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1

METHOD AND SYSTEM FOR DETECTING
ANOMALIES IN A BIPARTITE GRAPH

This invention was made with Government support under
Contract No. WI911NF-09-2-0033 (Army Research Office
(ARQO)). The Government has certain rights 1n this ivention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and system of
detecting anomalies 1n a bipartite graph and, more particu-
larly, a method and system of detecting anomalies 1n a bipar-
tite graph which includes detecting the anomalies from a
non-negative residual matrix.

2. Description of the Related Art

There are two main drawbacks for conventional solutions
for graph anomaly detection. First, conventional methods
ignore the usability 1ssue 1n anomaly detections on graphs.
For example, some conventional methods use the residual
matrix through matrix factorization to identify abnormal W
sources. However, the resultant matrix can contain negative
values which makes 1t hard to interpret the results.

Second, some conventional methods do not scale well.
Theretfore, such methods are not suitable for large graphs

SUMMARY OF THE INVENTION

In view of the foregoing and other problems, disadvan-
tages, and drawbacks of the aforementioned conventional
systems and methods, an exemplary aspect of the present
invention 1s directed to a method of method of detecting
anomalies 1n a large bipartite graph which 1s more effective
and more efficient than conventional methods and systems.

An exemplary aspect of the present invention 1s directed to
a method of detecting anomalies from a bipartite graph. The
method includes analyzing the graph to determine a row-
cluster membership, a column-cluster membership and a
non-negative residual matrix, and 1n a processor, detecting the
anomalies from the non-negative residual matrix.

Another exemplary aspect of the present ivention 1s
directed to a system for detecting anomalies from a bipartite
graph. The system includes an analyzer for analyzing the
graph to determine a row-cluster membership, a column-
cluster membership and a non-negative residual matrix, and a
detector for detecting the anomalies from the non-negative
residual matrix.

Another exemplary aspect of the present invention 1s
directed to a programmable storage medium tangibly
embodying a program of machine-readable instructions
executable by a digital processing apparatus to perform a
method of detecting anomalies from a bipartite graph, the
method including analyzing the graph to determine a row-
cluster membership, a column-cluster membership and a
non-negative residual matrix, and 1n a processor, detecting the
anomalies from the non-negative residual matrix.

With 1ts unique and novel features, the present invention
provides a method of method of detecting anomalies 1n a large
bipartite graph which 1s more effective and more efficient
than conventional methods and systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed descrip-
tion of the embodiments of the invention with reference to the

drawings, 1n which:
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2

FIG. 1 illustrates a method 100 of detecting anomalies 1n a
bipartite graph, 1n accordance with an exemplary aspect of the
present invention;

FIG. 2 1llustrates a system 200 for detecting anomalies in a
bipartite graph, in accordance with an exemplary aspect of the
present invention;

FIGS. 3A-3D illustrate anomaly detection on synthetic
graphs, 1n accordance with an exemplary aspect of the present
invention;

FIG. 4 1llustrates the quantitative results on the four real
data sets (1.¢., movie lens (a), MIT-DP (b), NIPS-PW (c¢) and
CIKM-PA (d)), 1n accordance with an exemplary aspect of the
present invention;

FIG. 5 illustrates the comparison of the wall-clock time for

the four real data sets (1.e., movie lens, MIT-DP, NIPS-PW

and CIKM-PA), in accordance with an exemplary aspect of
the present invention;

FIGS. 6A-6C 1llustrate wall-clock time vs. n, wall-clock
time vs. 1, and wall-clock time vs. m, respectively, 1n accor-
dance with an exemplary aspect of the present invention;

FIGS. 7TA-7D 1llustrate methods 710, 720, 730 and 740 of

detecting anomalies 1 a bipartite graph, respectively, 1n
accordance with an exemplary aspect of the present mven-
tion;

FIG. 8 1llustrates a typical hardware configuration 800 that
may be used to implement the network and method (e.g.,
system 200, method 100, method 710, method 720, method
730 and method 740), 1n accordance with an exemplary
aspect of the present invention; and

FIG. 9 illustrates a magnetic data storage diskette 900 and
compact disc (CD) 902 that may be used to store instructions
for performing the inventive method of the present invention
(e.g., system 200, method 100, method 710, method 720,
method 730 and method 740), 1n accordance with an exem-
plary aspect of the present invention.

L]

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS OF THE
INVENTION

Referring now to the drawings, FIGS. 1-9 illustrate the
exemplary aspects of the present invention.
Overview

Large bi-partite graphs may be used to represent systems 1n
a wide range of settings, including for example, social net-
works, computer networks financial transaction networks,
criminal networks, telecommunication networks, user-movie
rating graphs in collaborative filtering, the world wide web,
biological networks, and many more.

It 1s desirable to be able to effectively and efliciently detect
anomalies 1in such graphs. For example, by detecting such
anomalies, one may be able to detect spammers, port scanners
and vulnerable machines in computer network, detect fraudu-
lent transactions (e.g., money-laundering schemes) and
scammers 1n a financial transaction network, detect new
criminal trends 1n criminal networks, and detect a telemar-
keter 1n a telecommunication network.

Some problems that the inventors sought to solve with the
present invention include the following: 1) given a large IP
source-destination traffic network, how does one spot mis-
behavioral IP sources (e.g., port-scanner); 2) how does one
find strange users in a user-movie rating graph; and 3) how
can one present the results intuitively so that it 1s relatively
casier for data analysts to mterpret? In other words, given a
large bipartite graph, the inventors wanted to find anomalies
in an mntuitive and scalable way.
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The exemplary aspects of the present invention may
include two important ideas, each of which corresponds to the
two main drawbacks of the conventional methods. First,
exemplary aspects of the present invention may generate a
residual graph from the original graph, through a novel non-
negative residual matrix factorization, as an intuitive way to
find and present the anomalies on graphs. Second, the exem-
plary aspects of the present mvention may be carefully
designed so that it scales linearly with respect to the size of the
graph.

In particular, the exemplary aspects of the present mven-
tion may utilize NrMF, a non-negative residual matrix factor-
ization framework, to solve the problems which are not
addressed by the conventional methods. The exemplary
aspects of the present invention may provide an optimization
formulation as well as an effective algorithm to solve 1t. An
exemplary method of the present invention may naturally
capture abnormal behaviors on graphs. In addition, a pro-
posed algorithm of the present mnvention may be linear with
respect to the size of the graph, and therefore, the algorithm 1s
suitable for large graphs. The experimental results on several
data sets validate its effectiveness as well as efficiency.

As1llustrated 1n FIG. 1, an exemplary aspect of the present
invention 1s directed a method 100 (e.g., a computer-imple-
mented method) of detecting anomalies (e.g., abnormal
nodes and edges) from a bipartite graph. The method 100
includes analyzing (110) the graph to determine a row-cluster
membership, a column-cluster membership and a non-nega-
tive residual matrix, and in a processor (e.g., a processor
included 1 a computer), detecting (120) the anomalies from
the non-negative residual matrix.

The method 100 may also be hardware implemented and/
or software implemented. For example, the method 100 may
utilize an anomaly detection software program ol machine-
readable 1instructions executable by a digital processing appa-
ratus to perform the method 100.

The method 100 may also include providing the graph
(e.g., generating the graph from a data set). Further, the ana-
lyzing of the graph may include inferring the row-cluster
membership, column-cluster membership and non-negative
residual matrix from the graph, and detecting of anomalies
may include flagging abnormalities 1n the non-negative
residual matrix.

For example, the bipartite graph may include a people-
activity graph and the anomalies comprise abnormal human
behavior. In this case, the method 100 may include generating
the people-activity graph from activity logs of a set of people,
the analyzing the graph to determine the row-cluster mem-
bership, the column-cluster membership and the non-nega-
tive residual matrix may include inferring people-community
membership, community-activity membership and a non-
negative people-activity residual matrix, and the detecting of
anomalies may 1nclude tlagging the abnormal human behav-
1or from the non-negative people-activity residual matrix.

Further, the inferring of the people-community member-
ship, community-activity membership and a non-negative
people-activity residual matrix may include setting an 1nitial
people-community membership, an mitial community-activ-
ity membership, and an 1nitial non-negative people-activity
residual matrix, updating the imitial people-community mem-
bership; and updating the 1nitial community-activity mem-
bership. The updating of the initial people-community mem-
bership may include fixing and/or freezing the community-
activity membership, and re-calculating a strength of each
person belonging to each communaity.

Alternatively, the inferring of the people-community mem-
bership, community-activity membership and a non-negative

10

15

20

25

30

35

40

45

50

55

60

65

4

people-activity residual matrix may include setting an 1nitial
non-negative people-activity residual matrix, inferring a
rank-1 people-community membership and a rank-1 commu-
nity-activity membership, and updating the non-negative
people-activity residual matrix. In this case, the inferring of
the rank-1 people-community membership and the rank-1
community-activity membership may include setting an 1ni-
tial rank-1 people-community membership, an initial-rank-1
community-activity membership, and an initial non-negative
people-activity residual matrix, updating the initial rank-1
people-community membership, and updating the initial
rank-1 community-activity membership. Further, the updat-
ing of the mitial rank-1 people-community membership may
include fixing and/or freezing the rank-1 community-activity
membership, and re-calculating a strength of each person
belonging to the community.

As another example, the bipartite graph may include an
Internet Protocol (IP) source-destination graph and the
anomalies may include abnormal IP addresses. In this case,
the method 100 may include generating an IP source-desti-
nation graph from IP trace logs. Further, the analyzing of the
graph to determine the row-cluster membership, the column-
cluster membership and the non-negative residual matrix may
include inferring an IP source-role membership, an IP desti-
nation-role membership and a non-negative IP source-desti-
nation residual matrix, and the detecting of anomalies may
include flagging abnormal IP addresses from the non-nega-
tive IP source-destination residual matrix.

FIG. 2 1llustrates a system 200 for detecting anomalies
from a bipartite graph. The system 200 includes an analyzer
210 for analyzing the graph to determine a row-cluster mem-
bership, a column-cluster membership and a non-negative
residual matrix, and a detector 220 (e.g., a processor that 1s
part of a computer) for detecting the anomalies from the
non-negative residual matrix.

The system 200 may also be hardware implemented and/or
soltware implemented. For example, the system 200 may
include an anomaly detection software program of machine-
readable instructions executable by a digital processing appa-
ratus to perform a method of detecting anomalies 1n a large
bipartite graph.

The system 200 may also include a graph generator 230 for
generating the graph from a data set. Further, the analyzer 210
may inter the row-cluster membership, column-cluster mem-
bership and non-negative residual matrix from the graph, and
the detector 220 may 1nclude a flagging device 222 for flag-
ging abnormalities 1n the non-negative residual matrix.

Further, the analyzer 210 may include an initial setting
device 212 for setting an initial row-cluster membership, an
initial column-cluster membership, and an 1nitial non-nega-
tive residual matrix, an updater 214 for updating the nitial
row-cluster membership, and an updater 216 for updating the
initial column-cluster membership. The updater 216 {for
updating the imitial column-cluster membership may include
a fixing/freezing device 216a for fixing and/or freezing the
column-cluster membership, and a strength re-calculator
216bH for re-calculating a strength of each member in the
column-cluster membership.

Alternatively, the analyzer 210 may include an initial set-
ting device for setting an 1nitial non-negative residual matrix,
and an updater for updating the initial non-negative residual
matrix. In this case, the analyzer 210 may infer a rank-1
row-cluster membership and a rank-1 column-cluster mem-
bership by setting an 1nitial rank-1 row-cluster membership,
an 1nitial rank-1 column-cluster membership, and an 1nitial
non-negative residual matrix, updating the mitial rank-1 row-
cluster membership, and updating the 1mitial rank-1 column-
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cluster membership. Further, the updater for updating the
initial rank-1 row-cluster membership may include a fixing/
freezing device for fixing and/or freezing the rank-1 column-
cluster membership, and a strength re-calculator for re-cal-
culating a strength of each member 1n the column-cluster
membership.

It should be noted that the system 200 may be implemented
in a computer system, and that one or more of the features of
the system 200 (e.g., analyzer 210, detector 220, graph gen-
erator 230, tlagging device 222, imitial setting device 212,
updater 214, updater 216, fixing/freezing device 216a and
strength re-calculator 2165) may be implemented by one or
more processors of a computer system.

Detailed Discussion of Algorithms of Exemplary Aspects of
the Present Invention

The present mnvention may deal with the 1ssue of how can
one find patterns (e.g., commumnities and anomalies) in a large
sparse graph.

Naturally, low-rank approximations on the adjacency
matrices of the graph provide powertul tools for detecting
anomalies 1n the graph.

Formally, let A be the adjacency matrix of the graph, a rank
r approximation of matrix A is a matrix A, where A is of rank
rand the residual matrix (A—A) has small norm. The low-rank
approximation 1s usually presented in a factorized form e.g.,
A=A+R=FG+R where F, G are the factorized matrices of rank
r, and R 1s the residual matrix. The factorized matrices F and
(G can naturally reveal the community structure 1n the graph.
The residual matrix R, on the other hand, 1s often a strong
indicator for anomalies on graphs (e.g., a large norm of the
residual matrix R suggests a significant deviation from low-
rank structure in the graph).

From an algorithmic aspect, a recent trend in matrix fac-
torization 1s to improve the interpretation of such graph min-
ing results. To name a few, non-negative matrix factorization
methods restrict the entries in F and G to be non-negative;
example-based methods generate sparse de-composition by
requiring the columns of the matrix F to be the actual columns
of the original matrix A; etc. By imposing such non-negativity
and/or sparseness constrains on the factorized matrices, it 1s
relatively easier to interpret the community detection results.
Actually, 1t 1s now widely realized that non-negativity 1s a
highly desirable property for interpretation since negative
values are usually hard to interpret. However, most, 11 not all,
of these constraints (i.e., non-negativity, sparseness, etc) are
imposed on the factorized matrices. Consequently, these
existing methods are tailored for the task of community detec-
tion. It 1s not clear how to improve the interpretation for the
task of anomaly detection from the algorithmic aspect. An
issue that may be addressed by the present mvention 1is
whether similar constraints (e.g., non-negativity) be imposed
on the residual matrix R to improve the interpretation for
graph anomaly detection.

From an application side, 1t 1s often the case that anomalies
on graphs correspond to some actual behaviors/activities of
certain nodes. For instance, an IP source might be flagged as
a suspicious port-scanner 1f 1t sends packages to a lot of
destinations 1n an IP traffic network; an IP address might be
under the DDoS (distributed demal-of-service) attack 11 it
receives packages from many different sources; a person 1s
flagged as ‘extremely multi-disciplinary’ 11 s/he publishes
papers 1n many remotely related fields in an author-confer-
ence network; in certain collusion-type of fraud 1n a financial
transaction network, a group of users always gives good rat-
ings to another group of users in order to artificially boost the
reputation of the target group, etc. If such behaviors/activities
(e.g., ‘sends/receives packages’, ‘publishes papers’, ‘gives
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good ratings’, etc) are mapped to the language of matrix
factorization, it also suggests that the corresponding entries in
the residual matrix R should be non-negative.

In response to such challenges, the present invention may
provide a new matrix factorization (NrMF) for the task of
graph anomaly detection. The present invention 1s the first to
address the interpretation 1ssue of matrix factorization for the
purpose of graph anomaly detection. Some of the major con-
tributions of the present invention may include:

1. Problem formulation, presenting a new formulation for
matrix factorization (NrMF) tailored for graph anomaly
detection;

2. An effective algorithm (AltQP-Inc) to solve the above
optimization problem, linear with respect to the size of the
graph;

3. Proots and analysis, showing the effectiveness as well as
the efficiency of the proposed method;

4. Experimental evaluations, demonstrating both the effec-
tiveness and elficiency of the proposed method.

Problem Definitions

TABL.

Ll
[

Svmbols

Definition and Description

matrices (bold upper case)

the element at the i”” row and j* column
of matrix A

the i” row of matrix A

the j* column of matrix A
transpose of matrix A

column vectors (bold lower case)
G factorized matrices of A

residual matrix of A

number of type 1 objects iIn A
number of type 2 objects in A
number of edges in A

rank size

Table 1 lists the main symbols which may be used to
describe the present invention. An exemplary aspect of the
present invention may involve the most general case of bipar-
tite graphs. A general bipartite graph may be represented
herein by 1ts adjacency matrix (In practice, these matrices
may be stored using an adjacency list representation, since
real graphs are often very sparse).

Following the standard notation, capital bold letters may be
used herein for matrices (e.g., A), lower case bold letters for
vectors (e.g., a). The transpose may be denoted with a prime
(1.e., A' 15 the transpose of A). Subscripts may be used to
denote the size of matrices/vectors (e.g., A, means a matrix
of size nxl). When the si1ze of a matrix or a vector 1s clear from
the context, such subscripts may be 1ignored for brevity. Also,
the elements 1n a matrix may be represented herein by using,
a convention similar to Matlab, e.g., A (1,1) 1s the element at
the i” row and j” column of the matrix A, and A(:,j) is the
column of A, etc.

With the above notations, a general matrix factorization
problem can be formally defined as

PROBLEM 1. Matrix Factorization
(Given: A graph A ,, and the rank size r;

Find: Its low-rank approximation structure. That1s, find (1)
two factorized matrices F, .., and G, ;, and the residual

FINF el

matrix R, _,; such that (1) A _,=F G, ,, and (2)
RH}{Z: H:{Z_FH}:FGF}:Z'
follows:

Existing matrix factorization techniques can be viewed as
different instantiations of Problem 1. They differ from each
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other, mainly from the following two aspects: (1) by using the
different metrics to measure the approximation accuracy
(some norms on the residual matrix R); and (2) by imposing
the different constraints on the factorized matrices F and G.
For example, non-negative matrix factorization requires the °
factorized matrices to be non-negative.

Another instantiation of Problem 1 may be presented by
imposing the non-negativity constrains on the residual matrix
R. This problem, Non-Negative Residual Matrix Factoriza-

tion (NrMF), 1s formally defined as follows: 10
PROBLEM 2. Non-Negative Residual Matrix Factoriza-
tion (NrMF)
Given: A graph A ,, and the rank size r;
Find: Its low-rank approximation structure. That 1s, find .

two factorized matrices F, . and G, ,, and the residual
matrix R, __,; such that (1) A __~F, G, ., (2) R =

prl
A ~F .G, ;and (3) for all A(1,7)>0, R(1,1)=0.

Xy PRI

Problem 2 1s tailored for the task of graph anomaly detec-
tion, where the corresponding elements R (1, j) are explicitly ,,
required 1n the residual matrix R to be non-negative 11 there
ex1sts an edge between node 1 and node 7 1n the original graph
(1.e., A (1,71)>0). As explained earlier, the residual matrix R 1s
often a good indicator for anomalies on graphs. Moreover,
many abnormal behaviors/activities (e.g., port-scanner, .
DDoS, etc) can be mapped to some non-negative entries in the
residual matrix R. For instance, a large entry in R might
indicate a strange interaction between two objects; a heavy
row/column of R might indicate a suspicious object (e.g.,
port-scanner, or an IP ad-dress that 1s under DDoS attack, -,
ctc). In NrMF, the present invention may aim to capture such
abnormal behaviors/activities by explicitly imposing non-
negativity constrains on the residual matrix R. Moreover,
NrMF directly brings the non-negativity, an interpretation-
triendly property, to the task ot graph anomaly detection since ;.
negative values are usually hard to interpret. For example, by
existing matrix factorization methods, the data analyst has to
look at (somewhat abstract) residual matrix, which contains
both positive and negative entries, and calculate the re-con-
struction errors to spot anomalies. In contrast, thanks to the ,,
non-negativity constraints in NrMF, the residual matrix itself
can be presented as a residual graph, which might be more
intuitive for the data analyst to interpret.

The Proposed Solutions for NrMF

Optimization Formulations 45

Formally, Problem 2 can be formulated as the following

optimization problem:

argming g = || Ry ® WosllF B-D 5

n {
= (A(L, )= F(i, DG(:, YW, 7
i=1 j=1

s.t. for all A(i, j) > O:

F, )G(:, j) = AG, ) 2

In eq. (3.1), ® means element-wise multiplication. In
other words, a weighted squared Frobemius norm of the
residual matrix R 1s used to measure the approximation accu- 60
racy, through a weight matrix W __,. For every edge 1n the
graph (1.e., A (1, 1)>0), we require that FQ1, :)G(:,1)=A (1,1),
which means that the corresponding residual entry R(1, j)
should satisty that R(1,1)=A@,1)-F(, :)G(:,1)=0.

0/1 Weight Matrix for Eq. (3.1) 65

In eq. (3.1), the weight matrix W reflects the user’s prefer-
ence among all nxl reconstructed entries. An exemplary

8

aspect of the present invention may focus on a special case of
welght matrix W: W(1,1)=1 for A(1,1)>0; and W(1,1)=0 other-
wise. This means that the exemplary aspect of the present
invention may only measure the element-wise loss on the
observed edges; and among all these edges, the element-wise
loss 1s treated equally (referred to as ‘0/1 Weight Matrix”’).
This type of weight matrix 1s widely used 1n the conventional
methods, especially 1n the context of collaborative filtering.
With such 0/1 weight matrix, eq. (3.1) can be simplified as:

argming.c ) (A j)— F(i, )G(:, )’ (3.2)

i, Al >0
S.1. for all A(i, ) > 0:

F(i, )G(:, )= A )

The present invention will be described herein by focusing,
on eq. (3.2) for clanity. However, the proposed techniques can
be naturally applied to a general, arbitrary weight matrix W.

Rank-1 Approximation for Eq. (3.2)

Ineq. (3.2), 11 the rank of the factorized matrices F and G 1s
restricted to be 1, the following rank-1 approximation of eq.
(3.2) 1s provided, where 1 1s an nxIl column vector and g 1s a
1 x]1 row vector.

argming ;Y (Al ) - F(Dg()) (3:3)

i, j A, )0
S.1. for all A(i, /) > 0:

Jg(j) = Al j)

The Proposed Optimization Algorithms

Challenges

Unfortunately, the optimization problem formulated 1n eq.
(3.2) 1s not convex with respect to F and G jointly due to the
coupling between F and G 1n both the objective function and
the inequality constraints. Therefore, 1t might be unrealistic to
seek for a global optimal solution. A natural way to handle
this 1ssue 1s to find F and G alternatively. Actually, 1t can be
shown that 1f either G or F 1s fixed 1n (3.2), the resulting
optimization problem 1s a convex quadratic programming
problem with respect to the remaining matrix (For ). This
suggests the following greedy optimization strategy (referred
to as AltQP-Batch: after some mitialization, F and G are
alternatively updated using convex quadratic programming
until convergence. With AltQP-Batch, a local minimal solu-
tion can be found for eq. (3.2), which 1s acceptable 1n terms of
optimization quality for a non-convex problem. However,
most, 1if not all, of existing convex quadratic programming
methods are polynomial with respect to the number of vari-
ables. This makes the overall complexity of AltQP-Batch to
be polynomial, which might not scale very well for large
graphs.

To address these challenges, the present invention may
provide an effective and efficient algorithm AlItQP-Inc. The
basic 1dea of AlItQP-Inc 1s to find the resulting F and G
incrementally: at each iteration, the present invention may try
to find a rank-1 approximation on the current residual matrix
by solving eq. (3.3). This strategy bears the similar greedy
nature as AltQPBatch. Therefore, the strategy also leads to a
local minimal solution for eq. (3.2), yet its time complexity 1s
linear with respect to the size of the graph, which makes the
algorithm more suitable for large graphs.
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AltQP-Inc-1: Proposed Algorithm for Eq. (3.3)

Again, €q. (3.3) 1s not convex with respect to T and g jointly
due to the coupling between 1 and g. Therefore, the present
invention may provide an alternative strategy: the algorithm
alternatively iterates as follows until convergence: (1) updat-
ing 1 while keeping g fixed; and (2) updating g while keeping
T fixed.

Formally, let us consider how to update g while keeping 1
fixed (updating 1 1s similar as updating g). In this case, eq.
(3.3) can be further simplified as:

argming > (A(L )) - f(Dg()) (34
1,4, A, f)=0
S.1. for all A(i, j) > 0:

fDg()) = A, j)

It 1s easy to show that eq. (3.4) 1s convex with respect to g.
The proposed algorithm (Update-g) for solving eq. (3.4) 1s
summarized in Algorithm 1.

Algorithm 1 Update-g (For Solving e.q. 3.4)

Input: The original matrix A, ; and a column vector
Output: A row vector g;,.;
l1: forj=1:1do
2: Initialize the lower bound low = —inf, upper bound
up =mf,t =0 and q =0;

3: for each 1, s.t.. A(1,])> 0 do
4: Update: g <= q + f(1)A(L, |)
5: Update: t < t + f(i)?
6: if (1) > 0 then
7: Update: up = min(up, A(i, 1)/1(1))
R: else 1f £(1) <O then
9: Update: low = max(low, A(1, 1)/1(1))

10: else

11: Continue;

12: end 1f

13: end for

14: if t == 0 then

15: Set: g(1) = 0;

16: Continue;

17: end 1f

18: Set: q < g/t

19: if @ <=up and q >= low then

20: Output: g(j) = q;

21: else 1f g > up then

22: Output: g(1) = up;

23: else

24: Output: g(j) = low;

25: end 1f

26: end for

At each outer loop of Algorithm 1, the present invention
may update a single entry g(3) G=1, . . ., 1), which 1s 1n turn
done by some closed formula (steps 19-25 1 Algorithm 1).
The main difference between Update-g and AltQP-Batchis as
tollows: 1in Update-g, g 1s a row vector and a computationally
cheap closed formula may be used to solve eq. (3.4). In
contrast, some expensive convex quadratic programming
packages may need to be called in AltQP-Batch to find the
optimal solution.

Based on Algorithm 1, Algorithm 2 (Rank-1-Approxima-
tion) may be used to solve eq. (3.3): after some 1nitializations

(step 1).
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Algorithm 2 Rank-1-Approximation (For Solving e.q. 3.3)

Input: The original matrix A

nx!

Output: A column vector 1,,, ;; and a row vector g, ;;

1>
1: Initialize f , and g,

2: while Not convergent do

3: Update: g < Update-g( A, )
4:  Set: f < Update-g(A, ")

5 Update: f=f

6: end while

Algorithm 2 alternates between the following two steps
until convergence: (1) update g while keeping 1 fixed by
calling Update-g (step 3); and (2) update 1 while keeping g
fixed by calling Update-g (step 4).

AltQP-Inc: Proposed Algorithm for Eq. (3.2)

Based on Algorithm 2, the Algorithm AItQP-Inc for solv-
ing the original eq. (3.2) 1s summarized i Algorithm 3.

Algorithm 3 AltQP-Inc (For Solving e.q. 3.2)

Input: The original matrix A, ;, and rank size r

i

Output: Ann x 1 matrix F: a r x | matrix G; and ann x |
matrix R
Initialize F =0
fork=1:rdo

(I, g) < Rank-1-Approximation(R)

1: and R=A
2:
3:
4: Set F(:, k)=1,and Gk, :) =g
5
6
7
&:

G=0

1M i

for every (1, ), s.t., A(1, 1) > 0 do
Update R(1, j) <= R(1, J) - 1{1)g()
end for
end for

Algorithm 3 1s an incremental algorithm: at each 1teration,
Algorithm 3 calls Algorithm 2 to find a rank-1 approximation
for the current residual matrix R (steps 3-4). It should be noted
that since eq. (3.2) 1s an instantiation of eq. (3.1) by using the
0/1 weight matrix, the residual entries only need to be updated
where there exists an edge in the original graph (1.e., A(1, 1)>0)
in steps 5-7.

Analysis of the Proposed Algorithms

Effectiveness of the Proposed Algorithms

The effectiveness of the proposed algorithms 1s summa-
rized 1n Lemma 4.1, which basically says that the proposed
AltQPInc finds a local minima of eq. (3.2). Given that the
optimization problem 1n eq. (3.2) 1s not convex with respectto
F and G jointly, such a local minima 1s acceptable 1n terms of
the optimization quality.

LEMMA 4.1. Effectiveness. (P1) Update-g in Alg. 1 gives
the global optimal solution for the optimization problem
in e.q. (3.4); (P2) Rank-1 Approximation in Alg. 2 finds
a local minima of the optimization problem i e.q. (3.3);
and (P3) AltQP-Inc in Alg. 3 finds a local mimima for the
optimization problem 1n e.q. (3.2).

Sketch of Proof:

For brevity, only the proot for (P1) 1s given; since (P2) and

(P3) are relatively straight-forward based on (P1).

Here, the key point is that eq. (3.4) can be decomposed 1nto
the following/independent optimization problems, each of
which only mvolves a single variable g(1) =1, . . ., 1):

(4.5)

D (AG D - g

i AG, >0

argmin, .
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-continued
for all A(i, j)>0:

Jg(j) = Al J)

S.1.

For a given j, e.q. (4.5) is equivalent to*:

argming ;, g()* — 2gg(j) (4.6)

s.1. low < g(j) <up

S fiAd ) / (

iLAG, )0

where: g = ( Z f(f)z]

| AGJ)>0
low = maxsy<0,ai, >0 1AL, j)/ (D}

Up = maxs;y»0, a6, =0 1A )/ F (D}

(It should be noted that a constant term has been dropped
from the objective function since 1t does not atfect the optimal
solution).

In eq. (4.6), a quadratic objective function 1s provided with
respect to a single variable g(j), where g(1) has a boundary
constraint (low=g(y)=up). It 1s easy to verily that each outer

loop of Algorithm 1 gives the global optimal solution for eq.
(4.6). Therelfore, the whole Algorithm 1 gives the global

optimal solution for eq. (3.4), which completes the proof.
Time Efficiency of the Proposed Algorithms
The time complexity of the proposed algorithms 1s sum-

marized in Lemma 4.2, which basically says that for all the
three algorithms proposed in the exemplary aspects of the
present invention, the algorithms are linear with respect to the
size of graph m, n and 1. Therefore, all of the algorithms
(Algorithms 1, 2 and 3) are scalable for large graphs.

LEMMA 4.2. Time Complexity. (P1) Update-g 1n Alg. 1
requires O(m+l) time; (P2) Rank-1-Approximation in
Alg. 2 requires O(mt+nt+lt) time; and (P3) AItQP-Inc in
Alg. 3 requires O(nrt+mrt+Irt) time, where t 1s the maxi-
mum iteration number 1n Alg. 2.

Proof of P1: The time cost for step 2 of Alg 1 1s O(l) Let
m, be the total number of non-zero elements in the
column of matrix A. we have 2., m =m. The time cost
for step 3 and 13 1s O(m,) since we need O(1) operations
for each non-zero element 1 A(:,1). The cost for steps
14-17 1s O(1). We need another O(1) time for step 18.
Finally, for steps 19-23, we need O(1) time. Therefore,
the total cost for Alg. 1 1S 2 (O(l)+0(m )FOD)+0O
(2, m) O(m+1) which Completes the proof

Proof of P2 Step 1 1n Alg. 2 takes O(l+n) time. Based on
(P1), we need O(m+1) and O(m+n) for step 3 and 4,
respectively. We need another O(n) for step 5. Therefore.
the overall time complexity of Alg. 2 1s O(1+n)+(O(m+
D+O(m+n)+0(n) )t=0O(mt+nt+lt), which completes the
prootl.

Proot of P3: Step 1 1n Alg. 3 takes O(nr+lr+m) time. Let m,
be the number of non-zeros elements in R in the k”
iteration ol Alg. 3, we have that m,=m and m,=m
(k=2, ..., r). Based on (P2). we need O(n,t+nt+1t) for
step 3. For step 4, we need O(n+l]) time. We need addi-
tional O(m) time for updating R (steps 35-7). Putting
these together, the overall time complexity of Alg. 3 1s
O(nr+lr+m)+2, 7  O@n, t+nt+lt+m+n+l)=O(mrt+nrt+
Irt), which completes the proof.

Space Efficiency of the Proposed Algorithms

The space complexity of the proposed algorithms 1s sum-

marized in Lemma 4.3, which basically says that for all the
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three algorithms proposed (1.e., Algorithms 1, 2 and 3), the
space complexity 1s linear with respect to the size of graph m,
n and 1. Therefore, the Algorithms 1, 2 and 3 are scalable for
large graphs.

LEMMA 4.3. Space Complexity. (P1) Update-g in Alg. 1
requires O(m+n+l) space; (P2) Rank-1-Approximation
in Alg. 2 requires O(m+n+l) space; and (P3) AItQP-Inc
in Alg. 3 requires O(m+nr+lr) space.

Proofof P1: In Alg. 1, we need O(m), O(n), and O(1) space
to keep the original matrix A, the column vector 1, and
the row vector g, respectively. For all the remaining steps
in Alg. 1, they requires O(l) space respectively. Among,
the different iterations of Alg. 1, we can re-use the space
from the previous iteration. Therefore, the overall space
complexity of Alg. 1 1s O(m+n+1), which completes the
proof.

Proof of P2: In Alg. 2, we need O(m) space for the original
matrix A. The mitialization in step 1 needs O(n+l) space.
By (P1), we need O(m+n+1) space for steps 3-4, respec-
tively. Step 5 tasks another O(n) space. Among the dif-
ferent iterations of Alg. 1, we can re-use the space from
the previous iteration. Therefore, the overall space com-
plexity of Alg. 2 1s O(m)+O(n+)+O(2m+2n+21)+
O(n)=O(m+n+1), which completes the proof.

Prootf of P3: In Alg. 3, we need O(m) space for the original
matrix A. The initialization 1n step 1 needs O(nr+lr+m)
space. Let m, be the number of non-zeros elements in R
its the k” iteration, we have that m,=m and m,=m
(k=2,...,r). Based on (P2), we need O(m, +n+l) for step
3. For steps 4-'7, they do not require extra space. Finally,
among different iterations, we can reuse the space from
the first iteration since m,<m,—m(k=1, . . ., r). Therelore,
the overall space complexity of Alg. 3 15 O(m)+O(nr+
Ir+m)+O(max(m,)+n+1)=O(m+nr+lr), which completes
the proof.

Experimental Results

The inventors have demonstrated the effectiveness and

eificiency of the present invention by experimental evalua-
tions, after we introduce the data sets. All of the experiments
were designed to answer the following two questions:

Effectiveness: What kinds of anomalies can the proposed
AlItQP-Inc detect?

Efficiency: How {fast 1s the proposed AltQP-Inc, and how
does 1t scale?

Data Sets

Four different data sets were used 1n the experiments con-

ducted by the inventors. The results of these experiments are
summarized 1n Table 2.

TABL.

(L]

2

Data sets used 1n evaluations

Name nxl m
MIT-DP 103 x 97 5,449
NIPS-PW 2,037 x 13,649 1,624,335
CIKM-PA 1,895 x 952 2,664
MovielLens 6,040 x 3,952 575,281

The first data set (MIT-DP) 1s from the MIT Reality Mining

project. Rows represent the blue tooth devices and columns
represent the persons. The unweighted edges represent the
scanning activities between the devices and persons. In total,
there are 103 devices, 97 persons and 5,449 scanning activi-
ties.

NIPS-PW 1s from the NIPS proceedings. Rows represent
papers and columns represent words. Weighted edges repre-
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sent the count of the words that appear 1n the corresponding
papers. In total, there are 2,037 authors, 13,649 words, and
1,624,335 edges.

CIKM-PA 1s an author-paper graph constructed from
CIKM proceedings. Rows represent the authors and columns
represent the papers. A given paper 1s connected with all of its
co-authors by edges. In total, there are 1,895 authors, 952
papers and 2,664 edges.

MovielLens 1s a user-movie rating graph. Rows represent
users and columns represent movies. If a user has give a
positive rating (4 or 5) to a particular movie, we connect them
with an edge. Here, the edge weight 1s the actual rating (4 or
5). In total, we have 6,040 users, 3,952 movies, and 575,281
edges.

Effectiveness Results

The exemplary aspects of the present invention may focus
on the following four types of anomalies on bipartite graphs:

1. Strange connection (referred to as ‘strange connection’).
This 1s a connection between two nodes which belong to two
remotely connected communities, respectively. For example,
in author-conference graph, this could be the case 1n which an
author publishes a paper 1n a conference which is remotely
related to his/her major research interest (e.g., a system guy
publishes a paper 1n a theory conference, etc).

2. Port-scanning like behavior (referred to as ‘port-scan’).
This 1s a type- 1 node that 1s connected to many different
type-2 nodes in the bipartite graph. For example, in an IP
traific network, this could be an IP source which sends pack-
ages to many different IP destinations (therefore, the IP
source might be a suspicious port scanner).

3. DDoS like behavior (referred to as ‘ddos’). This 15 a
type-2 node that 1s connected to many different type-1 nodes
in the bipartite graph. For example, 1n an IP traffic network,
this could be an IP destination which receives packages from
many different IP sources (therefore, the IP destination might
be under DDoS, distributed denial-of-service, attack).

4. Collusion type of fraud (referred to as ‘bipartite core’).
This 1s a group of type-1 nodes and a group of type-2 nodes
which are tightly connected with each other. For example, in
a financial transaction network, this could be a group of users
who always give good ratings to another group of users in
order to artificially boost the reputation of the target group.

Since the ground-truth for the anomalies 1s not available,
the following methodology was used for evaluation: ran-
domly 1nject one of the above anomalies into the original
(normal) graph, and see 11 the proposed algorithm can spot 1t
from the top-k edges of the residual matrix R.

Qualitative Results. Since the residual elements 1n R by the
proposed AltQP-Inc are non-negative, the residual R itself
can be plotted as a residual graph as follows. The residual
graph has the same node sets as the original graph A. For each
edge (1,1) n A (1.e., A(1,1)>0), an edge 1s placed between node
1 and node 7 1n the residual graph 1f R(1, 1)>0 with the weight
R(1, 7). Compared with the traditional matrix factorization
methods (where one has to calculate and look at the abstract
re-construction error for anomalies), the residual graph might
provide a more intuitive way to spot anomalies on graphs.

FIGS. 3A-3D 1illustrate anomaly detection on synthetic
graphs. In particular, FIG. 3A 1s a graph for a strange connec-
tion, FIG. 3B 1s a graph for a port scanning, FIG. 3C 1s a graph
for a ddos, and FIG. 3D is a graph for a bipartite core.

Each dot 300 1n FIGS. 3A-3D represents an edge (or non-
zero elements) 1n the graph or 1n the residual matrices. The
anomalies detected by the proposed AltQP-Inc are marked by
circles (e.g., ellipses) 350 1n FIGS. 3A-3D.

For each sub-figure, one of the four anomalies 1s 1mjected
into the normal graphs, and the original matrix (left), the top-k
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edges 1n the residual matrix by AltQP-Inc (middle) and the
residual matrix by singular value decomposition (SVD)
(right) are plotted. It can be seen that in all cases, the corre-
sponding anomalies clearly stand out 1n the corresponding
residual matrix by the proposed AltQPInc (middle figures).
On the other hand, (1) SVD does not always capture the
corresponding anomalies (e.g., FIG. 3A), and/or (2) there
might be some noise 1 the residual matrix by SVD (e.g.,
FIGS. 3B-3D). In addition, since the residual entries in SVD

can be both positive and negative, the residual matrix cannot
be plotted by SVD as an intuitive residual graph.

FIG. 4 1llustrates the quantitative results on the four real
data sets (1.e., movie lens (a), MIT-DP (b), NIPS-PW (c¢) and
CIKM-PA (d)) In particular, FIG. 4 illustrates anomaly

detection on real graphs by the proposed AltQP-Inc. For each
data set, one of the four anomalies 1s randomly 1njected into
the data set. The proposed AlItQP-Inc 1s then run to find the
residual matrix and output its top-k edges as anomalies. Each
of such experiments was repeated 20 times and the mean
accuracy and variance 1s 1llustrated 1n FI1G. 2. It can be seen 1n
FIG. 4 that Alt QP-Inc achieves high detection accuracy for
all the four types of anomalies (e.g., strange connection, port
scanning, ddos and bipartite core), across all the four data sets
(a-d).

Efficiency Results

The inventors have evaluated the efficiency of the proposed
AltQP-Inc. The results reported 1n this subsection are tested
on the same machine with four 3.0 GHz Intel® Xeon® CPUs
and 16 GB memory, running Linux (2.6 kernel). The experi-
ments were repeated 10 times and the mean wall-clock time
was reported.

First, the wall-clock time 1s compared between the pro-
posed AltQP-Inc and AltQP-Batch (described in detail
below). FIG. 5 1llustrates the comparison of the wall-clock
time for the four real data sets (i.e., movie lens, MIT-DP,
NIPS-PW and CIKM-PA).

In FIG. 5, the number 1nside the parentheses beside the

name of the data sets, 1s the ratio between the re-construction
error by AItQP-Inc and that by AltQP-Batch. It can be seen

that the proposed AltQP-Inc 1s much faster than AltQP-Batch.
For example, AItQP-Inc 1s 51 times faster (3.6 sec. vs. 1 86
sec.) than AltQP-Batch on MovieLens data set. Note that the
ratio between the re-construction error by AltQPInc and that
by AltQP-Batch 1s always less than or equal to 1, indicating

that the optimization solution by AltQP-Inc 1s better than
(MIT-DP and MovieLens) or stmilar to (NIPSPW and CIKM-

PA) that by AltQP-Batch.

Next, the scalability of AItQP-Inc was tested using the
subsets of the MovielLens data set with the different rank size
r. FIGS. 6 A-6C 1llustrate the results of the tests on the scal-
ability of AItQP-Inc. with different rank sizer (e.g., r=1, r=2,
=3, r=10 and r=20). In particular, FIG. 6 A illustrates wall-
clock time vs. n, FIG. 6B 1llustrates wall-clock time vs. 1, and
FIG. 6C illustrates wall-clock time vs. m. It can be seen that
the proposed AltQP-Inc scales linearly with respect to the
graph size (n, 1 and m).

In summary, the present imnvention may present a novel
matrix factorization (NrMF) paradigm, which aims to detect
abnormal behaviors/activities on graphs 1n a more interpret-
able way. Some of the novel aspects of the present invention
may include:

1. Problem formulation, presenting a new formulation for
matrix factorization tailored for graph anomaly detection;

2. An effective algorithm (AltQP-Inc) to solve the above
optimization problem, linear with respect to the size of the
graph;
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3. Proois and analysis, showing the effectiveness as well as
the efficiency of the proposed method according to an exem-
plary aspect of the present mnvention (e.g., Lemma 4.1,
Lemma 4.2, etc);

4. Experimental evaluations, demonstrating both the effec-
tiveness and efficiency of the proposed method according to
an exemplary aspect of the present invention.

Further, the invention may also 1include extending
AltQPInc to time-evolving graphs, and parallelizing AItQP-
Inc using Hadoop.

Further, the present invention may have many practical
applications. For example, the present invention may be used
to detect anomalies 1n large bi-partite graphs 1n Social Net-
work Analysis (e.g., given a people-people graph, find mis-
behavioral persons), HealthCare (e.g., given a patient-physi-
cian graph, or a patient-treatment graph, find strange patient,
compromised physicians, etc.), Crime Prevention (e.g., given
an 1incident-people-gang graph, find new criminal trend, find
potential suspects, etc.), Financial Fraud Detection (e.g.,
given a transaction graph, or a institute/people-transaction
graph, find abnormal transactions, scammers), Cyber-secu-
rity (e.g., given an IP-traffic graph, find port scanner, find
vulnerable Ws, etc.).

In short, the present mvention provides a method and sys-
tem for managing a large size of graph, that 1s efficient 1n both
storage cost and on-line query, and has broad applicability.

Algorithms of Other Exemplary Aspects of the Present
Invention

The present invention 1s described above by focusing on
the optimization problem 1n eq. (3.2), and restricted to the 0/1
weight matrix. However, other exemplary aspects of the
present invention may provide algorithms for solving the
optimization problem in eq. (3.1) with a general weight
matrix W for the purpose of completeness. That 1s, the pro-
posed AItQP-Inc may be generalized to handle the general
weight matrix W (AltQP-Inc-General), and the alternative
optimization algorithm (AltQP-Batch) may be given for solv-
ing ed. (3.1), using convex quadratic programming.

Generalized AItQP-Inc for Eqg. (3.1)

In order to generalize the proposed Alt QP-Inc to solve eq.
(3.1) with a general weight matrix W, Algorithm 4 (Update-
General-g) 1s first given to solve the sub-problem expressed in

eq. (1.7).

Algorithm 4 Update-General-g (For Solving e.q. 1.7)

Input: The original matrix A, the weight matrix W __,,
and a column vector f
Output: A row vector g..;
1: forj=1:1do
2: Initialize the lower bound low = —inf and upper

bound up = inf;
Compute: a =diag(W(:, 1)) - A5, 1)
Compute: b = diag(W(:, 1)) - 1
Compute: t =b'b
if t ==0 then
Set: g(j) =0;
Continue;
end 1f
Compute: q = a'b/t
for each 1s.t. A(1, 1) > 0do
if 1(1) > O then
Update: up = mn(up, A1, 1)/1(1))
else 1f £(1) < O then
Update: low = max(low, AQ, 1)/1(1))
else
Continue;

end if

end for

VD 0 =] Oy oL P ) rd — OOND G0 ] Oy P L
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-continued

Algorithm 4 Update-General-g (For Solving e.q. 1.7)

20: if ¢ <=up and q >= low then
21: Output: g(1) = q;

22: else 1f q > up then

23: Output: g(1) = up;

24: else

25: Output: g(1) = low;

26: end 1f

27: end for

Algorithm 4 (Update-General-g) 1s for an arbitrary weight
matrix W and 1s a natural generalization of Update-g. In
Update-General-g, diag(W(:.,1)) 1s a diagonal matnx wait
diagonal elements being W(1,))a=1, . . . , n). Siumilar as
Update-g, in Update-General-g, g(1) may be updated one by
one 1n each outer loop. For each g (3), it can be solved 1n a
closed formula (steps 20-26). This 1s due to the fact that the
optimization problem described above i eq. 1.7 can be
decomposed 1nto/independent optimization problems, each
of which only involves a single vanable g(3) =1, . . ., 1).

argming > ((A(i, /) = f(Dg())- W(i, j))’ (1.7)
L)

s.1. for all A(i, j) > 0:

Jg(j) = A, )

Based on Algorithm 4, Algorithm 5 (AltQP-Inc-General )
may be provided to solve eq. (3.1). AltQP-Inc-General 1s a
natural generalization of AltQP-Inc.

Algorithm 5 AltQP-Inc-General (For Solving e.q. 3.1)

Input: The original matrix A, ;, the weight matrix W, and
rank size r
Output: Ann x rmatrix F; ar x | matrix G; and ann x |
matrix R;
: Initialize F =0
fork=1:rdo
Initialize f and g
while Not convergent do
Update: g < Update-General-g(R, W, 1)
Set: < Update-General-g(R', W', g')
Update: =1
end while
SetF(i, k)=1,and G(k, ;) =g
Update R« R-1-g
end for

G=0,,and R=A

FT i

N AR AR o

—t et

Similar as AltQP-Inc, AltQP-Inc-General tries to find the
factorized matrices F and G 1n an incremental way. At each
outer loop of Algorithm 35, the algorithm finds a Rank-1

approximation on the current residual matrix R (steps 2-11).
At the mner loop of Algorithm 5 (steps 4-8), the algorithm
calls Update-General-g to alternatively update 1 and g,
respectively. This alternative process will be iterated until
convergence. After the algorithm finds a rank-1 approxima-
tion, the current residual matrix 1s updated in step 10.

Alt QP-Batch for Eq. (3.1)

The optimization problem 1n eq. (3.1) may also be solved
by convex quadratic programming. To this end, assume a
package (x=QpProg(T, S, u, v)) to solve the following qua-
dratic programming problem 1n eq. (1.8).
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argmin,, , = X TyxgX + Uty X (1.8)

s.1. Sexd X = Vexl

In eq. (1.8), x 1s a dx1 vector that we want to solve and the
inequality holds element-wisely. ITf T 1s semi-positive defi-
nite, QpProg( ) requires at least O(d*) time (besides the poly-
nomial term, there 1s usually an additional term in the time
complexity which relates to the encoding length of the qua-
dratic programming problem), where k>1 (e.g., k=3, k=3.5)
and 1t depends on the actual methods to solve quadratic pro-
gramming.

To solve eq. (3.1) by convex quadratic programming, the
algorithm (Batch-Update-G) 1s given to solve the following

optimization problem 1n eq. (1.9), which 1s a sub-problem of
the optimization problem 1n eq. (3.1).

n (19)
argming = ) ) (Al )= F(i, 9G(:, PWA, j)

i=1 j=1

S.1. for all A(i, j) > 0:

F(i, )G, )= AG, )

Algorithm 6 (Batch-Update-G) 1s similar as Update-g
except that: i each outer loop of Batch-Update-G, a single
rx1 column vector G(:, 1) =1, . . ., 1) 1s found.

Algorithm 6 Batch-Update-G (For Solving e.q. 1.9)

Input: The original matrix A ;, the weight matrix W

i
and left matrix F

XY

Output: The nght matnix G,
l1: forj=1:1do

i

2: Compute: a,,.; = diag(W(:, 1)) - A5, )
3: Compute: B, .. =diag(W(:,])) - F
4: fori=1:ndo
5: 1T A(1, j) > 0 then
6: Set: v(1) = AL, )
7: else
8: Set: v(1) = inf
9: end 1f
10: end for
11: Compute: X = B'B
12: Compute: u=-2B"a
13: Set: S =F
14: Solve G (i, ) < QpProg(T, S, u, v)
15: end for

Whereas 1n each outer loop of Update-g, a single variable
g (1) (=1, ...,1)1s found. This subtle point may lead to a big
difference in terms of the time complexity. In Batch-Update-
G, expensive convex quadratic programming must be used to
find G (:, 7); whereas in Update-g, computationally cheap
closed formula can be used to find g(j). It can be shown that
the quadratic programming problem in step 14 1s semi-posi-
tive definite which takes at least O(r*) time, and the overall
Batch-Update-G requires at least O(m+nlr*+1r®) time.

Based on Batch-Update-G, Algonthm 7 (AltQPBatch)
may be provided to solve the problem 1n eq. (3.1).

Algorithm 7 AltQP-Batch (For Solving e.q. 3.1)

Input: The original matrix A, the weight matrix W, and
rank size r
Output: Ann x rmatrx F; ar x | matrix G;andann x |

matrix R;
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-continued

Algorithm 7 AltQP-Batch (For Solving e.q. 3.1)

Initialize ¥, and G

X !

while Not convergent do
Update: G < Batch-Update-G(A, W, IF)
Set: F «— Batch-Update-G(A', W', G')
Update: F = F'

end while

Output: R=A - FG

RN A o e

In AltQP-Batch, after some initialization (step 1), Batch-
Update-G may be alternatively called to update F and G by
fixing one of them. This alternative process will be iterated
until convergence. It can be shown that the time complexity of

AltQP-Batch is at least O(m t+nlrt+lrt+nr*t), where t is the

maximuim 1teration number in AltQP-Batch and k>1 relates to
the actual methods to solve the convex quadratic program-
ming. Compared with the complexity of the proposed AltQP-
Inc (O(mrt+nrt+lrt)), AltQP-Batch 1s much more time con-
suming.

Comparison of Exemplary Aspects of the Present Inven-
tion to Conventional Methods

Conventional methods related to detecting abnormal
behavior on bi-partite graphs can be categorized into three
parts: matrix factorization, anomaly detection and general
graph mining.

Matrix Factorization

Matrix factorization plays a very important role in graph
mining. The most popular choices include SVD/PCA and
random projection. However, these methods often 1gnore the
sparseness and nonnegativity of many real graphs and lead to
dense and negative results, which make the results hard to
interpret. A recent trend in matrix factorization has been
devoted to improving the interpretation of the mining results.
For example, to address the sparseness 1ssue, the example-
based factorization methods have been proposed. By requir-
ing the columns of the factorized matrix F be to actual col-
umns from the original matrix A, the factorization is naturally
sparse and therefore good for interpretation.

To address the non-negativity issue, non-negative matrix
factorization has been studied 1n the past few years. There are
also efforts to address both the sparseness and non-negativity
1ssues. It 1s worth pointing out that most, 1f not all, of these
modifications (1.e., sparseness and non-negativity constrains)
are 1mposed on the factorized matrices. As a result, they
mainly improve the interpretation for the task of community
detection. It 1s unclear how these efforts can also help to
improve the imterpretation for the task of anomaly detection.

Improving the interpretation for the task of anomaly detec-
tion 1s one major motivation of the present imvention. By
imposing the non-negativity constraints on the residual
matrix, instead of the factorized matrices, the present mnven-
tion may bring this interpretation-iriendly property (i.e., non-
negativity) to graph anomaly detection.

Anomaly Detection

Abnormal sub-graphs are conventionally detected using
MDL (minimum description length) criteria. Some conven-
tional methods have proposed using ego-net to detect abnor-
mal nodes on weighted graphs. Other conventional methods
have proposed using proximity to detect abnormal nodes and
edges.

Further, some conventional methods use matrix factoriza-
tion to detect port scanning like behavior by looking at the
reconstruction error (certain norms of the residual matrix).
One lmmitation of such conventional methods i1s that the
residual matrix in these methods can be arbitrary numbers
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(e1ther positive or negative). Therefore, the result might be too
abstract and not intuitive for data analysts to interpret.

The present invention, however, may restrict the residual
matrix to be non-negative so that the residual matrix can be
plotted as an intuitive residual graph. From the application
side, many graph anomalies correspond to some actual
behaviors/activities of certain nodes (e.g., a port-scanner in
an IP traffic network has connections to many different IP
destinations). Such abnormal behaviors can be naturally cap-
tured by the corresponding non-negative entries in the
residual matrix R.

General Graph Mining

There 1s a lot of research work on static graph mining,
including pattern and law mining frequent substructure dis-
covery, intluence propagation, social networks compression
and commumty mining, etc. More recently, there 1s an
increasing interest 1 mining time-evolving graphs, such as
densification laws and shrinking diameters, community evo-
lution, proximity tracking, conversation dynamics and
dynamic commumnities, etc.

Other Exemplary Aspects of the Present Invention

FIGS. 7TA-7D illustrate other exemplary aspects of the
present invention.

In particular, FIG. 7 A 1llustrates a method 710 of detecting,
anomalies 1n a bipartite graph. The method 710 includes
iputting (711) people-activity logs, representing (712) the
data from the people-activity logs as a people-activity adja-
cency matnx, inferring (713) (e.g., analyzing the graph to
determine) a non-negative residual low-rank approximation,
constructing (714) a people-activity residual graph, and flag-
ging (715) anomalies 1n the residual graph.

FIG. 7B 1llustrates a method 720 of detecting anomalies in
a bipartite graph. The method 720 includes providing (721) a
people-activity adjacency matrix A, mitializing (722) the
matrices F, G and R, 1teratively updating (723) matrix G and
updating (724) matrix F, and outputting (725) the final
residual matrix R.

FI1G. 7C 1llustrates a method 730 of detecting anomalies in
a bipartite graph. The method 730 includes providing (731) a
people-activity adjacency matrix A, mitializing (732) the
people-activity residual matrix R to be equal to the people-
activity adjacency matrnix A, iteratively (e.g., doing r times)
inferring (733) (e.g., analyzing the graph to determine) a
rank-1 approximation and updating (734) the people-activity
residual matrix R, and outputting (735) the final residual
matrix R.

FIG. 7D illustrates a method 740 of detecting anomalies in
a bipartite graph. The method 740 includes providing (741) a
people-activity adjacency matrix A, mitializing (742) the
rank-1 commumnity-activity membership I and the rank-1
people-community membership g, updating (743 ) the rank-1
people-community membership g, updating (744 ) the rank-1
community-activity membership 1, and outputting (745) the
final rank-1 community-activity membership I and the rank-1
people-community membership g.

Another exemplary method of detecting anomalies 1n a
large bipartite graph according to the present invention,
includes receiving a bipartite graph and desired rank size r as
iputs, representing the graph as an adjacency matrix A,
decomposing the adjacency matrix A into two rank-r matrices
(F and G) and a residual matrix R, s.t., (e.g., performing a
low-rank decomposition on A: A=FxG+R, where non-nega-
tive residuals R(1,1)>=01for each (1,1) that A(1,;)>0), generating,
a residual graph based on the residual matrix R, and output-
ting the top-k edges 1n the residual graph as anomalies.

Another exemplary method (e.g., a Batch Mode) of detect-
ing anomalies 1n a large bipartite graph according to the
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present invention, imncludes recetving an adjacency matrix A
and desired rank size r as inputs, initializing two rank-r matri-
ces (F and G) and a residual matrix R, s.t., (e.g., performing a
low-rank decomposition on A: A=FxG+R, where non-nega-
tive residuals R(1,7)>=0 for each (1,)) that A(1,1)>0), iterating,
until convergence (e.g., iteratively updating the matrix G
while fixing the matrnix F, and updating the matrix F while
fixing the matrix ), and outputting R=A-FxG as the final
residual matrix.

Further, in the Batch Mode the updating of the matrix G
may include recerving an adjacency matrix A and the current
matrix F of rank size r as input, and outputting a rank-r matrix
G by solving the following quadratic programming problem
for argmin,:

{

»3

(A(i, ) = F(i, DGz, P
i=1 j=1

B

s.1. for all A(i, j) > 0:

F(i, DG(:, ) < AG, ).

Another exemplary method (e.g., an Incremental Mode) of
detecting anomalies 1n a large bipartite graph according to the
present invention, icludes recerving an adjacency matrix A
and desired rank size r as inputs, initializing the residual
matrix R as A, iteratively (e.g., r times) finding a non-negative

residual rank-1 approximation of the current residual matrix
R (e.g., R~Ixg, and R(1,))>=1(1)xg(1) for each (1,j) that
A(1,1)>0) and updating the current residual matrix R, s.t. (e.g.,
for each (1,7) that A(1,1)>0: R(1,1)<=—(R(1,7)—1(1)xg(3)), and out-
putting R as the final residual matrix.

Further, in the Incremental Mode, the non-negative
residual rank-1 approximation of the current residual matrix
R may mclude recerving an adjacency matrix A, and current
residual matrix R as iput, initializing a column vector 1 and
a row vector g, s.t., for each (1,7) that A(1,1)>0, R(1,1)>=1(1)xg
(1), 1teratively update column vector g while fixing row vector
f and updating row vector I while fixing column vector g until
convergence, and outputting I and g as the rank-1 approxima-
tion of R.

Further, 1n the Incremental Mode, the updating of column
vector g may include receiving an adjacency matrix A, the
current residual matrix R, and the current row vector { as
input, and for each 1 (=1, .. ., 1) compute g(j) by solving the
tollowing boundary quadratic optimization problem:

argming ;) g()* — 249g(j) (4.6)

s.1. low < g(j) <up

q:( > A j)] / (
i AG>0

low = maxyg)<o0,4¢, >0 1A )/ F(D)}

where: Z I (i)

i AG)>0 ]
up = maxs()=0,AG, =0 1A )/ F (D}

Referring now to FIG. 8, system 800 1llustrates a typical
hardware configuration which may be used for implementing
the system (e.g., system 200) and method of the present
invention (e.g., method 100, method 710, method 720,
method 730 and method 740). The configuration has prefer-
ably at least one processor or central processing unit (CPU)
811. The CPUs 811 are interconnected via a system bus 812
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to a random access memory (RAM) 814, read-only memory
(ROM) 816, mput/output (I/O) adapter 818 (for connecting
peripheral devices such as disk units 821 and tape drives 840
to the bus 812), user interface adapter 822 (for connecting a
keyboard 824, mouse 828, speaker 828, microphone 832,
pointing stick 827 and/or other user intertace device to the bus
812), a communication adapter 834 for connecting an infor-
mation handling system to a data processing network, the
Internet, an Intranet, an area network (PAN), etc., and a dis-
play adapter 836 for connecting the bus 812 to a display
device 838 and/or printer 839. Further, an automated reader/
scanner 841 may be included. Such readers/scanners are com-
mercially available from many sources.

In addition to the system described above, a different
aspect of the mvention includes a computer-implemented
method for performing the above method. As an example, this
method may be implemented 1n the particular environment
discussed above.

Such a method may be implemented, for example, by oper-
ating a computer, as embodied by a digital data processing
apparatus, to execute a sequence of machine-readable
instructions. These instructions may reside 1n various types of
signal-bearing media.

Thus, this aspect of the present invention 1s directed to a
programmed product, including signal-bearing media tangi-
bly embodying a program of machine-readable instructions
executable by a digital data processor to perform the above
method.

Such a method may be implemented, for example, by oper-
ating the CPU 811 to execute a sequence of machine-readable
instructions. These instructions may reside in various types of
signal bearing media.

Thus, this aspect of the present invention 1s directed to a
programmed product, including signal-bearing media tangi-
bly embodying a program of machine-readable instructions
executable by a digital data processor incorporating the CPU
811 and hardware above, to perform the method of the mnven-
tion.

This signal-bearing media may include, for example, a
RAM contained within the CPU 811, as represented by the
fast-access storage for example. Alternatively, the instruc-

tions may be contained 1n another signal-bearing media, such
as a magnetic data storage diskette 900 or compact disc 902
(FI1G. 9), directly or indirectly accessible by the CPU 811.

Whether contained 1n the computer server/CPU 811, or
clsewhere, the mstructions may be stored on a variety of
machine-readable data storage media, such as DASD storage
(e.g, a conventional “hard drive” or a RAID array), magnetic
tape, electronic read-only memory (e.g., ROM, EPROM, or
EEPROM), an optical storage device (e.g., CD-ROM,
WORM, DVD, digital optical tape, etc.), paper “punch”
cards, or other suitable signal-bearing media. In an illustrative
embodiment of the invention, the machine-readable instruc-
tions may include software object code, compiled from a
language such as C, C++, efc.

With 1ts unique and novel features, the present invention
provides a method of method of detecting anomalies 1n a large
bipartite graph which 1s more effective and more efficient
than conventional methods and systems.

While the mnvention has been described in terms of one or
more embodiments, those skilled 1n the art will recognize that
the 1nvention can be practiced with modification within the
spirit and scope of the appended claims. Specifically, one of
ordinary skill 1in the art will understand that the drawings
herein are meant to be illustrative, and the design of the
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inventive method and system 1s not limited to that disclosed
herein but may be modified within the spirit and scope of the
present 1nvention.

Further, Applicant’s intent 1s to encompass the equivalents
of all claim elements, and no amendment to any claim the
present application should be construed as a disclaimer of any
interest 1n or right to an equivalent of any element or feature
of the amended claim.

What 1s claimed 1s:

1. A method of detecting anomalies from a bipartite graph,
comprising;

analyzing the graph to determine a row-cluster member-

ship, a column-cluster membership and a non-negative
residual matrix, the analyzing of the graph comprising
updating the row-cluster membership and the column-
cluster membership; and

1in a processor, detecting the anomalies from the non-nega-

tive residual matrix.

2. The method of claim 1, wherein the anomalies comprise
abnormal nodes and edges in the bipartite graph.

3. The method of claim 1, further comprising:

generating the graph from a data set,

wherein the analyzing comprises inferring the row-cluster

membership, column-cluster membership and non-
negative residual matrix from the graph.

4. The method of claim 3, wherein the detecting of anoma-
lies comprises flagging abnormalities 1n the non-negative
residual matrix.

5. The method of claim 1, wherein the bipartite graph
comprises a people-activity graph and the anomalies com-
prise abnormal human behavior.

6. The method of claim 5, further comprising;

generating the people-activity graph from activity logs of a

set of people,
wherein the analyzing comprises inferring people-commu-
nity membership, community-activity membership and
a non-negative people-activity residual matrix; and

wherein the detecting of anomalies comprises flagging the
abnormal human behavior from the non-negative
people-activity residual matrix.

7. The method of claim 6, wherein the inferring of the
people-community membership, community-activity mem-
bership and the non-negative people-activity residual matrix
COmMprises:

setting an 1mitial people-community membership, an initial

community-activity membership, and an initial non-
negative people-activity residual matrix;

updating the mnitial people-community membership; and

updating the mnitial community-activity membership.

8. The method of claim 7, wherein the updating of the
initial people-community membership comprises:

fixing and/or freezing the community-activity member-

ship; and

re-calculating a strength of each person of the set of people

belonging to a community including the set of people.

9. The method of claim 6, wherein the inferring of the
people-community membership, community-activity mem-
bership and the non-negative people-activity residual matrix
COmMprises:

setting an 1nitial non-negative people-activity residual

matrix;

inferring a rank-1 people-commumty membership and a

rank-1 community-activity membership; and

updating the non-negative people-activity residual matrix.

10. The method of claim 9, wherein the inferring of the
rank-1 people-community membership and the rank-1 com-
munity-activity membership comprises:
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setting an 1nitial rank-1 people-community membership,
an 1mitial rank-1 community-activity membership, and
an 1nitial non-negative people-activity residual matrix;

updating the initial rank-1 people-community member-
ship; and

updating the 1nitial rank-1 community-activity member-
ship.

11. The method of claim 10, wherein the updating of the

initial rank-1 people-community membership comprises:

fixing and/or freezing the rank-1 community-activity
membership; and

re-calculating a strength of each person of the set of people
belonging to a community including the set of people.

12. The method of claim 1, wherein the bipartite graph

comprises an Internet Protocol (IP) source-destination graph
and the anomalies comprise abnormal IP addresses.

13. The method of claim 12, further comprising;:

generating an IP source-destination graph from IP trace

logs,

wherein the analyzing comprises inferring an IP source-

role membership, an IP destination-role membership
and a non-negative IP source-destination residual
matrix; and

wherein the detecting of anomalies comprises tlagging

abnormal IP addresses from the non-negative IP source-
destination residual matrix.

14. The method of claim 1, wherein the updating of the
initial row-cluster membership and the 1imitial column-cluster
membership, comprises iteratively updating the mnitial row-
cluster membership and updating the initial column-cluster
membership.

15. The method of claim 1, wherein the analyzing of the
graph comprises setting an 1nitial row-cluster membership
and an 1nitial column-cluster membership, and the updating
of the row-cluster membership and the column-cluster mem-
bership comprises updating the 1nitial row-cluster member-
ship and the 1mitial column-cluster membership.

16. A system for detecting anomalies from a bipartite
graph, comprising:

an analyzer for analyzing the graph to determine a row-

cluster membership, a column-cluster membership and
a non-negative residual matrix, the analyzing of the
graph comprising updating the row-cluster membership
and the column-cluster membership; and

a detector for detecting the anomalies from the non-nega-

tive residual matrix.

17. The system of claim 16, further comprising:

a graph generator for generating the graph from a data set,

wherein the analyzer infers the row-cluster membership,

column-cluster membership and non-negative residual
matrix {from the graph, and
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wherein the detector comprises a flagging device for flag-
ging abnormalities 1n the non-negative residual matrix.
18. The system of claim 16, wherein the analyzer com-
Prises:
an 1nitial setting device for setting an 1nitial row-cluster
membership, an mitial column-cluster membership, and
an 1nitial non-negative residual matrix;
an updater for updating the initial row-cluster membership,
and updating the 1nitial column-cluster membership.
19. The system of claim 18, wherein the updater for updat-
ing the 1nitial column-cluster membership comprises:
a fixing/freezing device for fixing and/or freezing the col-
umn-cluster membership; and
a strength re-calculator for re-calculating a strength of each
member 1n the column-cluster membership.
20. The system of claim 16, wherein the analyzer com-
Prises:
a setting device for setting an 1nitial non-negative residual
matrix; and
an updater for updating the imtial non-negative residual
matrix,
wherein the analyzer infers a rank-1 row-cluster member-
ship and a rank-1 column-cluster membership by:
setting an 1mnitial rank-1 row-cluster membership, an 1n1-
tial rank-1 column-cluster membership, and an 1nitial
non-negative residual matrix;
updating the 1nitial rank-1 row-cluster membership; and
updating the initial rank-1 column-cluster membership.
21. The system of claim 20, wherein the updater for updat-
ing the 1mitial rank-1 row-cluster membership comprises:
a fixing/freezing device for fixing and/or Ireezing the
rank-1 column-cluster membership; and
a strength re-calculator for re-calculating a strength of each
member 1n the column-cluster membership.

22. A programmable storage medium tangibly embodying
a program ol machine-readable istructions executable by a
digital processing apparatus to perform a method of detecting
anomalies from a bipartite graph, the method comprising:

analyzing the graph to determine a row-cluster member-

ship, a column-cluster membership and a non-negative
residual matrix, the analyzing of the graph comprising
updating the row-cluster membership and the column-
cluster membership; and

1in a processor, detecting the anomalies from the non-nega-
tive residual matrix.
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