12 United States Patent

Hankins et al.

US008607235B2

US 8,607,235 B2
Dec. 10, 2013

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(63)

(1)
(52)

(58)

MECHANISM TO SCHEDULE THREADS ON
OS-SEQUESTERED SEQUENCERS WITHOU'T
OPERATING SYSTEM INTERVENTION

Inventors: Richard A. Hankins, San Jose, CA
(US); Hong Wang, Fremont, CA (US);
Gautham N. Chinya, Hillsboro, OR
(US); Trung A. Diep, San Jose, CA
(US); Shivnandan D. Kaushik,
Portland, OR (US); Bryant E. Bigbee,
Scottsdale, AZ (US); John P. Shen, San
Jose, CA (US); Asit K. Mallick, Santa
Clara, CA (US); Baiju V. Patel,
Portland, OR (US); James Paul Held,
Portland, OR (US); Milind B. Girkar,
Sunnyvale, CA (US); Prashant Sethi,
Folsom, CA (US); Xinmin Tian, San

Jose, CA (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 2192 days.

Appl. No.: 11/027,445

Filed: Dec. 30, 2004

Prior Publication Data

US 2006/0150184 Al Jul. 6, 2006

Int. CL.

GO6I 9/46 (2006.01)

U.S. CL

USPC e e, 718/102

Field of Classification Search

USPC e, 718/102

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,257,375 A * 10/1993 Clarketal. 718/104
5,428,781 A * 6/1995 Duaultetal. 718/102
6,289,369 B1* 9/2001 Sundaresan 718/103
6,434,590 B1* 82002 Blellochetal. 718/102
6,766,515 B1* 7/2004 Bitaretal. 718/100
7,376,954 B2* 5/2008 Kissellc..coooeeiiiiniil 718/107
7,451,146 B2* 11/2008 Boehmcccooevviiiiinnnin, 707/8
2003/0037089 Al* 2/2003 Cota-Roblesetal. 709/1
2003/0217090 Al1* 11/2003 Chauveletal. 709/102
2004/0049580 Al1* 3/2004 Boydetal. 709/226
(Continued)
FOREIGN PATENT DOCUMENTS
JP 2004-280297 10/2004
WO 2006/074027 A2 7/2006
WO 2006/074027 A3 8/2006
OTHER PUBLICATIONS

“Nanothreads vs. Fibers for the Support of Fine Grain Parallelism on
Windows N'T/2000 Platforms”, Barekas, et al, Lecture Notes in Com-
puter Science, pp. 146-159.%*

(Continued)

Primary Examiner — Gregory A Kessler
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.

(57) ABSTRACT

Method, apparatus and system embodiments to schedule OS-
independent “shreds™ without intervention of an operating
system. For at least one embodiment, the shred 1s scheduled
for execution by a scheduler routine rather than the operating
system. A scheduler routine may run on each enabled
sequencer. The schedulers may retrieve shred descriptors
from a queue system. The sequencer associated with the
scheduler may then execute the shred described by the
descriptor. Other embodiments are also described and
claimed.

34 Claims, 9 Drawing Sheets

‘ OPERATING SYSTEM
100 120 140
PROCESS [}_l"\-’ \f“ PROCESS 1
VISIBLE TO OS
125 — 126
N W
THREAD s THREAD
SHRED SHRED
132 136
SHRED SHRED
130 134

NOT VISIBLE TO OS

US 8,607,235 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0215987 Al* 10/2004 Farkasetal. 713/300

2005/0081203 Al* 4/2005 Aguwlaretal. 718/100

2006/0075404 Al* 4/2006 Rosuetal. 718/100
OTHER PUBLICATIONS

HP-UX Process Management, Version 1.3, Apr. 7, 1997.*
PCT/US2005/047334 International Search Report and Written Opin-
1on Mailed Jul. 6, 2006.

Agnihotr1 P et al—Nov. 7, 1998—The Penn State Computing Con-
dominium Scheduling System—Conference on Nov. 7-13, 1998
Piscataway, NJ.

Goel S. et al—Oct. 15, 2003—Destributed scheduler for high perfor-
mance data-centric systems—IEEE Tencon 2003—Conference on

Convergent Technologies for the Asia-Pacific Region—Bangalore,
India—vol. 4 or 4 Conf. 18.

Chang-Qin Huang et al—Aug. 26, 2004—Intelligent agent-based
scheduling mechanism for grid service—Machine Learning and
Cybernetices, 2004. Proceedings of 2004 International Conference
on Shanghai, China Aug. 26-29.

Takao Moriyama et al., “A Multiprocessor Resource Management
Scheme which Considers Program Grain Size”, IPSJ Research
Report, Information Processing Society of Japan (IPSJT), Jul. 18,
1990, vol. 90, No. 60, (National Academic Institution Article 2000-
00160-017), pp. 103-108.

Office Action Received for Japanese Patent Application No. 2007 -
549606, mailed on May 11, 2010, 8 pages of Japanese Office Action,
including 4 pages of English Translation.

Dair Honda et al., “An Efficient Caching Technique Using Speculative
Threads on Hyper-Threading Technology”, IPSJ Research Report,

Information Processing Society of Japan (IPSJT),vol. 2004, No.
S80(ARC-159), Jul. 31, 2004, pp. 43-48.
Deborah T. Marr et al., “Hyper-Threading Technology Architecture

and Microarchitechture”, Intel Technology Journal Q1, Intel Corpo-
ration, Feb. 14, 2002, vol. 6 Issue 1, pp. 4-15.

International Preliminary Report on Patentability received for PCT
Patent Application No. PCT/US2005/047334, mailed on Jul. 12,
2007, 7 pages.

Office Action Received for Chinese Patent Application No.
2005800457586, mailed on Mar. 2, 2010, 17 pages of Chinese Office
Action, including 9 pages of English Translation.

Office Action Received for European Patent Application No.
05855829.7, mailed on Sep. 26, 2007, 4 pages.

Office Action received for Korean Patent Application No. 2007-
7017501, mailed on Nov. 28, 2008, 3 pages of English translation.
Wang et al., “Helper Threads via Virtual Multithreading on an
Experimental Itanium® 2 Processor-based Platform™, In Proceed-
ings of the 11th International Conference on Architectural Support
for Programming L.anguages and Operating Systems (ASPLOS’04),
Oct. 9-13, 2004, pp. 144-155.

State Intellectual Property Office, P.R. China, Second Office Action
issued Dec. 20, 2010 1n Chinese patent application No.
200580045758.6.

State Intellectual Property Office, P.R. China, Third Office Action
mailed Jul. 19, 2011 1n Chinese application No. 200580045758.6.
Takao Moriyama, et al., “A Multiprocessor Resource Management
Scheme Which Considers Program Grain Size,” IPSJ Research
Report, Jul. 18, 1999, pp. 108-108.

Japanese Patent Office, Notification of Reasons for Refusal dated
Oct. 16, 2012 1n Japanese patent application No. 2011-007496.
State Intellectual Property Office, P.R. China, Office Action mailed
May 23, 2012 1in Chinese application. 20091022297 .5.

* cited by examiner

U.S. Patent Dec. 10, 2013 Sheet 1 of 9 US 8,607,235 B2

OPERATING SYSTEM

100 120
l PROCESS 0 } et PROCESS 1

VISIBLE TO OS

125 126
THREAD voe THREAD

SHRED SHRED
132 136

140

SHRED SHRED
130 134

NOT VISIBLE TO OS

FIG. 1

%

—
—
— e
-

L
L]
J

[]

il N -

d—

g

J

L

L

L

L

I_J

[]

00¢

\
&

ve0l

7/
m

| ﬁ_\
] “W\ “\._

‘
\
7

9
Sheet 2 of

_
— —

-
- -

_ ammn Ghies sl ki

J -

|
S) |
(1 O3
m_ommzw
|
3S)
L (ND A
YH
'N 3
|

ddv
“ NOILYOIT
“ 3LYLS NOLLY
. A 3NHS
|
. |
|
_
D _
D

-...-.-_1_-_-_.
LS g _q_._.._n
i “ — T
i-ilnn.l.li-_tlitttli
.-_..-.- ------ 11._.-._.‘.___.___._.1_._-_-
._-_A-ininin tttttttttttttttt
‘N, ol i
..._.-u_..._. ‘e, S ‘_-t- --------
.._.J__u ----- n“.__.._.- i
.i- 111111111111 ,..._:_ G
-1.‘\1 llllllllllll lmtti i n
G ...-hwl-..l-; ------------ -‘t-
tttttttttttttttttttttttt Fo, _.-.-u_-i--.-_-_hu_-.- N
-.‘.__.“ ttttttttttttt .._..n_-_.-_--...t*.__..-u Srteilts e, |
-:__‘_:. t._..-_._.-._.___..__.___-__.,_- 11111111111111” -------- ‘n- V¥
‘.n-ttttlnﬁuu—.wt nnnnnnnnnnnnnnnnnnnnnn ‘g, ...u--..-
1-\‘ tttttttttttttt _-.n.___-i--nq.‘ui-;n\--ttﬂ 4 -.-.
i _____.#.:__ Rt Lrealte r .'__.-#
-_.._-t._:...._.-_u.-.-.._-.-_-u.._llt- a-*uu nnnnnnnnnnnnnnnnn 1..'_.
.. .-_t.-. tttttttttttttttttttttttt .1.1 tttttttttttttt 1'-
- -_.l ttttttttttttttttttttttt *-t S ._.l.._.
._-_._._ i ..._.-._:_._._._..h._-_._ -
-.l‘..__.-_.n_“til o L™ ittnih-n‘
.-._.- -------- e, .-..1_-_.-._._.‘-.-.-._._-11._._-.__._.-tt-*u- -...-
. .-1- ------------- _.__-.nt.n._. tttttttttttttttttttttt -—ﬁ
._.___ﬂ nnnnnnnnnn -1-111*114*- uuuuuuuuuuuuuuuuuuu u._.._‘
.-_-.q_...___._._.__-__._.__..__.- nnnnnnnnnnnnnn et ._.'._.-
ﬂ tttttttttttttttttttt L 1!11 SIAIT tn.‘-_-
iiiiiiiiiiiiiiiiiiiiiii Hi\!*tl\ti |-h-‘-.
._1-,_._-_-1_.__-_._.____._«..____.._.;»1_.-_-n._: r ._.-____._:..___l...-

.-_.-._ “- nnnnnnnnnnnnnnnnnnnnn Hua\. .._l...‘.
_‘ tttttttttttttttttttt _..n- 111111 tﬂ!*
‘ .-.1 tttttttttttttt RHTINE r
-.-. 1111111111 # -.
- tttttttttttt i-n-! .- ﬁ
-i ttttttttttttt —-nnutbtnntblitw -.
-.1. lllllllllllllllllllllllllll - l.l..
— -._ uuuuuuuuuuuuuuuuuuuuuuuuu "y, ‘ n '
*1-1 i 11.- .-_. .-
-.1 -.-1 i -.. ‘
!.__.i._:. 4._1_. i
.l..‘._. tttttt —_...-___w_.._. uuuuuuuuuuuuuuuuuuuuuu
..-_‘ iiiiiiiiiiiiiiii t-.‘.- ||||||
-t-ill iiiiiiiiiiii _tiii l.-.-l iiiiiiiiiiiiii r
.-... ttttttttttttt -._.1_— _-_-hw“n ------------------ 1-#.-
._-_ _-._:....u_. _._-._:-_ g ._._.._.._.
L ln lllllllllllllllllllll -111.- Lta --'-.-
.__-_.-‘“_- i & L ...__:_._.._._1 B
-.1-1* tttttt -..__.-t ttttttttttttt r siter “.___- .-
..._w_- ------------ G - w......'ﬂn-
— '.‘-u 1111111111111 —- i .‘.'.
-._._‘...._.._.-_.__._._ -._._. ._--.:__ _1._.._-_. ‘:__._._-‘T
N] - 11111111111111111111111 ’, F 1.-..
l-it el -n — - L -hwluilh-.
-_.h.q _.n.._._..-n._. ------------- -- ------ -t-
___.u#___._n_._“._..__.____.. i ’ . ._._..?___.-_.-
I_.-*._.-_:_t_..._. ., G — r .._-_._I
] -h_-.-.-i- ttttt _-.l.-h RTATET L -h
h-._\-._ 11111111 ._.n._._-al____.____._—-_. tttttttttttttttttt - -
-_._‘_-_.- ----------------------- R _.-___l
v_. ttttttttttttttttttttt r) . .___._._q nm-.—.u- —
— ._._._..-.__. 11111111111111 ﬂi._.._:_—_. _.n_..-._.l.- —

------------------------------ Foa il

H nnnnnnnnnnnnnn _-n.__.._._.._. _.'_.._l « —
— t:ht_ iiiiiiiiiiiiiiii 11.1' —

n iiiiiiiiiiiiiiiiiiiii 1-.# _

ttttttttttttttttt -‘.- -
— F] nittnn .- —

"-_ -------- ..__‘ —

eal 1-._..
- -_l.‘-.-_. — -.

b

3
Dec. 10, 201

0¢1 $S3004d

t
Paten
U.S.

U.S. Patent Dec. 10, 2013 Sheet 3 of 9 US 8,607,235 B2

310 312A 3128

U.S. Patent Dec. 10, 2013 Sheet 4 of 9 US 8,607,235 B2

402

450A

403 404

FIG. 4

U.S. Patent Dec. 10, 2013 Sheet 5 of 9 US 8.607,235 B2

502

500

450A 450B

OS 540

SEQUENCER O

SCHEDULER I

I SCHEDULER I

504
SEQUENCER 1

503 (SEQUESTERED)

SEQUENCE 0 AND 1 ARE
ASYMMETRIC

FIG. 5

U.S. Patent Dec. 10, 2013 Sheet 6 of 9 US 8,607,235 B2

THREAD/SHRED EXECUTION
(LE., "CREATE" PRIMITIVE)

660

=

‘

604

602
RS

606

77

SHRED(S) FOR

TYPE B TYPEB
SEQUENCER(S) SEQUENCER(S)

624

SHRED(S) FOR
TYPE A

SEQUENCER(S)

623

U.S. Patent Dec. 10, 2013 Sheet 7 of 9 US 8.607,235 B2

SEQUENCER (OS-VISIBLE) 770

THREAD (T)

701
00 START 760

704
SEQUESTERED

INITIALIZE SEQUESTERED SEQUENCER(S) TO BE INVOKE SEQUENCER(S)
ABLE TO HANDLE WORK FOR CURRENT OS-VISIBLE | SCHEDULER
SEQUENCER 450

706

GENERATE DESCRIPTOR FOR MAIN SHRED
PROGRAM

708

INVOKE SCHEDULER TO SCHEDULE WORK SCHEDULER
FOR CURRENT SEQUENCER 750 ——_

702

PERFORM WORK AS SCHEDULED BY

SCHEDULER

712

END

FIG. 7

U.S. Patent

Dec. 10, 2013 Sheet 8 of 9 US 8.607,235 B2
THREAD T
nME ON OS-VISIBLE SEQUENCER 870 (SID 0) SHRED S ON SEQUESTERED
| SEQUENCER 860 (SID1)
3 SEMONITOR |
(1NIT, : INITIALIZATION
SCHEDULERNO_WAT) ./ 704
IMAPSINIT' EGRESS |
SCENAROTOIPFOR |
SCHEDULER HANDLER |
CODE i
v ! 802
| N
SXFR(1,INIT, | (SHRED CREATION: BEGIN SHRED, S, W/
NO_WAIT) " TRANSFER CONTROL) ™" “INIT" SCENARIO
L : (GOTO SCHEDULER)
t x
~_ 804
CREATE THREAD DESCRIPTOR FOR SCHEDULER ~—~—~
THREAD MAIN AND PLACE IN Q LOOK FOR SHRED
SYSTEM DESCRIPTOR IN
l Q SYSTEM
708 P
GOTO ~—~— IF FOUND, RUN
SCHEDULER SHRED UNTIL
L TERMINATOR
______________ (YIELD OR EXIT
. SCHEDULERLOOKFOR ' 709 INSTR)

' SHRED DESCRIPTORINQ

| SYSTEM

-

IF FOUND, RUN
THREAD/SHRED ™~

UNTIL

TERMINATOR
(YIELD OR EXIT

PRIMITIVE)

|

END

712

710

\ !

Q SYSTEM END

702

L,

U.S. Patent Dec. 10, 2013 Sheet 9 of 9 US 8,607,235 B2

900

940 /

902
Q42
MEMORY
DATAS DATA Q SYSTEM 912
450
044

INSTRUCTIONS
910

SCHEDULER

450
904
FRONT END
CACHE
N 30 225

EXECUTION CORE

FIG. 9

US 8,607,235 B2

1

MECHANISM TO SCHEDULE THREADS ON
OS-SEQUESTERED SEQUENCERS WITHOU'T
OPERATING SYSTEM INTERVENTION

BACKGROUND

1. Technical Field

The present disclosure relates generally to information
processing systems and, more specifically, to scheduling and
control of thread execution on OS-sequestered sequencers
without operating system intervention.

2. Background Art

In order to 1ncrease performance of information processing,
systems, such as those that include microprocessors, both
hardware and software techniques have been employed. On
the hardware side, microprocessor design approaches to
improve microprocessor performance have 1ncluded
increased clock speeds, pipelining, branch prediction, super-
scalar execution, out-of-order execution, and caches. Many
such approaches have led to increased transistor count, and
have even, 1n some 1nstances, resulted in transistor count
increasing at a rate greater than the rate of improved pertor-
mance.

Rather than seek to increase performance strictly through
additional transistors, other performance enhancements
ivolve software technmiques. One soltware approach that has
been employed to improve processor performance 1s known
as “multithreading.” In software multithreading, an mstruc-
tion stream may be divided mnto multiple mstruction streams
that can be executed 1n parallel. Alternatively, multiple inde-
pendent software streams may be executed 1n parallel.

In one approach, known as time-slice multithreading or
time-multiplex (“TMUX”) multithreading, a single processor
switches between threads after a fixed period of time. In still
another approach, a single processor switches between
threads upon occurrence of a trigger event, such as a long
latency cache miss. In this latter approach, known as switch-
on-event multithreading (“SoEMT”), only one thread, at
most, 1s active at a given time.

Increasingly, multithreading 1s supported in hardware. For
instance, 1 one approach, processors 1 a multi-processor
system, such as a chip multiprocessor (“CMP”’) system, may
cach act on one of the multiple software threads concurrently.
In another approach, referred to as simultaneous multithread-
ing (“SMT”), a single physical processor 1s made to appear as
multiple logical processors to operating systems and user
programs. For SMT, multiple software threads can be active
and execute simultaneously on a single processor without
switching. That 1s, each logical processor maintains a com-
plete set of the architecture state, but many other resources of
the physical processor, such as caches, execution units,
branch predictors, control logic and buses are shared. For
SMT, the instructions from multiple soiftware threads thus
execute concurrently on each logical processor.

For a system that supports concurrent execution of soft-
ware threads, such as SMT and/or CMP systems, an operating,
system application may control scheduling and execution of
the software threads. Typically, however, operating system
control does not scale well; the ability of an operating system
application to schedule threads without negatively impacting
performance 1s commonly limited to a relatively small num-

ber of threads.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention may be understood
with reference to the following drawings 1n which like ele-

10

15

20

25

30

35

40

45

50

55

60

65

2

ments are indicated by like numbers. These drawings are not
intended to be limiting but are instead provided to 1llustrate

selected embodiments of an apparatus, system and method to
schedule OS-sequestered threads for execution.

FIG. 1 1s a block diagram presenting a graphic representa-
tion of a general parallel programming approach for a multi-
sequencer system.

FIG. 2 1s a block diagram illustrating shared memory and
state among threads and shreds for at least one embodiment of
user-level multithreading.

FIG. 3 1s a block diagram 1illustrating various embodiments
of multi-sequencer systems.

FIG. 4 1s a data flow diagram illustrating at least one
embodiment of a scheduling mechanism for a multi-se-
quencer multithreading system that supports user-level thread
control.

FIG. 5 1s a data flow diagram illustrating at least one
embodiment of a scheduling mechamism for an asymmetric
multi-sequencer multithreading system.

FIG. 6 1s a data flow diagram illustrating at least one
embodiment of a scheduling mechanism that includes mul-
tiple work queues.

FIG. 7 1s a timing diagram 1llustrating at least one embodi-
ment of control tlow for user-driven OS-independent sched-
uling of shreds.

FIG. 8 1s a timing diagram 1llustrating at least one embodi-
ment of control tlow for a specific example of user-driven
OS-1independent scheduling of shreds.

FIG. 9 15 a block diagram 1llustrating at least one embodi-
ment of a system capable of performing disclosed techniques.

DETAILED DESCRIPTION

The following discussion describes selected embodiments
of methods, systems and mechanisms to schedule and/or
otherwise control threads of execution (referred to as
“shreds™) on one or more OS-sequestered sequencers. The
OS-sequestered sequencers are sometimes referred to herein
as “OS-invisible.” The mechamisms described herein may be
utilized with single-core or multi-core multithreading sys-
tems. In the following description, numerous specific details
such as processor types, multithreading environments, sys-
tem configurations, numbers and topology of sequencers 1n a
multi-sequencer system, microarchitectural structures, and
instruction nomenclature and parameters have been set forth
to provide a more thorough understanding of the present
invention. It will be appreciated, however, by one skilled 1n
the art that the invention may be practiced without such spe-
cific details. Additionally, some well known structures, cir-
cuits, and the like have not been shown in detail to avoid
unnecessarily obscuring the present invention.

A shared-memory multiprocessing paradigm may be used
in an approach referred to as parallel programming. Accord-
ing to this approach, an application programmer may split a
soltware program, sometimes referred to as an “application”
or “process,” into multiple tasks to be run concurrently 1n
order to express parallelism for a soiftware program. All
threads of the same software program (“process™) share a
common logical view of memory.

FIG. 1 1s a block diagram illustrating a graphic represen-
tation of a parallel programming approach on a multi-se-
quencer multithreading system. FIG. 1 illustrates processes
100, 120 visible to an operating system 140. These processes
100, 120 may be different soitware application programs,
such as, for example, a word processing program and an email
management program. Commonly, each process operates in a
different address space.

US 8,607,235 B2

3

The operating system (“OS””) 140 1s commonly responsible
for managing the user-created tasks for a process, such as
process 120 1llustrated 1n FIG. 1. Accordingly, the operating,
system 140 may create a distinct thread 125, 126 for each of
the user-defined tasks associated with a process 120, and may
map the threads 125, 126 to thread execution resources.
(Thread execution resources are not shown 1n FIG. 1, but are
discussed in detail below.) The OS 140 1s commonly respon-
sible for scheduling these threads 125, 126 for execution on
the execution resources. The threads associated with a single
process typically have the same view of memory and have
visibility to each others’ virtual address space.

Because the OS 140 1s responsible for creating, mapping,
and scheduling threads, the threads 125, 126 are “visible” to

the OS 140. In addition, embodiments of the present inven-

tion comprehend additional threads 130-136 that are not vis-
ible to the OS 140. That is, the OS 140 does not create,
manage, or otherwise acknowledge or control these addi-
tional threads 130-136. These additional threads, which are
neither created nor controlled by the OS 140, are sometimes
referred to herein as “shreds™ 130-136 1n order to distinguish
them from OS-visible threads. The shreds are created and
managed by user-level programs and are scheduled to run on
sequencers that are sequestered from the operating system.
The OS-sequestered sequencers share the same ring 0 state as
OS-visible sequencers. Shreds thus share the same execution
environment (address map) that 1s created for the threads
associated with the same process.

As used herein, the terms “thread” and “shred” include, at
least, the concept of a set of instructions to be executed
concurrently with other threads and/or shreds of a process.
The thread and “shred” terms both encompass the 1dea, there-
fore, of a set of software instructions. As used herein, a
distinguishuing factor between a thread (which 1s OS-con-
trolled) and a shred (which 1s not visible to the operating
system and 1s 1instead user-controlled), which are both
instruction streams, lies in the difference of how execution of
the thread and shred instruction streams 1s managed. A thread
1s generated 1n response to a system call to the OS. The OS
generates that thread and allocates resources to run the thread.
Such resources allocated for a thread may include data struc-
tures that the operating system uses to control and schedule
the threads.

In contrast, at least one embodiment of a shred 1s generated
via a user istruction or “primitive” that mvokes a software
library or other OS-1ndependent mechanism for generating a
shred that the OS 1s not aware of. A shred may thus be
generated 1n response to a user-level software library call.

FIG. 2 1s a block diagram 1llustrating, in graphical form,
turther detail regarding the statement, made above, that all
threads of the same software program or process share a
common logical view of memory. For embodiments of the
present invention, this statement 1s also true regarding shreds
associated with a process 100, 120. FIG. 2 1s discussed herein
with reference to FIG. 1.

FIG. 2 assumes the graphical representation of a process
120, threads 125, 126 and shreds 130-136 1illustrated in FIG.
1. However, such representation should not be taken to be
limiting. Embodiments of the present invention do not nec-
essarily impose an upper or lower bound on the number of
threads or shreds associated with a process. Regarding a
lower bound, FIG. 1 illustrates that every process running at
a given time need not necessarily be associated with any
threads or shreds at all. For example, Process 0 100 illustrated
in FIG. 1 1s shown to run without threads nor shreds at the
particular time 1llustrated 1n FIG. 1.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

However, another process 120 may be associated with one
or more threads 125, 126 as illustrated 1n FIG. 1. In addition,
the process 120 may additionally be associated with one or
more shreds 130-136 as well. The representation of two
threads 125, 126 and four shreds 130-136 for a process 120 1s
illustrative only and should not be taken to be limiting. The
number ol OS-visible threads associated with a process may
be limited by the OS program. However, the upper bound for
the cumulative number shreds associated with a process 1s
limited, for at least one embodiment, only by the number of
thread execution resources available at a particular time dur-
ing execution. FIG. 2 illustrates that a second thread 126
associated with a process 120 may have a different number (n)
of threads associated with 1t than the first thread 125. (N may
be O for either or both of the threads 125, 126.)

FIG. 2 illustrates that a particular logical view 200 of
memory 1s shared by all threads 125, 126 associated with a
particular process 120. FIG. 2 1llustrates that each thread 125,
126 has 1ts own application and system state 202a, 2025,
respectively. FI1G. 2 illustrates that the application and system
state 202 for a thread 125, 126 1s shared by all shreds (for
example, shreds 130-136) associated with the particular
thread.

Accordingly, FIG. 2 illustrates that a system for at least one
embodiment of the present invention may support a 1-to-
many relationship between an OS-visible thread, such as
thread 125, and the shreds 130-136 (which are not visible to
the OS) associated with the thread. The shreds are not “vis-
ible” to the OS (see 140, FIG. 1) 1n the sense that a program-
mer, not the OS, may employ user-level techniques to create,
synchronize and otherwise manage and control operation of
the shreds. While the OS 140 1s aware of, and manages, a
thread, the OS 140 1s not aware of, and does not manage or
control, shreds.

Thus, 1nstead of relying on the operating system to manage
the mapping between thread umit hardware and shreds, for at
least one embodiment a user may directly control such map-
ping and may directly manipulate control and state transters
associated with shred execution. Accordingly, for embodi-
ments of the methods, mechanisms and systems described
herein, a user-visible feature of the architecture of the thread
units 1s at least a canonical set of instructions that allow a user
direct manipulation and control of thread unit hardware.

As used herein, a thread unit, also interchangeably referred
to herein as a “sequencer”, may be any physical or logical unit
capable of executing a thread or shred. It may include next
instruction pointer logic to determine the next mstruction to
be executed for the given thread or shred. For example, the OS
thread 125 illustrated 1n FIG. 2 may execute on a sequencer,
not shown, while each of the active shreds 130-136 may
execute on other sequencers, “seq 1”-“seq 47, respectively. A
sequencer may be a logical thread unit or a physical thread
unit. Such distinction between logical and physical thread
units 1s illustrated in FIG. 3.

FIG. 3 1s a block diagram illustrating selected hardware
features of embodiments 310, 350 of a multi-sequencer sys-
tem capable of performing disclosed techniques. FIG. 3 1llus-
trates selected hardware features of an SMT multi-sequencer
multithreading environment 310. FIG. 3 also illustrates
selected hardware features of a multiple-core multithreading
environment 350, where each sequencer 1s a separate physical
Processor core.

In the SMT environment 310, a single physical processor
304 1s made to appear as multiple logical processors (not
shown), referred to herein as LP, through LP,, to operating
systems and user programs. Fach logical processor LP,
through LP, maintains a complete set of the architecture state

US 8,607,235 B2

S

AS,-AS, | respectively. The architecture state includes, for at
least one embodiment, data registers, segment registers, con-
trol registers, debug registers, and most of the model specific
registers. The logical processors LP,-LP, share most other
resources of the physical processor 304, such as caches,
execution units, branch predictors, control logic and buses.
Although such features may be shared, each thread context in
the multithreading environment 310 can independently gen-
erate the next mstruction address (and perform, for instance,
a fetch from an instruction cache, an execution instruction
cache, or trace cache). Thus, the processor 304 includes logi-
cally independent next-instruction-pointer and fetch logic
320 to fetch istructions for each thread context, even though
the multiple logical sequencers may be implemented 1in a
single physical fetch/decode unit 322. For an SMT or
embodiment, the term “sequencer” encompasses at least the
next-mstruction-pointer and fetch logic 320 for a thread con-
text, along with at least some of the associated architecture
state, AS, for that thread context. It should be noted that the
sequencers of an SMT system 310 need not be symmetric. For
example, two SMT sequencers for the same physical core
may differ in the amount of architectural state information
that they each maintain.

Thus, for at least one embodiment, the multi-sequencer
system 310 1s a single-core processor 304 that supports con-
current multithreading. For such embodiment, each
sequencer 1s a logical processor having 1ts own 1nstruction
next-instruction-pointer and fetch logic and 1ts own architec-
tural state information, although the same physical processor
core 304 executes all thread instructions. For such embodi-
ment, the logical processor maintains its own version of the
architecture state, although execution resources of the single
processor core may be shared among concurrently-executing,

threads.

FI1G. 3 also 1llustrates at least one embodiment of a multi-
core multithreading environment 350. Such an environment
350 includes two or more separate physical processors 304a-
3047 that1s each capable of executing a different thread/shred
such that execution of at least portions of the different threads/
shreds may be ongoing at the same time. Each processor 304qa
through 3047 includes a physically independent fetch unit
322 to fetch instruction information for 1ts respective thread
or shred. In an embodiment where each processor 304a-304#
executes a single thread/shred, the fetch/decode umt 322
implements a single next-instruction-pointer and fetch logic
320. However, 1n an embodiment where each processor 304a-
3047 supports multiple thread contexts, the fetch/decode unit
322 implements distinct next-instruction-pointer and fetch
logic 320 for each supported thread context. The optional
nature of additional next-instruction-pointer and fetch logic
320 1n a multiprocessor environment 330 1s denoted by dotted
lines 1n FIG. 3.

Thus, for at least one embodiment of the multi-core system
350 illustrated 1n FIG. 3, each of the sequencers may be a
processor core 304, with the multiple cores 304a-304# resid-
ing 1n a single chip package 360. Each core 304a-304n may
be either a single-threaded or multi-threaded processor core.
The chip package 360 1s denoted with a broken line 1n FIG. 3
to indicate that the illustrated single-chip embodiment of a
multi-core system 350 1s illustrative only. For other embodi-
ments, processor cores of a multi-core system may reside on
separate chips.

For ease of discussion, the following discussion focuses on
embodiments of the multi-core system 350. However, this
focus should not be taken to be limiting, in that the mecha-
nisms described below may be performed 1n either a multi-
core or single-core multi-sequencer environment.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 4 1s a data flow diagram illustrating at least one
embodiment of a scheduling mechanism 400 for a multi-
sequencer multithreading system that supports user-level
thread control. FIG. 4 1llustrates that the mechanism 400
includes a work queue system 402. The mechanism also
includes a scheduler routine 450, which may execute on each
of multiple sequencers 403, 404.

The work queue system 402 may maintain, for at least one
embodiment, descriptors for user-defined shreds that are 1n
line for execution are therefore “pending”. As 1s stated above,
the scheduling mechamsm 400 may be employed rather than
an OS-provided scheduling mechanism; each work descrip-
tor describes a shred that 1s to be executed, independent of OS
intervention, on either an OS-sequestered or OS-visible
sequencer.

Shred descriptors may be created by user-level shred cre-
ation nstructions or primitives. One of skill in the art will
recognize that there may be several levels of abstraction
between the programmer’s code and actual architectural
instructions that cause a sequencer to perform actions result-
ing 1n the generation of shred descriptors and placement of the
descriptors into a work queue 402. As used herein, an mstruc-
tion described as being generated by a programmer or user 1s
intended to encompass not only architectural instructions that
may be generated by an assembler or compiler based on
user-generated code, or by a programmer working in an
assembly language, but also any high-level primitive or
instruction that may ultimately be assembled or compiled into
architectural shred control instructions. It should also be
understood that an architectural shred control instruction may
be further decoded by a thread execution unit into one or
micro-operations.

FIG. 4 further illustrates that the scheduler routine 450a,
4505 for each of the sequencers may access the work queue
system 402 1n order to obtain a shred for execution on the
associated sequencer 403, 404. Thus, FIG. 4 illustrates at least
one embodiment of a scheduling mechanism that allows user-
level mapping and control of shreds, which may be executed
concurrently with each other and/or with OS-controlled
threads, without OS intervention for scheduling of the shreds.

It should be noted that the sequencers 403, 404 1llustrated
in FIG. 4 need not be symmetric, and their number should not
be taken to be limiting. Regarding the number of sequencers,
the scheduling mechanism 400 may be utilized for any num-
ber of sequencers. For example, the scheduling mechanism
may be implemented for a multi-sequencer system that
includes four, eight, sixteen, thirty-two or more sequencers.

Regarding symmetry, the sequencers 403, 404 may differ
in any manner, including those aspects that affect quality of
computation. For example, the sequencers may differ in terms
of power consumption, speed of computational performance,
functional features, or the like. By way of example, for one
embodiment, the sequencers 403, 404 may differ in terms of
functionality. For example, one sequencer may be capable of
executing integer and floating point instructions, but cannot
execute a single instruction multiple data (“SIMD”) set of
instruction extensions, such as Streaming SIMD Extensions 3
(“SSE3”). On the other hand, another sequencer may be
capable of performing all the instructions that the first
sequencer can execute, and can also execute SSE3 instruc-
tions.

As another example of functional asymmetry, for an
embodiment of the present invention, one sequencer may be
visible to the OS (see, for example, 140 of FIG. 1) and may
therefore be capable of performing “ring 0 operations such
as performing system calls, servicing a page fault, and the

US 8,607,235 B2

7

like. On the other hand, another sequencer may be seques-
tered from the OS, and therefore be incapable of performing,
ring 0 operations.

The sequencers of a system on which the scheduling
mechanism 400 1s utilized may also differ 1n any other man-
ner, such as dimensions, word and/or data path size, topology,
memory, power consumption, number of functional units,
communication architectures (multi-drop vs. point-to-point
interconnect), or any other metric related to functionality,
performance, footprint, or the like.

FIG. 5 1s a data flow diagram illustrating at least one
embodiment of a scheduling mechanism 500 for an asymmet-
ric multi-sequencer multithreading system. FIG. 3 illustrates
just one embodiment of asymmetry, 1n that a first sequencer
503 1s visible to an operating system 340 while a second
sequencer 304 1s sequestered from the operating system 3540.
Again, one of skill in the art will recognize that other types of
asymmetry may be present in the system, and that more than
two sequencers may be present 1n the system.

FIG. 5§ illustrates that the scheduler routine 450a, 4505 {for
cach of the OS-visible sequencer 303 and the sequestered
sequencer 504 probes the work queue system 502 for shreds
to be executed on the sequencer 503, 504 associated with the
scheduler instance 450a, 4505, respectively. Again, such
mechanism 500 provides for scheduling of shreds on asym-
metric sequencers without intervention of an operating sys-
tem 540.

FIG. 6 15 a data flow diagram 1llustrating further detail for
at least one embodiment of a scheduling mechanism 600 for
an asymmetric multi-sequencer multithreading system. FIG.
6 illustrates that a work queue system 602 may include mul-
tiple work queues 604, 606. For at least one embodiment,
cach of the multiple work queues 604, 606 15 associated with
a sequencer type. For the sample embodiment 1llustrated 1n
FIG. 6, afirst queue 604 1s associated with a set of one or more
of a first type of sequencer 640, referred to herein as “Type A”.
A second queue 606 1s associated with a set of one or more of
a second type of sequencer 642, referred to herein as “Type
B”. As with the other embodiments illustrated 1n previous
figures, the number of queues and sequencer types, as well as
number of sequencers of each type as illustrated in FIG. 6
should not be taken to be limiting.

FI1G. 6 1llustrates, therefore, a scheduling mechamism 600
for a system that includes at least two types of asymmetric
sequencers— Iype A sequencers 640 and Type B sequencers
642. The queue system 602 includes a work queue 604, 606
associated with each type of sequencer. Each sequencer 640,
642 includes a portion of a distributed scheduler routine 450.
The portions 450a, 4505 may be 1dentical copies of each
other, but need not necessarily be so.

FI1G. 6 1llustrates that the first queue 604 may include shred
descriptors for shreds 623 to run on the type A sequencers
640. The second queue 606 may include shred descriptors for
shreds 624 to run on the type B sequencers 642. The type A
shreds 623 may be soiftware sequences written by a user to
take advantage of particular functionality provided by the
type A sequencers 640. Similarly, the type B shreds 624 may

be software sequences written by a user to take advantage of
particular functionality provided by the type B sequencers
642.

For at least one embodiment, the functionality of type A
and type B sequencers may be mutually exclusive. That 1s, for
example, one set of sequencers 640 may support a particular
functionality, such as execution of SSE3 instructions, that the
other set of sequencers 642 does not support; while another

10

15

20

25

30

35

40

45

50

55

60

65

8

set of sequencers 642 may support a particular functionality,
such as ring 0 operations, that the other set of sequencers 640
does not support.

For such embodiment, the scheduling mechanism 600 may
operate such that descriptors for a first type of shred 623 may
be pulled from the first queue 604 by the scheduler routine
450 on a type A sequencer 640, while descriptors for a second
type of shred 624 may be pulled from the first queue 604 by
the scheduler routine 450 on a type A sequencer 640. The
mapping ol shreds to an appropriate sequencer may be
directed by user-level instructions.

However, for at least one other embodiment, such as the
embodiment 1illustrated in FIG. 6, the functionality of
sequencer types A 640 and B 642 represent a superset-subset
functionality relationship rather than a mutually exclusive
functionality relationship. That 1s, a first set of sequencers
(such as type A sequencers 640) provide a superset of func-
tionality that includes all functionality of a second set of
sequencers (such as type B sequencers 642), plus additional
functionality that 1s not provided by the second set of
sequencers 642. For such embodiment, the shred descriptors
from the second queue 606 may be optionally retrieved by the
scheduler routine 450 for the type A sequencers 640. This
optional processing may be performed, for example, 11 all
descriptors for the type A sequencers are unavailable (such as,
for example, 1f the first queue 604 1s empty). In other words,
the sequencers with superset functionality may execute
shreds specifically designated for such sequencers, but may
also execute shreds designated for sequencers of subset func-
tionality.

Finally, FIG. 6 illustrates that shred descriptors may be
placed 660 into the work queue system 602 responsive to
shred creation mstructions executed by another shred or by a
shred-aware thread. For at least one embodiment, the istruc-
tions that trigger creation of shred descriptor are API-like
(“Application Programmer Interface™) thread control primi-
tives such as shred_create. Software, such as that provided by
a software library, may create, responsive to a shred_create
primitive, a shred descriptor for the new shred and may place
it into the work queue system 602.

For at least one embodiment, a shred descriptor 1s thus
created by soltware responsive to a shred_create primitive
and 1s placed 1nto the queue system 702. The shred descriptor
may be, for at least one embodiment, a record that identifies at
least the following properties for a shred: a) the address at
which the shed should begin execution and b) a stack descrip-
tor. The stack descriptor identifies the memory storage area
(stack) to be used by the new shred to store temporary vari-
ables, such as local variables and return addresses.

FI1G. 71s a data flow diagram 1llustrating a sample sequence
for utilizing an embodiment of a scheduling mechanism, such
as any of those 1llustrated in FIGS. 4-6, to perform user-level
scheduling of shreds for execution on a multi-sequencer sys-
tem. For at least one embodiment, a method 700 1s performed
by a thread, T, running on a sequencer 770. For at least one
embodiment, the method 700 1s performed responsive to
instructions generated by a user, such as a programmer. For
FIG. 7, such instructions are referred as instructions of a
thread, T. It will be understood, of course, that the blocks of
the method 700 may be programmed by a user 1n a different
sequence than that shown i FIG. 7.

FIG. 7 illustrates a sample embodiment of a multi-se-
quencer system wherein the sequencers are asymmetric with
respect to a functional metric. That 1s, the sequencer 770 on
which the thread T 1s executed 1s an OS-visible sequencer. As
such, the sequencer 770 may, via interaction with the operat-
ing system, perform privileged operations, such as ring 0

US 8,607,235 B2

9

operations (1.e., service page faults, perform system calls,
etc.) In contrast, the sample embodiment illustrated in FIG. 7
also includes sequestered sequencers 760 that are not visible
to the OS. As such, the sequestered sequencers 760 are not
able to perform the privileged operations. They may, for
example, be limited to performing ring 3 operations but can-
not perform ring 0 operations. FIG. 7 thus illustrates a sample
embodiment of a multi-sequencer system that includes asym-
metric sequencers.

For the embodiment 1llustrated in FIG. 7, the method 700
begins at block 701 and proceeds to block 704. At block 704,
the thread, T, executes one or more 1nstructions to perform
initialization for user-level control of one or more concurrent
shreds associated with thread T. For at least one embodiment,
such mitialization 704 may include creation and/or mitializa-
tion of one or more queues (see, e.g., 604 and 606 of FIG. 6)
of a work queue system 702.

In addition, FIG. 7 illustrates that such 1nitialization 704
may 1nclude imitialization of one or more sequestered
sequencers 760. One of skill in the art will recognize, of
course, that the queue creation and sequencer 1nitialization
illustrated at block 704 need not necessarily be performed by
a single routine, method, or function, nor need they necessar-
1ly be performed in the sequential order discussed herein. For
an alternative embodiment, for example, the 1mtialization
actions taken at block 704 may be performed in the opposite
order, or may be performed concurrently.

The sequencer initialization of block 704 may be per-
formed 1n order to prepare the sequestered sequencer(s) 760
to run shreds as indicated by user-generated shred creation
instructions placed into the instruction stream for thread T by
a user, such as a computer programmer. For at least one
embodiment, such sequencer nitialization may include the
invocation of the distributed scheduler routine 450 on each of
the sequestered sequencers 760. As 1s discussed 1n further
detail below, mvocation of the scheduler routine 450 may
result in execution of a scheduling loop, wherein each portion
of the distributed scheduler begins to periodically check the
work queue system 702 for work that may be performed by
the associated sequestered sequencer 760.

Without such 1nitialization 704, it 1s anticipated for at least
one embodiment that the sequestered sequencer(s) 760 are
not available to execute shreds. For at least one embodiment,
the initialization 704 that prepares a sequencer 760 to execute
shreds includes, at least, invocation of a scheduler routine
450. The mitialization 704 may be performed for each
sequencer indicated by a user 1n the mstruction stream for
thread T. For at least one embodiment, all sequencers 1nitial-
ized for execution by the thread T shared the same view of
virtual memory that i1s constructed by the operating system
for the process with which thread T 1s associated.

Processing proceeds from block 704 to block 706. At block
706, the thread, T, generates a shred descriptor for execution
beginning at a user-defined main-shred function. For at least
one embodiment, the user-defined main-shred function
replaces a traditional OS-visible main() function. FIG. 7
illustrates that the shred descriptor for the main-shred may be
placed into a work queue system 702. Accordingly, the main-
shred 1s placed 1n line to be scheduled for execution by one of
the distributed shred scheduler routines 450 at the next oppor-
tunity.

From block 706, processing proceeds to block 708. At
block 708, the OS-visible thread T begins 1ts own scheduling,
loop. Accordingly, thread T executes one or more instructions
to mnitialize a scheduler routine 750 on sequencer 770. F1G. 7
illustrates that scheduler 750 may consult the work queue
system 702 to schedule work on the first sequencer 770. FIG.

10

15

20

25

30

35

40

45

50

55

60

65

10

7 thus illustrates an embodiment wherein all shred descriptors
are sent to a common queue system 702 from which all
scheduler routines 450a-4507, 550 can request and schedule
work. Because mstances of the scheduling routine 450a-450
are distributed among multiple sequestered sequencers, the
scheduling routine 450 may be referred to herein as a “dis-
tributed” scheduler.

For at least one embodiment, the OS-visible sequencer 770
(a first type) 15 associated with a first work queue of the queue
system 702 (see, e.g., 604 of FIG. 6) while the sequestered
sequencers (a second type) are associated with a second work
queue of the queue system 702 (see, e.g., 606 of FIG. 6). As 1s
explained above 1n connection with FIG. 6, for at least one
embodiment the first sequencer 770 may pull work from any
queue 1n the work queue system 702.

In this manner, both the OS-visible sequencer 770 and the
one or more sequestered sequencers 760 have been initialized
704, 706 to be capable of executing shreds based on user-
generated instructions rather than relying on an OS to manage
such scheduling. As 1llustrated, at least one mechanism for
doing so 1s to invoke a scheduler routine 450 on the 1nitialized
(see block 704) sequestered sequencers 760 as well invoking
a more common OS-visible scheduler routine 750 on the
sequencer 770 that 1s to generate the shred descriptor for the
main-shred routine (see block 708). From block 708, process-
ing proceeds to block 710.

At block 710, the sequencer 770 executes instructions as
scheduled on the sequencer 770 by its scheduler 750. The
nature of block 710 may be 1terative, 1n that multiple shred or
thread portions may be executed sequentially on the
sequencer 770. The potentially 1terative nature of block 710
processing 1s denoted 1 FIG. 7 with a broken line.

The sequencer 770 may execute shred 1nstructions as 1indi-
cated by the shred descriptors 1n the queue of the work queue
system 702 that 1s associated with 1ts sequencer type. Such
instructions may include those that cause additional shred
descriptors to be generated and placed into the work queue
system 702.

For at least one embodiment, shreds that are executed by
sequencer 770 may include those that require functionality
provided by the sequencer type of 770, which cannot be
performed by the sequestered sequencers 760. For the
example 1llustrated 1n FIG. 7, for instance, the queue associ-
ated with sequencer 770 may include shred instructions that
require ring 0 operations. That 1s, operating system calls
executed by a shred may require special handling because the
OS can only service system calls 1ssued from an OS-visible
sequencer. System calls for shreds running on the OS-seques-
tered sequencers 760 may be executed by an OS-visible
sequencer 770 via proxy mechanism.

The proxy mechanism that allows an OS-visible sequencer
to 1mpersonate a shred in order to get the attention of the
operating system to make forward progress for a privileged
instruction. The proxy mechanism may be implemented 1n
any number of manners. For example, such mechanism may
be mvoked implicitly when a sequestered sequencer 760
attempts to perform a privileged instruction, such as a system
call, on an OS-sequestered sequencer. The attempted system
call may cause an exception to be generated. The handler for
the exception may save the shred state, generate a shred
descriptor for the system call, and place the shred descriptor
in the queue associated with the OS-visible sequencer 702.
When such descriptor 1s scheduled for execution 710 on the
OS-visible sequencer 770, the sequencer 770 may save 1ts
own state before obtaining the shred’s state and executing the
system call. For such proxy execution, the execution on the
OS-visible sequencer 770 resumes at istruction that caused

US 8,607,235 B2

11

the fault on the OS-sequestered sequencer 760. The shred’s
state 1s then saved, and control 1s returned to the faulting
OS-sequestered sequencer 760 so that 1t may continue execu-
tion of 1ts shred.

For at least one other embodiment, the proxy execution for
privileged instructions may be explicitly controlled by the
user. For such embodiment, the user may explicitly indicate
that a shred that includes a privileged instruction should be
executed on an OS-visible sequencer 770. Such indication
may be expressed as a parameter, or variant, of a shred cre-
ation primitive. The inclusion of a queue preference param-
eter, or the use of a specialized shred creation primitive, are
both collectively referred to herein as scheduling hints.

A shred creation primitive (such as, for example, “shred-
_create()”) primitive may invoke a library function. The
function may cause creation of a new shred descriptor and
may further cause placement of the descriptor into a queue of
the work queue system 702. An optional parameter of the
standard shred_create() primitive may allow the user to
specily a queue type for the descriptor. Alternatively, an
optional function call, referred to herein as shred_create_at-
fimity(), may be utilized by the user to express a queue
preference for the particular shred. For example, if the shred
consists of a large number of system calls, the user may
specily a work queue associated with a sequencer type
capable of performing ring 0 operations. One of skill in the art
will recognize that similar parameter and/or alternative

parameter approaches may also be utilized with a yield primi-
tive.

The system 1llustrated 1in FIG. 7 may include additional
safeguards related to the handling of system calls. For
example, a mutex may be utilized to provide serialization
around OS calls. The mutex may be utilized to minimize
deadlock that could otherwise occur 1f a thread and one or
more of its associated shreds attempt to acquire the same lock
provided by the operating system for thread synchronization.

For any shred, or shred portion, executed at block 710, the
sequencer 770 may continue execution of the shred until an
exit or yield primitive 1s executed. If an “exit” primitive 1s
encountered 1n the current shred, execution of the current
shred 1s complete and the scheduler 750 may prod an appro-
priate queue of the queue system 702 to schedule another
sequence of mstructions for execution on the sequencer 770.
For at least one embodiment, the exit instructions thus marks
the shred as being complete and control returns back to the
scheduler 750.

If a “vield” primitive 1s encountered 1n the current shred, a
shred descriptor for the calling process may be placed back
into the queue system and control returned to the scheduler
750. Accordingly, upon execution of a “yield” primitive, a
shred descriptor for the remaining shred istructions for the
current shred may be placed into the work queue system 702.

For either the exit or yield case, after execution of a current
shred has completed at block 710, processing may end at
block 712. Alternatively, a new thread or shred may be sched-
uled for execution. Accordingly, the broken line looping from
block 710 back to block 710 1indicates that additional threads
or shreds may be executed by the sequencer 770. After execu-
tion of all threads and/or shreds (or shred portions) as sched-
uled by the distributed scheduler 750 1s complete, processing,
may end at block 712.

Regarding scheduling of additional shreds after execution
ol block 710, a new shred may be scheduled for execution, by
the distributed scheduler 750, on the current sequencer 770
after the yield or end instruction has been executed. For at
least one embodiment, such action occurs as a result of the

10

15

20

25

30

35

40

45

50

55

60

65

12

scheduler 750 obtaining work from a work queue associated
with a sequencer type other than 1ts own.

Alternatively, additional OS-visible instructions may be
executed aifter block 710. Such work may be scheduled from
a work queue associated with the sequencer’s 770 own
sequencer type. As 1s described above, for at least one
embodiment the sequencer’s 770 scheduler 750 only sched-
ules shreds orniginally designated to execute on OS-seques-
tered sequencers 1f its own queue 1s empty.

FIG. 8 1s a timing diagram 1llustrating at least one embodi-
ment of control flow for OS-independent scheduling of
shreds. For purposes of illustration, the timing diagram of
FIG. 8 illustrates control flow for a specific example of the
method embodiment 700 illustrated 1n FIG. 7. Accordingly,
FIG. 8 1s discussed below with reference to FIG. 7. As 1s
illustrated 1n FIG. 7, the method 800 illustrated 1n FIG. 8 may
be performed by a first OS-visible sequencer (870) and a
second, sequestered, sequencer (860).

FIG. 8 1llustrates further detail for at least one embodiment
of mitialization 704 (see FI1G. 7) on a first sequencer 870 of a
first type. For at least one embodiment, the sequencer 870 1s
distinguished from the second sequencer 860 1n terms of a
functional metric. That 1s, the first sequencer 870 1s OS-
visible, while the second sequencer 860 1s sequestered.

FIG. 8 illustrates that the mitialization 704 may include
execution of at least two user-generated instructions. The first
instruction, referred to herein as a shred monitor (“SEMONI-
TOR”) mstruction, 1s used to set up a channel for communi-
cation between an OS-visible sequencer and an OS-seques-
tered sequencer. A second initialization instruction i1s a
control transfer instruction, referred to herein as a shred trans-
fer (“SXFR”) mnstruction.

One of skill in the art will recognize that the methods 700,
800 and systems described herein need not be limited to any
particular nomenclature or instruction set architecture for
shred control instructions. One of skill 1n the art will also
recognize that the SEMONITOR- and SXFR-type nstruc-
tions may be generated, as aresult of a compiler, assembler, or
library function, for a primitive, such as shred_create(),
shred_create_atfinity(), shred_yield(), and shred_exit() dis-
cussed above. In this sense, the ultimate instructions are none-
theless referred to herein “user-generated”, although they
may have been generated responsive to a higher-level user
construct. The foregoing partial list of shred primitives should
not be taken to be limiting.

One of skill in the art should also recognize that the
appended claims encompass embodiments wherein the ulti-
mate shred control instructions are not necessarily hardware-
supported instructions. Instead, for at least one embodiment,
the “instructions” generated 1n response to the primitives may
be, instead of architectural instructions, hardware signals.
The signals, such as interrupts or other sequencer control
signals, may be generated by a software or firmware layer 1n
response to user-generated primitives 1n order to implement
SEMONITOR- and SXFR-type functionality.

Instead, the methods 700, 800 generically assume that the
sequencers 870, 860 support architectural, user-level instruc-
tions for generating and controlling shred and that traditional
multithreading API’s may be fully implemented using the
canonical shred 1nstruction set. For further discussion of one
sample set of canonical shred mstructions, one may refer to
copending patent application U.S. patent application Ser. No.
11/173,326, entitled “A Mechanism For Instruction Set-
Based Thread Execution on a Plurality of Instruction
Sequencers.”

For at least one embodiment, it 1s assumed that the
sequencers 870, 860 support at least a canonical set of shred

US 8,607,235 B2

13

instructions, which includes instructions along the lines of
SEMONITOR and SXFR. The capability of a user to utilize
this type of nstruction to control the operation of multiple
sequencers and, 1n particular, to effect inter-sequencer trans-
fer of control, 1s referred to herein as “sequencer arithmetic.”
The shred instructions that provide for sequencer arithmetic
may be utilized as building blocks to construct higher-level
shredding primitives, such as fork, jo1n, yield, exit, lock, wait,
and unlock, to name a few. These primitives may be utilized
to allow user-level management of concurrent shared-
memory shreds that execute without OS-level scheduling. In
this manner, the canonical shred instructions may be utilized
to build an abstraction layer between the architectural shred
instructions and application soitware. The canonical shred
instructions may thus be utilized to build an abstraction layer
that supports legacy application program interfaces.

Generally, the SXFR-type instructions may, when
executed by a first sequencer, send a signal from the first
sequencer to a second sequencer. The SXFR-type instruction
therefore provides a mechanism to perform inter-shred sig-
naling for service. The action of an SXFR-type mstruction 1s
synchronous, in the sense that the user can control, by judi-
ciously placing the SXFR-type instruction into code, the tim-
ing of the execution of the SXFR instruction 1n relation to
execution of other instructions in the shred instruction stream.

In contrast, the SEMONITOR-type instruction provides
for asynchronous sequencer arithmetic. The SEMONITOR -
type instructions may be used by the programmer to configure
a second sequencer to monitor for a signal from the first
sequencer.

FIG. 8 1llustrates that the first initialization instruction, the
SEMONITOR 1nstruction, maps on the specified target
sequencer a handler routine to a specific event type. That 1s,
the embodiment of the SEMONITOR 1nstruction illustrated
in FIG. 8 maps the beginning instruction pointer address for a
particular routine (here, the beginning of the distributed
scheduler routine, “Scheduler™,) to an event type, “imnit” for
the specified sequencer 1d, 1. The result, on the target
sequencer, of execution of the SEMONITOR 1nstruction on
the first sequencer 1s that the target sequencer monitors the
indicated event imdicator and begins a flow of control on the
target sequencer at the designated address.

The event type may be implemented for at least one
embodiment as an indicator, such as a signal line that
becomes activated when the specified event 1s indicated by
the first sequencer. As a result of execution of the SEMONI-
TOR 1nstruction on the first sequencer SID0 870, the target
sequencer, SID1 860, as identified by the “17 as the sequencer
identifier parameter of the SEMONITOR instruction, polls or
otherwise monitors the “init” event indicator. When the 1nit
indicator 1s activated, SID1 860 jumps to the specified address
(that 1s, to the beginning of the scheduler routine) and begins
execution of the scheduler code. The Scheduler routine 1s
merely used as an example 1n FI1G. 8; one of skill in the art wall
recognize that any appropriate event-handler code may be
utilized. Execution of the SEMONITOR 1nstruction may thus
set up an asynchronous control transfer to occur on the speci-
fied sequencer.

The SEMONITOR initialization illustrated 1in FIG. 8 1s
specific to the example illustrated 1n FIG. 8, and should not be
taken to be limiting. A set of several mitialization mnstruc-
tions, similar to the SEMONITOR instruction illustrated in
FIG. 8, may be performed for alternative embodiments 1n
order to map a series of event types to specific handler rou-
tines. After execution of the SEMONITOR 1nstruction illus-
trated 1n FIG. 8, event type “mit” 1s associated with the
distributed scheduler.

10

15

20

25

30

35

40

45

50

55

60

65

14

A second 1mitialization instruction, the SXFR instruction,
1s then executed by the first sequencer 870. Execution of the
SXFR instruction sends an event to initialize a separate thread
ol execution on the OS-sequestered sequencer SID1. At 802,
when the OS-sequestered sequencer SID1 detects the signal
containing the “Imit” scenario, the OS-sequestered sequencer
SID1 starts a thread S, and commences execution of an
instruction stream corresponding to the distributed scheduler
(see, e.g., 450 of FIG. 7).

FIG. 8 illustrates an embodiment of the SXFR 1nstruction
that includes the following parameters: a sequencer identifier,
an event type, and an optional synchronization flag. The
sequencer 1dentifier (“SID”) specifies the sequencer to which
control 1s to be transferred as a result of execution of the
SXFR 1nstruction. For the example 1llustrated i FIG. 8, the
sequencer identifier for sequencer 870 1s “SID0” and the
sequencer 1dentifier for sequencer 860 15 “SID1.”

The event type parameter for the SXFR instruction 1llus-
trated in FIG. 8 indicates an “init” event type. As a result of
prior execution of the SEMONITOR 1nstruction illustrated in
Fig., the “mit” event type has been associated with the dis-
tributed scheduler (450, FIG. 7) at the time that the SXFR
instruction 1s executed. Accordingly, the event type parameter
clifectively indicates to the transferee sequencer (that is, to
SID1 860), that 1s should begin execution at the IP address for
the distributed scheduler when the sequencer 860 begins
execution.

The final parameter of the sample SXFR 1nstruction 1llus-
trated in FIG. 8 1s an optional wait/no wait flag. By specifying
“no wait”, the instruction essentially begins a concurrent
multithreading situation—the first sequencer 870 need not
wait for a synchronization indicator from the transieree
sequencer 860, but may continue with execution of 1ts own
instruction stream as soon as 1t has completed execution of the
SXFR 1struction.

The SXFR 1nstruction is thus a shred creation and control
transfer instruction. FIG. 8 1llustrates that, as a result of the
first sequencer’s execution of the SXFR 1nstruction, a shred S
begins executing the distributed handler routine on the second
sequencer 860. After execution of the SXFR 1instruction,
therefore, thread T and shred S may execute concurrently.

Execution of thread T on SID0 870 may continue execution
after 1t has executed the SXFR instruction at 704, due to the
“no wait” flag. Accordingly, thread T goes on to create 706 a
shred descriptor for a “main-shred” program and to place
such descriptor 1n the work queue system 702. As 1s discussed
abovein connection with FIG. 7, a main-shred descriptor may
be placed into a work queue system 702 (FI1G. 2), where the
queue 1s associated with the sequestered sequencer SID1 860.

Thread T then invokes 708 1ts OS-visible scheduler 750,
and goes on to execute mstructions 710 as directed by 1ts
scheduler 750. As 1s discussed above in connection with FIG.
7, the thread T may optionally look for shred descriptors 709,
and may therefore execute shred instructions at 710, at least
for those embodiments that a) permit the OS-visible sched-
uler to pull work trom the OS-sequestered sequencer queue
and/or b) that support proxy execution of shred instructions
on the OS-visible sequencer 870. Atfter executing one or more
iterations of instruction execution 710, processing for the
thread T may end at 712.

Regarding the sequestered sequencer 860, FIG. 8 1llus-
trates at least one embodiment of a sequence of operations to
be performed for a shred, S. As 1s discussed above, a sched-
uling loop (1.e., execution of the distributed scheduler 450)
may be initiated on the sequencer 860 as a result of 1nitial-
1zation processing 704 performed by the OS-visible thread, T,
executing on the OS-visible sequencer SID 870.

US 8,607,235 B2

15

At 804, the scheduler routine 450 running on SID1 860
queries the work queue system 702 to determine if there are
any shred descriptors available for execution by the sequencer
860. For the sample sequence illustrated in FIG. 8, the
sequencer SID1 860 may encounter the main-shred descrip-
tor at block 806, 11 block 706 (discussed above) has already
been performed by SID0 870.

If a descriptor 1s found, the sequencer 860 executes 806 the
shred indicated by the descriptor. The shred 1s executed until
a) completion or b) a yield 1nstruction 1s encountered.

It should be noted that mstructions of a shred may include
additional shred creation instructions. That 1s, for at least one
embodiment, a shred may itself perform at least two types of
shred operations: shred control operations (related to creating
and terminating shreds) and synchronization operations (such
as a yield operation). (For at least one embodiment, such
operations may be invoked by a user’s use of an industry
standard-compliant primitive 1n the shred 1nstruction stream.
One such industry standard, for example, 1s POSIX (Portable
Operating System Interface)) A broken line from 806 to the
work queue system 702 1 FIG. 8 illustrates that additional
shred descriptor(s) may be created during execution 806 of a
shred, and that the additional descriptor(s) may be placed into
the work queue system 702.

For example, a yield primitive may be placed 1nto the shred
instruction stream by the user. Such yield primitive may cause
the sequencer to yield control of the shred. In so doing, the
sequencer 860 may place a descriptor for the remainder of the
shred 1nstructions back 1nto the work queue system 702 prior
to terminating execution of the shred. A yield primitive may
invoke a function that swaps the stack before performing
transfer of control, such that the current thread context 1s
saved before returning control to the sequencer’s scheduler.

FIG. 8 1llustrates that execution of the shred, S, on SID1
860 15 terminated or suspended when a termination instruc-
tion (exit, yield, etc.) 1s executed. At such time, distributed
scheduler 450 may optionally probe the work queue system
702 for another shred descriptor in order to 1dentify work that
may be performed by sequencer SID1 860. Such optional
iterative probe of the work queue system 702 1s indicated 1n
FIG. 8 by the broken arrow from 806 to 804.

For the example illustrated in FIG. 8, 1t should be noted that
it 1s possible that the scheduler routine 450 running on SID1
860 may likely find the shred descriptor for the “main-shred”
routine before the scheduler routine 450 running on SID0 870
probes the work queue system 702. In such case, assuming
that either sequencer 860, 870 1s capable of executing the
“main-shred” routine, the “main-shred” routine may be
executed by SID1 860, even though 1ts descriptor was created
by SID0 870.

It will be apparent from the foregoing discussion of FIG. 8
that, for at least one embodiment, the two 1llustrated sequenc-
ers 860, 870 are both capable of performing the “main-shred”
routine. Accordingly, it may be assumed that, for at least one
embodiment, the sequencers 860, 870 are symmetric. For at
least one other embodiment, however, the sequencers 860,
870 are not fully symmetric, but each sequencer 860, 870
nonetheless has suilicient functional capability to execute the
main-shred routine. Such embodiment may exist, for
example, where the main-shred routine requires only ring 3
capability, sequencer SID1 860 has ring 3 capability, and
SID0 870 has both ring 3 and ring 0 capability. For such
embodiment, as 1llustrated 1n FIG. 6, the work queue system
702 may include a first queue (for descriptors that can only be
performed by SID0 870, for example) and a second queue for
descriptors that can be performed by either SID0 870 or SID1

360.

10

15

20

25

30

35

40

45

50

55

60

65

16

Regarding the distributed scheduler 450 and the work
queue system 702, for at least one embodiment, the work
queue system 702 may be protected by a critical section. As 1s
discussed above, each sequestered sequencer 860 may etiec-
tively run 1ts own copy of a portion of the distributed the
scheduler routine 450 and attempt to contend access to the
head of a queue of the task queue system 702 to process the
next ready mstruction to run 1ts associated sequencer. Should
one task on a sequencer be waiting for a synchronization
variable such as mutex, a conditional variable, or a sema-
phore, the task may be de-scheduled and put at the tail of the
a task queue atter entering the corresponding critical section.

Given the example 1llustrated 1n FIG. 8, 1t can be seen that
embodiments of the present invention are capable of sched-
uling threads of execution on sequencers that are sequestered
from the OS, without using an OS. Thus, by virtue of the
techniques disclosed herein it 1s possible to build a multi-
sequencer system with more sequencers than an OS has the
ability to support and to allow user-level scheduling of
threads on sequencers of the multi-sequencer system that are
not supported by the OS.

For at least some embodiments of the mechanisms, sys-
tems, and methods described above, a distributed scheduler
450 operates as an event-driven self-scheduler where shreds
are created 1n response to queued scheduling events that are
created as a result of API-like thread control (shred_create,
shred_create atlinity, and the like) or thread synchromization
(shred_yield and the like) primitives. The scheduler and
primitives may be implemented as part of a run-time library
that creates an intermediate layer of abstraction between a
traditional industry standard API, such as a POSIX-compliant
API, and the hardware of a multi-sequencer system wherein
the sequencers support at least a canonical set of shred
instructions that implement user-level sequencer arithmetic.
The library may include a scheduler, such as an embodiment
of the distributed scheduler 450 discussed above. The run-
time library may act as an intermediate level of abstraction so
that a programmer may utilize a traditional thread API (such
as, Tor mstance, Pthreads API or Win32 Threads API) with
hardware that supports shredding. The library may provide
functions that transparently invoke the canonical shred
instructions, based on user-programmed primitives.

The scheduling mechanism and techniques discussed
herein may be implemented on any multi-sequencer system,
including a single-core SMT system (see, €.g.,310 of FIG. 3)
and a multi-core system (see, e.g., 350 of FIG. 3). Further
discussion of such systems 1s discussed below in connection
with FIG. 9.

FIG. 9 1llustrates at least one sample embodiment of a
computing system 900 capable of performing disclosed tech-
niques. The computing system 900 includes at least one pro-
cessor core 904 and a memory system 940. Memory system
940 may include larger, relatively slower memory storage
902, as well as one or more smaller, relatively fast caches,
such as an instruction cache 944 and/or a data cache 942. The
memory storage 902 may store instructions 910 and data 912
for controlling the operation of the processor 904. The
instructions 910 may include one or more copies of the dis-
tributed scheduler routine 450.

Memory system 940 1s intended as a generalized represen-
tation of memory and may include a variety of forms of
memory, such as a hard drive, CD-ROM, random access
memory (RAM), dynamic random access memory (DRAM),
static random access memory (SRAM), flash memory and
related circuitry. Memory system 940 may store instructions
910 and/or data 912 represented by data signals that may be
executed by processor 904. The instructions 910 and/or data

US 8,607,235 B2

17

912 may include code and/or data for performing any or all of
the techniques discussed herein. For example, the data 912
may include one or more queues to form a queue system 702
capable of storing shred descriptors as described above. Alter-
natively, the instructions 910 may include mstructions to
generate a queue system 702 for storing shred descriptors.

The processor 904 may include a front end 920 that sup-
plies 1nstruction information to an execution core 930.
Fetched instruction information may be buffered 1n a cache
225 to await execution by the execution core 930. The front
end 920 may supply the mstruction information to the execu-
tion core 930 in program order. For at least one embodiment,
the front end 920 includes a fetch/decode unit 322 that deter-
mines the next istruction to be executed. For at least one
embodiment of the system 900, the fetch/decode unit 322
may 1nclude a single next-instruction-pointer and fetch logic
320. However, in an embodiment where each processor 904
supports multiple thread contexts, the fetch/decode unit 322
implements distinct next-instruction-pointer and fetch logic
320 for each supported thread context. The optional nature of
additional next-instruction-pointer and fetch logic 320 1n a
multiprocessor environment i1s denoted by dotted lines in
FIG. 9.

Embodiments of the methods described herein may be
implemented 1n hardware, hardware emulation software or
other software, firmware, or a combination of such imple-
mentation approaches. Embodiments of the invention may be
implemented for a programmable system comprising at least
one processor, a data storage system (including volatile and
non-volatile memory and/or storage elements), at least one
input device, and at least one output device. For purposes of
this application, a processing system 1includes any system that
has a processor, such as, for example; a digital signal proces-
sor (DSP), a microcontroller, an application specific inte-
grated circuit (ASIC), or a microprocessor.

A program may be stored on a storage media or device
(e.g., hard disk drive, floppy disk drive, read only memory
(ROM), CD-ROM device, flash memory device, digital ver-
satile disk (DVD), or other storage device) readable by a
general or special purpose programmable processing system.
The mstructions, accessible to a processor 1n a processing
system, provide for configuring and operating the processing
system when the storage media or device 1s read by the
processing system to perform the procedures described
herein. Embodiments of the invention may also be considered
to be implemented as a machine-readable storage medium,
configured for use with a processing system, where the stor-
age medium so configured causes the processing system to
operate 1n a specific and predefined manner to perform the
functions described herein.

Sample system 900 1s representative of processing systems
based on the Pentium®, Pentium® Pro, Penttum® II, Pen-
tium® 11, Pentium® 4, and [tantum® and [tanium® 2 micro-
processors available from Intel Corporation, although other
systems (including personal computers (PCs) having other
microprocessors, engineering workstations, personal digital
assistants and other hand-held devices, set-top boxes and the
like) may also be used. For one embodiment, sample system
may execute a version of the Windows™ operating system
available from Microsoit Corporation, although other oper-
ating systems and graphical user interfaces, for example, may
also be used.

While particular embodiments of the present invention
have been shown and described, it will be obvious to those
skilled 1n the art that changes and modifications can be made
without departing from the scope of the appended claims. For
example, the work queue system 702 may include a single

10

15

20

25

30

35

40

45

50

55

60

65

18

queue that1s contended by multiple sequencer types. For such
embodiment, resource requirements are expressly included 1n
cach shred descriptor. Each sequencer’s portion of the dis-
tributed scheduler does a check to make sure that the
sequencer 1s capable of executing a shred before the shred’s
descriptor 1s removed from the work queue for execution by
the sequencer.

For another alternative embodiment, a hybrid approach
may be implemented in the work queue system 702. For such
hybrid approach, the work queue system 702 includes mul-
tiple queues. Nonetheless, one or more of the queues corre-
sponds to multiple sequencer types. For such hybrid embodi-
ment, an express resource indication 1s included 1n each shred
descriptor for any queue that 1s associated with more than one
sequencer type.

The distributed scheduler routine discussed above may
schedule execution of shred descriptors using a round-robin
scheduling approach. However, for at least one alternative
embodiment, the distributed scheduler and work queue sys-
tem discussed above may support a priority-based scheduling
scheme. Also, for at least one alternative embodiment, queue
preferences for a multi-queue queue system embodiment can
be set by the user, or by the run-time library, to direct that tasks
are executed by a preferred sequencer. For example, a shred
that 1s executed on a particular sequencer before a yield
operation may be sent back to that same particular sequencer
when remaining instructions of the shred are executed.

Regarding dispatch of shred descriptors into the work
queue system, 1t has been described above 1n connection with
FIG. 7 that assignment of shred descriptors may be expressly
controlled statically by a user’s use of a particular parameter
or particular “affinity” primitive 1n order to define, at the time
a shred 1s created, which queue 1s should be assigned to.

For at least one alternative embodiment, dynamic assign-
ment may be utilized 1nstead of, or 1n addition to, such static
assignment approaches. Dynamic assignment may be imple-
mented through a user-level synchronization object, such as a
mutex. Such mutex may allow a shred to dynamically seli-
schedule a spawnee shred 1nto a particular queue of the work
queue system. Alternatively, dynamic assignment may be
implemented such that the distributed scheduler observes the
behavior of the queues and dynamically selects which queue
should receive a descriptor. Also alternatively, dynamic
assignment may be performed through the programmer’s use
of synchronization primitives, such as “lock” and “unlock™
primitives. Such primitives may utilize OS mutex constructs.
Upon execution of a lock primitive, the current sequencer
may execute a yield operation and place the descriptor for the
current shred 1nto a queue corresponding to the mutex.

Accordingly, one of skill in the art will recognize that
changes and modifications can be made without departing
from the present ivention i1n its broader aspects. The
appended claims are to encompass within their scope all such
changes and modifications that fall within the true scope of

the present invention.

What 1s claimed 1s:

1. A method for user-level scheduling of concurrent threads
on a computing system having an operating system (OS),
comprising;

executing a user-generated thread primitive;

generating, by a first sequencer being computationally

asymmetric with a second sequencer, the first and sec-
ond sequencers being cores ol a multi-core processor
package, the first sequencer visible to the OS and the
second sequencer mvisible to the OS, responsive to the
user-generated thread primitive, a work descriptor to

US 8,607,235 B2

19

describe a thread including a beginning address for
execution of the thread and a stack descriptor;

causing the work descriptor to be stored 1n a queue system,
wherein the queue system 1ncludes a first queue associ-
ated with a first sequencer type of the first sequencer and
a second queue associated with a second sequencer type
of the second sequencer; and

scheduling execution of the thread on the second sequencer
using a distributed user-level scheduler invoked on the
first and second sequencers.

2. The method of claim 1, further comprising;

initializing the OS-1nvisible sequencer to perform user-
level concurrent multithreading.

3. The method of claim 2, wherein:

said 1nitializing further comprises triggering execution, on
the second sequencer, of the distributed scheduler.

4. The method of claim 1, wherein

the first and second sequencers are asymmetric with
respect to a functional metric.

5. The method of claim 1, wherein the first and second

sequencers are asymmetric with respect to

a power-consumption metric.

6. The method of claim 4, wherein:

said functional metric 1s the ability to perform ring-0
operations.

7. The method of claim 1, wherein:

said causing further comprises causing the work descriptor
to be stored 1n the first queue based on a user-provided
hint.

8. The method of claim 1, wherein:

the thread primitive 1s a shred-creation primitive.

9. The method of claim 1, wherein:

the thread primitive 1s a shred-synchronization primitive.

10. The method of claim 1, wherein:

the thread primitive 1s part of an industry standard-compli-
ant application programmer interface.

11. The method of claim 1, further comprising causing a
second work descriptor to be stored 1n the first queue, based
on a user-specified parameter for a second thread described
by the second work descriptor.

12. The method of claim 1, further comprising obtaining
work for the first sequencer from the second queue via the
distributed user-level sequencer invoked on the (first
sequencer.

13. The method of claim 1, further comprising generating
a work descriptor for a system call by a handler executed
responsive to an exception occurring on the second
sequencer, and storing the work descriptor in the first queue to
be scheduled for execution by the first sequencer.

14. An apparatus having an operating system (OS) com-
prising:

a first thread execution unit of a multi-core processor pack-
age that includes a first portion of a distributed OS-
independent scheduler routine;

a second thread execution unit of the multi-core processor
package that includes a second portion of the distributed
OS-1independent scheduler routine;

wherein said first and second thread execution units pro-
vide concurrent multithreaded execution, and wherein
one of the first and second thread execution units 1s
computationally asymmetric with respect to the other of
the first and second thread execution units and at least
one of the thread execution units 1s visible to the OS and
at least one other of the thread execution units 1s not
visible to the OS;

wherein said first and second portions are further to query
a work queue to contend for a work descriptor that

5

10

15

20

25

30

35

40

45

50

55

60

65

20

describes a thread, wherein said queue system includes a
first queue to hold work descriptors for the first thread
execution unit and also includes a second queue to hold
descriptors for the second thread execution unit; and

wherein said second portion of the distributed OS-1ndepen-
dent scheduler routine 1s to schedule, invisible to the OS,
the thread for execution on a selected one of the thread
execution units, based on said contention.

15. The apparatus of claim 14, wherein:

said execution units are functionally symmetric.

16. A multi-sequencer multithreading system of a comput-
ing system having an operating system (OS) comprising:

a memory system;

a first sequencer of a first sequencer type, the first
sequencer type being visible to the OS, wherein the first
sequencer 1s computationally asymmetric with respect
to a second sequencer, the first and second sequencers
being cores of a multi-core processor package; and

the second sequencer of a second sequencer type, the sec-
ond sequencer type being invisible to the OS; and

a software library, stored in the memory system, the soft-
ware library including one or more instructions, that
when executed, generate a work queue, wherein said
work queue 1s to hold work descriptors for the second
sequencer;

the software library further including a distributed user-
level scheduler to perform user-directed scheduling of
work from the work queue for execution on the sequenc-
ers, wherein said distributed user-level scheduler 1s to
execute a scheduling loop for the first and second
sequencers.

17. The system of claim 16, wherein:

saird work queue 1s to hold one or more records that
describe a pending soitware thread.

18. The system of claim 17, wherein:

said one or more records each include a starting address of
an associated pending soitware thread.

19. The system of claim 17, wherein:

said one or more records each include a stack pointer for an
associated pending software thread.

20. The system of claim 17, wherein:

said distributed scheduler i1s further to perform user-di-
rected scheduling of work from the work queue for
execution on the sequencers such that said sequencers
concurrently execute their associated work.

21. The system of claim 17, wherein:

said library turther includes one or more functions, each to
generate shred mstructions responsive to an associated
user-generated primitive, wheremn said primitives are
compliant with a commonly-known application pro-
grammer interface standard.

22. In a multi-threaded processor of a computing system
having an operating system (OS), a method of scheduling
execution of software threads among a plurality of sequenc-
ers, comprising;:

responsive to a user-generated thread instruction, generat-
ing a thread descriptor that describes a thread, the gen-
erating of the thread descriptor to be performed by a
computationally asymmetric sequencer of the plurality
of sequencers, the computationally asymmetric
sequencer having asymmetric computational function-
ality with regard to at least another of the plurality of
sequencers;

placing said thread descriptor 1n a queue by the computa-
tionally asymmetric sequencer;

executing a plurality of scheduler routines of a distributed
user-level scheduler, each of the scheduler routines

US 8,607,235 B2

21

being associated with a distinct sequencer, wherein at
least one of said plurality of sequencers 1s invisible to the
OS;

wherein each of said scheduler routines contends for the
thread descriptor 1n the queue; and

scheduling the thread for execution on the sequencer
whose scheduler routine obtained access to the thread

descriptor.

23. The method of claim 22, further comprising:

the user-generated thread instruction i1s a primitive, the
primitive being included 1n an application programmer
interface.

24. The method of claim 23, wherein:

the application programmer intertace 1s compliant with

industry standards.

25. An article comprising a machine-accessible medium
having a plurality of machine accessible instructions,
wherein, when the instructions are executed by a processor on
a computing system having an operating system (OS), the
istructions provide for:

executing a user-generated thread primitive;

generating, responsive to the user-generated thread primi-

tive, a work descriptor to describe a thread, the generat-
ing of the work descriptor to be performed by a
sequencer of a plurality of sequencers of a multi-core
processor package;

causing the work descriptor to be stored 1n a queue system,

wherein the queue system 1ncludes a first queue associ-
ated with a first sequencer type of the first sequencer and
a second queue associated with a second sequencer type
of a second sequencer, and wherein the first queue to
hold the work descriptor and the second queue to hold
descriptors for the second sequencer, and wherein one of
the first and second sequencers 1s computationally
asymmetric with respect to the other of the first and
second sequencers; and

22

scheduling execution of the thread on a sequencer invisible
to the OS using a user-level distributed scheduler that
executes on the first and second sequencers.

26. The article of claim 25, further comprising machine

> accessible instructions that, when executed by a processor,

10

15

20

25

30

provide for:

imitializing the OS-mnvisible sequencer to perform user-
level concurrent multithreading.

27. The article of claim 26, wherein:

said mstructions that provide for mitializing further com-
prises instructions that provide for, when executed by a
processor, triggering execution, on the OS-invisible
sequencer, of the user-level distributed scheduler.

28. The article of claim 25, wherein

the first and second sequencers are asymmetric with regard
to a functional metric.

29. The article of claim 25, wherein

the first and second sequencers are asymmetric with regard
to a power-consumption metric.

30. The article of claim 28, wherein:

said functional metric 1s the ability to perform ring-0
operations.

31. The article of claim 25, wherein:

said 1nstructions that provide for causing further comprise
instructions that, when executed by a processor, cause
the work descriptor to be stored 1n the first queue based
on a user-provided hint.

32. The article of claim 25, wherein:

the thread primitive 1s a shred-creation primitive.

33. The article of claim 25, wherein:

the thread primitive 1s a shred-synchromization primitive.

34. The article of claim 25, wherein:

the thread primitive 1s part of an industry standard-compli-
ant application programmer interface.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

