US008607322B2

12 United States Patent (10) Patent No.: US 8.607,322 B2

Hinton et al. 45) Date of Patent: Dec. 10, 2013
(54) METHOD AND SYSTEM FOR FEDERATED (56) References Cited
PROVISIONING

U.S. PATENT DOCUMENTS
(75) Inventors: Heather Maria Hinton, Austin, TX

(US): Brian James Turner, Santa Cruz,) WSS B (o000 pabie X Cceren ot al. - 713,208
] 1 dIT1Z4-L_dCCICH © . e
EA (U(ik ‘d[‘}lsth"s“ﬁ’ Scovt:,Mc;’m“é Santa 2003/0177388 ALl* 9/2003 Botzetal. ..occooovvovovve..... 713/201
Tuz, (US); ane yveeden, Santa 2005/0111466 A1* 5/2005 Kappesetal. 370/400
Cruz, CA (US); Ian Michael Glazer,
Washington, DC (US); Gavin George * cited by examiner
Bray, Robina (AU); Venkat Raghavan,
Austin, TX (US) Primary Examiner — William Powers
| _ _ _ Assistant Examiner — Dant Shaiter Harriman
(73) Assignee: Internatlt.mal Business Machines (74) Attorney, Agent, or Firm — Jeffrey S. LaBaw; David H.
Corporation, Armonk, NY (US) Tudson
(*) Notice: Subject. to any disclaimer,. the term of this (57) ABSTRACT
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 2331 days. A method and a system are presented 1in which federated
domains interact within a federated environment. Domains
(21) Appl. No.: 10/896,351 within a federation can initiate federated single-sign-on

operations for a user at other federated domains. A point-oi-
contact server within a domain relies upon a trust proxy
within the domain to manage trust relationships between the

(22) Filed: Jul. 21, 2004

65 Prior Publication Data
(65) domain and the federation. Trust proxies interpret assertions
US 2006/0021019 Al Jan. 26, 2006 from other federated domains as necessary. Trust proxies may
have a trust relationship with one or more trust brokers, and a
(51) Imt. CL trust proxy may rely upon a trust broker for assistance in
Goot 7/04 (2006.01) interpreting assertions. When a user 1s provisioned at a par-
Gool 15/16 (2006.01) ticular federated domain, the federated domain can provision
Goor 17/30 (20006.01) the user to other federated domains within the federated envi-
HO4L 29/06 (2006.01) ronment. A provision operation may include creating or delet-
(52) US. CL ing an account for a user, pushing updated user account infor-
LS P et e eean e 726/10 mation inc]uding attributes, and requesting upda‘[es on
(58) Field of Classification Search account information including attributes.
USPC e e 726/10
See application file for complete search history. 25 Claims, 11 Drawing Sheets
(BEGIN)
USER REQUESTS PROTECTED ‘l
RESOURCE AT RELYING DOMAIN RELYING DOMAIN'S TRUST PROXY
212 EXTRACTS INFORMATION FROM THE
ASSERTION
Y 386
RELYING DOMAIN DETERMINES l
USER'S HOME DOMAIN
374 RELYING DOMAINS'S TRUST PROXY
ATTEMPTS TO INTERPRET OR
l VALIDATE ASSERTION
(WITH ASSISTANCE FROM A TRUST
RELYING DOMAIN'S POC SERVER
INITIATES ASSERTION REQUEST WITH SRR g o)
RELYING DOMAIN'S TRUST PROXY
- |
l RELYING DOMAIN'S TRUST PROXY
, GETS ASSERTION INFORMATION N
REALESTS o ASERTON FOR e FORMAT APPROPRIATE FOR RELYING
DOMAIN'S BACK-END PROCESSES
USER FROM THE ISSUING DOMAIN'S
TRUST PROXY 220
- !
l' RELYING DOMAINS'S TRUST PROXY
RETURNS ASSERTION INFORMATION
tISSUING DOMAIN'S TRUST PROXY .
GENERATES REQUESTED ASSERTION TORELYING DQPEIZN S POC SERVER
- J,
ISSUING DOMAIN'S TRUST PROXY FORWARDS USER REQUEST AND
RETURNS REQUESTED ASSERTION RELEVANT INFORMATION TO BACKEND
202 APPLICATION OR SERVICE
i 294
RELYING DOMAIN'S TRUST PROXY J
RECEIVES REQUESTED ASSERTION (EnD)
384

U.S. Patent Dec. 10, 2013 Sheet 1 of 11 US 8,607,322 B2

100
\ 103 =

109 102 A=

SERVER CLIENT
- [mi
SERVER

- \ gf_/ 107
104
11 PERSONAL

ol

6
114 DIGITAL ASSISTANT
HW
é " FIG. 14
/K‘PERSONAL .
(] DIGITAL ASSISTANT (PRIOR ART)

111

WIRELESS

PHONE
120 122 I
DISPLAY
\ cPu ADAPTER E 146
DISPLAY
123
144
USER INTERFACE g
ADAPTER
) “
126
I
PRINTER
— 128 /O ADAPTER
o
134 KEYBOARD 136
COMMUNICATION
132 ADAPTER COMMUNICATION
LINK

FIG. 1B

(PRIOR ART)

U.S. Patent Dec. 10, 2013 Sheet 2 of 11 US 8,607,322 B2

=
i M TYPICAL USER 5
E

CLIENT

; i SERVER
:: AUTHENTICA-”ON ‘E |BM.COM
USER REQUESTS WEB | 153 |
PAGE AT IBM.COM HTTP REQUEST : NO IDENTITY
157 ________L_. * INFORMATION
== ; : AVAILABLE
i 155 | 154
ESTABLISH SSL SESSION
156 |
e . AUTHENTICATION CHALLENGE ¢ |
USER/CLIENT ; g
PROVIDES INFORMATION : 198 | SERVER
157 % AUTHENTICATION RESPONSE) f AUTHENTICATES
i 160 | USER/CLIENT
: : 1
i HTTP RESPONSE) | 159
E IE ' | ll-l
USER REQUESTS 162 | SSL SESSION ID ="F"|
ANOTHER WEB PAGE HTTP REQUEST) |
AT IBM.COM : : |
161 s 5 Vv
g 164 | USER ID = USERA
i HTTP RESPONSE ’:
(PRIOR ART)
CLIENT

.11++ .

PLICATION
SERVER

DNS DOMAIN 1
173

| "y

= |

AUTHENTICATION ~ WEB APPLICATION
SERVER SERVER

DNS DOMAIN 2
175

AUTHENTICATION WEB AP
SERVER

FIG. 1D

(PRIOR ART)

U.S. Patent Dec. 10, 2013 Sheet 3 of 11 US 8,607,322 B2

E-COMMERCE
DOMAIN
197

| BANKING I
f‘ghg DOMAIN
— 195

ISP DOMAIN 191

GOVERNMENT
DOMAIN

193

AUTHENTICATION <
MANAGER (AM) =&

FIG. IE

(PRIOR ART)

ENTERPRISE A ENTERPRISE B ENTERPRISE C
204 206 208
USER ‘
02 HOME DOMAIN
ISSUING DOMAIN RELYING DOMAIN _
FIG. 24 ISSUING DOMAIN RELYING DOMAIN
| ENTERPRISE B 260
POINT-OF-CONTACT
ENTERPRISE A ' —
250 (POC) SERVER POC SERVER
== 252 262
264 ASR
ASR SECURITY | 266
296 TOKEN TRUST PROXY |
(STS) 254 265
255 T

LV
FE/ G 7 C TRUST BROKER

268

U.S. Patent Dec. 10, 2013

FiG. 2B

Sheet 4 of 11 US 8,607,322 B2

CLIENT DEVICE 214

BROWSER APPLICATION

HTTP 220

ML INTERPRETER 222 I

POINT-OF-CONTACT (POC) SERVER
242

TRUST PROXY (TP)

FEDERATED 244
FRONT-END FOR
ENTERPRISE/ | | sEcuRITY
DOMAIN OKEN SERVIC
240 (STS)
245

_ 216 OTHER
I WEB SERVICES CLIENT 224 , A;f BS |
LEGACY APPLICATIONS OR
BACK-END PROCESSING FOR
ENTERPRISE/DOMAIN
230

AUTHENTICATION SERVICE

232

—

RUNTIME (ASR) SERVERS

APPLICATION SERVERS

FEDERATION CONFIGURATION APPL.
246

FEDERATED INTERFACE UNIT
248

234
| LEGACY LEGACY
USER USER
REGISTRY REGISTRATION
APPLICATION
230 236

DIRECT TRUST
RELATIONSHIp |FEDERATED

DIRECT TRUST
RELATIONSHIP

TRUST PROXY
275

DOMAINY
272
FEDERATED
DOMAIN X
271
281

\ TRUST PROXY
274

L

FEDERATED
DOMAIN Z
273

FiIG. 2D

BROKERED TRUST BROKER
TRUST ool
RELATIONSHIP 280

TRUST PROX
276

DIRECT TRUST
RELATIONSHIP

|

279

U.S. Patent Dec. 10, 2013

(BEGIN)

ISSUING DOMAIN'S POINT-OF-CONTACT
(POC) SERVER IS TRIGGERED FOR AN
ASSERTION
302

ISSUING DOMAIN'S POC SERVER
REQUESTS THE ASSERTION FROM THE
ISSUING DOMAIN'S TRUST PROXY

304

ISSUING DOMAIN'S TRUST PROXY
GENERATES THE ASSERTION
(WITH ASSISTANCE FROM A TRUST
BROKER IF NECESSARY)

306

ISSUING DOMAIN'S TRUST PROXY
RETURNS THE ASSERTION TO ISSUING
DOMAIN'S POC SERVER
308

I ISSUING DOMAIN'S POC SERVER
INSERTS ASSERTION INTO OUTPUT

DATASTREAM IN AN APPROPRIATE
MANNER, E.G., OUTGOING MESSAGE
310

END

FIG. 34

Sheet Sof 11

RELYING DOMAIN'S POC SERVER GETS
MESSAGE WITH ASSOCIATED ASSERTION

322

RELYING DOMAIN'S POC SERVER
EXTRACTS ASSERTION AND FORWARDS
IT TO RELYING DOMAIN'S TRUST PROXY
I 324

RELYING DOMAIN'S TRUST PROXY

| EXTRACTS INFORMATION FROM
ASSERTION
326

! j

RELYING DOMAIN'S TRUST PROXY
ATTEMPTS TO VALIDATE ASSERTION
(WITH ASSISTANCE FROM A TRUST
BROKER IF NECESSARY)

328

RELYING DOMAIN'S TRUST PROXY
GENERATES LOCAL INFORMATION
330

RELYING DOMAIN'S TRUST PROXY
RETURNS REQUIRED INFORMATION TO
RELYING DOMAIN'S POC SERVER
332

e

RELYING DOMAIN'S POC SERVER
FORWARDS USER REQUEST AND
RELEVANT INFORMATION TO BACKEND
APPLICATION OR SERVICE
334

FlG. 3B

US 8,607,322 B2

U.S. Patent Dec. 10, 2013

BEGIN

Sheet 6 of 11

USER ACCESSES A LINK TO THE
RELYING DOMAIN FROM A WEB PAGE
WITHIN THE ISSUING DOMAIN
342

BACK-END PROCESSING AT ISSUING
DOMAIN IS INVOKED TO BUILD THE

REQUIRED ASSERTION
344

USER'S REQUEST TO RELYING DOMAIN,

INCLUDING REQUIRED ASSERTION,
IS BUILT

346

ISSUING DOMAIN TRANSFERS
ASSERTION WITH USER'S REQUEST
TO RELYING DOMAIN
348

FIG. 3C

USER REQUESTS PROTECTED
RESOURCE AT RELYING DOMAIN
352

| ISSUING DOMAIN'S POC SERVER

INTERCEPTS REQUEST FOR RESOURC
AT RELYING DOMAIN
394

ISSUING DOMAIN'S POC SERVER
REQUESTS ASSERTION FROM ISSUING
DOMAIN'S TRUST PROXY
356

ISSUING DOMAIN'S TRUST PROXY
GENERATES THE ASSERTION
(WITH ASSISTANCE FROM A TRUST
| BROKER IF NECESSARY)

358

US 8,607,322 B2

ISSUING DOMAIN TRANSFERS
ASSERTION WITH USER'S REQUEST
TO RELYING DOMAIN
360

END

FilG. 3D

U.S. Patent Dec. 10, 2013 Sheet 7 of 11 US 8,607,322 B2

BEGIN

USER REQUESTS PROTECTED

RESOURCE AT RELYING DOMAIN RELYING DOMAIN'S TRUST PROXY
372 EXTRACTS INFORMATION FROM THE
ASSERTION
386

RELYING DOMAIN DETERMINES
USER'S HOME DOMAIN

374

RELYING DOMAINS'S TRUST PROXY
ATTEMPTS TO INTERPRET OR

VALIDATE ASSERTION

(WITH ASSISTANCE FROM A TRUST
BROKER IF NECESSARY)
388

RELYING DOMAIN'S POC SERVER
INITIATES ASSERTION REQUEST WITH
RELYING DOMAIN'S TRUST PROXY
376

RELYING DOMAIN'S TRUST PROXY
GETS ASSERTION INFORMATION IN
FORMAT APPROPRIATE FOR RELYING
DOMAIN'S BACK-END PROCESSES

RELYING DOMAIN'S TRUST PROXY
REQUESTS AN ASSERTION FOR THE
USER FROM THE ISSUING DOMAIN'S

TRUST PROXY 220
378
RELYING DOMAINS'S TRUST PROXY
ETURN RTION IN ATION
ISSUING DOMAIN'S TRUST PROXY ?o FEJELY?N%SES)EMA‘I?J'S PZ%RSRIAERV(I:E)R
GENERATES REQUESTED ASSERTION 390
380 o

, RELYING DOMAIN'S POC SERVER
ISSUING DOMAIN'S TRUST PROXY FORWARDS USER REQUEST AND

RETURNS REQUESTED ASSERTION RELEVANT INFORMATION TO BACKEND
382 APPLICATION OR SERVICE
394

RELYING DOMAIN'S TRUST PROXY

RECEIVES REQUESTED ASSERTION m
FIG. 3E

384

U.S. Patent Dec. 10, 2013 Sheet 8 of 11 US 8,607,322 B2

USER 400 ¢ |

ENTERPRISE A 410 ENTERPRISE B 420 ENTERPRISE C 430

POINT-OF-CONTACT
(POC) SERVER 412 POC SERVER 422 POC SERVER 432
TRUST PROXY (TP) 414 TP 404 ==y

i i

FIG 4 TRUST BROKER 450

USER 212

FiG. 5

CLIENT DEVICE 214
BROWSER APPLICATION 216 OTHER

|HTTP @| | ML INTERPRETER 222 \ | WEB SERVICES CLIENT 224 | Azpfas

LEGACY APPLICATIONS OR
POINT-OF-CONTACT (POC) SERVER 242
© CT)—__ — BACK-END PROCESSING FOR

ENTERPRISE/DOMAIN
TRUST PROXY (TP) 230
FEDERATED 244
FRONT-END FOR
AUTHENTICATION SERVICE
ENTERPRISE/ SECURITY TOKEN RUNTIME (ASR) SERVERS 232
DOMAIN SERVICE (STS)

240 245

APPLICATION SERVERS
234
FEDERATED IDENTITY — :
SUPPLIER SERVICE 502 LEGACY IDENTITY MANAGEMENT
SUBSYSTEM 506

FEDERATED IDENTITY
CONSUMER SERVICE 504

LEGACY Lﬁgégy
FEDERATION CONFIGURATION APPL. 24 USER REGISTRATION
REGISTRY
o APPLICATION

236

FEDERATED INTERFACE UNIT 248

U.S. Patent Dec. 10, 2013 Sheet 9 of 11 US 8,607,322 B2

ENTERPRISE A 250 ENTERPRISEB 260

e ————— - e —

I FEDERATED PROVISIONING

IMS INTERFACE UNIT | \ s ANAGEMENT SERVER
(11U) 606 (FPMS)

602

IDENTITY

MANAGEMENT
SUBSYSTEM (IMS)
604

POINT-OF-CONTACT
(POC) SERVER
252

POC SERVER
262

TP
| 264 ASR
SECURITY 2966
256 TOKEN T
SERVICE | TRUST IZI;?)(Y (TP) | STS
(STS) T @
295

FIG. 6

TRUST BROKER
268

FEDERATED PROVISIONING MANAGEMENT SERVER 902

l DATA INTEGRATION ASSEMBLY LINE 906
o DATA WS-PROVISIONING

210

EVENT JAVA CLIENT/SERVER
HANDLER TRANSLATION MODULE 04
UNIT ==
908 l 912

FIG. 9

U.S. Patent Dec. 10, 2013 Sheet 10 of 11 US 8,607,322 B2

BEGIN

USER ELECTRONICALLY REGISTERS
WITH FEDERATED ENTERPRISE
102

FEDERATED ENTERPRISE ASSOCIATES
IDENTITY INFORMATION WITH USER
704

FEDERATED DOMAIN CREATES
USER ACCOUNT BASED ON
IDENTITY INFORMATION
706

FEDERATED PROVISIONING
MANAGEMENT SERVER DETECTS
NEW USER ACCOUNT/IDENTITY
708

FEDERATED PROVISIONING MANAGEMENT
SERVER GENERATES FEDERATED
PROVISIONING REQUEST BASED ON
NEW USER ACCOUNT/IDENTITY
= |

E—

POINT-OF-CONTACT SERVER OF
ORIGINATING FEDERATION PARTNER
FORWARDS PROVISIONING RESPONSES
| FROM PARTNERS WITHIN FEDERATED
ENVIRONMENT TO FEDERATED
PROVISIONING MANAGEMENT SERVER
716

FEDERATED PROVISIONING MANAGEMENT

SERVER REQUESTS TRUST PROXY TO
SECURE REQUEST MESSAGE
12

FEDERATED PROVISIONING MANAGEMENT
SERVER ANALYZES/COORDINATES
RESPONSES FROM PARTNERS
WITHIN FEDERATED ENVIRONMENT FOR
FEDERATED PROVISIONING REQUESTS
718

FEDERATED PROVISIONING MANAGEMENT
SERVER SENDS SECURE MESSAGES TO
PARTNERS WITHIN FEDERATED
ENVIRONMENT VIA POINT-OF-CONTACT
SERVER
714

rlG. 7

U.S. Patent Dec. 10, 2013 Sheet 11 of 11 US 8,607,322 B2

POINT-OF-CONTACT SERVER AT
FEDERATION PARTNER RECEIVES SECURE
MESSAGE FROM ORIGINATING DOMAIN

802

POINT-OF-CONTACT SERVER FORWARDS
SECURE MESSAGE TO TRUST PRXOY

804
e
!

TRUST PROXY VALIDATES ENCRYPTION,
SIGNATURES, AND TOKENS

806

TRUST PROXY RETURNS

FEDERATED PROVISIONING REQUEST TO
POINT-OF-CONTACTSERVER

808 I

POC SERVER FORWARDS FEDERATED
PROVISIONING REQUEST TO FEDERATED |
PROVISIONING MANAGEMENT SERVER

—

——

—

210 I FEDERATED PROVISIONING MANAGEMENT
SERVER GENERATES FEDERATED
PROVISIONING RESPONSE
FEDERATED PROVISIONING MANAGEMEE' 816

SERVER EXTRACTS USER INFORMATION/

IDENTITY FROM RECEIVED FEDERATED |
PROVISIONING REQUEST

812 TRUST PROXY SECURES
RESPONSE MESSAGE
I 818
FEDERATED PROVISIONING MANAGEMENT i
SERVER REQUESTS CREATION OF LOCAL
USER A%Clggm BASED %N RECEIVED | | SECURE RESPONSE MESSAGE IS SENT TO
USE NTITY/INFORMATION ORIGINATING FEDERATION PARTNER VIA
814 POINT-OF-CONTACT SERVER
820

FIG. &

US 8,607,322 B2

1

METHOD AND SYSTEM FOR FEDERATED
PROVISIONING

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s related to the following applica-

tions with a common assignee:

U.S. patent application Ser. No. 10/334,273, filed Dec. 31,
2002, titled “Local Architecture for Federated Heterogeneous
System”.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an improved data process-
ing system and, in particular, to a method and apparatus for
multicomputer data transferring. Still more particularly, the
present invention 1s directed networked computer systems.

2. Description of Related Art

Enterprises generally desire to provide authorized users
with secure access to protected resources 1n a user-friendly
manner throughout a variety of networks, including the Inter-
net. Although providing secure authentication mechanisms
reduces the risks of unauthorized access to protected
resources, those authentication mechanisms may become
barriers to accessing protected resources. Users generally
desire the ability to change from interacting with one appli-
cation to another application without regard to authentication
barriers that protect each particular system supporting those
applications.

As users get more sophisticated, they expect that computer
systems coordinate their actions so that burdens on the user
are reduced. These types of expectations also apply to authen-
tication processes. A user might assume that once he or she
has been authenticated by some computer system, the authen-
tication should be valid throughout the user’s working ses-
s10m, or at least for a particular period of time, without regard
to the various computer architecture boundaries that are
almost 1nvisible to the user.

Enterprises generally try to fulfill these expectations in the
operational characteristics of their deployed systems, not
only to placate users but also to increase user efficiency,
whether the user elliciency 1s related to employee productiv-
ity or customer satisfaction.

More specifically, with the current computing environment
in which many applications have a Web-based user interface
that 1s accessible through a common browser, users expect
more user-iriendliness and low or inifrequent barriers to
movement from one Web-based application to another. In this
context, users are coming to expect the ability to jump from
interacting with an application on one Internet domain to
another application on another domain without regard to the
authentication barriers that protect each particular domain.
However, even if many systems provide secure authentication
through easy-to-use, Web-based intertaces, a user may still be
forced to reckon with multiple authentication processes that
stymie user access across a set of domains. Subjecting a user
to multiple authentication processes in a given time frame
may sigmficantly affect the user’s efficiency.

Various techniques have been used to reduce authentica-
tion burdens on users and computer system administrators.
These techniques are generally described as “single-sign-on™
(SSO) processes because they have a common purpose: after
a user has completed a sign-on operation, 1.e. been authent-
cated, the user 1s subsequently not required to perform
another authentication operation. Hence, the goal 1s that the

10

15

20

25

30

35

40

45

50

55

60

65

2

user would be required to complete only one authentication
process during a particular user session.

To reduce the costs of user management and to 1improve
interoperability among enterprises, federated computing
spaces have been created. A federation 1s a loosely coupled
aililiation of enterprises which adhere to certain standards of
interoperability; the federation provides a mechanism for
trust among those enterprises with respect to certain compu-
tational operations for the users within the federation. For
example, a federation partner may act as a user’s home
domain or 1dentity provider. Other partners within the same
tederation may rely the user’s home domain for primary
management ol the user’s authentication credentials, e.g.,
accepting a single-sign-on token that 1s provided by the user’s
home domain.

However, this federated approach to authentication does
not relieve a given federation partner from provisioning a
user. Provisioning can be been defined as the automation of
processes for creating, modifying, revoking, or otherwise
managing user-related access entitlements and data for com-
putational resources, e.g., electronically available web ser-
vices. In other words, cooperation amongst enterprises within
a federation does not relieve a given federation partner of the
necessity of maintaining and managing a local account for a
particular user such that the local account contains user-
specific information with respect to the given federation part-
ner, thereby allowing the given federated partner to manage
accessibility to resources at the given federated partner with
respect to that particular user.

Hence, when a user 1s provisioned to a home domain, there
1s a need to provision the user 1n some manner to federated
partners; otherwise, the user may discover that resources at
the federated partners are 1naccessible, thereby defeating the
purpose of the federation. Therefore, 1t would be advanta-
geous to have methods and systems in which enterprises can
provision users within a federation.

SUMMARY OF THE INVENTION

A method, apparatus, system, and computer program prod-
uct are presented 1n which federated domains interact within
a federated environment. Domains within a federation can
initiate federated single-sign-on operations for a user at other
tederated domains. A point-of-contact server within a domain
relies upon a trust proxy/trust service within the domain to
manage trust relationships between the domain and the fed-
eration. Trust proxies iterpret assertions from other feder-
ated domains as necessary. Trust proxies may have a trust
relationship with one or more trust brokers, and a trust proxy
may rely upon a trust broker for assistance in interpreting
assertions. When a user 1s provisioned at a particular feder-
ated domain, the federated domain can provision the user to
other federated domains within the federated environment. A
provision operation may include creating or deleting an
account for a user, pushing updated user account information
including attributes, and requesting updates on account infor-
mation including attributes.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
turther objectives, and advantages thereot, will be best under-
stood by reference to the following detailed description when
read 1 conjunction with the accompanying drawings,
wherein:

US 8,607,322 B2

3

FIG. 1A depicts a typical network of data processing sys-
tems, each of which may implement the present invention;

FIG. 1B depicts a typical computer architecture that may
be used within a data processing system 1n which the present
invention may be implemented;

FIG. 1C depicts a data tlow diagram that 1llustrates a typi-
cal authentication process that may be used when a client
attempts to access a protected resource at a server;

FI1G. 1D depicts a network diagram that 1llustrates a typical
Web-based environment in which the present invention may
be implemented;

FIG. 1E depicts a block diagram that illustrates an example
ol a typical online transaction that might require multiple
authentication operations from a user;

FIG. 2A depicts a block diagram that illustrates the termi-
nology of the federated environment with respect to a trans-
action that 1s imitiated by a user to a first federated enterprise,
which, 1 response, invokes actions at downstream entities
within the federated environment;

FIG. 2B depicts a block diagram that 1llustrates the inte-
gration of pre-existing systems at a grven domain with some
ol the federated architecture components of the present inven-
tion 1n accordance with an embodiment of the present mven-
tion;

FI1G. 2C depicts a block diagram that 1llustrates a federated
architecture 1n accordance with an implementation of the
present invention;

FIG. 2D depicts a block diagram that 1llustrates an exem-
plary set of trust relationships between federated domains
using trust proxies and a trust broker in accordance with the
present invention;

FIG. 3A depicts a tlowchart that 1llustrates a generalized
process at an 1ssuing domain for creating an assertion within
a federated environment:;

FIG. 3B depicts a flowchart that 1llustrates a generalized
process at a relying domain for tearing down an assertion;

FI1G. 3C depicts a flowchart that illustrates a specific pro-
cess for pushing an assertion from an i1ssuing domain to a
relying domain 1n response to a user action at the 1ssuing
domain;

FIG. 3D depicts a flowchart that illustrates a specific pro-
cess for pushing an assertion from an 1ssuing domain to a
relying domain 1n response to the issuing domain actively
intercepting an outgoing request to the relying domain;

FIG. 3E depicts a flowchart that 1llustrates a pull model in
which a relying domain requests any required assertions for a
user from an 1ssuing domain while attempting to satisiy a
resource request that was received by the relying domain
from the requesting user; and

FI1G. 4 depicts a block diagram that illustrates a federated
environment that supports federated single-sign-on opera-
tions;

FI1G. 5 depicts a block diagram that shows the integration of
pre-existing systems at a given domain with federated archi-
tecture components of the present mvention including feder-
ated provisioning services;

FIG. 6 depicts a block diagram that shows a federated
architecture with support for federated provisioning in accor-
dance with an implementation of the present invention;

FI1G. 7 depicts a flowchart that shows a process by which a
user 1s provisioned from a federated enterprise to 1ts federa-
tion partners in accordance with an embodiment of the
present invention;

FI1G. 8 depicts a flowchart that shows a process by which a
user 1s provisioned at a federated enterprise at the direction of
a federation partner 1n accordance with an embodiment of the
present invention; and

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 9 depicts a block diagram that shows turther detail for
a federated provisioning management server that includes

support for WS-Provisioning functionality in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In general, the devices that may comprise or relate to the
present mvention nclude a wide variety of data processing
technology. Therefore, as background, a typical orgamization
of hardware and software components within a distributed
data processing system 1s described prior to describing the
present invention in more detail.

With reference now to the figures, FIG. 1A depicts a typical
network of data processing systems, each of which may
implement the present invention. Distributed data processing
system 100 contains network 101, which 1s a medium that
may be used to provide communications links between vari-
ous devices and computers connected together within distrib-
uted data processing system 100. Network 101 may include
permanent connections, such as wire or fiber optic cables, or
temporary connections made through telephone or wireless
communications. In the depicted example, server 102 and
server 103 are connected to network 101 along with storage
unit 104. In addition, clients 105-107 also are connected to
network 101. Clients 105-107 and servers 102-103 may be
represented by a variety of computing devices, such as main-
frames, personal computers, personal digital assistants
(PDAs), etc. Distributed data processing system 100 may
include additional servers, clients, routers, other devices, and
peer-to-peer architectures that are not shown.

In the depicted example, distributed data processing sys-
tem 100 may include the Internet with network 101 represent-
ing a worldwide collection of networks and gateways that use
various protocols to communicate with one another, such as
LDAP (Lightweight Directory Access Protocol), TCP/IP
(Transport Control Protocol/Internet Protocol), HI'TP (Hy-
perlext Transport Protocol), etc. Of course, distributed data
processing system 100 may also include a number of different
types of networks, such as, for example, an intranet, a local
arca network (LAN), or a wide area network (WAN). For
example, server 102 directly supports client 109 and network
110, which incorporates wireless communication links. Net-
work-enabled phone 111 connects to network 110 through
wireless link 112, and PDA 113 connects to network 110
through wireless link 114. Phone 111 and PDA 113 can also
directly transfer data between themselves across wireless link
115 using an appropriate technology, such as Bluetooth™
wireless technology, to create so-called personal area net-
works or personal ad-hoc networks. In a stmilar manner, PDA
113 can transier data to PDA 107 via wireless communication
link 116.

The present invention could be implemented on a variety of
hardware platforms and software environments. FIG. 1A 1s
intended as an example of a heterogeneous computing envi-
ronment and not as an architectural limitation for the present
invention.

With reference now to FIG. 1B, a diagram depicts a typical
computer architecture of a data processing system, such as
those shown in FIG. 1A, 1n which the present invention may
be implemented. Data processing system 120 contains one or
more central processing units (CPUs) 122 connected to inter-
nal system bus 123, which interconnects random access
memory (RAM) 124, read-only memory 126, and input/out-
put adapter 128, which supports various I/O devices, such as
printer 130, disk units 132, or other devices not shown, such
as a audio output system, etc. System bus 123 also connects

US 8,607,322 B2

S

communication adapter 134 that provides access to commu-
nication link 136. User interface adapter 148 connects various
user devices, such as keyboard 140 and mouse 142, or other
devices not shown, such as a touch screen, stylus, micro-
phone, etc. Display adapter 144 connects system bus 123 to
display device 146.

Those of ordinary skill 1n the art will appreciate that the
hardware in FIG. 1B may vary depending on the system
implementation. For example, the system may have one or
more processors, such as an Intel® Pentium®-based proces-
sor and a digital signal processor (DSP), and one or more
types of volatile and non-volatile memory. Other peripheral
devices may be used in addition to or 1n place of the hardware
depicted 1n FIG. 1B. The depicted examples are not meant to
imply architectural limitations with respect to the present
invention.

In addition to being able to be implemented on a variety of
hardware platforms, the present invention may be imple-
mented 1n a variety of software environments. A typical oper-
ating system may be used to control program execution
within each data processing system. For example, one device
may run a Unix® operating system, while another device
contains a simple Java® runtime environment. A representa-
tive computer platform may include a browser, which 1s a well
known software application for accessing hypertext docu-
ments 1 a variety of formats, such as graphic files, word
processing files, Extensible Markup Language (XML),
Hypertext Markup Language (HITML), Handheld Device
Markup Language (HDML), Wireless Markup Language
(WML), and various other formats and types of files. It should
also be noted that the distributed data processing system
shown 1n FIG. 1A 1s contemplated as being fully able to
support a variety ol peer-to-peer subnets and peer-to-peer
SErvices.

With reference now to FIG. 1C, a data tlow diagram 1illus-
trates a typical authentication process that may be used when
a client attempts to access a protected resource at a server. As
illustrated, the user at a client workstation 150 seeks access
over a computer network to a protected resource on a server
151 through the user’s web browser executing on the client
workstation. A protected or controlled resource 1s a resource
(an application, an object, a document, a page, a file, execut-
able code, or other computational resource, communication-
type resource, etc.) for which access 1s controlled or
restricted. A protected resource 1s 1dentified by a Uniform
Resource Locator (URL), or more generally, a Umiform
Resource Identifier (URI), that can only be accessed by an
authenticated and/or authorized user. The computer network
may be the Internet, an intranet, or other network, as shown in
FIG. 1A or FI1G. 1B, and the server may be a web application
server (WAS), a server application, a servlet process, or the
like.

The process 1s in1tiated when the user requests a server-side
protected resource, such as a web page within the domain
“1bm.com™ (step 152). The terms “server-side” and ““client-
side” refer to actions or entities at a server or a client, respec-
tively, within a networked environment. The web browser (or
associated application or applet) generates an HI'TP request
(step 153) that 1s sent to the web server that 1s hosting the
domain “1ibm.com”. The terms “request” and “‘response”
should be understood to comprise data formatting that 1s
appropriate for the transfer of information that 1s involved 1n
a particular operation, such as messages, communication pro-
tocol information, or other associated information.

The server determines that 1t does not have an active ses-
s1on for the client (step 154), so the server initiates and com-
pletes the establishment of an SSL (Secure Sockets Layer)

10

15

20

25

30

35

40

45

50

55

60

65

6

session between the server and the client (step 155), which
entails multiple transfers of information between the client
and the server. After an SSL session 1s established, subse-
quent communication messages are transierred within the
SSL session; any secret information remains secure because
of the encrypted communication messages within the SSL
SESS101.

However, the server needs to determine the 1dentity of the
user before allowing the user to have access to protected
resources, so the server requires the user to perform an
authentication process by sending the client some type of
authentication challenge (step 156). The authentication chal-
lenge may be 1n various formats, such as an HTML form. The
user then provides the requested or required mnformation (step
157), such as a username or other type of user identifier along
with an associated password or other form of secret informa-
tion. Alternatively, authentication could be based on an 1den-
tity asserted 1n a certificate that 1s used for mutually authen-
ticated SSL.

The authentication response information 1s sent to the
server (step 158), at which point the server authenticates the
user or client (step 159), e.g., by retrieving previously sub-
mitted registration information and matching the presented
authentication information with the user’s stored informa-
tion. Assuming the authentication is successtul, an active
session 1s established for the authenticated user or client. The
server creates a session 1dentifier for the client, and any sub-
sequent request messages from the client within the session
would be accompanied by the session 1dentifier.

The server then retrieves the originally requested web page
and sends an HT'TP response message to the client (step 160),
thereby fulfilling the user’s original request for the protected
resource. At that point, the user may request another page
within “ibm.com™ (step 161) by clicking a hypertext link
within a browser window, and the browser sends another
HTTP request message to the server (step 162). At that point,
the server recognizes that the user has an active session (step
163) because the user’s session 1dentifier 1s returned to the
server 1n the HT'TP request message, and the server sends the
requested web page back to the client in another HTTP
response message (step 164). Although FIG. 1C depicts a
typical prior art process, it should be noted that other alterna-
tive session state management techniques may be depicted,
such as URL rewriting or using cookies to identily users with
active sessions, which may include using the same cookie that
1s used to provide prootf of authentication.

With reference now to FIG. 1D, a network diagram 1llus-
trates a typical Web-based environment 1in which the present
invention may be implemented. In this environment, a user of
a browser 170 at client 171 desires to access a protected
resource on web application server 172 in DNS domain 173,
or on web application server 174 1n DNS domain 175.

In a manner similar to that shown 1n FIG. 1C, a user can
request a protected resource at one of many domains. In
contrast to FIG. 1C, which shows only a single server at a
particular domain, each domain in FIG. 1D has multiple
servers. In particular, each domain may have an associated
authentication server 176 and 177.

In this example, after client 171 1ssues a request for a
protected resource at domain 173, web application server 172
determines that 1t does not have an active session for client
171, and 1t requests that authentication server 176 perform an
appropriate authentication operation with client 171. Authen-
tication server 176 communicates the result of the authenti-
cation operation to web application server 172. If the user (or
browser 170 or client 171 on behalf of the user) 1s success-
tully authenticated, then web application server 172 estab-

US 8,607,322 B2

7

lishes a session for client 171 and returns the requested pro-
tected resource. Typically, once the user 1s authenticated by
the authentication server, a cookie may be set and stored 1n a
cookie cache 1n the browser. FIG. 1D 1s merely an example of
one manner 1n which the processing resources ol a domain
may be shared amongst multiple servers, particularly to per-
form authentication operations.

In a similar manner, after client 171 1ssues a request for a
protected resource at domain 175, authentication server 177
performs an appropriate authentication operation with client
171, after which web application server 174 establishes a
session for client 171 and returns the requested protected
resource. Hence, FIG. 1D illustrates that client 171 may have
multiple concurrent sessions in different domains yet 1s
required to complete multiple authentication operations to
establish those concurrent sessions.

With reference now to FIG. 1E, a block diagram depicts an
example of a typical online transaction that might require
multiple authentication operations from a user. Referring
again to FIG. 1C and FIG. 1D, a user may be required to
complete an authentication operation prior to gaining access
to a controlled resource, as shown 1n FIG. 1C. Although not
shown i FIG. 1C, an authentication manager may be
deployed on server 151 to retrieve and employ user informa-
tion that 1s required to authenticate a user. As shown 1n FIG.
1D, a user may have multiple current sessions within different
domains 173 and 175, and although they are not shown 1n
FIG. 1D, each domain may employ an authentication man-
ager 1n place of or 1n addition to the authentication servers. In
a similar manner, FIG. 1E also depicts a set of domains, each
of which support some type of authentication manager. FIG.
1E 1llustrates some of the difficulties that a user may experi-
ence when accessing multiple domains that require the user to
complete an authentication operation for each domain.

User 190 may be registered at ISP domain 191, which may
support authentication manager 192 that authenticates user
190 for the purpose of completing transactions with respect to
domain 191. ISP domain 191 may be an Internet Service
Provider (ISP) that provides Internet connection services,
email services, and possibly other e-commerce services.
Alternatively, ISP domain 191 may be an Internet portal that
1s frequently accessed by user 190.

Similarly, domains 193, 195, and 197 represent typical web
service providers. Government domain 193 supports authen-
tication manager 194 that authenticates users for completing
various government-related transactions. Banking domain
195 supports authentication manager 196 that authenticates
users for completing transactions with an online bank.
E-commerce domain 197 supports authentication manager
198 that authenticates users for completing online purchases.

As noted previously, when a user attempts to move from
one domain to another domain within the Internet or World
Wide Web by accessing resources at the different domains, a
user may be subjected to multiple user authentication
requests or requirements, which can significantly slow the
user’s progress across a set of domains. Using FIG. 1E as an
exemplary environment, user 190 may be mnvolved 1n a com-
plicated online transaction with e-commerce domain 197 in
which the user 1s attempting to purchase an on-line service
that 1s limited to users who are at least 18 years old and who
have a valid driver license, a valid credit card, and a U.S. bank
account. This online transaction may involve domains 191,
193, 195, and 197.

Typically, a user might not maintain an i1dentity and/or
attributes within each domain that participates 1n a typical
online transaction. In this example, user 190 may have regis-
tered his or her 1identity with the user’s ISP, but to complete

5

10

15

20

25

30

35

40

45

50

55

60

65

8

the online transaction, the user might also be required to
authenticate to domains 193, 195, and 197. If each of the
domains does not maintain an identity for the user, then the
user’s online transaction may fail. Even 1f the user can be
authenticated by each domain, then it 1s not guaranteed that
the different domains can transfer information between them-
selves 1n order to complete the user’s transaction. For user
190 shown in FIG. 1E, there 1s no prior art environment that
allows user 190 to authenticate to a first web site, e.g., ISP
191, and then transter an authentication token to other web
service providers, such as domains 193, 195, and 197, for
single-sign-on purposes.

(Given the preceding brief description of some current tech-
nology, the description of the remaiming figures relates to
tederated computer environments 1n which the present mven-
tion may operate. Prior to discussing the present invention in
more detail, however, some terminology 1s mtroduced.

i

ITerminology

-

The terms “entity” or “party” generally refers to an orga-
nization, an individual, or a system that operates on behalf of
an organization, an individual, or another system. The term
“domain” connotes additional characteristics within a net-
work environment, but the terms “entity”, “party”, and
“domain” can be used interchangeably. For example, the term
“domain™ may also refer to a DNS (Domain Name System)
domain, or more generally, to a data processing system that
includes various devices and applications that appear as a
logical unit to exterior entities.

The terms “request” and “response” should be understood
to comprise data formatting that 1s appropriate for the transier
of information that 1s involved 1n a particular operation, such
as messages, communication protocol information, or other
associated information. A protected resource 1s a resource (an
application, an object, a document, a page, a file, executable
code, or other computational resource, communication-type
resource, etc.) for which access 1s controlled or restricted.

A token provides direct evidence of a successiul operation
and 1s produced by the entity that performs the operation, e.g.,
an authentication token that i1s generated after a successiul
authentication operation. A Kerberos token 1s one example of
an authentication token that may be used in the present mnven-
tion. More information on Kerberos may be found 1n Kohl et
al., “The Kerberos Network Authentication Service (V5)”,
Internet Engineering Task Force (IETF) Request for Com-
ments (RFC) 1510, September/1993.

An assertion provides indirect evidence of some action.
Assertions may provide indirect evidence of 1identity, authen-
tication, attributes, authorization decisions, or other informa-
tion and/or operations. An authentication assertion provides
indirect evidence of authentication by an entity that 1s not the
authentication service but that listened to the authentication
service.

A Security Assertion Markup Language (SAML) assertion
1s an example of a possible assertion format that may be used
within the present invention. SAML has been promulgated by
the Organization for the Advancement of Structured Informa-
tion Standards (OASIS), which 1s a non-profit, global consor-
titum. SAML 1s described 1n “Assertions and Protocol for the
OASIS Security Assertion Markup Language (SAML)”,
Commuittee Specification 01, May 31, 2002, as follows:

The Secunity Assertion Markup Language (SAML) 1s an
XML-based framework for exchanging security infor-
mation. This security information i1s expressed in the
form of assertions about subjects, where a subject 1s an
entity (either human or computer) that has an identity 1n
some security domain. A typical example of a subject 1s

US 8,607,322 B2

9

a person, 1dentified by his or her email address 1n a
particular Internet DNS domain.

Assertions can convey information about authentication
acts performed by subjects, attributes of subjects, and
authorization decisions about whether subjects are
allowed to access certain resources. Assertions are rep-
resented as XML constructs and have a nested structure,
whereby a single assertion might contain several differ-
ent internal statements about authentication, authoriza-
tion, and attributes. Note that assertions contaiming
authentication statements merely describe acts of
authentication that happened previously. Assertions are
issued by SAML authorities, namely, authentication
authorities, attribute authorities, and policy decision
points. SAML defines a protocol by which clients can
request assertions from SAML authorities and get a
response from them. This protocol, consisting of XML-
based request and response message formats, can be
bound to many different underlying communications
and transport protocols; SAML currently defines one
binding, to SOAP over HTTP. SAML authorities can use
various sources of information, such as external policy
stores and assertions that were recetved as mput 1n
requests, in creating their responses. Thus, while clients
always consume assertions, SAML authorities can be
both producers and consumers of assertions.

The SAML specification states that an assertion 1s a package
of information that supplies one or more statements made by
an 1ssuer. SAML allows 1ssuers to make three different kinds
of assertion statements: authentication, 1n which the specified
subject was authenticated by a particular means at a particular
time; authorization, 1n which a request to allow the specified
subject to access the specified resource has been granted or
denied; and attribute, 1n which the specified subject 1s asso-
ciated with the supplied attributes. As discussed further
below, various assertion formats can be translated to other
assertion formats when necessary.

Authentication 1s the process of validating a set of creden-
tials that are provided by a user or on behalf of a user. Authen-
tication 1s accomplished by verifying something that a user
knows, something that a user has, or something that the user
1s, 1.€. some physical characteristic about the user. Something
that a user knows may include a shared secret, such as a user’s
password, or by verifying something that 1s known only to a
particular user, such as a user’s cryptographic key. Something
that a user has may include a smartcard or hardware token.
Some physical characteristic about the user might include a
biometric mput, such as a fingerprint or a retinal map.

An authentication credential 1s a set of challenge/response
information that 1s used 1n various authentication protocols.
For example, a username and password combination 1s the
most familiar form of authentication credentials. Other forms
ol authentication credential may include various forms of
challenge/response information, Public Key Infrastructure
(PKI) certificates, smartcards, biometrics, etc. An authentica-
tion credential 1s differentiated from an authentication asser-
tion: an authentication credential 1s presented by a user as part
ol an authentication protocol sequence with an authentication
server or service, and an authentication assertion 1s a state-
ment about the successtul presentation and validation of a
user’s authentication credentials, subsequently transferred
between entities when necessary.

Distinguishing Prior-Art Single-Sign-On Solutions

As noted above, prior-art single-sign-on solutions are lim-
ited to homogeneous environments in which there are pre-
established business agreements between participating enter-
prises. These business agreements establish trust and define

10

15

20

25

30

35

40

45

50

55

60

65

10

secure transiers of information between enterprises. These
business agreements also include technological agreements
on rules on how to translate, or map, user identities from one
enterprise to another, and how to transier the information
used to vouch for users between participating enterprises.

In other words, previous single-sign-on solutions allow
one enterprise to trust an authentication assertion (along with
the 1dentity of the user provided in the assertion) produced by
a different enterprise based on the pre-negotiated or pre-
configured agreements. Each distinct enterprise knows how
to create and interpret authentication assertions that can be
understood by other enterprises that have exchanged similar
agreements, such as enterprises within an e-commerce mar-
ketplace. These homogeneous environments are tightly
coupled because there 1s a deterministic relationship known
by the enterprises for mapping the user identities across these
systems. This tight coupling 1s possible because of the busi-
ness agreements that are used to establish the single-sign-on
environment.

Federation Model of Present Invention

In the context of the World Wide Web, users are coming to
expect the ability to jump from 1nteracting with an application
on one Internet domain to another application on another
domain with mimimal regard to the information barriers
between each particular domain. Users do not want the frus-
tration that 1s caused by having to authenticate to multiple
domains for a single transaction. In other words, users expect
that organizations should interoperate, but users generally
want domains to respect their privacy. In addition, users may
prefer to limit the domains that permanently store private
information. These user expectations exist in a rapidly evolv-
ing heterogeneous environment in which many enterprises
and organizations are promulgating competing authentica-
tion techniques.

In contrast to prior-art systems, the present invention pro-
vides a federation model for allowing enterprises to provide a
single-sign-on experience to a user. In other words, the
present invention supports a federated, heterogeneous envi-
ronment. As an example of an object of the present invention,
referring again to FIG. 1E, user 190 1s able to authenticate to
domain 191 and then have domain 191 provide the appropri-
ate assertions to each downstream domain that might be
involved 1n a transaction. These downstream domains need to
be able to understand and trust authentication assertions and/
or other types of assertions, even though there are no pre-
established assertion formats between domain 191 and these
other downstream domains. In addition to recognizing the
assertions, the downstream domains need to be able to trans-
late the 1dentity contained within an assertion to an identity
that represents user 190 within a particular domain, even
though there 1s no pre-established identity mapping relation-
ship. It should be noted, though, that the present invention 1s
applicable to various types of domains and 1s not limited to
ISP-type domains that are represented within FIG. 1E as
exemplary domains.

The present invention 1s directed to a federated environ-
ment. In general, an enterprise has i1ts own user registry and
maintains relationships with its own set of users. Each enter-
prise typically has its own means of authenticating these
users. However, the federated scheme of the present invention
allows enterprises to cooperate 1 a collective manner such
that users 1n one enterprise can leverage relationships with a
set of enterprises through an enterprise’s participation 1n a
federation of enterprises. Users can be granted access to
resources at any of the federated enterprises as 11 they had a
direct relationship with each enterprise. Users are not
required to register at each business of interest, and users are

US 8,607,322 B2

11

not constantly required to identify and authenticate them-
selves. Hence, within this federated environment, an authen-
tication scheme allows for a single-sign-on experience within
the rapidly evolving heterogeneous environments in informa-
tion technology.

In the present invention, a federation 1s a set of distinct
entities, such as enterprises, organizations, nstitutions, etc.,
that cooperate to provide a single-sign-on, ease-of-use expe-
rience to a user. In the present invention, a federated environ-
ment differs from a typical single-sign-on environment in that
two enterprises need not have a direct, pre-established, rela-
tionship defining how and what information to transfer about
a user. Within a federated environment, entities provide ser-
vices which deal with authenticating users, accepting authen-
tication assertions, €.g., authentication tokens, that are pre-
sented by other entities, and providing some form of
translation of the identity of the vouched-for user into one that
1s understood within the local entity.

Federation eases the administrative burden on service pro-
viders. A service provider can rely on 1ts trust relationship
with respect to the federation as a whole; the service provider
does not need to manage authentication information, such as
user password information, because 1t can rely on authenti-
cation that 1s accomplished by a user’s authentication home
domain.

The present invention also concerns a federated identity
management system that establishes a foundation 1n which
loosely coupled authentication, user enrollment, user profile
management and/or authorization services, collaborate
across security domains. Federated identity management
allows services residing in disparate security domains to
securely iteroperate and collaborate even though there may
be differences in the underlying security mechanisms and
operating system platforms at these disparate domains. A
single-sign-on experience 1s established once a user estab-
lishes their participation 1n a federation.

Home Domain, Issuing Party, and Relying Party

As explained 1 more detail further below, the present
invention provides significant user benefits. The present
invention allows a user to authenticate at a first entity, here-
inbelow also referred to as the user’s home domain or authen-
tication home domain. This first entity may act as an 1ssuing,
party, which 1ssues an authentication assertion about the user
for use at a second entity. The user can then access protected
resources at a second, distinct entity, termed the relying party,
by presenting the authentication assertion that was 1ssued by
the first entity without having to explicitly re-authenticate at
the second entity. Information that 1s passed from an 1ssuing,
party to a relying party 1s 1n the form of an assertion, and this
assertion may contain different types of mnformation in the
form of statements. For example, an assertion may be a state-
ment about the authenticated 1dentity of a user, or 1t may be a
statement about user attribute information that i1s associated
with a particular user.

With reference now to FIG. 2A, a block diagram depicts the
terminology of the federated environment with respect to a
transaction that 1s initiated by a user to a first federated enter-
prise, which, 1n response, invokes actions at downstream
entities within the federated environment. FIG. 2A shows that
the terminology may differ depending on the perspective of
an entity within the federation for a given federated operation.
More specifically, FIG. 2A illustrates that the present mnven-
tion supports the transitivity of trust and the transitivity of the
authentication assertion process; a domain can 1ssue an asser-
tion based on its trust in an 1dentity as asserted by another
domain. User 202 initiates a transaction through a request for
a protected resource at enterprise 204. If user 202 has been

10

15

20

25

30

35

40

45

50

55

60

65

12

authenticated by enterprise 204, then enterprise 204 is the
user’s home domain for this federated session. Assuming that
the transaction requires some type of operation by enterprise
206 and enterprise 204 transfers an assertion to enterprise
206, then enterprise 204 1s the 1ssuing domain with respect to
the particular operation, and enterprise 206 1s the relying
domain for the operation. Assuming that the transaction
requires further operations and enterprise 206 transiers an
assertion to enterprise 208, then enterprise 206 1s the 1ssuing
domain with respect to the requested operation, and enter-
prise 208 1s the relying domain for the operation.

In the federated environment of the present invention, the
domain at which the user authenticates 1s termed the user’s
(authentication) home domain. The home domain maintains
authentication credentials. The home domain may be the
user’s employer, the user’s ISP, or some other service pro-
vider. It 1s possible that there may be multiple enterprises
within a federated environment that could act as a user’s
home domain because there may be multiple enterprises that
have the ability to generate and validate a user’s authentica-
tion credentials.

From an authentication perspective, an 1ssuing party for an
authentication assertion 1s usually the user’s authentication
home domain. The user’s home domain may or may not
maintain personal information or profile information for the
user. Hence, from an attribute perspective involving person-
ally 1identifiable information, personalization information, or
other user attributes, an 1ssuing party for an attribute assertion
may or may not be the user’s authentication home domain. To
avold any confusion, separate terminology can be employed
for attribute home domains and authentication home
domains, but the term “home domain™ hereinbelow may be
interpreted as referring to an authentication home domain.

Within the scope of a given federated session, however,
there 1s usually one and only one domain that acts as the user’s
home domain. Once a user has authenticated to this domain,
all other domains or enterprises in the federation are treated as
relying parties for the duration of that session.

(iven that the present invention provides a federated infra-
structure that can be added to existing systems while mini-
mizing the impact on an existing, non-federated architecture,
authentication at a user’s home domain 1s not necessarily
altered by the fact that the home domain may also participate
within a federated environment. In other words, even though
the home domain may be integrated into a federated environ-
ment that 1s 1implemented in accordance with the present
invention, the user should have the same end-user experience
while performing an authentication operation at the user’s
home domain. It should be noted, though, that not all of a
given enterprise’s users will necessarily participate in the
federated environment.

Moreover, user registration, e.g., establishment of a user
account, 1s not necessarily altered by the fact that the home
domain may also participate within a federated environment.
For example, a user may still establish an account at a domain
through a legacy or pre-existing registration process that 1s
independent of a federated environment. In other words, the
establishment of a user account at ahome domain may or may
not 1nclude the establishment of account information that 1s
valid across a federation, e.g., via 1dentity translation infor-
mation. However, if there 1s a single federated domain that 1s
able to authenticate a user, 1.e. there 1s one and only one
domain within the federation with whom the user has regis-
tered, then 1t would be expected that this domain would act as
the user’s home domain or 1dentity provider in order to sup-
port the user’s transactions throughout the federated environ-
ment.

US 8,607,322 B2

13

If a user has multiple possible home domains within a
tederated environment, then a user may enter the federation
via more than one entry point. In other words, the user may
have accounts at multiple domains, and these domains do not
necessarilly have iformation about the other domains nor
about a user’s 1dentity at the other domains.

While the domain at which the user authenticates 1s termed
the home domain, the 1ssuing domain 1s a federation entity
that 1ssues an assertion for use by another domain, 1.e. the
relying domain. An 1ssuing domain 1s usually, but not neces-
sarily, the user’s home domain. Hence, it would usually be the
case that the 1ssuing party has authenticated the user through
typical authentication protocols, as mentioned above. How-
ever, 1t 1s possible that the 1ssuing party has previously acted
as a relying party whereby 1t received an assertion from a
different 1ssuing party. In other words, since a user-initiated
transaction may cascade through a series of enterprises within
a federated environment, a recerving party may subsequently
act as an 1ssuing party for a downstream transaction. In gen-
cral, any domain that has the ability to 1ssue authentication
assertions on behalf of a user can act as an 1ssuing domain.

The relying domain 1s a domain that receives an assertion
from an 1ssuing party. The relying party 1s able to accept, trust,
and understand an assertion that 1s 1ssued by a third party on
behalf of the user, 1.e. the 1ssuing domain. It 1s generally the
relying party’s duty to use an appropriate authentication
authority to interpret an authentication assertion. In addition,
it 1s possible that the relying party 1s able to authenticate a
particular user, 1.e. to act as a user’s home domain, but 1t 1s
also possible that a relying party may not be able to authen-
ticate a particular user through conventional methods. Hence,
a relying party 1s a domain or an enterprise that relies on the
authentication assertion that 1s presented by a user and that
provides a user with a single-sign-on experience instead of
prompting the user for the user’s authentication credentials as
part of an interactive session with the user.

Federated Architecture—Federated Front-End for Legacy
Systems

With reference now to FIG. 2B, ablock diagram depicts the
integration of pre-existing systems at a given domain with
some of the federated architecture components of the present
invention 1n accordance with an embodiment of the present
invention. A federated environment includes federated enti-
ties that provide a variety of services for users. User 212
interacts with client device 214, which may support browser
application 216 and various other client applications 218.
User 212 1s distinct from client device 214, browser 216, or
any other software that acts as interface between user and
other devices and services. In some cases, the following
description may make a distinction between the user acting
explicitly within a client application and a client application
that 1s acting on behalf of the user. In general, though, a
requester 1s an itermediary, such as a client-based applica-
tion, browser, SOAP client, etc., that may be assumed to act
on behalf of the user.

Browser application 216 may be a typical browser, includ-
ing those found on mobile devices, that comprises many
modules, such as HI'TP communication component 220 and
markup language (ML) interpreter 222. Browser application
216 may also support plug-ins, such as web services client
224, and/or downloadable applets, which may or may not
require a virtual machine runtime environment. Web services
client 224 may use Siumple Object Access Protocol (SOAP),
which 1s a lightweight protocol for defining the exchange of
structured and typed information in a decentralized, distrib-
uted environment. SOAP 1s an XML -based protocol that con-
s1sts of three parts: an envelope that defines a framework for

5

10

15

20

25

30

35

40

45

50

55

60

65

14

describing what 1s 1n a message and how to process 1t; a set of
encoding rules for expressing instances of application-de-
fined datatypes; and a convention for representing remote
procedure calls and responses. User 212 may access web-
based services using browser application 216, but user 212
may also access web services through other web service
clients on client device 214. Some of the examples of the
present 1mvention that are shown in the following figures
employ HT'TP redirection via the user’s browser to exchange
information between entities 1 a federated environment.
However, 1t should be noted that the present invention may be
conducted over a variety of communication protocols and 1s
not meant to be limited to HI'TP-based communications. For
example, the entities 1n the federated environment may com-
municate directly when necessary; messages are not required
to be redirected through the user’s browser.

The present invention may be implemented in a manner
such that components that are required for a federated envi-
ronment can be integrated with pre-existing systems. FI1G. 2B
depicts one embodiment for implementing these components
as a front-end to a pre-existing system. The pre-existing com-
ponents at a federated domain can be considered as legacy
applications or back-end processing components 230, which
include authentication service runtime (ASR) servers 232 1n
a manner similar to that shown 1n FIG. 2C. ASR servers 232
are responsible for authenticating users when the domain
controls access to application servers 234, which can be con-
sidered to generate, retrieve, or otherwise process protected
resources. The domain may continue to use legacy user reg-
1stration application 236 to register users for access to appli-
cation servers 234. Information that 1s needed to authenticate
a registered user 1s stored 1n legacy user registry 238.

After joming a federated environment, the domain may
continue to operate without the intervention of federated
components. In other words, the domain may be configured
so that users may continue to access particular application
servers or other protected resources directly without going
through a point-of-contact server or other component 1mple-
menting this point-of-contact server functionality; a user that
accesses a system 1n this manner would experience typical
authentication tlows and typical access. In doing so, however,
a user that directly accesses the legacy system would not be
able to establish a federated session that 1s known to the
domain’s point-of-contact server.

The domain’s legacy functionality can be integrated into a
tederated environment through the use of federated front-end
processing 240, which includes point-of-contact server 242
and trust proxy server 244 (or more simply, trust proxy 244, or
equivalently, trust service) which itself includes Security
Token Service (STS) 245, all of which are described 1n more
detail below with respect to FIG. 2C. Federation configura-
tion application 246 allows an administrative user to config-
ure the federated front-end components to allow them to
interface with the legacy back-end components through fed-
crated interface unit 248.

Legacy or pre-existing authentication services at a given
enterprise may use various, well known, authentication meth-
ods or tokens, such as username/password or smart card
token-based information. However, with the present inven-
tion, the functionality of a legacy authentication service can
be used 1n a federated environment through the use of point-
of-contact servers. Users may confinue to access a legacy
authentication server directly without going through a point-
of-contact server, although a user that accesses a system 1n
this manner would experience typical authentication flows
and typical access; a user that directly accesses a legacy
authentication system would not be able to generate a feder-

US 8,607,322 B2

15

ated authentication assertion as prooi of i1dentity in accor-
dance with the present invention. One of the roles of the
tederated front-end 1s to translate a federated authentication
token received at a point-of-contact server into a format
understood by a legacy authentication service. Hence, a user
accessing the federated environment via the point-of-contact
server would not necessarily be required to re-authenticate to
the legacy authentication service. Preferably, the user would
be authenticated to a legacy authentication service by a com-
bination of the point-of-contact server and a trust proxy/trust
service such that it appears as 1f the user was engaged 1n an
authentication dialog.

Federated Architecture—Point-of-Contact Servers, Trust
Proxies, and Trust Brokers

With reference now to FIG. 2C, a block diagram depicts a
tederated architecture 1n accordance with an implementation
of the present mvention. A federated environment includes
tederated enterprises or similar entities that provide a varniety
of services for users. A user, through an application on a client
device, may attempt to access resources at various entities,
such as enterprise 250. A point-of-contact server at each
tederated enterprise, such as point-of-contact (POC) server
252 at enterprise 250, 1s the user’s entry point 1nto the feder-
ated environment. The point-of-contact server minimizes the
impact on existing components within an existing, non-fed-
erated architecture, e.g., legacy systems, because the point-
of-contact server handles many of the federation require-
ments. The point-of-contact server provides session
management, protocol conversion, and possibly initiates
authentication assertion conversion. For example, the point-
of-contact server may translate HT'TP or HI'TPS messages to
SOAP and vice versa. As explained in more detail further
below, the point-of-contact server may also be used to invoke
a trust proxy/trust service to translate authentication asser-
tions, e.g., a SAML token received from an 1ssuing party can
be translated 1nto a Kerberos token understood by a recerving,
party.

A trust proxy, a trust proxy server, or a trust service, such as
trust proxy (TP) 254 at enterprise 250, 1s able to establish
and/or to maintain a trust relationship between two entities 1n
a federation. A trust proxy generally has the ability to handle
authentication token format translation (through the security
token service, which 1s described 1n more detail further
below) from a format used by the 1ssuing party to one under-
stood by the recerving party.

Together, the use of a point-of-contact server and a trust
proxy minimize the impact of implementing a federated
architecture on an existing, non-federated set of systems.
Hence, the federated architecture of the present invention
requires the implementation of at least one point-of-contact
server and at least one trust proxy per lfederated entity,
whether the entity 1s an enterprise, a domain, or other logical
or physical entity. The federated architecture of the present
invention, though, does not necessarily require any changes
to the existing, non-federated set of systems. Preferably, there
1s a single trust proxy for a given federated entity, but there
may be multiple trust proxies for availability purposes, or
there may be multiple trust proxies for a variety of smaller
entities within a federated entity, e.g., separate subsidiaries
within an enterprise. It 1s possible that a given entity could
belong to more than one federation, although this scenario
would not necessarily require multiple trust proxies as a
single trust proxy could manage trust relationships within
multiple federations.

One role of a trust proxy/trust service may be to determine,
or to be responsible for determining, the required token type
for another domain and/or the trust proxy in that domain. A

5

10

15

20

25

30

35

40

45

50

55

60

65

16

trust proxy has the ability or the responsibility to handle
authentication token format translation {from a format used by
the 1ssuing party to one understood by the receving party.
Trust proxy 2354 1s also responsible for any user identity
translation or attribute translation that occurs for enterprise
250. In addition, a trust proxy can support the implementation
of aliases as representatives ol a user 1dentity that uniquely
identify a user without providing any addition information
about the user’s real world i1dentity. Furthermore, a trust
proxy can i1ssue authorization and/or session credentials for
use by the point-of-contact server. However, a trust proxy
may nvoke a trust broker for assistance, as described further
below. Identity translation may be required to map a user’s
identity and attributes as known to an 1ssuing party to one that
1s meaningiul to a recerving party. This translation may be
invoked by either a trust proxy at an 1ssuing domain, a trust
proxy at a receiving domain, or both.

Trust proxy 254 may include an internalized component,
shown as security token service (STS) component 255, which
will provide token translation and will invoke authentication
service runtime (ASR) 256 to validate and generate tokens.
The security token service provides the token 1ssuance and
validation services required by the trust proxy, which may
include 1dentity translation. The security token service there-
fore includes an interface to existing authentication service
runtimes, or 1t incorporates authentication service runtimes
into the service itself. Rather than being internalized within
the trust proxy, the security token service component may
also be implemented as a stand-alone component, e.g., to be
invoked by the trust proxy, or it may be internalized within the
transaction server, €.g., as part ol an application server.

For example, an STS component may receive a request to
1ssue a Kerberos token. As part of the authentication infor-
mation of the user for whom the token 1s to be created, the
request may contain a binary token containing a username
and password. The STS component will validate the user-
name and password against, e.g., an LDAP runtime (typical
authentication) and will invoke a Kerberos KDC (Key Distri-
bution Center) to generate a Kerberos ticket for this user. This
token 1s returned to the trust proxy for use within the enter-
prise; however, this use may include externalizing the token
for transier to another domain 1n the federation.

In a manner similar to that described with respect to FIG.
1D, a user may desire to access resources at multiple enter-
prises within a federated environment, such as both enterprise
250 and enterprise 260. In a manner similar to that described
above for enterprise 250, enterprise 260 comprises point-oi-
contact server 262, trust proxy 264, security token service
265, and authentication service runtime 266. Although the
user may directly initiate separate transactions with each
enterprise, the user may 1nitiate a transaction with enterprise
250 which cascades throughout the federated environment.
Enterprise 250 may require collaboration with multiple other
enterprises within the federated environment, such as enter-
prise 260, to complete a particular transaction, even though
the user may not have been aware of this necessity when the
user mnitiated a transaction. Enterprise 260 becomes involved
as a downstream domain, and the present invention allows
enterprise 250 to present a federated assertion to enterprise
260 11 necessary 1n order to further the user’s transaction.

It may be the case that a trust proxy does not know how to
interpret the authentication token that 1s recerved by an asso-
ciated point-of-contact server and/or how to translate a given
user 1dentity and attributes. In this case, the trust proxy may
choose to mvoke functionality at a trust broker component,
such as trust broker 268. A trust broker maintains relation-
ships with individual trust proxies, thereby providing transi-

US 8,607,322 B2

17

tive trust between trust proxies. Using a trust broker allows
cach enftity within a federated environment, such enterprises
250 and 260, to establish a trust relationship with the trust
broker rather than establishing multiple individual trust rela-
tionships with each domain 1n the federated environment. For
example, when enterprise 260 becomes involved as a down-
stream domain for a transaction initiated by a user at enter-
prise 250, trust proxy 254 at enterprise 2350 can be assured that
trust proxy 264 at enterprise 260 can understand an assertion
from trust proxy 254 by mmvoking assistance at trust broker
268 if necessary. Although FIG. 2C depicts the federated
environment with a single trust broker, a federated environ-
ment may have multiple trust brokers.

It should be noted that although FIG. 2C depicts point-oi-
contact server 252, trust proxy 254, security token service
component 2355, and authentication service runtime 256 as
distinct entities, 1t 1s not necessary for these components to be
implemented on separate devices. For example, 1t 1s possible
for the functionality of these separate components to be
implemented as applications on a single physical device or
combined 1n a single application. In addition, FIG. 2C depicts
a single point-of-contact server, a single trust proxy, and a
single security token server for an enterprise, but an alterna-
tive configuration may include multiple point-of-contact
servers, multiple trust proxies, and multiple security token
servers for each enterprise. The point-of-contact server, the
trust proxy, the security token service, and other federated
entities may be implemented in various forms, such as sofit-
ware applications, objects, modules, soitware libraries, etc.

A trust proxy/STS may be capable of accepting and vali-
dating many different authentication credentials, including
traditional credentials such as a username and password com-
binations and Kerberos tickets, and federated authentication
token formats, including authentication tokens produced by a
third party. A trust proxy/STS may allow the acceptance of an
authentication token as proof of authentication elsewhere.
The authentication token 1s produced by an 1ssuing party and
1s used to indicate that a user has already authenticated to that
1ssuing party. The 1ssuing party produces the authentication
token as a means of asserting the authenticated 1dentity of a
user. A trust proxy/STS 1s also able to process attribute tokens
or tokens that are used to secure communication sessions or
conversations, e.g., those that are used to manage session
information in a manner similar to an SSL session identifier.

A security token service invokes an authentication service
runtime as necessary. The authentication service runtime sup-
ports an authentication service capable of authenticating a
user. The authentication service acts as an authentication
authority that provides indications of successtul or failed
authentication attempts via authentication responses. The
trust proxy/STS may internalize an authentication service,
e.g., a scenar1o in which there 1s a brand-new installation of a
web service that does not need to interact with an existing,
legacy infrastructure. Otherwise, the STS component will
invoke external authentication services for validation of
authentication tokens. For example, the STS component
could “unpack’ a binary token containing a username/pass-
word and then use an LDAP service to access a user registry
to validate the presented credentials.

When used by another component such as an application
server, the STS component can be used to produce tokens
required for single-sign-on to legacy authentication systems.
Hence, the STS component can be used for token translation
for internal purposes, 1.e. within an enterprise, and for exter-
nal purposes, 1.¢. across enterprises in a federation. As an
example of an 1internal purpose, a Web application server may
interface to a mainirame via an IBM CICS (Customer Infor-

10

15

20

25

30

35

40

45

50

55

60

65

18

mation Control System) transaction gateway; CICS 1s a fam-
1ly of application servers and connectors that provides enter-
prise-level online transaction management and connectivity
for mission-critical applications. The Web application server
may invoke the STS component to translate a Kerberos ticket
(as used internally by the Web application server) to a an IBM
RACF® passticket required by the CICS transaction gateway.

The entities that are shown 1 FIG. 2C can be explained
using the terminology that was itroduced above, e.g., “issu-
ing party” and “relying party”. As part of establishing and
maintaining trust relationships, an issuing party’s trust proxy/
trust service can determine what token types are required/
accepted by a relying party’s trust proxy. Thus, trust proxies
use this information when 1nvoking token services from a
security token service. When an 1ssuing domain’s trust proxy
1s required to produce an authentication assertion for arelying
party, the trust proxy determines the required token type and
requests the appropriate token from the security token ser-
viCe.

When a relying domain’s trust proxy receives an authenti-
cation assertion from an 1ssuing party, the trust proxy knows
what type of assertion that it expected and what type of
assertion that it needs for internal use within the relying
domain. The relying domain’s trust proxy therefore requests
that the security token service generate the required internal-
use token based on the token in the recerved authentication
assertion.

Both trust proxies and trust brokers have the ability to
translate an assertion received from an 1ssuing party nto a
format that 1s understood by a relying party. The trust broker
has the ability to interpret the assertion format (or formats) for
cach of the trust proxies with whom there 1s a direct trust
relationship, thereby allowing the trust broker to provide
assertion translation between an issuing party and a relying
party. This translation can be requested by either party
through its local trust proxy. Thus, the 1ssuing party’s trust
proxy can request translation of an assertion before 1t 1s sent
to the relying party. Likewise, the relying party’s trust proxy
can request translation of an assertion recerved from an 1ssu-
Ing party.

Assertion translation comprises user 1dentity translation,
authentication assertion translation, attribute assertion trans-
lation, or other forms of assertion translation. Reiterating the
point above, assertion translation 1s handled by the trust com-
ponents within a federation, 1.e. trust proxies and trust bro-
kers. A trust proxy may perform the translation locally, either
at the 1ssuing domain or at the relying domain, or a trust proxy
may invoke assistance from a trust broker.

Assuming that an 1ssuing party and a relying party already
have individual trust relationships with a trust broker, the trust
broker can dynamically create, 1.e. broker, new trust relation-
ships between 1ssuing parties and relying parties 11 necessary.
After the mnitial trust relationship brokering operation that 1s
provided by the trust broker, the 1ssuing party and the relying
party may directly maintain the relationship so that the trust
broker need not be mmvoked for future translation require-
ments. It should be noted that translation of authentication
tokens can happen at three possible places: the 1ssuing party’s
trust proxy, the relying party’s trust proxy, and the trust bro-
ker. Preterably, the 1ssuing party’s trust proxy generates an
authentication assertion that 1s understood by the trust broker
to send to the relying party. The relying party then requests a
translation of this token from the trust broker into a format
recognizable by the relying party. Token translation may
occur before transmission, after transmission, or both before
and after transmission of the authentication assertion.

US 8,607,322 B2

19

Trust Relationships within Federated Architecture

Within a federated environment that 1s implemented in
accordance with the present invention, there are two types of
“trust domains” that must be managed: enterprise trust
domains and {federation trust domains. The differences
between these two types of trust domain are based 1n part on
the business agreements governing the trust relationships
with the trust domain and the technology used to establish
trust. An enterprise trust domain contains those components
that are managed by the enterprise; all components within
that trust domain trust each other. In general, there are no
business agreements required to establish trust within an
enterprise because the deployed technology creates inherent
trust within an enterprise, e.g., by requiring mutually authen-
ticated SSL sessions between components or by placing com-
ponents within a single, tightly controlled data center such
that physical control and proximity demonstrate implicit
trust. Referring to FI1G. 2B, the legacy applications and back-
end processing systems may represent an enterprise trust
domain.

Federation trust domains are those that cross enterprise
boundaries; from one perspective, a federation trust domain
may represent trust relationships between distinct enterprise
trust domains. Federation trust domains are established
through trust proxies across enterprise boundaries. Federated
trust relationships mmvolve some sort of a bootstrapping pro-
cess by which mitial trust 1s established between trust proxies.
Part of this bootstrap process may include the establishment
of shared secret keys and rules that define the expected and/or
allowed token types and identifier translations. In general,
this bootstrapping process 1s implemented out-oi-band as this
process also includes the establishment of business agree-
ments that govern an enterprise’s participation 1n a federation
and the liabilities associated with this participation.

There are a number of possible mechanisms for establish-
ing trust 1n a federated business model. In a federation model,
a Tundamental notion of trust between the federation partici-
pants 1s required for business reasons 1n order to provide a
level of assurance that the assertions (including tokens and
attribute information) that are transterred between the partici-
pants are valid. If there 1s no trust relationship, then the
relying domain cannot depend upon the assertions received
from the 1ssuing domain; they cannot be used by the relying
domain to determine how to interpret any information
received from the 1ssuing party.

For example, a large corporation may want to link several
thousand global customers, and the corporation could use
prior art solutions. As a first example, the corporation could
require global customers to use a digital certificate from a
commercial certificate authority to establish mutual trust. The
commercial certificate authority enables the servers at the
corporation to trust servers located at each of the global
customers. As a second example, the corporation could
implement third-party trust using Kerberos; the corporation
and its global customers could implement a trusted third-
party Kerberos domain service that implements shared-se-
cret-based trust. As a third example, the corporation could
establish a private scheme with a proprietary security mes-
sage token that 1s mutually trusted by the servers of 1ts global
customers.

Any one of these approaches may be acceptable if the
corporation needed to manage trust relationships with a small
number of global customers, but this may become unmanage-
able 11 there are hundreds or thousands of potential federation
partners. For example, while it may be possible for the cor-
poration to force 1ts smaller partners to implement a private

10

15

20

25

30

35

40

45

50

55

60

65

20

scheme, 1t 1s unlikely that the corporation will be able to
Impose many requirements on 1ts larger partners.

With the present invention, the enterprise will employ trust
relationships established and maintained through trust prox-
1ies and possibly trust brokers. An advantage of the federated
architecture of the present invention 1s that 1t does not impose
additional requirements above and beyond the current infra-
structures of an enterprise and 1ts potential federation part-
ners.

However, the present invention does not relieve an enter-
prise and 1ts potential federation partners from the prelimi-
nary work required to establish business and liability agree-
ments that are required for participation in the federation. In
addition, the participants cannot 1gnore the technological
bootstrapping of a trust relationship. The present invention
allows this bootstrapping to be flexible, e.g., a first federation
partner can 1ssue a Kerberos ticket with certain information,
while a second federation partner can 1ssue a SAML authen-
tication assertion with certain information.

In the present invention, the trust relationships are man-
aged by the federation trust proxies, which may include a
security token service that validates and translates a token that
1s recerved from an 1ssuing party based on the pre-established
relationship between two trust proxies. In situations where 1t
1s not feasible for a federated enterprise to establish trust
relationships (and token translation) with another federated
enterprise, a trust broker may be invoked. However, the fed-
crated enterprise must still establish a relationship with a trust
broker.

With reference now to FI1G. 2D, a block diagram depicts an
exemplary set of trust relationships between federated
domains using trust proxies and a trust broker 1n accordance
with the present invention. Although FIG. 2C mtroduced the
trust broker, FIG. 2D 1llustrates the importance of transitive
trust relationships within the federated architecture of the
present 1nvention.

Federated domains 271-273 incorporate trust proxies 274-
2776, respectively. Trust proxy/trust service 274 has direct
trust relationship 277 with trust proxy 275. Trust broker 280
has direct trust relationship 278 with trust proxy 275, and trust
broker 280 has direct trust relationship 279 with trust proxy
276. Trust broker 280 1s used to establish, on behalf of a
tederation participant, a trust relationship based on transitive
trust with other federation partners. The principle of transitive
trust allows trust proxy 275 and trust proxy 276 to have
brokered trust relationship 281 via trust broker 280. Neither
trust proxy 275 nor 276 need to know how to translate or
validate the other’s assertions; the trust broker may be
invoked to translate an assertion into one that 1s valid, trusted,
and understood at the other trust proxy.

Business agreements that specily contractual obligations
and liabilities with respect to the trust relationships between
tederated enterprises can be expressed in XML through the
use of the ebXML (Electronic Business using XML) stan-
dards. For example, a direct trust relationship could be rep-
resented 1n an ebXML document; each federated domain that
shares a direct trust relationship would have a copy of a
contract that 1s expressed as an ebXML document. Opera-
tional characteristics for various entities within a federation
may be specified within ebXML choreographies and pub-
lished within ebXML registries; any enterprise that wishes to
participate 1n a particular federation, e.g., to operate a trust
proxy or trust broker, would need to conform to the published
requirements that were specified by that particular federation
for all trust proxies or trust brokers within the federation. A
security token service could parse these ebXML documents
for operational details on the manner in which tokens from

US 8,607,322 B2

21

other domains are to be translated. It should be noted, though,
that other standards and mechanisms could be employed by
the present mvention for specifying the details about the
manner in which the trust relationships within a federation are
implemented.

Assertion Processing within Federated Architecture

As noted above, a user’s experience within a federation 1s
governed in part by the assertions about the user or for the user
that are transferred across domains. Assertions provide infor-
mation about the user’s authentication status, attribute infor-
mation, and other information. Using authentication asser-
tions canremove the need for a user to re-authenticate at every
site that the user visits. Within a federated environment, there
are two models to get an assertion from an 1ssuing party to a
relying party: push models and pull models. In a push model,
the user’s assertions travel with the user’s request from the
1ssuing party. In a pull model, the user’s request 1s received at
a relying party without some required imnformation, and the
relying party then requests the relevant or required assertions
from the 1ssuing party.

Given these models for using assertions within a federated
environment, the description of the present invention now
turns to a set of figures that describe a set of processes for
creating and using assertions within the federated environ-
ment of the present invention. FIG. 3A depicts a generalized
process at an 1ssuing domain for creating an assertion within
a federated environment, whereas FIG. 3B depicts a general-
1zed process at a relying domain for “tearing down” an asser-
tion, 1.e. for reducing an assertion to its essential information
by extracting and analyzing its information. FIG. 3C and FIG.
3D show more detailed processes for the generalized process
that 1s shown 1n FIG. 3A by depicting two variants of a push
model 1 which an assertion 1s produced within an 1ssuing,
domain and 1s then transferred with a user’s request to the
relying domain. FIG. 3E depicts a pull model in which a
relying domain requests any required assertions for a user
from an 1ssuing domain while attempting to satisty a resource
request that was received by the relying domain from the
requesting user.

With reference now to FIG. 3A, a flowchart depicts a
generalized process at an 1ssuing domain for creating an
assertion within a federated environment. The process begins
when the i1ssuing domain’s point-of-contact server 1s trig-
gered for an assertion (step 302). The point-of-contact server
may recerve a request for a particular assertion for a given user
from a relying domain, or 1t may intercept an outgoing request
to a known relying domain that requires an assertion; these
scenarios are described in more detail below with respect to
FIG. 3C and FIG. 3D, respectively. In response to being
triggered for an assertion, the 1ssuing domain’s point-of-con-
tact server requests the assertion from the 1ssuing domain’s
trust proxy (step 304), which generates the assertion (step
306), along with adding trust information, such as encryption/
signature of the assertion/token; the 1ssuing domain’s trust
proxXy may request assistance ifrom a trust broker to generate
the required assertion 1f necessary. After generating the asser-
tion, the 1ssuing domain’s trust proxy then returns the asser-
tion to the 1ssuing domain’s point-of-contact server (step
308), which then injects the assertion into the output datas-
tream 1n an appropriate manner (step 310), e.g., by inserting
the assertion into an outgoing HITP or SOAP message,
thereby completing the process.

FIG. 3A depicts a process for creating an assertion at an
1ssuing domain without the use of a “local wallet”. However,
the present invention allows for the inclusion of local wallet
functionality. In general, a local wallet 1s client-side code that
may act as a secure datastore for user attribute information or

10

15

20

25

30

35

40

45

50

55

60

65

22

other information for facilitating transactions; the client-side
code may also participate 1n the push and/or pull models of
assertion transfer. When the local wallet actively participates
in the protocol, 1t implements a subset of the functionality of
the point-of-contact server functionality in terms of generat-
ing and inserting assertions into the protocol flow. Using a
local wallet does not allow for the local wallet to implement
the trust-based interactions that occur between a point-oi-
contact server and the trust proxy. In cases 1n which additional
trust relationships are required, the point-of-contact server
must be mvoked.

With reference now to FIG. 3B, a flowchart depicts a gen-
eralized process at a relying domain for tearing down an
assertion. The process begins when a relying domain’s point-
of-contact server recerves a message with an associated asser-
tion (step 322), after which 1t extracts the assertion and for-
wards the assertion to the relying domain’s trust proxy (step
324). The relying domain’s trust proxy extracts information
from the assertion, including the token recerved from the
1ssuing domain (step 326); the relying domain’s trust proxy
will invoke the security token service to validate this token,
including the mnformation in the token and the trust informa-
tion on the token such as encryption and signatures, thereafter
returning a locally valid token for the user 1f appropriate (step
328).

As part of step 326, the trust proxy will determine the
source, 1.¢. 1ssuing party, of the assertion. If the trust proxy 1s
able to understand a trust assertion recerved from this 1ssuing
domain, the trust proxy will perform step 328 internally. It the
trust proxy 1s not able to understand/trust assertions received
from the 1ssuing domain, the trust proxy may mvoke assis-
tance from a trust broker. If the assertion cannot be validated,
then an appropriate error response would be generated.

Assuming that the assertion 1s validated, then the relying
domain’s trust proxy builds the local information that is
required for the user (step 330). For example, the local infor-
mation may include authentication credentials that are
required by a back-end legacy application. The relying
domain’s trust proxy returns the required information to the
relying domain’s point-of-contact server (step 332), which
builds a local session for the user.

After the point-of-contact server builds a session for user,
the user appears as an authenticated user. The point-of-con-
tact server can use this session information to further govern
any transactions the user has with the domain until a logout or
timeout event 1s mitiated. Given that the point-of-contact
server has an authenticated 1dentity for the user, the point-oi-
contact server may obtain authorization for this request 1f
necessary based on this particular user’s i1dentity and any
authorization policies that are associated with this particular
user. The point-of-contact server then forwards the user’s
request with any relevant information to the requested back-
end application or service (step 334), thereby completing the
pProcess.

It should be noted that the data items that are transterred
between the point-of-contact server and the trust proxy and
the format of those data items may vary. Rather than extract-
ing an assertion from the message and forwarding only the
assertion to the trust proxy, the point-of-contact server may
forward the entire message to the trust proxy. For example,
the processing at the trust proxy may include steps like sig-
nature validation on a SOAP message, which would require
the entire SOAP envelope.

With reference now to FIG. 3C, a flowchart depicts a spe-
cific process for pushing an assertion from an 1ssuing domain
to a relying domain in response to a user action at the 1ssuing
domain. The process begins when a user accesses a link to the

US 8,607,322 B2

23

relying domain from a Web page or similar resource within
the 1ssuing domain (step 342), thereby invoking some form of
CGI-type (Common Gateway Interface) processing to build a
particular assertion. The ability of the 1ssuing domain to rec-
ognize the need for an assertion by the relying domain implies
a tight integration with an existing legacy system on which the
tederated infrastructure of the present mvention 1s 1mple-
mented. It also implies a tight coupling between the 1ssuing,
party and relying party such that the 1ssuing party does not
need to mvoke a trust proxy to build the required assertion;
this tight coupling may be appropriate between certain types
ol federated entities that have well-established trust relation-
ships.

Back-end processing at the issuing domain 1s 1nvoked to
build the required assertion (step 344), which may include
invoking functionality at the local trust proxy. The user’s
request to the relying domain, including the required asser-
tion, 1s then built (step 346), and the 1ssuing domain transiers
the assertion along with the user’s request to the relying
domain (step 348), thereby completing the process. When the
relying domain receives the request and 1ts associated asser-
tion, then the relying domain would validate the assertion in
the manner shown 1n FIG. 3B.

With reference now to FIG. 3D, a flowchart depicts a
specific process for pushing an assertion from an 1ssuing
domain to a relying domain in response to the 1ssuing domain
actively 1ntercepting an outgoing request to the relying
domain. The process begins when a user requests a protected
resource at the relying domain (step 352). The point-of-con-
tact server intercepts the outgoing request (step 354), e.g., by
filtering outgoing messages for predetermined Uniform
Resource Identifiers (URI’s), certain types of messages, cer-
tain types ol message content, or 1n some other manner. The
1ssuing domain’s point-oi-contact server then requests the
generation of an appropriate assertion from the issuing
domain’s trust proxy (step 356), which generates the asser-
tion with assistance from a trust broker if necessary (step
358). The 1ssuing domain then transfers the user’s request
along with the generated assertion to the relying party (step
360), thereby completing the process. When the relying
domain receives the request and 1ts associated assertion, then
the relying domain would validate the assertion 1n the manner
shown 1n FIG. 3B.

With reference now to FIG. 3E, a tlowchart depicts a pull
model in which a relying domain requests any required asser-
tions for a user from an 1ssuing domain while attempting to
satisty a resource request that was recerved by the relying
domain from the requesting user. The process begins when
the relying domain receives a user request for a protected
resource (step 372). In contrast to the examples shown in FIG.
3C or F1G. 3D, the example that 1s shown 1n FIG. 3E describes
the processing that 1s associated with a user’s request that 1s
received at a relying domain 1n absence of any required asser-
tions about a user. In this case, the 1ssuing domain has not had
the ability to intercept or otherwise process the user’s request
in order to insert the required assertions in the user’s request.
For example, the user might have entered a Uniform Resource
Locator (URL) or used a bookmarked reference to a resource
in such a way that the outgoing request was not intercepted by
an 1ssuing domain’s point-of-contact server. Hence, the rely-
ing domain requests the assertion from an 1ssuing domain.

The relying domain then determines the user’s home
domain (step 374), 1.e. the relevant 1ssuing domain. In an
HTTP-based implementation, the user may have pre-estab-
lished a relationship with the relying domain that resulted 1n
a persistent cookie being set by the relying domain at the
user’s client device. The persistent cookie would contain an

10

15

20

25

30

35

40

45

50

55

60

65

24

identity of the user’s home domain, 1.e. 1ssuing domain. In a
SOAP-based implementation in which the user 1s operating a
web services client 1n some manner, the web service at the
relying domain would have advertised the services require-
ments via WSDL (Web Services Description Language),
including token requirements. This would then require the
user’s web services client/SOAP implementation to provide
the required token type. It this requirement was not tulfilled,
then the web service would technically return an error. In
some cases, 1t may return an error code that would allow the
user’s web services client to be prompted for authentication
information so that the request could be repeated with the
appropriate token.

The relying domain’s point-of-contact server initiates an
assertion request with the relying domain’s trust proxy (step
3'76), which requests an assertion for the user from the 1ssuing
domain’s trust proxy (step 378). If the embodiment 1is
employing HTTP-based communication, then an assertion
request from the relying domain’s trust proxy to the 1ssuing
domain’s trust proxy may be transmitted by the relying
domain’s point-oi-contact server via redirection through the
user’s browser application to the point-of-contact server at
the 1ssuing domain, which forwards the assertion request to
the 1ssuing domain’s trust proxy.

I1 the embodiment 1s employing a SOAP-based implemen-
tation, then the relying party may return an error code to the
user’s web service client. This error code allows the userto be
prompted for authentication information by their web ser-
vices client. The web services client would then generate the
requested token. The user’s web services client could invoke
a trust proxy directly provided that the relying domain’s trust
proxy was advertised 1n a UDDI (Universal Description, Dis-
covery, and Integration) registry, allowing the user’s web
services client to find the trust proxy. In general, this scenario
1s valid only for an internal user, where the trust proxy was
advertised 1n a private UDDI within the enterprise because 1t
1s not likely that a trust proxy will be advertised 1n a public
UDDI on the Internet or generally accessible outside of a
tederation.

The 1ssuing domain’s trust proxy generates (step 380) and
then returns the requested assertion (step 382) 1n a manner
that mirrors the manner 1n which the assertion request was
received. After the relying domain’s trust proxy receives the
requested assertion (step 384), then the relying domain’s trust
proxy extracts information from the assertion (step 386) and
attempts to iterpret and/or validate the assertion (step 388);
the trust proxy may invoke assistance from a trust broker it
necessary for translation of the assertion. If the assertion
cannot be validated, then an appropriate error response would
be generated. Assuming that the assertion 1s validated, then
the relying domain’s trust proxy builds the local information
in an appropriate format that 1s required for use by the back-
end services that will attempt to fulfill the user’s request for
the protected resource (step 390). For example, the local
information may include authentication credentials that are
required by a back-end legacy application. The relying
domain’s trust proxy returns the required information to the
relying domain’s point-of-contact server (step 392), which
then builds a local session for the user and forwards the user’s
request with any relevant information to the requested back-
end application or service (step 394), thereby completing the
Process.

Single-S1gn-On within Federated Architecture

Thedescription of FIGS. 2A-2D focuses on the operational
characteristics of entities within a federated data processing
environment 1 accordance with the present invention,
whereas the description of FIGS. 3A-3E focuses on some of

US 8,607,322 B2

25

the processes that occur between those entities. In contrast to
these descriptions, reference 1s made to FIG. 4 for a descrip-
tion of the present mvention that focuses on the goals of
completing transactions for a user while providing a single-
sign-on experience for the user.

In other words, the description hereinbelow discusses the
entities and processes that were already discussed above,
although the following description focuses more on an over-
view perspective of the present invention with respect to the
manner 1n which a user can have a single-sign-on experience
within the user’s session. A session can be defined as the set
ol transactions from (and including) the 1initial user authenti-
cation, 1.¢. logon, to logout. Within a session, a user’s actions
will be governed 1n part by the privileges granted to the user
for that session. Within a federation, a user expects to have a
single-sign-on experience in which the user completes a
single authentication operation, and this authentication
operation suifices for the duration of their session, regardless
of the federation partners visited during that session.

During the user’s session, the user may visit many feder-
ated domains to use the web services that are offered by those
domains. Domains can publish descriptions of services that
they provide using standard specifications such as UDDI and
WSDL, both of which use XML as a common data format.
The user finds the available services and service providers
through applications that also adhere to these standard speci-
fications. SOAP provides a paradigm for communicating
requests and responses that are expressed in XML. Entities
within a federated environment may employ these standards
among others.

To facilitate a single-sign-on experience, web service that
support the federated environment will also support using an
authentication assertion or security token generated by a
third-party to provide prootf of authentication of a user. This
assertion will contain some sort of evidence of the user’s
successiul authentication to the 1ssuing party together with an
identifier for that user. Thus, a user may present traditional
authentication credentials to one federation partner, e.g.,
username and password, and then provide a SAML authenti-
cation assertion that 1s generated by the authenticating/issu-
ing party to a different federation partner.

Authentication 1n a web services environment 1s the act of
veritying the claimed 1dentity of the web services request so
that the enterprise can restrict access to authorized clients. A
user who requests or mvokes a web service would almost
always authenticated, so the need for authentication within
the federated environment of the present invention 1s not any
different from current requirements of web services for user
authentication. The federated environment also allows web
services or other applications to request web services, and
these web services would also be authenticated.

Authentication of users that are not participating 1n a fed-
erated session are not impacted by the federated architecture
of the present mvention. For example, an existing user who
authenticates with a forms-based authentication mechanism
over HT'TP/S to access non-federated resources at a particular
domain 1s not atfected by the introduction of support at the
domain for the federated environment. Authentication 1is
handled 1n part by a point-of-contact server, which 1n turn
may nvoke a separate trust proxy component. The use of a
point-of-contact server minimizes the impact on the inira-
structure of an existing domain. For example, the point-oi-
contact server can be configured to pass through all non-
tederated requests to be handled by the back-end or legacy
applications and systems at the domain.

The point-of-contact server may choose to mvoke an
HTTP-based authentication method, such as basic authenti-

10

15

20

25

30

35

40

45

50

55

60

65

26

cation, forms-based authentication, or some other authenti-
cation method. The point-of-contact server also supports a
federated trust domain by recognizing an assertion that has
been presented by the user as proof of authentication, such as
an SAML authentication assertion, wherein the assertion has
crossed between enterprise trust domains. The point-of-con-
tact server may invoke the trust proxy, which in turn may
invoke its security token service for validation of authentica-
tion credentials/security tokens.

Authentication of web services or other applications com-
prises the same process as authentication of users. Requests
from web services carry a security token containing an
authentication assertion, and this security token would be
validated by the trust proxy/security token service in the same
manner as a token presented by a user. A request from a web
service should always carry this token with 1t because the web
service would have discovered what authentication asser-
tions/security tokens were required by the requested service
as advertised in UDDI.

With reference now to FIG. 4, a block diagram depicts a
tederated environment that supports federated single-sign-on
operations. User 400, through a client device and an appro-
priate client application, such as a browser, desires to access
a web service that 1s provided by enterprise/domain 410,
which supports data processing systems that act as a federated
domain within a federated environment. Domain 410 sup-
ports point-of-contact server 412 and trust proxy 414; simi-
larly, domain 420 supports point-of-contact server 422 and
trust proxy 424, while domain 430 supports point-of-contact
server 432 and trust proxy 434. The trust proxies rely upon
trust broker 450 for assistance, as described above. Additional
domains and trust proxies may participate in the federated
environment. FIG. 4 describes a federated single-sign-on
operation between domain 410 and domain 420; a similar
operation may occur between domain 410 and domain 430.

The user completes an authentication operation with
respect to domain 410; this authentication operation 1s
handled by point-of-contact server 412. The authentication
operation 1s triggered when the user requests access to some
resource that requires an authenticated identity, e.g., for
access control purposes or for personalization purposes.
Point-of-contact server 412 may mvoke a legacy authentica-
tion service, or it may invoke trust proxy 414 to validate the
user’s presented authentication credentials. Domain 410
becomes the user’s home domain for the duration of the user’s
tederated session.

At some later point in time, the user mitiates a transaction
at a federation partner, such as enterprise 420 that also sup-
ports a federated domain, thereby triggering a federated
single-sign-on operation. For example, a user may 1nitiate a
new transaction at domain 420, or the user’s original trans-
action may cascade into one or more additional transactions
at other domains. As another example, the user may invoke a
tederated single-sign-on operation to a resource 1 domain
420 via point-of-contact server 412, e.g., by selecting a spe-
cial link on a web page that 1s hosted within domain 410 or by
requesting a portal page that 1s hosted within domain 410 but
that displays resources hosted 1n domain 420. Point-of-con-
tact server 412 sends a request to trust proxy 414 to generated
a federation single-sign-on token for the user that 1s formatted
to be understood or trusted by domain 420. Trust proxy 414
returns this token to point-of-contact server 412, which sends
this token to point-of-contact server 422 1n domain. Domain
410 acts as an 1ssuing party for the user at domain 420, which
acts as a relying party. The user’s token would be transferred
with the user’s request to domain 420; this token may be sent
using HT'TP redirection via the user’s browser, or 1t may be

US 8,607,322 B2

27

sent by invoking the request directly of point-of-contact
server 422 (over HTTP or SOAP-over-HTTP) on behalf of the
user 1dentified 1n the token supplied by trust proxy 414.

Point-of-contact server 422 receives the request together
with the federation single-sign-on token and invokes trust
proxy 424. Trust proxy 424 receives the federation single-
sign-on token, validates the token, and assuming that the
token 1s valid and trusted, generates a locally valid token for
the user. Trust proxy 424 returns the locally valid token to
point-of-contact server 422, which establishes a session for
the user within domain 420. If necessary, point-of-contact
server 422 can mitiate a federated single-sign-on at another
tederated partner.

Validation of the token at domain 420 1s handled by the
trust proxy 424, possibly with assistance from a security
token service. Depending on the type of token presented by
domain 410, the security token service may need to access a
user registry at domain 420. For example, domain 420 may
provide a binary security token containing the user’s name
and password to be validated against the user registry at
domain 420. Hence, 1n this example, an enterprise simply
validates the security token from a federated partner. The trust
relationship between domains 410 and 420 ensures that
domain 420 can understand and trust the security token pre-
sented by domain 410 on behalf of the user.

Federated single-sign-on requires not only the validation
ol the security token that 1s presented to a relying domain on
behalf of the user but the determination of a locally valid user
identifier at the relying domain based on information con-
tained 1n the security token. One result of a direct trust rela-
tionship and the business agreements required to establish
such a relationship 1s that at least one party, either the 1ssuing
domain or the relying domain or both, will know how to
translate the information provided by the 1ssuing domain nto
an 1dentifier valid at the relying domain. In the brief example
above, 1t was assumed that the 1ssuing domain, 1.e. domain
410, 1s able to provide the relying domain, 1.e. domain 420,
with a user identifier that 1s valid 1n domain 420. In that
scenario, the relying domain did not need to invoke any 1den-
tity mapping functionality. Trust proxy 424 at domain 420
will generate a security token for the user that will “vouch-
for” this user. The types of tokens that are accepted, the
signatures that are required on tokens, and other requirements
are all pre-established as part of the federation’s business
agreements. The rules and algorithms that govern i1dentifier
translation are also pre-established as part of the federation’s
business agreements. In the case of a direct trust relationship
between two participants, the identifier translation algorithms
will have been established for those two parties and may not
be relevant for any other parties 1n the federation.

However, 1t 1s not always the case that the 1ssuing domain
will know how to map the user from a local i1dentifier for
domain 410 to a local i1dentifier for domain 420. In some
cases, it may be the relying domain that knows how to do this
mapping, while 1n yet other cases, neither party will know
how to do this translation, 1n which case a third party trust
broker may need to be mnvoked. In other words, 1n the case of
a brokered trust relationship, the 1ssuing and relying domains
do not have a direct trust relationship with each other. They
will, however, have a direct trust relationship with a trust
broker, such as trust broker 450. Identifier mapping rules and
algorithms will have been established as part of this relation-
ship, and the trust broker will use this information to assist in
the 1dentifier translation that i1s required for a brokered trust
relationship.

Domain 420 recerves the token that 1s 1ssued by domain
410 atpoint-of-contract server 422, which invokes trust proxy

10

15

20

25

30

35

40

45

50

55

60

65

28

424 to validate the token and perform identity mapping. In
this case, since trust proxy 424 1s not able to map the user from
a local identifier for domain 410 to a local i1dentifier for
domain 420, trust proxy 424 invokes trust broker 450, which
validates the token and performs the identifier mapping. After
obtaining the local i1dentifier for the user, trust proxy 424,
possibly through 1ts security token service, can generate any
local tokens that are required by the back-end applications at
domain 420, e.g., a Kerberos token may be required to facili-
tate single-sign-on from the point-of-contact server to the
application server. After obtaining a locally valid token, 1f
required, the point-of-contact server 1s able to build a local
session for the user. The point-of-contract server will also
handle coarse-grained authorization of user requests and for-
ward the authornized requests to the appropriate application
servers within domain 420.

A user’s session 1s terminated when they logout or sign-off.
When a user logs out of a session with their home domain,
then the home domain would notify all relying domains, 1.¢.
those domains to which it has 1ssued a security token, and
invoke a user logout at these domains. If any of these relying
domains has in turn acted as an 1ssuing domain for the same
user, then they would also notify all of their relying domains
about the user logout request 1n a cascading fashion. The trust
proxy at each domain would be responsible for notitying all
relying domains of the user’s logout request, and the trust
proxy may invoke the trust broker as part of this process.

Federated Provisioning

A portion of the description of FIGS. 2A-4 above explained
an organization of components that may be used 1n a feder-
ated environment while other portions explained the pro-
cesses for supporting single-sign-on operations across the
federated environment. Relying domains within a federated
environment do not necessarily have to manage a user’s
authentication credentials, and those relying domains can
leverage a single single-sign-on token that 1s provided by the
user’s 1ssuing domain or home domain. Although federated
provisioning can result in the establishment of a local, authen-
ticatable account at a relying domain, the description of
FIGS. 2A-4 above, does not explain an explicit federated
provisioning process, €.g., a process in which identity infor-
mation becomes configured at the federated domains of fed-
crated partners.

For example, the federated domains of the federated part-
ners may have a need to maintain and manage a local account
for the user that contains information that 1s specific to that
user’s profile within the federation partner. The need of an
enterprise to maintain attributes locally would be driven by
business and privacy concerns. In some cases, an enterprise
may require that it manage attributes relevant to its services.
In other cases, an enterprise may be legally prevented from
allowing a third party to manage some information that must
remain strictly within control of that enterprise.

In other words, 1n the description of the figures that was
provided above, it was assumed that, given successiully
executed authentication operations, each federated domain
would recognize a properly asserted user 1dentity during the
single-sign-on operation. At some point 1n time, however, a
tederated domain would need to have been configured to bind
some form of account linking or common umique user identity
information to a user’s 1dentity, where this common unique
user 1dentity has also been bound to the user’s local identity at
some other federation partner. This common unique user
identity allows two participants within a federation to
umquely refer to a user, for example, for the purposes of
single-sign-on. The common unique user 1dentity then allows
cach federation partner to maintain a local list of user

US 8,607,322 B2

29

attributes (which are used to determine to which resources a
user will be granted access) without requiring the partners to
share/manage these attributes for other partners.

It should be note that a common unique user i1dentifier 1s
often used when two partners have pre-existing accounts for
same user. Thus, the user must mnvoke some form of explicit
enrollment functionality. One advantage with a provisioning
solution 1s that one of the partners can be relieved of the
burden of having to create an authenticatable account by
simply turning oil authentication and allowing single-sign-on
because the common unique user identifier 1s bound to the
user at account creation time; 1n some cases, the common
unique user 1dentifier may become the user’s local 1dentifier
at the partner.

At the high-level perspective, federated provisioning
allows two distinct provisioning systems interact across trust
domains. Within the context of a federated computing envi-
ronment, federated provisioning comprises at least one of the
following functionalities. A federated computing environ-
ment that supports federated provisioning may trigger the
creation of a local account/user record at a federation partner
such that the account 1s created 1n a linked fashion, 1.e. that
single-sign-on 1s immediately possible as the common unique
user identifier 1s established as part of the account/record
creation. The federated computing environment may also
push updated user attributes to a user record at a federation
partner. Additionally, the federated computing environment
may pull/request updated user attributes for a user record
from a federation partner. Furthermore, the federated com-
puting environment may trigger the deletion of an account at
a service provider partner such that the deletion operation
deletes all information about the user at that partner. In addi-
tion, the federated computing environment may trigger the
unlinking of accounts at a federation partner such that the
user’s common unique user identifier 1s deleted but the user’s
accounts/records are not, thereby resulting 1n the user having
two distinct accounts, one at each partner. In all of the above-
mentioned scenarios, a federated provisioning solution may
also mvoke a local workilow solution so that a local admin-
istrator still has control of users but does not need to trigger
user account management. A process by which a user 1s
provisioned at federated partners 1s described hereinbelow
with respect to FIG. 7 and FIG. 8.

With reference now to FIG. 5, a block diagram depicts the
integration of pre-existing systems at a given domain with
tederated architecture components of the present invention
including federated provisioning services 1in accordance with
an embodiment of the present invention. As noted above, a
tederated environment includes federated entities that pro-
vide a variety of services for users, and the present invention
may be implemented in a manner such that components that
are required for a federated environment can be integrated
with pre-existing systems, as was described above with
respect to FIG. 2B. The system that 1s shown 1n FIG. 5 1s
similar to the system that 1s shown FIG. 2B; similar reference
numerals refer to similar elements. The federated compo-
nents of a system at a federated domain act as a front-end to a
pre-existing system, and the pre-existing components can be
considered as legacy applications or back-end processing
components.

However, the system that 1s shown in FIG. 5 has been
extended to include services for supporting federated provi-
sioning. It should be noted, though, that adding support for
tederated provisioning may be performed without any impact
on the architecture that 1s used for supporting the features of
single-sign-on; the common functionality between provi-
sioning and single-sign-on 1s contained within the trust infra-

10

15

20

25

30

35

40

45

50

55

60

65

30

structure as implemented by the trust proxy. Federated 1den-
tity supplier service 502 and federated identity consumer
service 504 support web service data tlows between the fed-
erated domains of federated partners while interfacing to the
local 1dentity management systems, such as legacy identity
management subsystem 506 that 1s shown as being included
within back-end applications 230 for the domain. Federated
identity supplier service 502 and federated 1dentity consumer
service 504, though, do not need to run through the point-oi-
contact server, or more importantly, through the same point-
of-contact server as used for other federation operations, such
as single-sign-on; for example, single-sign-on functionality
can be HTTP-based, but a provisioning point-of-contact
server could be web-services-based, e.g., a web services gate-
way/proxy. Federated 1dentity supplier service 502 and fed-
erated 1dentity consumer service 304 can be supported within
the federated front-end as multiple independent services, as
shown 1 FIG. 5, or alternatively, within a single federated
component, as shown 1n FIG. 6.

With reference now to FIG. 6, a block diagram depicts a
tederated architecture with support for federated provision-
ing i1n accordance with an implementation of the present
invention. The use of a point-of-contact server together with
a trust proxy minimizes the impact of implementing a feder-
ated architecture on an existing, non-federated set of systems,
as was described above with respect to FIG. 2C. The system
that 1s shown 1 FIG. 6 1s similar to the system that 1s shown
FI1G. 2C; similar reference numerals refer to similar elements.
In an embodiment of the present invention, a point-of-contact
server at each federated domain 1s the user’s or requester’s
entry point into the federated environment, and the trust proxy
manages the trust relationships of 1ts associated federated
domain. It should be noted, though, that single-sign-on 1s
user-driven, €.g., a point-of-contact server allows a user to
access controlled resources within a system, whereas provi-
sioning functionality 1s typically application-based, e.g.,
applications typically trigger provisioning events, not users.

However, the system that 1s shown 1 FIG. 6 has been
extended to include services for supporting federated provi-
sioning 11 a manner similar to that described above with
respect to FIG. 5. Hence, FIG. 6 merely provides a different
logical perspective, or an example of a different embodiment,
for including federated provisioning functionality within a
tederated domain. For example, federated provisioning man-
agement server (FPMS) 602 within federated enterprise 250
may include a distinct federated identity supplier service
along with a distinct federated identity consumer service,
which are not shown 1n FIG. 6. Federated provisioning man-
agement server 602 and/or its constituent services relies upon
trust proxy 254 for trust relationship management, as neces-
sary. Federated provisioning management server 602 pro-
cesses data flows from point-of-contact server 2352 for provi-
sioning operations and provides hooks into a legacy or pre-
existing 1dentity management (i.e., provisioning)
functionality, such as identity management subsystem or
server (IMS) 604, via an interface, such as IMS interface unit
(IIU) 606. Federated provisioming management server 602
processes data events with respect to the local provisioning/
identity management system. Though incidental, the feder-
ated provisioning requests may flow through a web-services
point-of-contact such that the web-services point-of-contact
would provide security on any messages, but federated pro-
visioning management server 602 provides the provisioning
functionality.

By providing trust relationship management within a trust
proxy in accordance with the present invention, the legacy or
pre-existing 1dentity management does not need to be modi-

US 8,607,322 B2

31

fied while the federated enterprise interacts with other feder-
ated partners to support federated provisioning operations. It
should be noted, though, that a federated provisioning man-
agement server does not possess trust relationships; the trust
relationships would be managed by the web-services point-
of-contact, e.g., web-services gateway or web-services proxy,
etc.; 1n addition, a federated provisioning management server
may be considered as a back-end resource. The use of a
point-of-contact server allows the trust relationship manage-
ment to be separated from the federated provisioning man-
agement server such that 1t does not need to contain function-
ality for the implementation of trust relationships.

Each domain within a federated environment would be
expected to provide similar support for federated provision-
ing operations. For example, enterprise 260 likewise supports
tederated provisioning management server 612. Federated
provisioning management server 612 and/or its constituent
services have a trust relationship with trust proxy 264. Fed-
erated provisioning management server 612 processes data
flows from point-of-contact server 262 with respect to provi-
sioning operations and provides hooks into 1dentity manage-
ment subsystem or server 614, via an interface, such as IMS
interface unit 616.

With reference now to FIG. 7, a tlowchart depicts a process
by which a user 1s provisioned from a federated enterprise to
its federation partners 1n accordance with an embodiment of
the present invention. The process begins when the user elec-
tronically registers with an enterprise 1n order to be provided
access to controlled resources (step 702). The registration
process may occur in a variety ol different manners. For
example, the user might complete a self-registration proce-
dure on a web site through the Internet. In some cases, the user
might register by paper form through the mail or by fax, after
which an electronic registration procedure 1s completed by
the enterprise. In other cases, the user’s local account may be
created 1n response to the actions of a local 1dentity manage-
ment system or through a middleware product.

In any case, the enterprise interacts with other enterprises
within a federated environment, and the enterprise deter-
mines that the user should be provisioned to 1ts federation
partners. This determination may be performed as a result of
the creation of a new user’s local account, after which a local
policy associated with these events causes the triggering of
provisioning events to federation partners after the creation of
a new user’s local account. For example, in an employer/
employee scenario, creation of a new employee record by a
human resources administrative user may result in a federated
provisioning management server triggering provisioning,
events to be sent to third-party benefits providers, such as
health care providers. In a scenario with a service provider,
the creation of a new user as a mobile subscriber of a telecom
service may result in a federated provisioning management
server triggering provisioning events to be sent to third-party
service providers, €.g., an email service, based on attributes
that are defined for the user and that are recognized by a
federated provisioning management server.

The process continues when the federated enterprise asso-
ciates 1dentity information with the user (step 704), such as a
unique 1dentifier and/or other data. Various processes may be
performed to obtain a user 1dentifier; for example, the unique
identifier may be chosen by the user during a seli-registration
operation, or the unique 1dentifier may be generated by the
tederated enterprise.

The federated enterprise then creates a local user account
based on the 1dentity mnformation that 1s associated with the
user that 1s being registered (step 706), ¢.g., by creating the
appropriate records within a user registry or other databases.

10

15

20

25

30

35

40

45

50

55

60

65

32

In an implementation of the present mmvention in which a
tederated enterprise relies on a legacy identity management
subsystem for the creation of a user account or user profile,
step 706 may be performed using an identity management
subsystem such as IMS 604 that 1s shown 1 FIG. 6. This
account may be authenticatable such that a user needs to
present a username and password or similar credential for
authentication purposes, but this account may also support
sponsored, single-sign-on, type of account such that the user
simply needs to present a single-sign-on assertion/token from
an 1dentity provider or home domain for authentication pur-
poses.

It should be noted that in a case in which a federated
enterprise relies on a legacy 1dentity management subsystem
for the creation of a user account or user profile, steps 702-706
may be implemented using a variety of well-known tech-
niques for the registration of a user with respect to an enter-
prise. In other words, with respect to the present invention,
steps 702-706 arc not required to include any federation-
specific processing in accordance with an embodiment of the
present mvention; the subsequent steps in the provisioning
procedure that are described hereinbelow may represent the
novel aspects of an embodiment of the present invention. For
example, 1t should be noted that a federated provisioning
operation may trigger a worktlow-based process at a service
provider in which the user account 1s created over many steps
that cannot be 1solated chronologically as including federated
processing and non-federated processing.

The process continues when a federated provisioning man-
agement server or similar operational entity, such as FPMS
602 that 1s shown 1n FIG. 6, detects the new user account/
profile or the activity for creating the new user account/profile
(step 708). Detection may be based on monitoring a specific
datastore to which a local provisioning system has been con-
figured to locally provision a user based on policy; detection
may also be accomplished by a direct trigger, e.g., from a
local 1dentity management subsystem that may be configured
to attempt to directly 1ssue a federated provisioning request
that must then be caught and managed by the federated pro-
visioning management server; another example of detection
ol user registration events 1s described further below. After the
federated provisioning management server detects one or
more of these events, the federated provisioning management
server 1nitiates the provisioning of the user to other federated
domains within the federated environment using the steps that
are described hereinbelow. A federated provisioning manage-
ment server does not actually provision to other systems; 1t
provides a means of taking a provisioning request and bun-
dling it 1n a secure manner for vendor/ML neutral transmis-
sion over the Internet. When receiving one of these requests,
a Tederated provisioning management server i1s responsible
for unpacking the request, doing markup language transla-
tion, applying security policy, and using information to trig-
ger local provisioning, e.g., by directly invoking a local 1den-
tity management system or by creating a new record 1n a
datastore that 1s momitored by the identity management sys-
tem.

Continuing with the process in FIG. 7, the federated pro-
visioning management server generates a federated provi-
sioning request that 1s based on the new user identity and/or
other user-specific information (step 710); the federated pro-
visioning request 1s a message body or other data item that
contains the user-registration information to be transmitted to
other federated partners. It should be noted, though, that
provisioning entails many types of operations, such as
account creation, account deletion, attribute update (write,
update, delete), and other types of operations, so a federated

US 8,607,322 B2

33

provisioning request message may be directed to any other
these operations. The federated provisioning management
server requests that the local trust proxy within the federated
enterprise build a security token that accompanies the feder-
ated provisioning request (step 712). It should be noted that
any ol the described processing steps may include many
steps; for example, the federated provisioning management
server may perform a series of operations, including func-
tionality over web-application services (WAS), thereby caus-
ing the invocation of WAS security handlers that subse-
quently invoke the trust proxy to validate the tokens
associated with the imncoming request. The federated provi-
sioning management server includes the functionality of
packing/unpacking the provisioning request/response itsell,
which 1s mndependent of packing/unpacking the security on
the request/response. The trust proxy may encrypt informa-
tion, generate security tokens, perform authorization deci-
sions, or perform other security-related operations that are
necessary to ensure that federated partners that recerve the
tederated provisioning message can trust the contents of the
received message based on the trust relationships that have
been established between the federated partners and that are
managed by the local trust proxy in conjunction with trust
proxies at the federated partners. The manner 1n which the
tederated provisioning message 1s built may depend on the
identity of the targeted/destination federated domain and the
requirements of the secure messages that are expected by the
trust proxy at the destination federated domain. The 1dentities
ol the tederation partners to which the newly registered user
should be provisioned may be determined by reference to a
local database or other source of information that 1s used to
manage the relationships between the federated enterprise
and 1ts federated partners. The federated provisioning man-
agement server subsequently sends the federated provision-
ing message along with a security token to one or more
tederated domains using the local point-of-contact server
within the federated enterprise (step 714).

At some subsequent point in time, the point-of-contact
server of the source/originating federation partner forwards
to the federated provisioning management server any
responses that have been received from partners within the
tederated environment for the previously transmitted feder-
ated provisioning request (step 716). The federated provi-
sioning management server then analyzes and manages the
received responses (step 718), thereby concluding the pro-
cess. For example, 1t may be assumed that the federated
provisioning requests and responses are processed 1n an asyn-
chronous manner, and the federated provisioning manage-
ment server tracks whether each targeted/destination feder-
ated partner responds to a previously transmitted federated
provisioning request i a timely manner. In addition, the
tederated provisioning management server responds to vari-
ous error conditions that may occur, such as error status that
may be received from a targeted/destination federation part-
ner.

With reference now to FIG. 8, a flowchart depicts a process
by which a user 1s provisioned at a federated enterprise at the
direction of a federation partner in accordance with an
embodiment of the present invention. Whereas the process
that 1s described with respect to FIG. 7 involves the source/
originating federated domain for a federated provisioning
request, the process that 1s described with respect to FIG. 8
involves the target/destination federated domain that pro-
cesses a federated provisioning request that has been recerved
from the source/originating federated domain. For example,
referring to FIG. 6, enterprise domain 250 may act as a home
domain for a newly registered user, and domain 250 provi-

10

15

20

25

30

35

40

45

50

55

60

65

34

sions the user to domain 260 via communications between
point-of-contact server 252 and point-of-contact server 262,
respectively.

Referring to FIG. 8, the process commences with a point-

of-contact server at a federation partner receiving a federated
provisioning message and accompanying security token from
the source/originating federated domain (step 802), after
which the point-of-contact server forwards the message, most
likely a copy of the message, to the trust proxy (step 804),
which may then validate encryption on the message, signa-
tures on the message, and tokens (step 806). Alternatively, the
point-of-contact server may not forward the entire message;
the point-of-contact may build a specific trust request that
sends only the necessary information to the trust server and
not the entire request. In another alternative, the federation
partner may leverage WAS-based functionality for message-
level encryption and signing. It should also be noted that the
tederation partner may optionally perform an authorization
decision that 1s based on the user/application that 1s attempt-
ing to do the provisioning.
The trust proxy returns the federated provisioning request
to the point-of-contact server (step 808), which then forwards
the request to the federated provisioning management server
(step 810); alternatively, the trust proxy returns the result of
the trust processing. The federated provisioning management
server extracts from the federated provisioning request the
user 1dentity and/or other user-specific information about the
user that has been newly registered at the source/originating
federated domain (step 812).

The federated provisioning management server then 1ni-
tiates the creation of a local user account within the target/
destination domain based on the extracted i1dentity informa-
tion for the user (step 814), e.g., by creating the appropnate
records within a user registry or other databases or by 1niti-
ating an appropriate workilow-based approval process, which
would allow a service provider to implement theirr own
approval process/policy with the creation of a user account,
even 1f triggered by a federated partner, such as an identity
provider. In an implementation of the present invention in
which the target/destination domain relies on a legacy 1den-
tity management subsystem for the creation of a user account
or user profile, step 814 may be performed using an identity
management subsystem such as IMS 614 that 1s shown 1n
FIG. 6, e.g., by having the federated provisioning manage-
ment server send a triggering event directly to an identity
management subsystem. The federated provisioning man-
agement server generates a federated provisioning response
that indicates the success or the failure of the processing of the
received federated provisioning request (step 816) and
requests that the local trust proxy secure the response mes-
sage that contains the federated provisioning response (step
818); alternatively, the point-of-contact server requests that
the trust proxy perform security operations on the message.
The secure message that contains the federated provisioning
response 1s then sent to the source/originating domain using
the local point-of-contact server within the federated enter-
prise (step 820), and the process 1s concluded. In an alterna-
tive embodiment, a preliminary acknowledgment 1s returned
to the source/originating domain at some point after the
request has been received and/or verified; the status for the
overall provisioning operation can then be returned at some
later point 1n time, thereby allowing for the accommodation
of asynchronous environments.

It should be noted that the example that 1s shown 1n FIG. 7
and FIG. 8 describes a process by which a user account 1s
created at a federation partner during a provisioning opera-
tion. However, a provisioning operation may be performed to

US 8,607,322 B2

35

update information or to delete information. For example, an
identity provider may update a user’s attributes locally, thus
triggering provisioning of these updated attributes to a part-
ner; these updated attributes might then be used to change the
user’s privileges at the federation partner.

With reference now to FIG. 9, a block diagram depicts
turther detail for a federated provisioning management server
that includes support for WS-Provisioning functionality in
accordance with an embodiment of the present invention. In a
manner similar to that discussed above with respect to FI1G. 5
and FIG. 6, federated provisioning management server 902
comprises support for a federated 1dentity supplying service
and a federated 1dentity consumer service such that a newly
registered user can be provisioned to federated partners. In the
example that 1s shown in FIG. 9, the federated provisioning
functionality includes a web services provisioning client and
server, which 1s shown 1n FIG. 9 as WS-Provisioming client/
server 904 that supports the WS-Provisioning specifications,
although other provisioming standards may additionally or
alternatively be supported; the direction of the data flow dur-
ing the processing of a federated provisioning requests deter-
mines whether WS-Provisioning client/server 904 1s acting as
a client or as a server. In other words, federated provisioning
management server 902 may be embedded within a source/
originating domain or within a target/destination domain; the
WS-Provisioning client acts with the identity providing ser-
vice, and the WS-Provisioning server acts with the identity
consuming service. WS-Provisioning client/server 904 could
be invoked directly from an 1identity management subsystem
if there 1s tight integration between the 1dentity management
subsystem and the federated functionality; for example, the
identity management subsystem may have a web service
interface that enables it to directly invoke the WS-Provision-
ing client. Otherwise, 11 the federated functionality 1s sup-
ported as a federated front-end to minimize the impact on
legacy applications, e.g., as shown 1n FIG. 5, then WS-Pro-
visioning client/server 904 can be mvoked as an output unit
from data integration assembly line 906, where data integra-
tion assembly line 906 1n turn acts as an endpoint for events
from the 1dentity management subsystem.

Data integration assembly line 906 may be implemented
with a commercially available product, such as IBM™ Direc-
tory Integrator (IDI) product. Data integration assembly line
906 comprises event handler 908, data translation unit 910,
and Java™ module 912. The use of a data integration assem-
bly line supports federated provisioning in non-provisioning,
engine scenarlios, €.g., when a user account/profile 1s created
within an LDAP as a result of a self-registration process. In
such cases, there 1s no provisioning engine that 1s able to
intercept the creation of new records in user registries, direc-
tories, or other databases that allows for the mitiation of a
tederated provisioning operation. The use of a data integra-
tion assembly line 1s customizable for the different deploy-
ment requirements ol a given enterprise. For example, the use
ol a data integration assembly line also supports cross-vendor
implementations by allowing sending/receiving of informa-
tion even 1n cases 1 which one vendor uses one type of
markup language and the other uses a different type of
markup language.

Event handler 908 1s the mput connector within the data
integration assembly line. Event handler 908 1s able to listen
for event notifications from various sources, such as the cre-
ation of records for newly registered users within various
types of datastores, such as LDAP, etc., and then extract that
information from the data source. If additional information 1s
required to generate a federated provisioning request, e.g.,
such as information about the source/originating domain,

10

15

20

25

30

35

40

45

50

55

60

65

36

then the data integration assembly line can be customized to
retrieve additional information; 1n other words, the user-spe-
cific identity information 1s not necessarily the only input data
for the federated provisioning operation.

Data translation unit 910 formats the extracted data into the
appropriate data format, e.g., a directory service markup lan-
guage (DSML) data item or a SPML (service provisioning
markup language) data item, if necessary. If the source/origi-
nating domain and the target/destination domain are known to
employ the same data format for their identity information,
then an intermediate data format may not be necessary.

Assuming that WS-Provisioning client/server 904 1s
implemented as a J2EE™ application or other Java™, e¢.g., a
WS-Provisioning client with a WS-Provisioning proxy/stub,
Java™ module 912 1s responsible for invoking the WS-Pro-
visioning client. The WS-Provisioning client builds a WS-
Provisioning request that i1s sent to the target/destination
domain. The WS-Provisioning client would be responsible
for the eventual invocation of the trust proxy; the client can (a)
build the proper web services request and (b) use a web
services server as a point-of-contact entity, wherein the web
services server acts as a point-of-contact that invokes the trust
proxy. The trust proxy may also be implemented to support
web services, particular 1n accordance with the WS-Security
and WS-Trust specifications, whereby a secure web services
request can be generated.

In an alternative embodiment, the data integration assem-
bly line may include support for web services, which would
provide 1t with the ability to invoke web services directly. In
this embodiment, the web services client/server would not
need to be explicitly included; since one use of the client/
server 1s to ensure that a point-of-contact entity has the appro-
priate hooks 1nto the security processing functionality, the
data integration assembly line 1n this alternative embodiment
would 1nclude hooks for security/trust processing.

The description of FIG. 9 heretolore has focused on the
functionality at the source/originating domain wherein the
WS-Provisioming client builds a WS-Provisioning request
that 1s sent to the target/destination domain’s WS-Provision-
ing server. However, a similar pattern of activity occurs some-
what 1n reverse at the target/destination domain after receiv-
ing the WS-Provisioning request from the source/originating
domain. The WS-Provisioning server extracts the user 1den-
tity and/or other user-specific information and invokes a data
integration assembly line, which then performs any necessary
data translations and provisions the user information to the
required endpoint, e.g., a user registry database or an LDAP
directory; alternatively, the data integration assembly line
inputs data directly into an identity management subsystem.
In this manner, the WS-Provisioning client/server provides
web service functionality that can be used to provision user
information and/or service subscription information.

CONCLUSION

The advantages of the present invention should be apparent
in view ol the detailed description of the mvention that 1s
provided above. Among the advantages of the present inven-
tion, the trust proxies allow the pre-existing security services
in a given domain to establish trust relationships with other
domains without having to subscribe to the same trust root or
use the same trust-establishment technology. Hence, the fed-
erated architecture of the present invention provides a loose
coupling of entities. Federations allow users to seamlessly
traverse different sites within a given federation 1n a single-
sign-on fashion. Federated provisioning allows multiple fed-

US 8,607,322 B2

37

erated domains to prepare to provide access to resources to
users that have established other domains as a home domain.

It 1s important to note that while the present invention has
been described in the context of a fully functioning data

38

request or a federated provisioning response to demon-
strate a trust relationship between a requester and a
responder.

4. The data processing system of claim 1 wherein the

processing system, those of ordinary skill in the art will 5 point-of-contact server and the trust proxy perform front-end

appreciate that the processes associated with the present
invention are capable of being distributed 1n the form of
instructions 1n a computer readable medium and a variety of
other forms. Examples of computer readable media include
media such as EPROM, ROM, tape, paper, tloppy disc, hard
disk drive, RAM, and CD-ROMs.

A method 1s generally conceived to be a seli-consistent
sequence of steps leading to a desired result. These steps
require physical manipulations of physical quantities. Usu-
ally, though not necessarily, these quantities take the form of
clectrical or magnetic signals capable of being stored, trans-
terred, combined, compared, and otherwise manipulated. It1s
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, parameters,
items, elements, objects, symbols, characters, terms, num-
bers, or the like. It should be noted, however, that all of these
terms and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities.

The description of the present invention has been presented
for purposes of 1llustration but 1s not intended to be exhaustive
or limited to the disclosed embodiments. Many modifications
and vanations will be apparent to those of ordinary skill in the
art. The embodiments were chosen to explain the principles of
the invention and 1ts practical applications and to enable
others of ordinary skill in the art to understand the invention
in order to implement various embodiments with various
modifications as might be suited to other contemplated uses.

What 1s claimed 1s:

1. A data processing system comprising:

a point-of-contact server, wherein the point-of-contact
server recerves coming requests for access to
resources identifiable within a domain, wherein the
domain 1s associated with a plurality of domains within
a federated computing environment;

a trust proxy, wherein the trust proxy generates one or more
authentication assertions and/or attribute assertions sent
from the domain and validates one or more authentica-
tion assertions and/or attribute assertions recerved at the
domain; and

an application server that interfaces with the point-of-con-
tact server and the trust proxy, in response to provision-
ing a user at the domain, for imtiating provisioning of the
user 1n at least one other domain in the plurality of
domains within the federated computing environment
by sending a provisioning request;

the provisioning request associated with a provisioning
operation being one of: creation of a user record, push-
ing updated user attributes to a user record, pulling
updated user attributes for a user record, deletion of a
user account, and unlinking of one or more user
accounts.

2. The data processing system of claim 1 wherein the

point-of-contact server further comprises:

computer program instructions that, when executed by a
processor, invoke the application server to process fed-
crated provisioning requests.

3. The data processing system of claim 1 wherein the

application server further comprises:

computer program instructions that, when executed by a
processor, invoke the trust proxy to generate a security
token to be associated with a federated provisioming

10

15

20

25

30

35

40

45

50

55

60

65

processing for functionality associated with the federated
computing environment while interfacing with at least one
back-end application.

5. The data processing system of claim 4 wherein the
application server further comprises:

computer program instructions that, when executed by a

processor, interfaces with an identity management sub-
system as a back-end application.

6. The data processing system of claim 1 wherein the
point-of-contact server further comprises:

computer program instructions that, when executed by a

processor, associates an assertion with an outgoing
request from the point-of-contact server to a different
domain within the federated computing environment.

7. The data processing system of claim 1 wherein the trust
proxy further comprises:

computer program instructions that, when executed by a

processor, maintains trust relationships with different
domains within the federated computing environment.

8. The data processing system of claim 1 wherein the trust
proxy further comprises:

computer program instructions that, when executed by a

processor, interoperates with a trust broker to obtain
assistance 1n translating an assertion that has been
received from a different domain within the federated
computing environment.

9. The data processing system of claim 1 wherein the
application server supports at least one web service.

10. The data processing system of claim 9 wherein a web
service 1s supported in accordance with web-services-based
provisioning standard as exemplified by the WS-Provisioning
standard.

11. The data processing system of claim 1 wherein the
application server initiates provisioning of the user 1n at least
one other domain in an automated manner i1n response to
provisioning a user at the domain.

12. The data processing system of claim 1 wherein the
provisioning operation 1s mitiated 1n an automated manner in
response to provisioning of the user within the domain.

13. A machine-implemented method for providing feder-
ated functionality within a data processing system, the
method comprising:

receving an mcoming request at a point-of-contact server

to provision a user within a domain, wherein the domain
1s associated with a plurality of domains within a feder-
ated computing environment;
validating at a trust proxy one or more security assertions
received at the domain through the point-of-contact
Server;

responsive to provisioning the user within the domain,
initiating a provisioning operation 1n at least one other
domain 1n the plurality of domains within the federated
computing environment by sending a provisioning
request;

the provisioming request associated with a provisioning

operation being one of: creation of a user record at the
other domain, pushing updated user attributes to a user
record at the other domain, pulling updated user
attributes for a user record, deletion of a user account,
and unlinking of one or more user accounts.

US 8,607,322 B2

39

14. The method of claim 13 where security assertions are
distinct from the user-specific information contained 1n the
provisioning request.

15. The method of claim 13 wherein the trust proxy 1s able
to apply an authorization decision to the incoming request.

16. The method of claim 13 wherein the incoming request

1s interpreted as mitiating a request for user-specific informa-
tion and/or attributes about the user from the domain.
17. The method of claim 13 further comprising:
extracting user-specific information that is associated with
the user from the provisioning request;
performing the provisioning operation by invoking an
identity management application within the domain;
creating, modilying, or deleting one or more user-specific

entries 1n one or more datastores for the user by the
identity management application.

18. The method of claim 13 further comprising:

extracting user-specific information that is associated with

the user from the provisioning request;

creating, modilying, or deleting one or more user-specific

entries 1n one or more datastores for the user:;

detecting the user-specific activity within the domain by

the 1dentity management application; and

provisioning the user within the domain such that the user

subsequently has access to controlled resources within
the domain.

19. A computer program product on a non-transitory coms-
puter readable medium for use 1n a data processing system for
providing federated functionality within the data processing
system, the computer program product holding computer
program instructions which when executed by the data pro-
cessing system perform a method comprising:

receiving an incoming request at a point-of-contact server

to provision a user within a domain, wherein the domain
1s associated with a plurality of domains within a feder-
ated computing environment;

validating at a trust proxy one or more security assertions

received at the domain through the point-of-contact
server; and

responsive to provisioning the user within the domain,

initiating a provisioning operation in at least one other
domain 1n the plurality of domains within the federated
computing environment by sending a provisioning
request;

10

15

20

25

30

35

40

40

the provisioning request associated with a provisioning
operation being one of: creation of a user record, push-
ing updated user attributes to a user record, pulling
updated user attributes for a user record, deletion of a
user account, and unlinking of one or more user
accounts.

20. The computer program product on a non-transitory
computer readable medium of claim 19 where security asser-
tions are distinct from the user-specific information contained
in the provisioning request.

21. The computer program product on a non-transitory
computer readable medium of claim 19 wherein the trust
proxy applies an authorization decision to the incoming
request.

22. The computer program product on a non-transitory
computer readable medium of claim 19 wherein the incoming
request 1s 1interpreted as imitiating a request for user-specific
information and/or attributes about the user from the domain.

23. The computer program product on a non-transitory
computer readable medium of claim 19 wherein the method
further comprises:

extracting user-specific information that 1s associated with

the user from the provisioning request;
performing the provisioning operation by invoking an
identity management application within the domain;

creating, moditying, or deleting one or more user-specific
entries in one or more datastores for the user by the
identity management application.

24. The computer program product on a non-transitory
computer readable medium of claim 19 wherein the method
further comprises:

extracting user-specific information that 1s associated with

the user from the provisioning request;

creating, modifying, or deleting one or more user-specific

entries 1n one or more datastores for the user;

detecting the user-specific activity within the domain by

the 1dentity management application; and

provisioning the user within the domain such that the user

subsequently has access to controlled resources within
the domain.

25. The computer program product on a non-transitory
computer readable medium of claim 19 wherein the provi-
sioning operation 1s initiated 1 an automated manner in
response to provisioning of the user within the domain.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

