 330 (FIG. 3) into symbols
based on order patterns provides translation invariance. In an
m-dimensional space, each point maps to one of m! order
patterns. In applications, information loss 1s substantial due to
this encoding. For example, the Lorenz attractor which
unfolds 1n 3-dimensions, has only 6-order patterns. A variant
of the order patterns may be used instead, referred to herein as
“difference patterns” 340 (FIG. 3). A difference pattern,
Ax(n), at time n, 1s given by:

M(H) :[xn_xn—EmT: - -

- xﬂ—(Em—l)T_xn—EmT]

In the above equation, every component of x(n) i1s sub-
tracted by the last component. The last component of Ax(n) 1s
always zero, and so it can be removed. Therefore, the original
(2m+1)-dimensional point in the reconstructed phase space 1s
mapped to a 2Zm-dimensional space. This 1s analogous to
establishing a quantitative order pattern with the x,_,___ com-
ponent as a zero reference point. The translation invariance in
the space of order patterns can be found by letting y, =x, -b,
be a translated time series, as follows:

5})(“) — [yn — V¥o—-2m7s -+ s ¥Yu—Q2m—Dr — yn—ZmT]
— [(-xn — b) — (-xn—ZmT — ‘b)a T ]

— [—xn — Xn—-2mrs - -- ]

= Ax'®

[l

Translating the time series does not alter the difference
pattern, similarly to the differencing operation applied to
non-stationary time series. However, this representation 1s no
longer an embedding because it 1s not invertible.

To achieve scale invarnance, the Ax(n) vectors are normal-
1zed 350 (FIG. 3) by their Euclidean norms to yield:

A D) A x(”)
x =
|Ax||

These new vectors are the projections of the Ax(n) onto the
unit sphere in 2m-dimensional space. Consider a translated
and scaled time series y, =ax, —b. First, the difference pattern
340 1s created as follows:

Ay™ = [ax, — @ 2me, -]

= aAx™
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6

Translation invariance still holds, but the scaling factors
out of the difference pattern and “disappears™ when normal-

1zed 350, as follows:

The trajectories 1n the modified embedding space are on
the surtace of a sphere. The Eucidean distance can be replaced
with the geodesic length on the sphere, to obtain a better
depiction of the distance between points. All modified
embedding space points are unit vectors, so the dot product
between two points 1s the cosine of the angle between them.
The geodesic length 1s therefore the arc cosine of the dot
product.

Effectively, this operation projects the trajectories onto the
unit sphere and loses some of the distance mnformation that
was present in the difference pattern attractor. In particular, all
points on a line extending from the origin map to the same
point on the sphere. The modified embedding 1s, however, a
useiul depiction of the time evolution of the system. The
regime detection used here takes advantage of the time struc-
ture of the trajectories, rather than using static distance infor-
mation.

Consider discrete random processes {X :n, € N,} and
1Y ., eN,}, where N, and N, are time index sets. Then the
cross-correntropy function 360 (FIG. 3) can be expressed as:

VIJ(H 1: HE):EZY{(XH I’ ynz)]

In the above equation, E 1s the expectation operator over the
random processes, and k 1s a continuous positive definite
kernel function. The correntropy function 1s a similarity mea-
sure between time series that induces the correntropy metric.
Applying the Gaussian kernel, the cross-correntropy function
takes the following form:

vx,y:d(n 1 HE):E[GD‘(HXHI_}JHZH)]

In the above equation, o 1s the Gaussian bandwidth. Selec-
tion of the the kernel bandwidth may vary based on design
considerations. In an example, the range 0.5<0<1.5 has been
determined to worked well on a unit sphere with maximum
geodesic distance of m.

For regime detection, trajectory segments of length N are
considered, which are finite realizations of the random pro-
cess. The expected value 1s replaced by the sample mean. The
cross-correntropy between trajectory segments has the fol-
lowing range:

O{VIJ:U(H 12 HE):E[GCF(HIHI_}JHEH]

Consider the streaming time series at time nl. In the modi-
fied embedding space, the trajectory segment formed from
the previous N points 1s:

AF=[ASOD AZOU-D | Agu-NED)

Similarly, the length N trajectory segment ending at time
n2 in the traming set 1s given by:

&ﬁ:[&}gmz): 5;{3(”2_1), L }j(ﬂz—N+l)]
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The sample correntropy between these two trajectories 1s
represented as follows:

Z Go (A" — A3"27))

In online streaming, the sample correntropy 1s determined
for all length N trajectory segments in the training set 355
(FIG. 3). If a training segment Ay~ exists, such that v (Ax’,
Ay") is about 1, then the current sample x_, 1s assigned to the
desired regime 370 (FIG. 3). The processing can be repeated
in real-time as streaming data arrives 380 (FIG. 3).

As noted above, the trajectories i the modified embedding
space are on the surface of a sphere. Therefore, the Euclidian
distance 1n the sample correntropy can be replaced with the
geodesic length on the sphere to obtain a better depiction of
the distance between points. All modified embedding space
points are unit vectors, and thus the dot product between two
points 1s the cosine of the angle therebetween. The geodesic
length 1s therefore the arc cosine of the dot product, and can be

represented as follows:

Z Go (ams((&‘“(”l ), Aj‘?mz_ﬂ)))

=0

The method of regime detection discussed above and based
on cross-correntropy in the scale and translation invariant
modified embedding space can be described by Algorithm 1
as follows:

Algorithm 1 On-line regime detection 1n the modified embedding
space with cross-correntropy

[. Embed training set y

Given a discrete time series {y,,,: 1 =n, < L}
Select a time delay T, and embedding dimension m
fori=(m-1 )1:+1t0Ld0

y(l) = [yz Yie T Yo (rn— l)'lj]
53’()_ [Vi— Vi m—1)yt yz—(m—E)-c_yi—(m—l)r]
A ()
A?(I y
|AyW]|
end for

II. Regime detection of streaming data x at time n,
Set desired trajectory length to N

Set Gaussian kernel bandwidth ¢

Set threshold € on cross-correntropy

X(H(I;z; [XHI “Raypw e an—(m—lﬁ]

AX = [an - XH]—(?‘H—].)’E T XHI—(m—E)‘E - XH]—(?’H—l)T]
Ax1)

&ﬂ(ﬂl)
lax®0|

fory=(m-1x+ NtoLdo

1 ' .
p(J) — ﬁ Z Gﬂ_ (HCDS(<&?;(”1_M .ﬁj‘r(.f—k)n)

end for

if max p > € then
Sample x,,. 1s 1n the desired regime

end 1f

H]

For simplicity, only single regime detection 1s shown. Fur-
ther training sets can be added to the embedding space for
detection 1n multiple regimes, and 1ncoming trajectory seg-
ments are compared with the traiming sets of all regimes. The
regime that produces the highest correntropy 1s selected as the

best fit.
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Algorithm 1, described above, was tested using a single
regime of quasi-periodic oscillations produced from a chaotic
regime, commonly observed in the gas and o1l industry. Per-
formance was compared with a standard time delay embed-
ding technique. The embedding parameters and detection
procedures remained the same 1n each case. The segment
length was chosen as N=10, and the kernel bandwidth was set
to 0=0.9.

The Algorithm was implemented using an example train-
ing data set. FI1G. 4 15 a plot 400 showing the example training
data set, using real data that has been mean-centered. The
total training set length 1s 2500 samples. From the training set
data, mutual information was used to select a time delay of 3
and applying the GrassbergerProcaccia technique revealed
that the correlation dimension 1s 1.8. An embedding dimen-
s1on of 4 successiully 1identified the attractor 1n this example.
Results from a first test case are shown in FIG. 3a.

FIG. 3a are plots 300 and 510 showing a {first data set
similar in mean and amplitude to the training set (FIG. 4). In
this test case, the test data was similar in mean and amplitude
to the training set. Two oscillatory segments are shown with a
non-oscillatory middle segment. It can be seen that the modi-
fied embedding technique implemented by Algorithm 1 (plot
500) and the standard embedding technique (plot 510) both
performed about the same for this data set. That is, both
techniques detected oscillations at 502, 512 and at 503, 513,
and the non-oscillatory middle segments 501, 511 went unde-
tected.

It 1s noted that the standard embedding technique (plot
510) worked 1n this case because the training set (FIG. 4) and
the test data were similar in mean and scale. But when the test
set was scaled, and sections of the test set were translated, as
shown 1n FIG. 55, the standard embedding technique did not
perform as well as the modified embedding techmque 1mple-
mented by Algorithm 1.

FIG. 5b are plots 520 and 530 showing a second data set
including scaled and translated versions of the oscillation. In
this test, the modified embedding technique implemented by
Algorithm 1 (plot 520) outperformed the standard embedding
technique (plot 330). That 1s, the modified embedding tech-
nique i1mplemented by Algorithm 1 detected oscillatory
regimes at 522 and 523. But the standard embedding tech-
nique only detected oscillatory data at 532. The standard
embedding techmque was not able to detect data oscillatory
data at 531a, 5315, 531c¢, or at 5314.

Accordingly, Algorithm 1 1s able to detect changes 1n
regime quickly, even before periodicity 1s otherwise evident.
The reaction time can be characterized as the number of
missed detections following the onset of a regime. FIG. 61s a
plot 600 showing detection (o) using Algorithm 1 following
onset of an oscillation regime. It can be seen that detection
occurs 1n this example after just four data points (X) in the
oscillation. The techniques described above and implemented
in an example by Algorithm 1 can also be used to detect
oscillations by identiiying a strong spectral component at the
fundamental frequency.

It 1s also noted that 1n an online setting, at least one period
of the oscillations must elapse to have meaning in the fre-
quency domain, which 1s too much delay 1n some applica-
tions. But using the techniques described herein, the segment

length (IN) provides the user with control over the reaction
time. The reaction time 1s determined from the transition to
the second oscillatory regime. The tradeotl between reaction
time and error rate can be seen 1n Table 1.
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TABLE 1
Length N Reaction Time Error Rate
2 5 3.7%
4 8 2.5%
6 17 2.1%
8 17 1.7%
10 21 1.9%

It can be seen 1n Table 1, that for the N values tested, all
reaction times were less than the average oscillation period of
about 30 samples.

Before continuing, it should be noted that the examples
described above are provided for purposes of i1llustration, and
are not mtended to be limiting. Other devices and/or device

configurations may be utilized to carry out the operations
described herein.

FI1G. 7 1s a flowchart illustrating example operations which
may be implemented for multi-regime detection 1n streaming,
data. Operations 700 may be embodied as logic istructions
on one or more computer-readable medium. When executed
on a processor, the logic instructions cause a general purpose
computing device to be programmed as a special-purpose
machine that implements the described operations. In an
example, the components and connections depicted 1n the
figures may be used.

Operation 710 includes generating vectors for each sample
of the streaming data. Operation 720 includes inducing mean
independence of the vectors to find an embedded data trajec-
tory. Operation 730 includes comparing the embedded data
trajectory with known data ftrajectories. Operation 740
includes 1ssuing an alert 1f the embedded data trajectory cor-
responds to a known data trajectory indicating an anomaly in
the streaming data.

In an example, the known data trajectories represent dif-
ferent regimes of interest. Each regime may have an associ-
ated embedded training set. The known data trajectories may
be generated using training data.

In another example, comparing the embedded data trajec-
tory with known data trajectories 1s by evaluating cross-cor-
rentropy between arguments. The regime with the largest
cross-correntropy between the embedded data trajectory and
the known data trajectories may be selected as the best fit.

The operations shown and described herein are provided to
1llustrate example implementations. It 1s noted that the opera-
tions are not limited to the ordering shown. Still other opera-
tions may also be implemented.

Further operations may include creating the embedded
data trajectory with elements that are linear combinations of
time delayed samples, and subtracting a last vector element
from other vector elements to induce mean independence of
the vectors.

Still further operations may include determining embed-
ding parameters, converting time delay embedding into dii-
terence patterns, and normalizing the difference patterns.

The operations may be implemented at least 1n part using,
an end-user interface (e.g., web-based interface). In an
example, the end-user 1s able to make predetermined selec-
tions, and the operations described above are implemented on
a back-end device to present results to a user. The user can
then make further selections. It 1s also noted that various of
the operations described herein may be automated or partially
automated.

It 1s noted that the examples shown and described are
provided for purposes of illustration and are not intended to
be limiting. Still other examples are also contemplated.
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The mvention claimed 1s:

1. A method stored as program code stored on a non-
transient computer-readable medium and executable by a
processor for multi-regime detection 1n streaming data, the
method when executed by a processor comprising:

generating vectors for each sample of the streaming data;

inducing mean independence of the vectors to find an
embedded data trajectory;

comparing the embedded data trajectory with known data

trajectories; and

issuing an alert i1 the embedded data trajectory corre-

sponds to a known data trajectory indicating an anomaly
in the streaming data so that corrective action can be
taken before the anomaly leads to a disruption.

2. The method of claim 1, further comprising creating the
embedded data trajectory with elements that are linear com-
binations of time delayed samples.

3. The method of claim 1, further comprising subtracting a
last vector element from other vector elements to induce
mean independence of the vectors.

4. The method of claim 1, wherein the known data trajec-
tories represent different regimes of interest.

5. The method of claim 4, wherein each regime has an
associated embedded training set.

6. The method of claim 1, wherein comparing the embed-
ded data trajectory with known data trajectories 1s by evalu-
ating cross-correntropy between arguments to understand
similarity between multiple segments.

7. The method of claim 1, wherein the regime with the
largest cross-correntropy between the embedded data trajec-
tory and the known data trajectories 1s selected as a best fit.

8. The method of claim 1, further comprising generating,
the known data trajectories based on traiming data.

9. The method of claim 1, further comprising determining,
embedding parameters.

10. The method of claim 1,further comprising converting
time delay embedding into difference patterns.

11. The method of claim 1, further comprising normalizing
the difference patterns.

12. A system for multi-regime detection 1n streaming data,
the system including program code stored on non-transient
computer-readable media and executable by a processor to:

generate vectors for each sample of multi-dimensional

streaming data;

induce mean independence of the vectors and find an

embedded data trajectory;

compare the embedded data trajectory with known data

trajectories; and

1ssue an alert 11 the embedded data trajectory corresponds

to a known data trajectory indicating an anomaly 1n the
streaming data.

13. The system of claim 12, wherein the program 1s further
executable to create the embedded data trajectory with ele-
ments that are linear combinations of time delayed samples.

14. The system of claim 12, wherein the program 1s further
executable to compare the embedded data trajectory with
known data trajectories by evaluating cross-correntropy
between arguments.

15. The system of claim 12, wherein the regime with the
largest cross-correntropy between the embedded data trajec-
tory and the known data trajectories 1s selected as a best {it.

16. The system of claim 12, wherein the program 1s further
executable to generate the known data trajectories based on
training data.

17. The system of claim 12, wherein the program 1s further
executable to determine embedding parameters.
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18. The system of claim 12, wherein the streaming data 1s
from a non-stationary monitoring environment.

19. The system of claim 12, wherein analysis ol the stream-
ing data detects anomalies online with short reaction time
relative to frequency domain methods. 5

20. The system of claim 12, wherein analysis of the stream-
ing data 1s invariant to constant scaling and translation.

¥ ¥ e ¥ ¥
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