12 United States Patent

Kroemmgen

US008610605B2

US 8,610,605 B2
Dec. 17, 2013

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(60)

(51)

(52)

(58)

METHOD AND SYSTEM FOR DATA

COMPRESSION

Inventor: Alexander Froemmgen, Darmstadt
(DE)

Assignee: SAP AG, Walldort (DE)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 13/434,456

Filed: Mar. 29, 2012

Prior Publication Data
US 2012/0319876 Al Dec. 20, 2012

Related U.S. Application Data

Provisional application No. 61/498,421, filed on Jun.
17, 2011.

Int. CI.

HO3M 7/00 (2006.01)

U.S. CL

USPC ... 341/59; 341/57; 341/64; 341/69;

341/73,341/75; 375/E7.227;,7077/742; 707/E17.01;

711/217;°711/E12.002

Field of Classification Search
USPC ., 341/50-90; 375/E7.227;707/742,
707/E17.01, E7.049; 711/217, E12.002

See application file for complete search history.

Access raw data set

comprising a plurality of /_L
data elements

Y

SIZEeS

Determine a respective
unary code to indicate
each block size

615

605

610
Determine a set of block f

Form table mapping each unary code {0 its
block size
617

(56) References Cited

U.S. PATENT DOCUMENTS

5,572,209 A * 11/1996 Farmeretal. 341/67
5,704,060 A 12/1997 Del Monte
6,507,846 Bl 1/2003 Consens
7,463,178 B2* 12/2008 Moorecccoovveevvvinnnnnn, 341/155
7,467,155 B2 12/2008 McCool et al.

2007/0016602 Al 1/2007 McCool et al.

2007/0277264 Al 11/2007 Nanto et al.

2012/0089621 Al 4/2012 Liu et al.

2012/0323927 Al 12/2012 Froemmgen

* cited by examiner

Primary Examiner — Lam T Mat

(74) Attorney, Agent, or Firm — Fountainhead Law Group
PC

(57) ABSTRACT

In one aspect, methods and systems for variable-block length
encoding of data, such as an imverted index for a file are
disclosed. These methods and systems provide for relatively
tast encoding and decoding, while also providing for compact
storage. Other aspects include a nearly 1:1 inverted index
comprising a position vector and a data store, wherein values
that have a unique location mapping are represented directly
in the position vector, while for 1:n values (n>1), the position
vector can include a pointer, and potentially some portion of
information that would typically be stored in the data area, 1n
order to fully use fixed width portions of the position vector
(where a maximum pointer size 1s smaller than a maximum
location 1dentifier size).

20 Claims, 9 Drawing Sheets

Y

Form a sequence of block groupings in
which the data elements from the raw data

Store sequence tn association with unary
codes that identify the size of the block
used for each data element from the raw

set are stored
620

data set
622

US 8,610,605 B2

Sheet 1 0of 9

Dec. 17, 2013

U.S. Patent

1OAIDS 7/\ AN) T

LGl
(s)oeseqgeie(l

‘Br "
bR €0l 1oL
ObL ~_ 4 VA3 e
5BLI0IS 105$9201 1T
— 80IA8(] INdu|
A A
JRENNE
(S) wgf(\) GEl SOl ~_ “ _
cll
L e .,....I< - AeldsiQ
7oL ¢c0l
Shal=IIE TR AJOLUBIA]
HIOMIaN
MIOMION E /G1
Jaindwon pnoln SINSay sajepdn
661 |
V- T
JEETINES
VARG _ GG
HIOM]oN 071 : S|00} SaljA|euy
12007 \/ |
0El “ 12°1’
JoUiolU| _ SIOAISS QOAA
|
1BAleS GL1 _ eGl
/\) i | SJanses uonedddy
18A18S VA coy 18AI9S VA €1 “
_
|

U.S. Patent

I-' l-'.‘ i-' l-'.‘ l-" l-'.‘ I-' *'i-

'." l-'.‘

¥
e
l.

L N NE N NE N T NE NE N NE N N C NE N N N C NE N T N T N N N NE N N T N N

Dec. 17, 2013

;-:] "l

i LA L L L L i L LA L L L AR AR A R &L &L L B AR B L L L R AR R R L R R R L R R R L R ._ﬁ‘q"q"q"q"q"q"q"q'._q"q"q'._q"q"q"q"q"q"q"q'“‘q"q"q'._q"q"q"q"q"q"q"q"q"q"q"q"q"q"q'._q"l_

Sheet 2 0of 9

US 8,610,605 B2

¥ 3 t
b . .

. - . - .
T 1 r
. [T . .- .
- 1 b
1 r - .
" T '
W -
] L]
r .
. '
.-"n"n"h"n"n"n"n"n"h"n‘q- R R R e R T e A N N N N N N NN E N EE N NN E N E N E N N E N N N NN N N E N R N N N E N N E N E N N N E NN N N R N NN N N R N N N N N N N N N N N N N N E N E N E N N N N N N N N E N E N N N N N N N NN N N N N N N N N N E N N N N N N E N N N N N N N N N N N
T - .
. - b
1 1 - b
¥ R T .
1 ' . . - .
.4 - - -
1 L] » AT 1 - b
.oy . . . - - . . . - - -
i . = L - .
1 1 r . Ya
. . -y - -
1 - e e e e a - - - - - - - - - - e e e aa - - - - - [- - e e e e a e e - - P, - - - -
" - o roda e e e e e e e e e e e e e B e e e e e T e T e e e e e e e e e e e T e e e T e e e e e e e e e e e e e e e T - - - - - - .
1 . R - - - L I . R L .
bl . b. . *‘. h‘.- .,*. .,..-| .*|
bl . . . \" h‘ .,*. .,..| . *|
.
™ . - . **. h‘- .,*. .,.'| .*|
1 .
bll . . . N *‘ h‘ ..*.| .*| .
bl h . \'*' h‘- .,*. .,.'| *|
™ N *‘ - h‘ e .,*. .,..| .*|
1 .
bl P e o wa . **. . h‘- [..*.| .*| . A Ao r x o x x x x a m a a m a a m ax m r x w a x w waw P .
. o) . e 3) e)) A) .)))))))))) :) -
.) o
3 . lr._' e e e e e . . P .‘-. e e e - . a e e e e b*. C e e e e e e e e e .,._| G e e e e e e e e e e e e e .*| . -
L N L N -y T rE X E o r QT T TT - rr L N L L L L L N L L N N L N N L L
L) A A S AR E S FFAA AL AN EFEL AL FEFEESEE AL L LR N AL R FEFEEEFAFLFLFLEFLFLEFLEFREEL LA - - - - - - - - - - - - "
.
1 b
1 .
1 .
1 b
1 .
1 b
1 b
1 .
1 .
1 b
1 .
1 .
™ "- . . ‘. - -
1 . LI .
1 1 .
! \ b
1 . .
[. -'. M
[r [.
[r b
™ - N P -
1 - .
1 r .
1 -Ca Fa ¥ \ r [b
r r - X .y . ' Rl T . -
R 4‘| .,". . . r .
1 . ' r - " .
bl .b. *| b* - - . . . ‘-I h
R ol o - . - R e - . ' data ! r L .
[I 4‘| b‘ 1.- :.p - . ' L] .-:. r b
. " 1 . -
1 . ¥ x R A | N - . LR LT LA e .
b . N i o) L . .
S . . » b" - . r b
AL - . - e 1 - r, .
Ir| -'rlr L O O LT L U I I U U R U U U bl‘l"b'b'b'b'b'b'b'b'b'b.b'b'b'b"b'b‘b'b'b'b'b'b'b'b L e T T Ul U Ul Ul Ul Ul Ul U R A L T U U Ul Ul Ul U L O O T I I U U U U U L e S I i T T U Ul Ul U U U U R U U Ul TR TR | §
1 . .
1 b
1 .
; E .r ; ' h
- . S . DR
] L] k -
L] L [] - . 1, * - . r L] L]
4 = = = = = m m m m ®m m = m = ®m = = ®m ' . " = = m ®m m m m m m E ®E = = = E = = m - " m = m m o m m o m m E moE = =R N E N = m..
Jgrrrrrrrrr e e e e ey ren L R L 3 #. }b»»b»»b»»»»»»»»»»»b-
- - i) '" - . - - '* -
+ + -
Lt 4 1 L] 1 1 L] -
f e e e e e e e e e = mm mm m = B e e e e = mm e mom e e e m . -
-.:J.-J-J.-J-J.-J-J.-J-J.-J-J.-J-J.-J-J.-J-J.-J-J.-.:-l L BN U U U U U R U U U i Y
PRI e e e
. . . . ¥
- '
L1
L]
L1
"-.---'-.-'-'-.a---'-.a---".:':':.;-:':.;':".--) "':':':';-:"':':"'q -'-q--'-'-'-'-'a---'-'-'-'-'-'-'-'a---'-'-'-'-"--'-' :':.:':".:':'4.---'4 T T T e T - - - |~
. L] T ¥ E] "] [x -] .]
5 L) X r o Al ar » e i T a B os o e e a s . . e s -
- t + 4 bl t L] L] 4 1 - L1
- B | r Ve > X - > T - . & - - . - - '
r - + - 1 L) s 1] - X [| L] Xy
- -] r - Al > » - e i + e & - - - - L '
r . £ -|-4 o A oM ¥ 1] -] [| . b y
- . o= om . . ol I . . . P - s . . oL - - . . . P . . .
r + - ..".. - n = . . -]
EEEE I - - t - 3 --q 1'1"':-:.1' I B ﬁ-‘i - _'r__ " i 1-* .. -ﬁ- A - - ' 1 - - ."
r - A + al 1 . - - 1] - [| L] . = Ti Xy
P T - Ty . At ¥ - Y X . . - - T an PR, ' -y 4T % .
r - - + *] 1 - - . ¥ 9 X] [- 2. §
- B s K [lat'] - L' . -, PP . Copr T 4y P B or oo oa s . . . PR . PR - P
r a a + ¥ Il - e 1] -] [|] y
T - . - Ty r - At . - » . - - . . - . . '
I - - + * 1 = - L] L] 1 1 " L1
- - - F [At - » . s ¥ - an » f
r - £ T r- I3 i - - 1) -] [| - y
b. - *-'-'h#h'h'h'n'h'h'h'h'h'n'h'h'n'h'h'h'h'h'n'h'h*h'h*-*h'h'h'n'h'h'|.'|.'n.'n.'n.'n.'n.'n.'n.'h'n.'n.'n.'n.bn.*|.'|.'-.*n.'n.'n.'n.'n.'n.'h'n.'n.'n.'n.'n.'n.'n.'n.'n.'n.'n.'n.'n.#n.'h'n.‘n.'n.'n.'n.'n.'n.'n.'h'n.'n.'n.'n.'n.'n.'n.'n.'n.'n.'n.'n.'-.qn.*h*n.#n.'n.'n.'n.'n.'n.'n.'n.'n.'n.'n.'h'h'h'h'h'n'h'h'n‘h*h'n'-*h'n'h'h'n'h'h'n'h'h'n'h'h'n'h'h'n'h'h'ni -)) -)) -)) -)) -)) -)) - 1~
L L1
L L]
r L1
.. f
.hl--l- [ON U S L ST T U SO SR SR U U SRR TR SR SR SR N LT TR T TR SR U TR SR S U SR TR SR P SR SR N L T TR T R U TR SR U SR SR TR SR TR PR SR T SR TR T LT S T TR T SR SR SRR TR SR U PR SR SR T S R S e S e N L L L L Y I-I.I- LU U S L S T T U R R U R SRR TR SRR SRR SRR U SR SR L UL T TUE TR U SR TR SRR PR SR PR SRR SRR R L T TEEN SRR SR SRR PR SR S U L R T T U S SRR SRR TR SR SRR SR SRR SR SR SU S L T T T U TR R R TR SRR SRR PR TR SRR TR SR SR SR TR S Y I-"I--I-*
R L) :
a .
LI t' .
L] s L] - T
L LS 'rq'_ X 'rl
] » +- > 1
. 'y o ry "1
] L] 4 - &+ T
L ¥ t * - 1
L 4 - L T
. » .o X - .
. i 1t - * 1
L] sl L] - T
L LS _'rq' X 'rl
] » . X 1
L] o A L S oo
N L I LIE N ' LI
s =T - P (]
» - T A (N |
A -y o .
N i T a
#.ﬂr_

I I I I I I O I I O I R I I I R I I I I
e e o T T e e T T T S e e i T S S e e e e O Tl S S e e e e e e T S T S O e e e e e e O T T T T i Sl S S e e e e e e o T Tl T o S R e e e e e e e e e e o T T T T S S e e e e e e e e T T e O O e S S Sl T S e e S R T e T S O e T " " " " S

LA .‘
b_. e e e e e e e .‘
¥ .
. L FE T FE VE FE O FE IO TE P P P 0 T P FE P U I P P TP U T P P T T N N P N T N T N i T FE T FE FE P O FE T FE FE FE O P J P FE P I JEFE T FE FE FE T FE U T P P P P 0 T P P T P U T P P T T P P P T T T N P T T T S P T T T N P P T T T SO P FE O T S N0 W D i i i . . i i
* - T ' . ¥ 1 T ' . y
P, . ¥ ' r | ¥ e e e e . P e e e e e e e e e
* - T ' . ¥ 1 T B » §
.. - LT v . . ' . \
r .- T . . ¥ 1 T T . %
.. K . v . r ' - \ . v
LA . -1 T *' . . . = t| . ' - T ‘e a .HI ¥ | .,‘
v -) T A i d Y, . - T, :.Il'."'. o " ')))))) S
koL - = T ¥ . . i.-_l' L ! ".,.:‘..-. L . '." N
* - - T ' T ¥ L - T i o - . y
P, . . . ¥ e . | ¥ e e e e . P e e e e e e e e e
* - T ' . ¥ 1 T B » §
.. - LT v . . ' . \
r .- T . . ¥ 1 T T . %
[-q D . D e e .r.. *| . Th D e e . P - tl . T|_ D . .l.l . . Ce e e 1*|' D e e . - - *- '~
ko . IR NN . . . B T T, T e . et et e et o . L . \
- D e e Ce e . . . T C e e e e e e e e .‘
L]
r L]
II-

T e
- F Fr Fr rrrrFr

T e T T S e L T T L T T T T T T T e
ke r r r r rbr r irrbrrrfrbirrfbirfFrbrrfbirfbrbfflbrbfrrfbrffrfrf ik F

R T T T T T T T T T T T T T T T VO
ke rrrbrbrrbrbrrbrbrrrbrrlbrbrrlbrlrrrlrrlirriririr

I I
o o Rl o e e e e e e
'

F ik rr rr rrbrbrrbrbrrbrbrfrbrbrrbrbrfbrbrfbirbrfbrbrfbirbrffbirbrffbirbrffkbirbffbirbrffbirbffbirbffkbirffbirbffkbirbrffbirbffbirbrefbirffbirbrffbirbrfbirfbrfbirbrfbifffifrf ke

U.S. Patent

315 7)

r._-'- -
r

Dec. 17, 2013

..
et
B
= L} 1
40 = & ®m m = ® = ® = ®E = E ® o E %omomomowk
R I i S Sy M S Sy S Sy el S P S S i
4 -

1
L L L | " s m " m = = E ®m
L T T T "N "I Ty iy Sy Sy

Sheet 3 of 9

317 7

320

e
. - - .
- " .
ol LT U U I I e N
L - * = - II'
‘q) A
[] 1 - . L] 1

+

" = m E ®E = mE E E E E E B N N N N ®
I N
1

EIE SEEE S A S N A I S A A A A

EE I B B B B I A S I O A

- " m = ® ®E = 2 ®mE E 5 ®mE E_ ®E_ ® (O]
e T e T L N "I Ty Ty Sy Sy S Sy

3

L S e N I N N I A I A I A I A I A I I

L I S I B N I S I

L
V- T T F}
L ,."‘..“'.."‘.."'.."l."'...“'-".."’ Tt T T e T T T T T T I T T T T T I A A A A A A A A A A A A -
. 1
: k- 1-: 1: v : . :1.. :.. . :, . |.: :,. _: oo] -
. ok 1,4 C r . 'rl - ¥ hl v o o r Y
.~ ¥ . .'*. 1.| ¥ k; - ¥ *_. . pl . - h -* bl -y
. - . . - ' . = L]
. kom0 A r .] w - . N 1 rw . " o o ¥ e e e . e ey
N .E * a ﬁj ¥ : . x N - ' -r .h_fl’ .. . 5 : . -
L] ' & 4] r - L] roa ' r I
LRI sl N B , . . e g - . N . . x A S) <))) o
§ - . x F] - F T - ¥ 3 - '] 1 1
\ ™ . 1,*. " r 'rj ™ . ¢ . hl - o " N . . . P P
. -
W x 1,4 - r . lrl - v hl v o o r Y
. ¥ . 1,‘. e ¥ r, - o *I R " . N -
. . . . - - . . L)
"‘ . l_i_b_]_b_i_l_q_#_#_#_k_#_q_#_#_1_#_#_#_#_#_1_#_#_4’_#_ll_dr_dr_q'_dr_dr_Jr_dr_dr_q'_dr_dr_4'_4'_4'_4'_4'_4'_4'_4'_4'_il_ll_llrll_q'_q'_q'_q'_q'_Jr_q'_dr_q'_dr_dr_4'_4'_4'_4'_4'_4'_4'_4'_4'_ll_ll_ll_ll_-ll_-ll_'l_ll_ll_]_Jr_dr_q'_dr_dr_Jr_q'_dr_q'_q'_dr_4'_4'_4'_4'_4'_4'_4'_4'_#_ll_dr_ar_Jr_q'_dr_q'_dr_ar_Jr_dr_dr_q'_q'_dr_Jr_q'_ar_dr_dr_#_I R R R R R |
S o A A A R A A A A B A A E R R R R R R L R R R R R R N R R R R R R R R R R R R N R E R R R R R R N R R R N R E N R R N R A N E N N R R N R N N R N N R R N R N R N N R N N E N N N N N E N N N N N N RN NN NN EEEEEEEEEEEEE RN R RN R E R E R R R R R R R E

L]
L]
]

a s ataty 2T atay
- - - -
“a - *, E
- x * B,
. X *, E
|l. .II' 1J L8
. X *, E
" : :. :
i -|._ 1.1 .-
- - . -
h."h.‘- i-;q. J,.'-J-"- .J-'q.
. --
4-‘: -._"'. l-‘ *ll
! ‘1 :‘ : I-l'i"ll'-

rFrrrr YT YT Y Y Y YYrYrPYrTTrTrYTrTrTrrrrrrrrrrrrrrrrrrrrryrrrryrrrrrrryrrrrrrrrrrryrrrrrrrYyrrrryrrrrrrrryrrrrrrrYyrrrrrrrrrrYrrrrYrrrrr YT rrrTrr YT rrrYrTrrrrr YT rrrYrrrryrrrrrrrrrrYrrrrrrrTrrrYrr YT r Y YT r Y YT r Y YT r Y YT r T YT rr YT rr Y r Yy rrTTrYrT

366 7
Bt
L] . |
‘& -l:q_q_q A _q_:.:q I | _q_q_I:

- L] 1
BV
i
' . '
T 1
[T L
x

N
4 -
B e e e Tttt e e { i

-1

B T P T L

&

4 4 4 -4 _ 4

4.4

4. 4

rr Y r rYrYrrrrrrrrrrrrrrr-s

US 8,610,605 B2

360

-y -
"I:q_q_q_q_q_q_q_q_q_q_q_q_q_q_l. -
. 1 .
. - -
.n
- [] - r

I m = = = = = = = = = m = = = = = = = = = = = = = = =_®
I T S I e e e e e e e LI I S Sy S]

o o T o T o T T T T T T T T T T o o T T T T T o T T T o o T v T T N UL L N P T T

T 5
L]

“ -

. P A O I N N Sy A A A A A A A A N I I I O T iy T A A I O F A N R N I T T T - - - -y
L] b L] 1 = L] ' +

. . - X . . | . . » L ¥ Y
L] L] r - L] ! L] L] - T

. - N | T . N . ¥ N -
L] L] r- L] 1 L] L] - T

. - 5 | T - . » N ¥ N - x

N P 1.- r*) - P ~| . i .rl Loe T . . LN N\ a 1.- T e e e e e e e e e e e e e e ! LR I 1
L] L] r - L] ! L] L] - - T

“ - N . . 1 - . » . o ¥ "." N -

. r- . . . T

. . - | . . N - . N

y t. r*' H y o T - N * |. T -~ 4

. . - X . . | T . » L ¥ S . i Faniia Y
L] L] r - L] ! L] L] - T

. - N | T . N . ¥ N -
L] L] r- L] 1 L] L] - T

“ -t 5 " N T, - oV t i - x

o L R R R A R R R I N N R R R R R N R N R I I I I LR o LU L T B R R R BT R R LRI |

N 5
L I N I A I A L N N N I I] LN I N N N N N N N N N N N I N I N A N
[N N N] N N N N P N N NN N N N N N NN NN N

L R e e R R I N R e R I I I R R e e I R N R R I N I R e N A N N A e)

:I;.-;.a '
r
L 'lllll.l lIll‘i.i.i.i.i'i.i.i.i.i.i.i.i.i'i.i.i.i.i.i'i:i.i.i.i.i.i.i.i'i.i.i.i.i.i'iall .l-. 'l:_l.l ll-lll I‘I.Ill-l.i.i.i'i.i.i'i.i.i.i.i.i'i.i.i'i.i.i'i.i.I'i.i.i.i.i.i'i.i.i'i.i.i'i.i.i.i.i.i'i.i.i'i.i.i'i.i.i'i.i.i'i.i.i'i.i.i'i.i.i'i.ib . .. e i
L VE T, N N Ry O PP R A T ..))))))) N
o TN T N . K S, 2. i e e Coe ..y
T - T - . -
v N -* I‘J 1-‘ 'ﬁ* i’ 11* 1.‘..‘_ b ‘-I' Jigy W ‘llII - .4 - 'rl b o . ..-i- - LA i
. L N3 A . W o Wy . -+ A i . 'y . . . iy n . ¥
oLy g T . . R . - L B - K . A i by e e e e s
. 1 _|1- . IJ T‘ . i . 1.. . ‘j- ** ‘.' . .‘. .4. . T. - i
. 1 .,. . IJ T‘ ¥ .'* ..b. .* ‘.' *. .4. T. - e e . . . - ¥
o - . T N . C S T T . i e
T . - T
*' LA AL N L L AL N T T P P N L T P P P L T P P L N L AL R P N L L P L S L P e P L AL L N L L LN N L P N P P L P P R D L P N P e L - - - - - - - - - - = - - R
r
*.--;
e T T T T e T T T e T T

o T e I I I R o e O T I R I S S i A A S R A]
.. .. _ _ .,i Ao ¥
LI b d -
: _J"' ' _! : .-{.;I ! . F", - :
et t e - . ki A Y T N Y R N Y T N Y TN YL Y LYY YL YEY LYY YT x
F 4‘_ ‘q [l el -.rl L ;.‘ A .‘- - . ey Lo W - o 1-‘-.-’ . L N
o " o - N N T "i. x o'y, ™, - T AR " . .
v [" “x by A oal T . '-\g- A " - 5 B ek
‘1. - ‘J. " p. i iﬁ - - Fo- ¥ - - L LE r o F - - I:. 1 h h’ir H r *
‘-I‘ v ‘* -*_ F~ A L B R U \'_*’_'I'_*' \'_lﬂ L L L S S S B L S R S ﬁb\'_ L L L \'_*’. Lk L S O L \'_-ﬁ.' - x
" X - ’ x g = ¥ - - v
‘-I‘. bl *ﬁ -‘- pl .*) i'- W . . *- x
v, r i) o) . . v x :| .: A
I-*'] 1-* - .|. . . . - ar] g . :_ ¥
- .
¥ ¥ ¥ i y " . * - e
., a T .| T r -‘. . e e e e Wl o L s
‘4- ¥ ‘q -] [R R R R R A R N
v, L3 'y, - o " e T
L L 4 * e] > = = . ¥
+ X - 3 -] 1 r
., L3 ', o W _J- ') ST
. r . i . . -0
:4- : :a - K) - . .-: . .:-_.._ e :
] - L]] = - r k
P o | o ¥ - T T T o x
0 K . T, " LI I I L L L
L] » ! ¥ LI L] - [] ' = : r
- o . T W - . . . e ¥
|-|I. .;." 'T*_ .,:r ca, _,.. - . sk
b Wt + - . Wt i T x
L] L] .' I *1 - ¥
. . = -. r- 0 *
“alm " "k "l e Tk "l Tl T Tl Tl Tk Tl Tk el T el Tk el T el T e e T e ‘-
S e e e e e e T e S -y
I I I I e I I I I e I R e e Y|

TR L L L O L L L P L P PR PR L L L L L L PR L L L L L L P IR L L L PP L PP L PP L L P L L R L P UL L L LI L N LI UL UL L L L P P P L PP L L PR L UL L L L S
r
r
T - - - M = m = 4 = a4 o= ow o= - - - " m = m m = m mE . ®N N N E_ ® N N N _ ®E N _ =5 § N = =5 ®E_ 5 =5 m N _ 5 m =N N = ®m_= - - - - - - - - - - - - - - - - - ¥
T . r, LR R o - B R R R R R R R R R e R R Rk R b R R R Rk R kR R R R R 1-_-.-... v
k. T ‘. *. r| . .*. e e e e e . *. *] -'| P b- . P P L T T T T T T T T T]
. . ‘. - FJ ..*. . . . ¥ *| i. . -.b- i
*. . ‘. *. . r| . '*.' - . . . ¥ *J . -'| . b'- - . . - ¥
r L] = r - r -t - r r - 1 - -
oo . . C R Y I'.:"‘l i o oo . . C .,:'Iﬂ%: 'rl ":_E.. . i ..-..E._ R ﬁﬁ?ﬂ. . 3: X
. . . . 1 e . . . ¥ 1 o] [}] R ' ‘ - e . -y
¥ L] q_tﬁ- r o r s . L] J_._g, ¥ - - - o . ! - :
lr. - '.. e f -Jr (TR] r] - x . - - N lrl T _|| . - - |,.- - - - [L - il - . - ¥
. . ‘. - FJ ..*. . . . ¥ *| i. -.b- i
. . ‘. .. r| . '*.' - . . . ¥ *| 7 . b'- - ¥
:- . . - . .b.b ok .'b-'b.'b-'b-'b-'b.'b-'b"b-'b.'b-'l*b-'b.'b-'b.'b-'b.'b-' R R T TR R R R R R R R e - . . - .h"b-'b"b-'lr"b-'b"b "b-'b"b-'b"lr-'b"h-'b"b-'b"lr"brb"b"b-'h"b-'b"b-'lr"b-'b"b-'b"lr-'lr"b"'l-"lr-'b"lr-'lr"b-'b"lr-'b"lr-'lr"b-'lr"lr-'b"b-'lr"b-'h"b-'b"b-'lr"b-'b ' - . . - . . - . . - . . . - . . - . . - . ¥
r
r
' L}
l. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. * *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *-

*. ". *. *. ". ". ". ". *. *. ". ". ". ". ". *. ". *. *. ". ". ". ". *.

". *. *. ". ". *. ". *. *. ". ". ". ". *. *. ". *. *. ". ". ". ". *. *. ".

.*.".*

.".*.‘..".*.‘..".*.‘..".*.‘..*.*.*.*.*.*.*.*.*.*.*

U.S. Patent

P . v B

i ' I-‘&

Ay Ll '
...ts'__ Ly . .lr..,zl. . i;.' u
BN Coy R L

L]
I‘*I.'I.rl.rI.'I.rl.'l.'l.'l.rI.'I.rl.rI.'I.'I.rl.rl.'I.rI.'I.rl.rI.rl.'I.rl.'I.rl.'l.'l.'l.'l.'l.'l.'l.'l.rl."

* -
.-I Q1,707 ~_1._1._l.
] -

'*'1H.-I
Sy
-
r
-

ok L N N L R L R R R R L R R R L
-

-j .
-

- q.ll-'l-'l.'b'b'»'b'»'b'»'b'»'b'»'b'-.-'lr'-u-'b"-.-'b'-.-'b"-.-'b'-.-'lr'b'b'»'b'»'b'»'b'»'b'»'b'-.-'p-'l-'l-' L R R N N . lll'_l._l LI L |
- 4- -.‘I 'rJ £ b* . » I.

Ll + L] L + + 4 I

. 4. - 1 r r L] [] 1

- B ¥ » e [+ 1 |

- X - K * r = [] '

= - ¥ . L] L + - * 1 I

- + -t - - 4 L) - LI |] - '

P r X [L) Ll S + 4 ‘1

. X -|+_ =¥ . "J N X . b+ 1.‘I. L) II

- J.- - " =k 1 'I- r r = » '

o ¥ - . L] e * ok + -4 I

. X - . - - [y - ¥ ¥ - - »

- - * . L] e + * 4 |

. X - 1 r r = []

ar s ¥] LI L] * 4 I

- X - d * r = []

.j *F - . . - h{ - .* - - r* ‘. J I

e :rldr EE R e R R R) :r'Jr.'Jr:rk##k##k##k##k##k##k#####

-b P Pos r x o r x r x a w a am o aaawax x wx xx w awaawaa P s r x o x x e x a x x am aaa a x max ma wwa P
ron

L]
[]
..q.l.rl.rl.'I.rl.'I.rl.rI.'I.'I.rl.rl.'I.rI.'I.rl.rl.rl.'I.rl.'.‘

Dec. 17, 2013

1

+

=

{l_'l'r'll_'l "_'Il_'ll_I‘
-

R ha-;a-_a-qa-.-

» . + '
K X ")

» . 1 '
WA .Y ")

» . + '
=r [[] []

» . 1 '
K X ")

» . + '
- ' » »

» . 1 '
A - ")

» . + '
A X ")

» * 1 '

- r LI [] []

» . + '
- o "]

» . 1 '
K . ")
.*, L3 ﬁ* .I .

» 1 '
Ko . -~ »
o - o .

» . 1 '
- . "]
.*, ..‘. - h* .I. .

. B R i
Fl LE 2 -
. e ; it

-'.. . x - i T .

» ¥ -
AT T

S JE 2 I
.. =N . ".

1T 111111 111.1111111.111117117"17"17"17"17"17"17"17"17.-1

x

.Jr ¥ Jr:Jr.Jr:Jr.Jr:Jr.Jr:Jr_Jr:Jr.Jr:Jr.Jr:Jr_Jr:Jr.Jr:Jr.Jr:Jr_Jr:Jr.Jr:Jr.Jr:Jr.Jr:Jr.Jr:Jr.Jr:Jr_Jr:Jr.Jr:Jr.Jr.Jr_Jr:Jr.Jr:Jr.Jr:Jr_Jr:Jr.Jr:Jr.Jr:Jr_Jr:Jr.Jr:Jr.Jr:Jr_Jr:Jr.Jr:Jr.Jr:#

Sheet 4 of 9

L]
}I.'I.rl.'l.'l.'l.'l.'l.'l.rI.'I.rl.'l.'l.'l.'l.'l.'l.rI.rl.'I.rl.rl.'I.rl.'I.rl.'l.'l.'l.'l.'l.'l.rI.rl.'I.rl.rl.'I.rl.rl.rI.rI.rI.'I.rI.rI.'I.rI.'I.'I.rl.'l.'l.'l.'l.'l.'l.'l.'l.rl.rl..‘
&

I A S

bb'rb'rb'rb.'rb'rb.'rb'rb'rb'rb'rb'rb'rb'rb'rb'rb.'r.b'rb'rb'rb'rb'rb'rb'rb'rb'rb'rb'rb'rb'rb'rbt

L

L= T

= -.-
C T
i" A Tl

I-'I-rl-'l-'l-'I-'l-'l-'I-'

x

D NN

')

US 8,610,605 B2

P N N Ay R

. 2 gy la r
- - - "
- - .ri-i-l-i-hthhthhh"h-'th'hthhthhthhhhhthh'bn 'hhthhh'hh'thht i-l-i-i-"
R ' .‘.. L,,........... ! *I'...: . ! J
L, . r . r .
4 4 L] k ' T ' ' 1' '
- + - [I: 'ﬁ 1 " !. ﬂ‘ -] '_.n j [
F] Fl] »] Ien ' b | -|- "
' 1'1. : T |‘ .‘-_ -I' Pt R ...-." |. r .l. iﬁ‘ HI q._l" " e
- + - ¥ [= 5 - - T - [[s -
4 4 L]] 1 1' L4
rl' 1-*' 1'~ .i_dr_lr_ﬂr_lr_dr_lr_dr_lr_dr i i Jr_dr'll_dr_lr_dr Jr_q'_Jr_ﬂr_Jr_q'_Jr_q'_Jr_dr_Jr_dr_Jr_dr_Jr_ql‘_ I B N S I Jrllt -
- » .
. 1-* ' .I' 1 A ' ?
o, i r : N . T a .
4 Ll L] ' T 1
"1 * " o ’ S
Bt - T * ' § T) P
2] ® ey ! T .
"a * ' o : E A - ™" I
o :;, . L . .: LT I T P RN I P I I -: S b" A b" A b" A b" A b" A b" A b" A b" A IFan-‘llu b" A b" A b" A b" e b" .q A b" b" A b" A b" A b" A b: .
- . r
] y ! T .
o . 1,* . T, . K i e
. . » r . N . . . *’ " .
4 Ll] ' T "
L L T - . - 4] |.-| & -
2] ! T .
e . . P y - - & .
ko T) Do N <! T -
- -:-. oo - rI L J.la.._qlq St lq'_qla. I lql._qla. I N N lq'_qlq la.'_qla. T T N O N lq'_a.lq lq'_qb-. lq'_a.lq St I'ql-ql-‘-i A
P oa I . .. o * - T - . . & o=
a . ' T "
I r" - - . . s .
SEr T 4 i . . la .
L r . . g . Py 'hj © s .
T o . T. .. a Tas
Y I_i-_'f_il_il_i-_il_il_'ﬂr_il'f_'f_il_il_'i-_il_f_'f_il_-|-_'f_il_f_'f_il_-|-_'f_il_i-_'f_il_il_i-_il_-|-_'f_il_il_i-_il_i-_'f_il_il'ﬂr_f_f_'f"_f_f_i_"f_"t .
r . .
L]
T‘ - . . - . . - . . - . . - . . - - - . . - . . - . . - . . - . . - . . - . . - . . - . . - . . - . . - . . - --b-
[] F
r

g F F F F F F % F F F F F % FFFFEFFFE SRR R R RS FEF R F TR TR R F R F TR R RE R

= . . .

. B T e T e e
L “ *| g- 1-1 i -.. "J R R

. . 1 r - B %

m - v . . - . Y Y- . . .

- . 1 r B Y *

» . e . - . . PR . T]
s s ~.I - I’. . 1.1. - .|' . 1 b; - - - -

"a “a . & hﬁ 'rl ¥ ..‘-I-- + ' ﬁ‘“ . . .) L . .
P air, vl T T i - - TP
. . ;g ok : . o . . e T,) v

= . . . ' - v Al + Y " Rt s 3 . .

. W 1 r B A, %

i > ¥ - ' P .] 1 - - - .

- . 1 r B Y *

» . e - . . PR . T]
s - ! - r T, - ' *J. - - - -

o e e b et Il Ekr kb o o T o P P L e e e

. P e e e e s P e e e e waaw P e e e e e m aam a a a wa aaaw A e e e e e w s
N N N N N N N NN NN

. . - . . - - . . - .
F ke rrbrririr Fr rFrrrrrrrbrrfbrrbrbrrfbrrbrbrrrrir ik

A A A A PENE FE N NC RCRERENE NE N BE N I N NE N NE N N I B N I N N N N

R
-*-
-k-
-kl .
. - RN RN
R N L . i
F]
LS "a LS ¥ » X,
r . [- Y I
v A . » . . .
T "a - ¥ . -+
R " W ';.-'.-. Pl
v " L L Tl N K
¥ - " < T ey
R A L PRNL L ol
LS "a LS ¥ ‘J X,
r . [- Y I
T, A . » . . .
LT ¥ - » .
F- T . e T e T
SALIE LR R P A AL MR PN
SO
P
et
.r
"

rl-rl-rl-rl-rl-rl-rbrbrbrbrbrbrbrbrbrbrbr.‘-

4 4 4 4 4 4 4 4 4 44 4 4 44 44 4 d A A A A A A A A A A A

*I "l *I *I "l *I *I "l *I *I "l *I

bbbbbbbbbbbb:ﬁbb@bbbbbbb-

quq lq Iq lq lq Iq Iq lqquq lq Iq lq lqquq lqquq lq Iq Iq lqquq lq Iq lq lqquq lqquq lq Iq lq lqquq lqquq lqquq lqquq lq Iq lq lqquq lqquq lqquq lqquq lqlq lq lqquq lqquq lq Iq Iq lqquq lqquq lqquq lqquq lqquq lqquq lqquq lqquq lqquq lqquq lqquq lqlql.q lqquq lqquq lqquq lqquq lqquq lqquq lqquq lqquq lqquq lqquq lqlq

LI I I T I T I T I T DT I I I BT IO IO IOC T I T I O I I I O I O I I I I I O I O I T I O I O I O I O I O I O I O I O I O I O I O I O I O I O IO O I O I O IO O I O I I IO O I O I O I O I O I IO I O I N I T I O I O I O IO IO I IO I O I I I O I O O I I O I O IO O I O I O IO O IO O I O IO I I O I IO I O IO O O O IO O I O I O I IO IO O I O IO I I O I IO IO I I O T O IO IO I O T IO OO IO IO O I IO O O IO O O O O O I O I IO B I |
FEFEEFEFEFEEFEFEERFEEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEERFEEFEEFEFERFEFEERFEEFEFEEFERFEFEFEFEFEEFEFEFEFEFEEFEFEEFEFEFEFEFEFRFEFEERFEEFEEFEEFRFREFEEFEFEFEEFERFEFEEFEFEEFEFEEFEFEFEFEEFEFFEFEERFEEFEEFEFEREFEFEFEFEEFEFEFEFEFEEFEFEFEFEFEFEEFEFERFEFEFEFEEFEFERFEFEFEFEFEFERFEFEFEFEEFEFEEFEFEFEFEEFEFFEFEEFEFEEFEFFEFEEFEFEEFEFFEFEEFEFEEFEFERFEFEEFEFEEFEFERFEFEEFEFEEFEFEFEFEEFEFEEFEFEFEFEEFEFEEFEFFEFEEFEFEEFEFEFEFEEFEFEEFEFEREFEFEFEEFEFEFEFEEFEFEEFEFEEREEFEFE

R N g g R g g g g g g A)

*. *.*.*. *.)

1111'|'|'I'|'I'|'|'|'|'|'|'|'|'|'|'I'|'|'I'|'|'|'|'|'I‘_'I‘1‘_1‘1‘1‘_1‘1‘1‘_1‘1‘1‘_1'I'I'|'|'I'|'|'|'|'|'|'|'|'|'|'|'|'I'|'|'I'|'|'I'|'|'|'|'|'|1111

% ¥ % F F 5 F F 5 F F 5K R F R F R R R R R R SRR R
r

I*I*I*I*I*I*I*I*I*I*I*I*I*I*I*I*I*I*I*

_'1’"'"1’"'"1’""""

Seds dninrmadinn

L I B L I R T R)

|.-"|.-'l ettt T n-"l.-"l.-" O o i Tl P L o R ._-r

.,
‘
¥ ¥
r hl
-'r. . LN
-7 T T o e T T T T T T T T T T T T T T I T T T T T T T T T T T T T T T T T T e e e . ™
¥ T dr b ek dr b e b de b e ke ke e d ke b d ke de k d ke de ke b de ke e b ke ke e d ke dr ke de ke ke de kde b de ke e d e ke e d ke Wk d ke de k d ko he k d ke ke bk ke d ok ek ke k ok ke bk bk ki kR 1
r - s - T, ¥,
-7 » =T, - . -
r v L = 'r 4
-T. » -T. - -
¥ - i . l.- ¥
-T. » -, - . T ¥
r - - r
v A .* . > ¥ - ¥
r - ¥ . - . ||- *
-T. » - =T, - o) 'r . .
- 4 .
T & _r _'-i'.. - T »
IR - + s - - |.- - *
-7 =T, -
"y - ¥ - ||- '
-T. » -T. - -
IR - i . l.- ¥
-T. » -, - . -
LI - L i' 4
IR -*l*lqtql*l*l*ﬂlqﬂl*ﬂl*ﬂl-*l-*l-*1-"1-*1-*-*1-*l-*!-*l-*l-*l-"!-*l-*!-*l-*1-*l-"!-*l-*l-*l-*1-'1-*1-*1-*1-"1-*1-*-*1-*l-*1-"1-*1-*l-"!-*l-*!-*l-*l-*l-"!-*l-*1-"1-"1-*-"1-*1-*l-"l-*q-*l-*!-*l-*1-"1-*1-*l-"l-*l-*!-"l-*q-*l-"!-*l-*1-*1-*l-*l-"!-*l-*1-"1-*1-*-*1-*1-*l-"l-*q-*l-"!-*l-*1-"1-*1-*l-"l-*l-*1-*1-*1-*lqﬂl*ﬂr*l*lqﬂl*mqr*m*lql ¥,
r - ™
N 1
IR ¥,
T T T T T T T T T T T T o T o T o T X X T X T T, FEFC P P I T S P N A P PR P P P P P S S
. - .
. . .
B o T e o T o o o o o o o T T T o T T L L L

anae . e
.5 . nalaale
‘J- -‘-’ ~J ‘J.
‘J "-’ .-' ‘J.
‘J- -l'.' hd ‘J.
‘J "-’ -' ‘J.
‘J. -‘-’ .J ‘J.
‘J 'l'.' h.' ‘J.
‘J- -‘-’ ~J ‘J.
‘J "-’ .-' ‘J.
- :"- ':’1- & :‘ :I-r
- I] L] Ty
. L T L
- - > =y >
* . . ¥ -'a - ¥ -
LN S
N .

rEE AR R,
A ._-I._-I._‘

-h--I
)

o
+ %

T
[]

##1#####1#####1#################1#####1#########drlrﬂrlrﬂrerrerrJrﬂrJrﬂrerrJrﬂrJrﬂrJrﬂrerrJrﬂrJrﬂrJrﬂrerrJrﬂrJrﬂrJrﬂrerrJrﬂrJrﬂrJrﬂrerrJrﬂrJrﬂrerrerrJrﬂrJrﬂrJrﬂrerrJrﬂrJrﬂrerrerrJrﬂrJrﬂrerrJrﬂrJrﬂrJrﬂrJrﬂrerrJrﬂrJrﬂrerrJrﬂrJrﬂrJrﬂr###

I|I
I‘
-‘- - - - - - - - . - - - - - - - - - - - - - - - - - - - ¥
L] T
L T N N T T T T N I N T T T T N N N N T T T T N N N T T T T N N N T N N T N T N N N N N N T T N N N N N N T T N N N N N T T T N N N S N T T N - - - - - - - - - - - L
N L R e e T e T R e e e R e A e R R e R i R R e R R R I R I R R i R e R I R T T R R R R et R R e R R R R T e R T Rt R e e R e T e L R A R R R R R AR R R |]
- x . ¥ T
L] - L4 - L k
T _r - N . -r
N - ¥ Y r]
" T - r
X - ¥ . - ¥ r
X - ¥ . . ' ¥ r
. T T - o)

- r

L] T r -'.i- - Ty L - r
X - * x = . ¥ r
- ¥ . ¥ r
L T _r - N . -r
L] - ¥ &]]
L " T - r
L] - [] & r L}
P N N e e N e N N e e e T N e e e e e e L T e N e e L e e e e e e T e e e o T T L R
N]
T
r
" > » -

B I T L I N I O R

e I T N

-*-b-*-b-*-b- *-b-*- b-*-*- *-b-*- b-*-b-*-b-*- b-*-

-*-b-*-b-*-b- *-b-*- b-*-*- *-b-*- b-*-b-*-b-*- b-*-b- *-b-*- b-*-b- *-b-*-b-*-b- *-b-*- b-*-b- *-b-*- b-*-b- *-b-*-

-*-b-*-b-*-b-*-b-*-b-*-b-*-b-*

e T I O I I N N I U U

508

US 8,610,605 B2
507

006

Sheet S of 9

Dec. 17, 2013

505

U.S. Patent

T T T T T TN T Y T T T T T T T T T T T T Y T T T T Y T T T T YT T T YT R T T T T T T T T T T T

s " y 3 s E s
o - - C -
[y - - L] - - - - - - -

Fes s ssssssssssssssssssssssssssssssssss s ssss s sssdssssssssssss s ssssesssssesss e

Telnlnlnlelef

g B B

a
LS SO O W W YU RN WO N R N Y Y N WU Y L WU WU Y WU VU WO RN WU W U RN NN Y R SO WY Y N W WU Y WU U W O Y

L N Y .
o

925

030

momom M T

-

-

U.S. Patent Dec. 17,2013 Sheet 6 of 9 US 8.610,605 B2

Access raw data set
comprising a plurality of

Fig. 10

data elements 605
. 610
Determine a set of block |
sSizes
615 Determine a respective Form table mapping each unary code to its

unary code to indicate block size
each block size 017

Form a sequence of block groupings in
which the data elements from the raw data
set are stored

620

Store sequence in association with unary
codes that identify the size of the block
used for each data element from the raw
data set
622

U.S. Patent Dec. 17,2013 Sheet 7 of 9 US 8.610,605 B2

Access start of location information

640 Fig. 11

Read unary code
645

Unary code |
indicates block size?
650

Code indicates
stop?
660

Read number of bits equal to block size and
interpret as location {e.q., row identifier or
difference)

655

U.S. Patent Dec. 17,2013 Sheet 8 of 9 US 8.610,605 B2

ldentify 1.1 value and location combination
828

Determine to use nearly 1:1 index .

ore location intormation directly in position
vector & indicator flag
830

ldentify 1:n value and location combination
(n>1)
832

Encode location information for the n
locations
834

Store location information in data area
836

ore pointer to data area containing location
information in position vector
838

Fill remainder of position vector with location’
information I

More data?
842

At === == —_— e e = = = ——

U.S. Patent Dec. 17,2013 Sheet 9 of 9 US 8.610,605 B2

Recelive indicator of value
for which information is to
be retrieved
340

Access position vector
842

Access flagre 1:1 or 1:n
344

Access location
information directly
from position vector
848

Flg 15 Access pointer from
position vector
850

Use pointer {0 Index
data area to retrieve
location information
3852

l Access portion of
location information l
] from position vector

854 |

Decompress location

information
356

US 8,610,605 B2

1

METHOD AND SYSTEM FOR DATA
COMPRESSION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. provisional app.
No. 61/498,421, filed on Jun. 17, 2011, entitled “Computer-
Implemented Method for Data Compression and Corre-
sponding Computer System for Data Compression”, which 1s
incorporated by reference 1n 1ts entirety, for all purposes,
herein.

BACKGROUND

The present disclosure relates to data compression, and in
a particular aspect, to a computer-implemented method for
data compression and a corresponding computer system for
executing the data compression method.

Unless otherwise indicated herein, the approaches
described 1n this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in
this section.

In computer science, an inverted index 1s an index data
structure that stores a mapping from contents (such as words
or numbers) 1n a {ile, to the locations of the contents 1n the file.
The file may be a database file, a document, or a set of
documents. An inverted index provides for fast search of text
in a file with a cost for increased processing of the file at the
time the file 1s added to a database. Inverted indices are
relatively widely used data structures in document retrieval
systems for large scale search, such as for searches performed
by search engines.

There are two main types of inverted indexes. A first type of
inverted index 1s a record level inverted index, which contains
a list of references to documents for each word. A second type
of inverted 1ndex 1s a word level mverted index (sometimes
referred to simply as an “inverted list”) and contains the
position of each word within a document. The latter form
provides additional functionality, such as phrase searching.

Inverted indexes can be compressed with compressions
variously focused on relatively high compression, high com-
pression speeds, high decompression speeds, etc. These vari-
ous compression focuses oiten have tradeolls. For example, a
relatively high compression may provide for relatively low
decompression speeds, and relatively high decompression
speeds may be associated with relatively low compression.

SUMMARY

Embodiments improve computer-implemented methods
for data compression. In one embodiment, the present mnven-
tion includes a computerized method for variable-block
length coding an inverted index for a file. In another embodi-
ment, a computer system 1s configured for executing the
method. Embodiment provide for relatively fast and rela-
tively dense encoding, while also providing for relatively fast
decoding and search.

In one aspect, a method of data compression 1s provided.
The method comprises accessing a raw data set comprising a
plurality of data elements, determining a set of block sizes to
be used 1n forming an encoded data set providing a com-
pressed representation of the plurality of data elements 1n the
raw data set. The set of block sizes comprises differing block
S1ZES.

The method includes determining a respective grouping of
one or more blocks 1n which to store each data element of the

10

15

20

25

30

35

40

45

50

55

60

65

2

raw data set. Each block in the grouping 1s of a block size
selected from the set of block sizes. The method also includes
storing the groupings 1n a sequence, 1 association with
respective unary size codes indicative of a size of each group-
ing in the sequence. The data elements of the raw data set may
include mverted index data. The unary codes may be stored 1n
the sequence of block groupings, each unary code preceding
the grouping to which it pertains.

The method of data compression operates on binary data.
The determining of the set of block sizes can include deter-
mining at least one pair of block sizes of n bits and n+1 bits.
The storing 1n that instance can include storing a data element
ol the raw data set having n+1 bits with a unary code indicat-
ing a block size of n+1 bits, with a data field of n bits by
excluding the most significant bit of the raw data element
having n+1 bits from storage in the block.

The method can be implemented on a machine configured
by 1nstructions obtained from a non-transitory medium.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts hardware of a machine configured with
processes according to embodiments;

FIG. 2 depicts an example of a 1:n Index;

FIG. 3 depicts an approach to variable byte-length encod-
12,

FIG. 4 depicts an example in which raw data 1s compressed
to result 1n encoded data;

FIG. 5 depicts an example of variable block length coding
with variable block sizes;

FIG. 6 illustrates an example of variable length block cod-
ing of raw data into encoded data, with optimized unary size
information;

FIG. 7 shows an example implementation where unary size
information 1s stored 1n a separate area from the encoded data;

FIG. 8 depicts an example of unary encoding of block
S1Z€ES;

FIG. 9 depicts a histogram where different data elements
are represented by different block sizes;

FIG. 10 depicts a process for a variable block size encoding
approach;

FIG. 11 depicts an example process of reading encoded
data;

FIG. 12 depicts an example index for a data set that 1s
indexed using a nearly-1:1 mapping approach;

FIG. 13 depicts an example optimization of the nearly
1:1-index with direct storage of some information of the data
area 1nside the position vector;

FIG. 14 depicts an example method for encoding data for a
nearly 1:1 index; and

FIG. 15 depicts an example process of reading a set of
location data for a given valuelD that was encoded according
to a nearly 1:1 index.

DETAILED DESCRIPTION

Described herein are a computerized method for data com-
pression and an associated computer system for data com-
pression. One exemplary application of the disclosed data
compression techniques relates to data compression for Infor-
mation Retrieval (IR). Some disclosed aspects relate to data
compression ol mverted indices. However, such focus 1s for
clarity and consistency, rather than by way of limitation as to
application of the disclosed systems and methods. In the
tollowing description, for purposes of explanation, numerous
examples and specific details are set forth 1n order to provide
a thorough disclosure. However, the disclosure i1s merely

US 8,610,605 B2

3

exemplary of various aspects and embodiments within the
scope of the appended claims. In particular, 1t will be evident,
to one skilled 1n the art, in view of the present disclosure that
features disclosed 1n one context or situation can in many
cases be used 1n other contexts and implementations, and 1n
various combinations and subcombinations. Usage of equiva-
lents of the features and concepts described herein also would
be apparent 1n view of this disclosure.

FI1G. 1 1llustrates an example context in which aspects of
the disclosure can be implemented. FIG. 1 depicts hardware
of a machine configured with processes according to embodi-
ments. The computer systems and solftware servers on a local
network may communicate with each other and other com-
puter systems and servers running instances of programs on a
cloud computer system. An example computer system 110 1s
illustrated 1n FIG. 1. Computer system 110 includes a bus 105
or other communication mechanism for communicating
information, and a processor 101 coupled with bus 105 for
processing information. Computer system 110 also includes a
memory 102 coupled to bus 105 for storing information and
instructions to be executed by processor 101, including infor-
mation and instructions for performing the techniques
described above, for example. This memory may also be used
for storing variables or other intermediate information during
execution of istructions to be executed by processor 101.
Possible implementations of this memory may be, but are not
limited to, random access memory (RAM), read only
memory (ROM), or both. A storage device 103 1s also pro-
vided for storing information and instructions. Common
forms of storage devices include, for example, a hard drive, a
magnetic disk, an optical disk, a CD-ROM, a DVD, a flash
memory, a USB memory card, or any other medium from
which a computer can read. Storage device 103 may include
source code, binary code, or software files for performing the
techniques above, for example. Storage device and memory
are both examples of computer readable mediums.

Computer system 110 may be coupled via bus 105 to a
display 112, such as a cathoderay tube (CRT) or liquid crystal
display (LCD), for displaying information to a computer user.
An mput device 111 such as a keyboard and/or mouse 1s
coupled to bus 105 for communicating information and com-
mand selections from the user to processor 101. The combi-
nation of these components allows the user to communicate
with the system. In some systems, bus 105 may be divided
into multiple specialized buses.

Computer system 110 also includes a network interface
104 coupled with bus 105. Network interface 104 may pro-
vide two-way data communication between computer system
110 and the local network 120. The network interface 104
may be a digital subscriber line (DSL) or a modem to provide
data communication connection over a telephone line, for
example. Another example of the network interface 1s a local
area network (LAN) card to provide a data communication
connection to a compatible LAN. Wireless links are another
example. In any such implementation, network interface 104
sends and receives electrical, electromagnetic, or optical sig-
nals that carry digital data streams representing various types
ol information.

Computer system 110 can send and receive information,
including messages or other interface actions, through the
network intertace 104 across a local network 120, an Intranet,
or the Internet 130. For a local network, computer system 110
may communicate with a plurality of other computer
machines, such as server 115 one or more of which may run
backend system software such as an ERP software system,
CRM, or database for example. Accordingly, computer sys-
tem 110 and server computer systems represented by server

10

15

20

25

30

35

40

45

50

55

60

65

4

115 may form a local network, which may be programmed
with processes described herein. In the Internet example,
soltware components or services executing on computer sys-
tem 1n the local network may communicate with computer
programs on a cloud network 199 across the Internet. Com-
munications with program on the Internet may include com-
munication with programs residing on multiple different
computer systems 110 or servers 132-135 across the network.
The processes described above may be implemented for com-
munication with programs implemented on one or more serv-
ers, for example. A server 135 oncloud 199, for example, may
transmit messages through Internet 130, local network 120,
and network interface 104 to a component on computer sys-
tem 110. The software components and processes described
above may be implemented on any computer system and send
and/or receive information between networks as set forth
above, for example.

By further example, server 131 may implement or other-
wise have access to functionality implementing databases
151, application servers 153, web servers 154, and analytics
tools 155. In an example, databases include 1mverted imndex
data that can be used to respond to queries, or searches con-
ducted by analytics tools 155. Also, updates to database 157
can be provided, and results 159 can be outputted.

FIG. 2 depicts a general 1dea of a 1:n Index 225. A set of
values 210 includes a set of German cities, including Berlin
211, Bern 212, and Mainz 213, by example. The set of values
210 can be called a dictionary, in the sense that 1t includes
terms that appear 1n the mnverted index.

Each value can be associated with a valuelD (collectively
identified as 214) that can be a umique reference to 1ts value.
The inverted index can be implemented using a position vec-
tor 215, which 1ncludes an entry for each value 1n the set of
values 210, and 1n which entries 216 and 217 are i1dentified.
Each entry 1n position vector 215 maps to a location in a data
area 220 where data for the value associated with that position
vector starts. Stated differently, each position vector identifies
a beginning of a data set that can be interpreted to 1dentity
cach position 1n a file where a given value appears. For
example, location 221 1s a start of position information for the
value associated with position vector entry 216, and similarly,
location 222 1s a start of position information for the value
associated with position vector entry 217. The position vector
can be mndexed by valuelD. The first value (valueld) does not
need a position vector entry, 1n that 1t can be assumed that this
entry starts at the beginning of the data area. However, where
there 1s a pointer to the beginning of the data area, this also can
serve as a pointer to the start of the first valuelD position
information.

In the case of a table, or a relational database, row 1denti-
fiers may be the positional information stored for each value
(valuelD). In that case, inside the data area, the rowlds where
this valueld 1s used are stored. For storing those rowlds,
compression can be used. Local Golomb coding 1s currently
practiced. For this, a count of rowlds 1s stored for each val-
uelD. This count 1s used to calculate an optimal Golomb
parameter. Then, the rowlds are sorted into increasing size
and the first rowld 1s stored. All the other rowlds are stored as
differences from a prior rowld.

Some early approaches to inverted list compression
focused on exploiting distributions of specific characteristics
using Huflman coding or Golomb coding. Some more recent
work has focused on trading higher compression ratio for
decompression speeds. Higher compression ratios were
originally attempted to be achieved by using the distribution
of numbers to be coded via optimal compression rates. Still

US 8,610,605 B2

S

turther approaches place greater emphasis on rapid decom-
pression instead of optimal compression rates.

In one aspect, the disclosure provides an example embodi-
ment of mverted list compression using variable byte-length
encoding optimized for in-memory compression engine to
perform one or more of encoding and decoding. Embodi-
ments according to this disclosure provide in-memory encod-
ing/decoding engine that 1s faster, and in many situations,
while still using a smaller amount of storage than Golomb
encoding. Large size and velocity measurements allow a
comparison with Golomb encoding. Other features that can
be provided according to the various examples disclosed
below.

Instead of Golomb coding, another approach to compres-
s1on of an 1nverted 1ndex 1s to use a variable number of bytes
to encode each data element. For example, some data ele-
ments may be encoded 1n a single byte, while other data
clements may require four bytes to be represented. In the
context of an inverted index, 1 which positions within a
database (such as row i1dentifiers) are associated with keys,
the row 1dentifiers have varying lengths and thus may be
represented by a commensurate number of bytes. Variable
byte-length encoding 1s an alternative to Golomb encoding.
Slightly worse compression ratios can be achieved as com-
pared with Golomb coding. However, variable byte-length
encoding can have faster access speeds than Golomb-en-
coded data.

FIG. 3 depicts an approach to vanable byte-length encod-
ing where during decoding, a machine may consider a bit of
cach byte to decide whether the next byte 1s a part of the same
value or whether the read of that value 1s completed.

In particular, FIG. 3 depicts a variable byte-length encod-
ing, where raw data 255, which comprises data elements
256-258, 1s to be stored as encoded data 280. Each data
clement 256-258 can be subdivided mto one or more bytes.
For example, data element 256 can be subdivided into bytes A
and B (note: 1in this example, each of A and B 1s actually 7 bits,
not a full byte). Each 7 bits 1s preceded by a flag bit that
indicates whether the subsequent 7 bits 1s the end of a given
value. For example flag 281 1s a 1, indicating that the imme-
diately subsequent 7 bits (b,) 1s not the end of a value. Flag
282 1s a binary 0, indicating that the immediately subsequent
7 bits (b2) 1s the end of a value (that started with (b,)). By
contrast, flag 283 1s binary 0, indicating that the value repre-
sented by C can be fully represented 1n the 7 bits available
from b;. FIG. 9 shows values that are encoded with 7 bits
(515), with 14 bits (520), with 21 bits (525), and with 28 bits
(530).

Better compression using variable numbers of bytes may
be achieved by placing size information in front of a sequence
of bytes representing a value. The size information can be
provided using a unary code. FIG. 4 depicts an example in
which raw data 255 1s compressed to result in encoded data
310. Unary size information 315, 316, and 317 provide
examples of unary codes that indicate respectively that 2
bytes, 1 byte, and 3 bytes are used to represent values 256, 257
and 258 from raw data 255. Using the size information, an
appropriate number ol bytes can be directly accessed and read
together.

Fixed-Length Block Coding

Variable Byte-length encoding has a fixed incremental
payload size of usually 7 or 15 bits, thus resulting 1n total
blocks of 1 or 2 bytes. This facilitates a light compression
without prior knowledge of the data to be compressed. How-
ever, 1 all the data to be compressed 1s available before the
compression begins, 1t 1s possible to iteratively analyze the
data. In such an iteration, an optimal block size for the data

5

10

15

20

25

30

35

40

45

50

55

60

65

6

can be determined. For example instead of 7 bits payload per
1 bit size information one canuse 11 bit payload per 1 bit size
information. In this example each number with 11 or fewer
bits can be represented with one block. Numbers with up to 22
bit are coded with 2 blocks. Such a procedure has been called
escaping. Compared with Golomb Coding, this procedure
requires more storage, but allows higher access speeds.

In sum, for fixed block length coding, each value 1s stored
encoded with a multiple of an optimal fixed-block length/
s1ze. The case with a fixed block size of 7 bit 1s equal to the
variable-byte-length encoding.

Variable-Block Length Coding

Instead of using varying numbers of a fixed-block length
for encoding, variable block length coding with varniable
block sizes can be used. In this embodiment, as 1llustrated 1n
FI1G. 5, all the first blocks have a width b1, which, however
can be different from all the second blocks with a width of b2
and so on (block sizes collectively identified as 360). A so
called block table allows a direct mapping between the unary
s1ze information and the block size. A complex addition of all
block sizes 1s not necessary.

Since the Unary-value acts as an index in the block table,
the maximum size of the Unary-value 1s equal to the size of
the block table. Limiting the size of the block table and thus
the Unary-value makes two improvements. One improve-
ment 1s that the highest entry 1n the block table can be stored
without a trailing unary-coded 0. A second advantage 1s that
an 1mplementation of the decoding can achieve significant
speed advantages due to the limited block table size. In addi-
tion to higher cache locality, it 1s possible to avoid conditional
jumps. Eight entries in the block table has been found to
provide an acceptable palette of block sizes. Therefore, a
maximum Unary prefix with 7 bits provides good results.

Variable Length Block Coding with Graded Number Infor-
mation

For values that need just 1 block, an additional bit 1n the
Unary prefix coding of the block 1s used. Values that need to
use more blocks also need more bits in the Unary encoding.
Here, a further optimization may be achieved with an
approach that 1s quite similar to Huffman coding. The block
s1ze that 1s used by most of the values can be represented by
aunary 0. Block numbers that are used less frequently may be
associated with greater unary values. Since only unary values
are used, this encoding does not correspond to the Huilman
coding. The typical slowdown of Huffman coding, due to 1ts
dictionary lookup, can be avoided. In fact, 1t can be shown
that, in many cases, Huilman coding results in unary prefixes,
due to the distribution of the values being compressed.

Mixing up two values 1n the block table does not cause loss
of speed. In exceptional cases, the optimized order corre-
sponds to the already established order.

FIG. 6 1llustrates an example of the variable length block
coding of raw data 420 into encoded data 440, with optimized
unary size information. The unary value 0 (431) requires
bu,=1 bit and 1s assigned to block size b, (see table 430) (ray
data 421), which 1s the block sized used most often. Other
unary block size indicators depicted in FIG. 6 include unary
10(432) and 11 (433), which are used with raw data element
422 and 423, respectively.

There are two areas where the unary value can be saved: (1)
In the previously discussed method, the size information 1s
stored 1n the data area 1n front of the respective blocks; (2) the
encoded data 1s divided into two areas.

FIG. 7 shows an example implementation where unary size
information 1s stored 1n a separate area from the encoded data
itself. In particular, FIG. 7 depicts that unary values 470
include unary values 471-473, which are used 1n parsing the

US 8,610,605 B2

7

encoded data 460 during reading. To produce encoded data
from raw data 455, which comprises data elements 456-458,
a block size 1s selected that 1s large enough to store each value
(but, optimally, the block size would not be larger than a
mimmum required to store such value). Other techniques
disclosed herein can be practiced (e.g., this separate meta data
technique also can be practiced with the technique disclosed
below, in which one or more pairs of block sizes that differ by
only 1 bit are used for encoding data values). The approach of
FIG. 7 allows a significantly faster reading of values. How-
ever, due to the variable block width there 1s not a defined and
fixed relationship between positions 1n data 470 and 1n
encoded data 460.

For two block sizes, b, and b,, where b,=b,-1, any value
that requires exactly b, bits 1s encoded with the corresponding
block size b,. Any value that requires fewer bits 1s encoded
with b1, or a smaller block size, if available. Any value that
requires more than b, bit uses a larger block size. For
example, a value represented by b, bits 1n the raw data set can
be represented by b, bits 1n the compressed data set, with an
indication of a block size of b,. In an implementation, the
most-significant bit in values that are represented by b, bits
must have a value of 1, or else that value would be represent-
able by b, bits. As such, b, bits need not be explicitly stored,
rather, the value of the most significant bit can be inferred.
This method can be used with or without sorted size informa-
tion. The omission of this bit (e.g., the most-significant bit)
can allow further compression.

In some 1mplementations, each value 1s stored with an
optimal block size. In FIG. 8, the block sizes 19 bit 505 (can
be assigned Unary Prefix: 0,), 20-bit 506 (can be assigned
Unary prefix: 10,), 22-bit 507 (assigned Unary prefix: 110,)
and 23 bit 508 (assigned Unary prefix 1110,) are used. The
Unary prefix assignments here reduce a number of bits
required to represent the unary prefixes, in total, based on this
example distribution of data lengths.

In more detail, variable-length block coding can further be
practiced using sorting so that more frequently appearing
block sizes are assigned smaller unary prefixes. By particular
example, the mapping of the unary value to the block size can
be implemented by a Huffman-like coding, where more fre-
quent used block sizes are represented with shorter unary
prefixes: 19 bit block-size with Unary prefix 0,, 20 bit block-
s1ize with Unary prefix 110,, 22 bit block-size with Unary
prefix 10, and 23 bits with Unary prefix 111, (the lagging O
can be dropped 1n actual usage). For vaniable block length
coding, with and without sorting, and using the block sizes
described above (as an example), the most significant bit of
the blocks with 20 bit and 23 bit block sizes need not be
stored. For example, 20-bit values will be stored as unary
prefix 10, and 19-bits of encoded data. Of course, these block
s1zes are simply an example, and other data sets would have
block sizes tailored to their characteristics.

Compared to the Golomb-coded index, none of the dis-
closed approaches require count information concerning a
number of rowlDs associated with each value ID. For the
Golomb-coded 1index, this information 1s needed to calculate
a parameter for a good compression.

Example Approaches to Calculating a Set of Block Sizes

The calculation of a set of block sizes (targeting optimality)
can be made during a delta merge operation 1n a database
(e.g., during database updating). In a general case, without
limiting the number of different block sizes to eight, a maxi-
mum block size 1s assumed to be n bits. Then, all 2" combi-
nations of block sizes are considered as a possible optimal set.
For each combination, the total s1ze of the compressed data 1s
to be determined, and then compared to identify an optimal

10

15

20

25

30

35

40

45

50

55

60

65

8

set. In the case of the sorted size information, each combina-
tion must also be sorted. It 1s not suificient to only sort the best
determined combination, as 1t typically would not a globally
optimal distribution (sorting would not be commutative such
that results would differ i1f sorting 1s performed before or after
the combinatorial evaluation. These operations can consume
a great deal of processing resources. The restriction to require
a set of eight block sizes reduces the number of possible
combinations that have to be evaluated. As the largest block
s1ze 15 determined by n, there are still 7 selectable block sizes.

Requiring eight different block sizes 1s exemplary; other
implementations may target different numbers of block sizes,

such as 2, 3,4, 12, 16, and so on).
Heuristic approaches can be used to determine the set of

block sizes to use. These example heuristics have worked for
the cases evaluated, but there 1s no guaranteed maximum
bounding on the error with the results returned by the heuris-
tic. If there 1s no sorting, it 1s possible to construct cases in
which the optimal solution 1s not found.

Based on these data, the first potential block size, starting at
1 for each potential block-size b two areas are considered. The
number of values that would be encoded with this block size
1s called a 1 (lower case L). The amount of these values 1s
referred to as L. The number of values above this block size 1s
called r. The amount of these values 1s called R.

If b 1s not used as the block size, the values of L. will be
coded with a blocksize of b'zb+1. The encoding with the
block size b' therefore requires at least 1 bit more per value,
and thus a total of at least 1 (lower case L) bits more, com-
pared with encoding with block size b. Thus, at least 1 bit 1s
saved 11 b 1s used as the block size. If b 1s used as a block size,
the remaining R values need one bit more for the Unary
coding of the block size. Thus, r bits are lost, 11 b 1s the block
S1ZE.

It follows that where b 1s used as block size, and it 1>r, this
solution does not provide optimality, 1 1s a lower estimate of
the savings. In the case of a distribution with a total o1774,707
to be encoded values and a previously calculated block size
bb=1 with 1b=400,324 (green) and rb=34 383 (red+blue)
results for the potential block size b8=8 corresponding 18=18
132 (red), and r8=16 251 (blue). Thus, 18=18 132>16 251=r8
and b8 1s set as the second block size. The above serves as a
specific example of how a particular data set can be analyzed,
and those of skill in the art would comprehend how to apply
these general and specific examples, and related disclosures,
to other datasets.

Optimized procedure for calculating the block sizes for a
number of unsorted information and limited number of block
s1zes. The approach described 1n the previous section does not
include any limitation on eight block sizes. An extension of
the approach allows a faster determination of the eight opti-
mal block sizes.

In the first step, the previously proposed method 1s used to
determine 1f the (probably) optimal distribution requires
more than eight block sizes. If this 1s not the case, the process
can be stopped.

IT a distribution with more than eight block sizes 1s deter-
mined 1n this way, a method that includes a recursive algo-
rithm may be used. This algorithm generates a small amount
of candidates, among which 1s the optimal set of block sizes.
For this, for each block size b for which 1>r, two execution
paths are generated. The first execution path considers the

US 8,610,605 B2

9

distribution 11 the block size b 1s used. The second execution
path sees the further distribution without using the block size
b. Here, the first execution path 1s used i1 there are not eight
block sizes formed. The best of the so-determined distribu-
tions corresponds to the (probably) optimal distribution.
FIG. 10 depicts a process for a variable block size encoding,
approach. The process includes, at 605, accessing a raw data
set, and at 610 determining a set of block sizes. At 615, a
determination of respective unary codes for the block sizes 1s
completed. This determination can be performed using fre-
quency information for a number of raw data elements that

will be encoded for each block size, such that more frequent
block sizes get smaller codes. At 617, a table that maps each
unary code to its block size 1s made. FIGS. 5 and 6 provided
different examples of tables, where a block size can be rep-
resented 1n terms of other block sizes, or a block size can be
represented directly.

At 620, a sequence of block groupings 1s formed. Each
block grouping comprises one or more blocks. Collectively,
the one or more blocks of each grouping store a data element
from the raw data set. In one example, there 1s a single block

in the grouping, and 1n other examples, multiple blocks may
be concatenated 1n order to store bits representing the data
clement. The histogram of FIG. 9 depicts a situation where
different data elements are represented by different block
s1zes. Where a given block 1s bigger than required (e.g., where
there 1s no combination of available block sizes that exactly
provides the required number of bits, or a single block that
exactly provides such required number of bits), padding bits
can be used. At 622, the sequence of block groupings are
stored 1n association with unary codes indicating the size of
the block groupings. In one implementation, the unary codes
can separate parts of the data area pertaining to different
values (e.g, FIGS. 5 and 6), and in another implementation, a
separate area can be devoted for unary codes (e.g., FIG. 7).

FIG. 11 depicts an example process of reading data
encoded according to an implementation of the invention. At
640 and 645, a start of location information for a given val-
uelD (e.g.,3661n FIG. 5) 1s accessed and a unary code1s read.
Where the unary code 1s stored with the location data, the
unary code 1s read during the access 640. I there 1s a separate
area for unary code storage, then a separate access may be
implemented for that data. In implementations, such accesses
do not need to be limited to only the data 1identified, but rather
larger portions of data may be read and the relevant data can
be examined or otherwise used. In an example, at 650, a
decision can be made as to whether the next unary code
indicates a block size to be read. If so, a number of bits
commensurate to the block size 1s accessed from a data area
and interpreted as row 1dentifier data (or as a portion of a row
identifier). Depending on an implementation such row 1den-
tifier information may be difference information, or may be a
portion of information sufficient to constitute a row identifier.
Of course, this example 1s 1n the context of an iverted index
for a table or other database. For other applications, the data
read may be interpreted according to that application. If the
unary code does not indicate a block size, then, at 660, the
code can be checked for a stop indication. This decision
process can be extended as desired to other possible codes
that may be desired to be used.

10

15

20

25

30

35

40

45

50

55

60

65

10

Some 1implementations may not use any code other than a
block size code. For example, leading bits to be next consid-
ered for the presence of a unary code can be analyzed, and 1f
a valid code 1s not found, then the sequence of locations can
be considered complete. As such, decision 650 1s not neces-
sary.

S1ze Comparison of Different Methods

The choice of compression method has a profound effect
on the achieved compression ratio. One metric of interest 1s
the size of the whole data area of the index. The following
tables present some results 1n the column “rate” as a ratio of
the Golomb based index and the disclosed approaches.

Based on these tests, variable block length coding
approaches outlined herein can be a better solution than
Golomb coding 1n many cases, and 1n some cases signifi-
cantly better. Small columns can reach, due to the distribution
of values within the column, compression rates of up to
around 43% better than Golomb encoding. For larger col-
umns, the optimized variable block length encoding 1s quite
similar or better.

In one aspect, amodel calculated from the raw data setto be
compressed 1s used to arrive at a set of block sizes that
provides an optimal distribution of block sizes for the data
clements presented 1n the raw data set. Golomb coding pro-
vides the best results for a geometric distribution of the input

values can be reached. However, many data sets do not have
properties of a geometric distribution, and 1n some cases, data
sets may have nearly random qualities. In such cases, and

especially 1n cases where the distribution 1s nearly total ran-
dom, better results are achieved by implementations of the

disclosure than by Golomb coding.

Embodiments of the disclosure extent to using variable
block length coding, and optimized variable block-length
coding approaches to raw data sets outside of inverted
indexes, and 1n fact can be used for compression of image and

movie data.

In many cases, limiting the available block sizes to eight
does not pose any significant degradation to the compression
rate. However, 1n some cases, there 1s some degradation,
although 1t 1s generally small. By limitation to eight block
s1zes affects the compression ratio relatively slightly. Thus,
the column Store Num needed with eleven blocks 103 516

331 bytes, so 1s only 0.032% smaller.

The prefixes are unary 1n all the described methods (for the
highest unary value, the leading 0 can be dropped as described
above). Table 5.3 shows a comparison with other coding
conditions for the prefix. As the number of values with the
block size decreases, the Unary coding corresponds to that of
the Huilman coding, in that the coding of the block sizes
corresponding to the frequency of use of the block size. A
binary coding 1s appropriate for data sets in which all block
s1zes are used at the same frequency. Since that condition does
not hold here, binary coding does not provide good results.

In this comparison, different encodings for the prefix for
given block sizes are considered. It remains to be considered
whether an alternative process of encoding the prefix has
influence on the choice of the optimal block sizes. This 1s
likely to dramatically increase the effort to calculate the opti-
mal block size.

11

US 8,610,605 B2

TABLE 5.2

12

Comparison of different compression methods, in bytes. Here, the column rate compares
a disclosed variable block-length encoding implementation to Golomb coding.

Byte lengths Variable opt. variable
Bit length Encoding Block length block length
Compression [Blocksize] Variable block opt. variable
Column Golomb-Coding Fixed Block Len length sorted block len Rate
L_Orderk. 17.253.439 18.666.791 16.279.762 15.930.271 91.6%
17.383.812 [11] 18.214.930 16.192.696 15.925.469
L_Quant. 11.252.278 6.464.041 5.792.117 5.438.966 102.1%
5.328.068 [7] 6.464.041 5.725.628 5.438.966
L_Comm. 16.503.341 11.130.509 9.250.127 8.939.842 96.4%
9.270.532 [12] 10.224.230 9.145.997 8.905.908
Store_N. 200.768.256 123.946.649 105.811.960 103.483.264 101.0%
102.445.140 [13] 112.464.273 105.795.641 100.777.704
Year W. 17.795 12.512 5.903 5.769 58.4%
9.876 [2] 5.525 5.843 4.527
Ship_To. 161.665 178.745 144.823 140.875 80.0%
175.928 [8] 158.286 136.777 135.659
Merlin_C. 158.752 98.683 64.644 63.737 70.3%
90.644 [4] 78.666 63.490 62.863
Sun_W. 19.164 12.835 7.728 7.572 43.0%
17.612 [4] 10.368 7.557 7.331
Total 246.134.690 160.510.765 137.357.064 134.010.296 99.5%
134.721.612 147.621.319 137.073.629 131.258.427
TABLE 5.3
Comparison of different codes for the prefix and the block size in bits.
Block Number relative Huffman-C. Unary Code Binary Code
Column size values freq. Total size Total size Total size
L_Ord. 19 3.166.865 52.777% 0 01 002
3.166.865 3.166.865 6.333.730
20 1.425.151 23.75% 10 101 012
2.850.302 2.850.302 2.850.302
22 1.250.446 20.84% 110 1101 102
3.751.338 3.751.338 2.500.892
23 158.753 2.65% 111 11101 112
476.259 635.012 317.506
Total: 6.001.215 100.00% 10.244.764 10.403.517 12.002.430
Store. 12 43.131.797 69.82% 0 01 0002
43.131.797 43.131.797 129.395.391
13 16.152.600 26.15% 10 101 0012
32.305.200 32.305.200 48.457.800
14 2.037.512 3.30% 110 1101 0102
6.112.536 6.112.5336 6.112.536
15 362.741 0.59% 1110 1111 0112
1.450.964 1.450.964 1.088.223
16 66.769 0.11% 11110 111101 1002
333.845 333.845 200.307
17 16.197 0.03% 111110 1111101 1012
97.182 97.182 48.591
18 4.377 <0.01% 1111110 11111101 1102
30.639 30.639 13.131
26 2.855 <0.01% 1111111 111111101 1112
19.985 22.840 8.565
Total 61.774.848 100.00% 83.482.148 83.485.003 185.324.544

Speed Measurements

Speed comparisons between the Golomb coding and the
(optimized) variable-length coding block are difficult. The

measurements are made on a computer with four Intel Xeon
7560 processors, each with eight logical cores and 256 GB

main memory. The operating system 1s SUS.
prise Server 11 1s usec
times to compensate :

or any tluctuations.

- Linux Enter-
. All measurements are repeated several

60

65

Table 5.4 shows the access speeds in dif.

‘erent columns A

distinction 1s made between different filter examples. Differ-
ent filters directly atiect the number of rows read 1n the index.
For a small number of read linelds there 1s no difference
between the measured values. For a larger number of lines,
the measurements show that the access speed with the (opti-
mized) variable length coding block 1s roughly 10% faster.
Differences between variable-length block coding and opti-

mized variable block length encoding are within the measure-

ment uncertainty.

US 8,610,605 B2

13
TABLE

>.4

14

Speed comparisons between encoding and Golomb (optimized) variable-leneth encoding in uS.

Number Golomb- variable

Column Filter Results Coding Block len
L._Orderkey =1 6 9 9
<10 25 11 11
<100 105 19 19
<1.000 1.004 11 10
<10.000 9.965 1.07 95
Pa_Direct Cd =*000004" 358 27 26
<*000104" 2.803 18 15
<*000904" 64.554 4.06 3.42
Unit Price =() 260 22 23
<500 3.703 24 20
Year Week. = 115 13 14
<10 1.795 10 96
<30 5.995 32 29
<50 10.195 55 50
Store. Num = 20.2558% 65 58
<15 9424 376 261.114 238.88

Table 5.5 shows measured values for the some SQL state-
ments. These measurements have much larger fluctuations
than the results in Table 5.4. Nevertheless, also here the vari-
able block length coding 1s faster by a factor of 20%.

Table 5.6 shows measurements in which the entire 1ndex 1s
accessed sequentially. This 1s manually programmed and 1s
not forced by an SQL statement. In these measurements, the
variable block length coding scheme used was found to be
superior to Golomb coding by around 15%.

TABLE 5.5

Speed comparisons between Golomb coding and optimized variable
block-length encoding for some join operations in usS.

Golomb-Coding opt. vari. Block len Factor

Schnellstes 10.051 8.683 81.6%

Durchschnitt 16.526 12.855 77.8%
TABLE 5.6

Speed comparisons between Golomb coding and variable block length
encoding for a full runs of the iterator in micro seconds (us).

Column Golomb-Coding Var. Block Len. Factor
L_Orderkey 181.720 161.572 88.9%
L_Quantity 88.7%81 71.548 80.6%
Pa_Direct_Cd 3.015 2.361 78.3%
Unit_Price 134 117 87.3%
Year Week Num 350 311 8&.9%

A Nearly-1:1-Index

Between the two cases of 1:1- and a 1-to-many mapping,
there 1s a special case in which there 1s a nearly 1:1 mapping.
In this case, almost all valuelds are assigned exactly to one
Row Id, however, few individual Value Ids may be assigned to
several Row Ids. Thus, 1t1s a 1:n 1ndex, although the essential
features of the 1:1 index are present.

As an example of a nearly-1:1-mapping within the TPC-H
data 1s the column product name. This 1s almost 1:1, but three
products have the same name. But also other columns, such as
the sum of the outstanding items of a customer may be eli-
gible for such distribution.

For a nearly 1:1 mapping/assignment, for each valueld 1t
can be saved whether that valueld has a 1:1 or a 1:n mapping.
This can be saved with one additional bit (green one 1n FIG.

25

30

35

40

45

50

55

60

65

239.015

opt. vari.

Block Len Factor

9
11
19

10 92%
95 89%%
27
15

3.41
23
20
15
96
30
50
58

86%%
849%%

86%%

94%
91%
90%
89%
92%

6.9). For a 1:1 mapping, one can directly store the rowld in the
position Vector. For a 1:n mapping, one can store a simple
reference to the data area 1n the position vector. The actual
rowlds are then stored 1n the data area. In the data area can be
used any kind of compression like the Golomb coding or the
optimized variable block length encoding.

FIG. 12 shows an example index for a data set that 1s
indexed using a nearly-1:1 mapping approach. A bit 709 1n
position vector 715 indicates whether an associated portion
710 of position vector 715 directly 1identifies a location of a
single (1:1 entry) for a particular value, or whether that por-
tion 710 1nstead includes a pointer (or reference) to a data area
that includes a list of locations (a 1:n mapping). For example,
in the context of a database, position vector 7135 can include a
rowld 1n the position vector (1:1 mapping) or a pointer to a
string of values that can be compressed according to this
disclosure or by Golomb coding (1:n mapping). In the context
of FIG. 12, pointer 713 serves as an example of a 1:n map-
ping, and Golomb encoding data 720 provides the location
information for the valuelD to which pointer 715 pertains.

FIG. 14 depicts an example method for encoding data for a
nearly 1:1 index. At 826, a determination to use a nearly 1:1
index 1s made, and can be performed based on an analysis of
a dataset to be encoded. At 828, a 1:1 value/location combi-
nation can be identified. For that 1:1 combination, at 830,
location information can be stored directly 1n a position vec-
tor, and an indicator flag can be set appropriately. At 832,a 1:n
value/locations combination 1s 1dentified. For this combina-
tion, at 834, location information for the n locations are
encoded, and at 836, such encoded data 1s stored 1n a data
area. At 838, a pointer 1s stored in position vector to location
in data area. At 840, a remainder of a fixed length field 1n the
position vector storing this pointer can be filled with location
information. At 842, a determination concerning whether
more raw data remains to be processed 1s made, and 11 so the
process continues to process the data. Otherwise, at 844, the
process can be considered completed. The example portions
of the process depicted can be performed 1n a different order
than what 1s 1llustrated. In fact, depending on the raw data set
being processed, 1:n or 1:1 values may occur 1n any order.
Also, 840 may or may not be performed, or may be performed
betore 836, for example.

FIG. 15 depicts an example process of reading an set of
location data for a given valuelD that was encoded according
to a nearly 1:1 index implementation. At 840, an indicator 1s
recetved, the 1indicator identifies a value for which inverted

US 8,610,605 B2

15

index information 1s to be retrieved (e.g., valuelD 1 of FIG. 2).
At 842, a location 1n a position vector for that valuelD 1s
accessed. At 844, a tlag indicative of whether that part of the
position vector 1s encoded 1:1 or 1:n 1s accessed. At 846, a
decision 1s made concerning whether the flag indicates 1:1 or
1:n.I11:1, then at 848, the location information (e.g., a single
rowlD) 1s accessed directly from the position vector. If 1:n,
then at 854, the position vector 1s accessed and interpreted as
a pointer. At 852, a part of a data area identified by the pointer
1s indexed and location information there 1s retrieved. In one
implementation, each pointer has a shorter length than a fixed
length field of the position vector that stores the pointer. In
such implementations, a pointer does not completely fill the
fixed length field 1n the position vector allocated for 1t, and so
some part of the location information can be stored there. If
s0, at 854, such location data is accessed. At 856, the complete
location information 1s decompressed to produce the loca-
tions at which the valuelD appears (e.g., rowIDs for rows that

have a column that includes the value identified by the val-
uelD).

By moving from the data area to the position vector the data
area 1s much smaller. A smaller range of data leads to shorter
position entries. However, the width of the fields in the posi-
tion vector are not reduced accordingly. This 1s due to rowlIds
that are stored directly 1n the position vector. In addition, the
width of the position vector by the extra bit for a decision on
the 1:1 mapping increases. Unlike the previous approaches
there 1s an entry point for the first value Id.

Further optimization of the nearly 1:1-index can be
obtained by directly storing some information of the data area
inside the position vector, an example of which 1s shown 1n
FIG. 13. Assuming that the largest entry point requires 15
bits, but the biggest rowld requires 22 bits, then for every
entry point, at least 7 bits will be unused. Thus, 1n the first 15
bits of the position vector the entry point can be saved. In the
last 7 bits 1n the position vector and the data area the rowlds
and their differences are stored. Access to the rowlds may
need to combine the two parts 1n FIG. 6.13. The position
vector can continue to use fixed widths. FIG. 13 shows an
example where field 730 includes a pointer 729 for a 1:n
mapping, and a remainder of field 730 1s filled with a portion
735 of data for the 1:n mapping (here, the count and a begin-
ning of a rowlID for Golomb coding 1s shown, by example).

A method can detect whether there 1s a dataset appropriate
to use a nearly 1:1 mapping implementation for an mnverted
index. One approach can be to compare a number of values
and a number of rows. For 2*values>rows there are at least
2*values—rows mappings.

The decision whether to use the nearly-1:1-optimized
index can be done by a calculation or estimation of both the
expected 1index sizes. if the optimized variable block length
coding 1s used inside the data area, then based on the distri-
bution of the differences, detailed analysis about the size of
the 1: n and the nearly-1:1-1ndex can be made. The size also
can be compared to a size for a Golomb coded data area. The
smaller of 1:n and nearly 1:1 indices can be employed (using
Golomb coding or codings according to this disclosure).
Measurements for Nearly-1:1-Index

Tables 6.5, 6.6 and 6.7 provide size measurements for
nearly-1:1 mappings. It turns out that despite the extra bit
values to distinguish between a 1:1- and a 1-to-many asso-
ciation (in FIGS. 6.9 and 6.10 are each shown in green)
reaches for the 1:1 mapping compression rates of up to 69%.
Table 6.5 compares the additional optimized approach in FIG.
6.9 with the more streamlined approach in FI1G. 6.10. It turns
out that the compression rate can be increased slightly. This

10

15

20

25

30

35

40

45

50

55

60

65

16

does 1n most cases not justily the complex implementation
and slowdowns when reading.

TABLE 6.5

Size comparison between a Golomb-coded 1:n-index and nearly 1:1 -
in assignments optimized mmdex of the column I._Comment bvtes.

Column Field Size
Normal Position Vector (28 Bit) 5.344.112
Data 18.130.252
Total 23.474.364
Optimized Position Vector (26 Bit) 14.887.168
Data 4.932.680
Bit Vector 572.583
Total 20.392.431
Compression Rate (Opt/Normal) 86.9%
Further Position Vector (26 Bit) 14.887.168
Optimized Data 4.432.680
Bit Vector 572.583
Total 19.892.431
Compression Rate (Further Optimized 84.7%

TABLE 6.6

Size comparison between a Golomb-coded 1:n-index and nearly 1:1 -

in assignments optimized index of the column P_Name bvtes.

Column Field Size

Normal Position Vector (22 Bit) 183.336
Data 509.484
Total 692.820

Optimized Position Vector (18 Bit) 449.992
Data 24
Bit Vector 25.000
Total 475.016

Compression Rate (Opt/Normal) 69%

TABLE 6.7

Size comparison between a Golomb-coded 1:n-index and nearly-1:1 -
in assignments optumized index of the column P_Comment bytes.

Column Field Size

Normal Position Vector (22 Bit) 181.160
Data 472.860
Total 654.020

Optimized Position Vector (21 Bit) 345.856
Data 194.120
Bit Vector 16.469
Total 556.445

Compression Rate (Opt/Normal) 85%

Table 6.8 shows the example of the column L._Comment a
comparison with an index without block-position vector.
Because of the number of values in relation to the total num-
ber of lines would be used according to equation 4.3 (p. 22)
has a block size of 3 forthe column I. Comment. Without that
block formation of the position vector in Table 6.8 and com-
plete accordingly larger. Speed comparison between the two
approaches using the example of the column L. Comment are
impressive. A significant gain 1 speed of almost 30% of
access time for the simple-optimized nearly 1:1 index can be

US 8,610,605 B2

17

reached. It 1s thus clear that the optimized nearly 1:1 mapping
index 1s significantly smaller and faster than previous
approaches.

TABLE 6.8

Size comparison between a Golomb-coded 1:n-items
excluding block-position vector and nearly-1:1-optimized
index assignments for column I._Comment.

Colunm Field Size
Normal Position Vector (28 Bit) 16.032.336
Data 18.130.252
Total 34.162.588
Optimized Position Vector (26 Bit) 14.887.168
Data 4.932.680
Bit Vector 572.583
Total 20.392.431
Compression Rate (Opt/Normal) 59.7%

The above description illustrates various embodiments of
the present invention along with examples of how aspects of
the present invention may be mmplemented. The above
examples and embodiments should not be deemed to be the
only embodiments, and are presented to 1llustrate the tlexibil-
ity and advantages of the present invention as defined by the
following claims. Based on the above disclosure and the
tollowing claims, other arrangements, embodiments, 1mple-
mentations and equivalents will be evident to those skilled in
the art and may be employed without departing from the spirit
and scope of the mvention as defined by the claims.
What 1s claimed 1s:
1. A method of data compression, comprising:
accessing, in a computer system, a raw data set comprising,
a plurality of data elements;

determining, 1n the computer system, a set of block sizes to
be used 1n forming an encoded data set providing a
compressed representation of the plurality of data ele-
ments 1n the raw data set, wherein the set of block sizes
comprises differing block sizes;

determining, in the computer system, a respective group-

ing of one or more blocks 1n which to store each data
clement of the raw data set, each block 1n the grouping
being of a block size selected from the set of block sizes;
and

storing, in a non-transitory machine readable medium, the

groupings in a sequence, in association with respective
unary size codes indicative of a size of each grouping in
the sequence.

2. The method of data compression of claim 1, wherein the
plurality of data elements of the raw data set comprise
inverted index data, the inverted index data comprising a
plurality of values and for each value, one or more locations
in a dataset where that value appears.

3. The method of data compression of claim 1, further
comprising causing the association between the groupings
and their respective unary codes by storing the unary codes 1n
the sequence, each preceding the grouping to which 1t per-
tains.

4. The method of data compression of claim 1, wherein

cach block comprises binary data,

the determining the set of block sizes comprises determin-

ing at least one pair of block sizes ol n bits and n+1 bits,
respectively, and

the storing comprises storing a data element of the raw data

set having n+1 bits with a unary code indicating a block
s1ize of n+1 bits, with a data field of n bits by excluding

10

15

20

25

30

35

40

45

50

55

60

65

18

the most significant bit of the raw data element having
n+1 bits from storage in the block.

5. The method of data compression of claim 1, further
comprising creating, in the computer system, a table mapping
the unary size codes to sizes of their groupings.

6. The method of data compression of claim 3, wherein the
table comprises an entry for each unary size code indicating
an absolute bit length.

7. The method of data compression of claim 5, wherein the
table comprises respective entries for unary size codes 1ndi-
cating a bit length relative to a bit length of a different unary
s1ze code 1n the table.

8. A non-transitory machine readable medium storing
instructions that when executed by a computer processor
coniigure the computer processor for:

accessing a raw data set comprising a plurality of data
elements;

determining a set of block sizes to be used 1n forming an
encoded data set providing a compressed representation
of the plurality of data elements 1n the raw data set,
wherein the set of block sizes comprises differing block
S1ZES;

determining a respective grouping of one or more blocks 1n
which to store each data element of the raw data set, each
block in the grouping being of a block size selected from
the set of block sizes; and

storing, 1n a non-transitory machine readable medium, the
groupings 1n a sequence, 1n association with respective
unary size codes indicative of a si1ze of each grouping 1n
the sequence.

9. The non-transitory machine readable medium of claim
8, wherein the plurality of data elements of the raw data set
comprise mverted index data, the iverted index data com-
prising a plurality of values and for each value, one or more
locations 1n a dataset where that value appears.

10. The non-transitory machine readable medium of claim
8, wherein the instructions further configure the computer
processor for causing the association between the groupings
and their respective unary codes by storing the unary codes 1n
the sequence, each preceding the grouping to which it per-
tains.

11. The non-transitory machine readable medium of data
compression of claim 8, wherein

cach block comprises binary data,

the determining the set of block sizes comprises determin-
ing at least one pair of block sizes of n bits and n+1 bats,
respectively, and

the storing comprises storing a data element of the raw data
set having n+1 bits with a unary code indicating a block
s1ize of n+1 bits, with a data field of n bits by excluding
the most significant bit of the raw data element having
n+1 bits from storage in the block.

12. The non-transitory machine readable medium of claim
8, wherein the instructions further configure the computer
processor for creating a table mapping the unary size codes to
s1zes of their groupings.

13. The non-transitory machine readable medium of claim

12, wherein the table comprises an entry for each unary size
code 1indicating an absolute bit length.

14. The non-transitory machine readable medium of claim
12, wherein the table comprises respective entries for unary
s1ze codes indicating a bit length relative to a bit length of a
different unary size code 1n the table.

US 8,610,605 B2

19

15. A system, comprising;:

a processor; and

a non-transitory machine readable medium coupled with

the processor, and storing machine readable data that
when executed by the processor cause the processor to
be configured to:

access a raw data set comprising a plurality of data ele-

ments,
determine a set of block sizes to be used in forming an
encoded data set providing a compressed representation
of the plurality of data elements 1n the raw data set,
wherein the set of block sizes comprises differing block
S1Zes,

determine a respective grouping of one or more blocks in
which to store each data element of the raw data set, each
block 1n the grouping being of a block size selected from
the set of block sizes, and

store, 1n a non-transitory machine readable medium, the

groupings in a sequence, in association with respective
unary size codes indicative of a size of each grouping in
the sequence.

16. The system of claim 15, wherein the plurality of data
clements of the raw data set comprise inverted index data, the
inverted index data comprising a plurality of values and for
each value, one or more locations 1n a dataset where that value
appears.

10

15

20

25

20

17. The system of claim 15, wherein the machine readable
data further cause the processor to be configured to cause the
association between the groupings and their respective unary
codes by storing the unary codes 1n the sequence, each pre-
ceding the grouping to which 1t pertains.
18. The system of claim 15, wherein
cach block comprises binary data,
the machine readable data that causes the processor to be
configured to determine the set of block sizes comprises
machine readable data that causes the processor to be
configured to determine at least one pair of block sizes of
n bits and n+1 bits, respectively, and

the machine readable data that causes the processor to be
configured to store comprises machine readable data
that causes the processor to be configured to store a data
clement of the raw data set having n+1 bits with a unary
code indicating a block size of n+1 bits, with a data field
of n bits by excluding the most significant bit of the raw
data element having n+1 bits from storage 1n the block.

19. The system of claim 15, wherein the machine readable
data further cause the processor to be configured to create a
table mapping the unary size codes to sizes of their groupings.

20. The system of claim 19, wherein the table comprises an
entry for each unary size code indicating an absolute bit

length.

	Front Page
	Drawings
	Specification
	Claims

