US008601307B2

12 United States Patent

Peters et al.

US 8,601,307 B2
Dec. 3, 2013

(10) Patent No.:
45) Date of Patent:

(54) COMPUTER ARCHITECTURES USING (56) References Cited
SHARED STORAGE
U.S. PATENT DOCUMENTS
(75) Inventors: Marc A. Peters, Garden Grove, CA 4175987 A 111970 Fuh
(US); Dennis L. Kuehn, Long Beach, 5657468 A 81997 Stallmo et al.
CA (US); David D. Bettger, Redondo 5706510 A 1/1998 Burgoon
Beach, CA (US); Kevin A. Stone, 5,987,506 A * 11/1999 Carteretal. 709/213
Hermosa BeachrJ CA (US) 6,360,331 B2* 3/2002 Vertetal. 714/4 4
6,601,187 Bl 7/2003 Sicola et al.
: : - 6,687,832 Bl 2/2004 Harada et al.
(73) Assignee: The Boeing Company, Chicago, IL 6:7 42209 4 B 517004 Ig?lrr? ©
(US) 6,772,031 Bl 82004 Strand
7,020,697 Bl 3/2006 Goodman et al.
(*) Notice: Subject to any disclaimer, the term of this 7,139,809 B2 11/2006 Husain et al.
patent 1s extended or adjusted under 35 7,149,660 B2 12/2006 Kuehn et al.
US.C. 154(b) by 0 days 7308532 B 122007 Wood sl
7437426 B2* 10/2008 Joshi et al. ..cccc.cc.c....... 709/213
(21) Appl. No.: 13/432,868 7,457,880 B1* 11/2008 Kim ..cooooocooomvvriiiiirnnnnn. 709/229
7,496,646 B2 2/2009 Casper et al.
(22) Filed: Mar. 28, 2012 7,631,179 B2 12/2009 Kuehn et al.
7,734,878 Bl 6/2010 Sharma et al.
(65) Prior Publication Data 7,734,951 B 6/20;0 Balasubramanian et al.
7,739,541 Bl 6/2010 Rao et al.
US 2012/0185725 Al Jul. 19, 2012 7,739,602 B2 6/2010 Fengetal.
7,739,687 B2* 6/2010 Newportcooevveneeen 718/104
o (Continued)
Related U.5. Application Data Primary Examiner — Christopher McCarthy
(63) Continuation of application No. 12/750,608, filed on (74) Attorney, Agent, or Firm — Toler Law Group, PC
Mar. 30, 2010, now Pat. No. 8,171,337.
(37) ABSTRACT
(60) Provisional application No. 61/164,717, filed on Mar. :
. .. A method 1ncludes providing a persistent common view of a
30, 2009, provisional application No. 61/164,752, . .
. . virtual shared storage system. The virtual shared storage sys-
filed on Mar. 30, 2009, provisional application No. .
61/171.170. filed on Anr. 21. 2000 tem includes a first shared storage system and a second shared
o pt- 22, ' storage system, and the persistent common view includes
information associated with data and instructions stored at the
(51) Int.CL
GOGF 11/00 (2006.01) first shared storage system and the second shared storage
(52) U.S.CI ' system. The method includes automatically updating the per-
USPC 714/4.1;, 714/6.2; 711/148; 711/152, ~ S1stent common view (o include third information associated
711/164- 709/214 with other data and other instructions stored at a third shared
(53) Field of Classification S h ’ storage system 1n response to adding the third shared storage
ield of Classification Searc

system to the virtual shared storage system.
None Y 8% 5

See application file for complete search history. 21 Claims, 29 Drawing Sheets

122 —“ 142 ﬂ‘ 162 ﬂ‘
Sensitivity Sensitivity Sensitivity
Level A Level B Level n
Presentation
. 132
Tier 124 —c 2 144 — 164 W
Servar 1 J Ewarz ‘ \ Server n
104 7™ t — _ I — 1 T :
Applleatton
Tier
110 “-\\ /
134 RN 154 ™ 174 “\\
: Registry Registry Registry
126 — 146 — C 18 TN
‘ Senvices . Servicas L Services
128 = 148 =, 168 -
Infrastructure Infrastructure '}lnfrastructure
i_ Functions Functions Funections
180 ™ Common Infrastructure Funr.:nnn_i
we o~ (
Data 180 = 150 = 170 N
Tier '
e ke P e e]

US 8,601,307 B2

Page 2
(56) References Cited 2006/0174319 A1 8/2006 Kraemer et al.
2006/0230118 Al 10/2006 Jwo
U.S. PATENT DOCUMENTS 2007/0028300 Al 2/2007 Bishop et al.
2007/0073855 Al* 3/2007 Joshietal.cccoon..... 709/223
7788.522 Bl 872010 Abdelaziz et al. 2007/0094416 Al 4/2007 Goldstein et al.
7797357 Bl 9/2010 Nagaraj et al. 2007/0192706 Al 8/2007 Bruce et al.
7.840.995 B2 11/2010 Curran et al. 2007/0240102 Al 10/2007 Bello et al.
7.966,370 Bl 6/2011 Pegg et al. 2007/0244937 Al 10/2007 Flynn, Jr. et al.
8095670 B2 1/2012 Brown et al. 2007/0283112 Al 12/2007 Fujibayashi
8.171.101 B2 5/2012 Gladwin et al. 2008/0120380 Al 5/2008 Boyd et al.
8,171,337 B2 5/2012 Peters et al. 2009/0013085 Al 1/2009 Liberman Ben-Ami et al.
2001/0008019 Al 7/2001 Vert et al. 2009/0070456 Al 3/2009 Brown et al.
2002/0038451 Al 3/2002 Tanner et al. 2009/0119767 Al 5/2009 Curran et al.
2002/0103783 Al /2002 Muhlestein 2009/0143128 Al 6/2009 Cautley et al.
2002/0104039 Al 8/2002 DeRolf et al. 2009/0182750 Al 7/2009 Keyes et al.
2003/0065760 Al 4/2003 Casperetal. 700/2273 2009/0193207 Ajh 7/2009 Ogata et al.
2003/0120751 Al* 6/2003 Husainetal. 709/219 2009/0271498 Al 10/2009 Cable
2003/0154406 Al 8/2003 Honarvar et al. 2010/0011007 Al 1/2010 Bettger et al.
2004/0010544 A1* 1/2004 Slater etal. 700/203 20100250867 AL 972010 Bettger et al.
| 2010/0257374 Al 10/2010 Kuehn et al.
2004/0025008 Al 2/2004 Kuehn et al. 017/0185657 Al 701> D
| . 1 1 1 eters et al.
2006/0064554 Al 3/2006 Fridella et al. 0150183653 A1 701> Peters ot ol
2006/0085750 Al 4/2006 Easton et al. ' ! 1 '
2006/0143606 Al 6/2006 Smith et al. * cited by examiner

U.S. Patent Dec. 3, 2013 Sheet 1 of 29 US 8,601,307 B2

122 162

142

Sensitivity
Level A

A e e e s = e B A

Sensitivity
Level B

Sensitivity
Level n

102

Fresentation
Tler 194 —;\32 j

Server 1 Server 2

o
. H Bt ¥ " ied o
o u - o . s T
RS g MR AT SR
- LY i ST . ire Sk AR
PO i vy :
Wl P r : L,
B . m: RS
. b e nr
= i . %
Al . Ty - i
e - = - 24
ars - L - .
S h : oy
=% oy ' Ay
—" - s .y
:E:.-,- o - L
P 3"
= I HE . r::"l‘
uh - BN : A
R L L e R L P L O L e L I R L T L L e e e e L N P S L e T R
T T .. e T T T I T ;
H £
i v
| ; &
[

Application
Tier

110

134 N\

174 —~

Registry

166 RN

Services Services

Registry
126 ™\

. .-l_'\..'\.ll.-'\.]'\.l. (LT

Services

I

128 ™\ | 148 168 —~

Infrastructure | | | | Infrastructure | | | Infrastructure
Functions g Functions j Functions

N - S :

180 \ Common Infrastructure Function

e e, ———— . — — — — ——— —— —— —_—_—— —_—_—— —_——_—— —_—- - —_—— —_——- —— e — — — — . A el L UL A MR B L R Bl A - A mE LEw s

.......
e s v et I e e e e e e e e e L a e e g e e R e m A am o A L A L i A A AR AL B L R Ak M bk B R LR LN L R LN SRS RN LR R RAL AN S S ——— S ——

FIG. 1

U.S. Patent Dec. 3, 2013 Sheet 2 of 29 US 8,601,307 B2

202

Storage
Server

——

Shared Shared |, , , | ©Shared
Storage Storage | Storage
1 2 | n
204 _j_’/ZOG j&_’) 2038 _>“_’/
FIG. 2

302
Write system accesses and |

requests to log
It hebibcsihed- M

Storage
Server

304

FIG. 3

U.S. Patent Dec. 3, 2013 Sheet 3 of 29 US 8.601,307 B2

402 —~Register data, service or
i ig_fristructu re function

404
Shared

| |
Registry DB 1//Reqgistry DB2 / @ @ ® /Registry DB n
4006 410

408

FIG. 4

o002

Publish directory of
| services or
infrastructure functions

I
|

iDirectory structurez

206

FIG. 5

U.S. Patent Dec. 3, 2013 Sheet 4 of 29 US 8,601,307 B2

602 —\| Independently write data, service and/or

infrastructure functions to shared storage
L

Sharead

Qtoragi/

606
Independently access data, service and/or

infrastructure functions from shared storage

FIG. 6

e
Producer infrastructure |
v function or service adds da_ta

702

FProducer infrastructure
function or service removed

_ 708

Consumer infrastructure
function or service is added

Shared
Storage

710

| Consumer infrastructure
function or service reads data

FIG. 7

U.S. Patent

Dec. 3, 2013 Sheet 5 of 29 US 8.601,307 B2
802 >
Shared
Storage
1 "//
804 — v V _— 810

Retrieve service/

Retrieve service/

infrastructure function
(server 1, thread 1)

Run service/infrastructure

function

808 ™ &

Exit service/infrastructure

infrastructure function
(server 1, thread 2)

l L~ 812

Run service/infrastructure
function

Exit service/infrastructure
function

& 7 814

function
816~ ¥
] Retrieve service/
infrastructure function
__(server2)
818 —\ ‘é

) N X }
Run service/infrastructure

funcﬁon

820 — v

Exit service/infrastructure
function

FIG. 8

U.S. Patent Dec. 3, 2013 Sheet 6 of 29 US 8.601,307 B2

902 Shared
Storage
credentials
N 904

?

v

Recelve consumer s 906
request to access

registry o
— 910
— — —<_Authorized? Yo - Reject
request
908

Yes

Grant acces to registry |— 912
from shared storage

FIG. 9
7 1004
Recelve user request to access data,
_ 902 service and/or infrastructure function
904 ! 1010
= 1008 NG /
/ Cr:gzl;?;; / p-<__Authorized? > Reject request
Shared Ves
Storage _
Redqistrv DB Z - Grant access to data, service and/or
/ gL U 3L----—@w'im“ras’cruc‘cure function database in shared
1012 | storage
_ o

1014

FIG. 10

U.S. Patent Dec. 3, 2013 Sheet 7 of 29 US 8.601,307 B2

1102 —\] Data records stored in order:
(r(O), r(1): XN r(n_1))

——— e —
|

1104 =™ Order of records and storage

locations saved in directory

Shared
Storage _
e Daté/ 'hf?astruc’[a l”é
function directory

1106

Request data records L~ 1110

IS

Access directory < 1112

I

Data records received in order: | — 1114

(r(0), r(1), ..., r(n-1))

FIG. 11

US 8,601,307 B2

Sheet 8 of 29

Dec. 3, 2013

U.S. Patent

¢l "Old

Amnmuma_m:cwmum_ sbeiols wol) Bjep peay

i

1sanbal 0} palejal (AsY pue) suonReoo: obelo]s pusg

[1gonpoid 10:))jnsal -~ b'e) 201u9s]0) pa)ejol elep 10] 15onboi pues

(apoous) uonedo abelols 0} Jnsal LI

(oY pue) suonedo] abeio)s Jnsal pajedo||e puss

EUEERED

abei0)s jnsal Emuamqi

-

Jinsal sjeigusy) |

(NS21 81m 0]152nbal puag) _.AI

NVS

N 0121

(opoosp) suoneoo) sbeiols Wy ejep pesy

ejep 10} (Asy pue) sucyeao] abel0)s pusg

plep Joj1sanbal puas

_ BOISS SINDAX 851A13S SIN0EX
(3p0950) suone20| 90rI0]S pesy
1ssnbar uo paseq {Asy pue) suoneoo| abelojs puag
501AJ8S JusLaldwi 0} 1S8nbal puss
‘018 '8JIAI8S
{eJep aseqelep Ansibal puag) ,...i 2INo8Xo
‘dleanusyiny
sBuiies AUNDSs SURLISIEP PUB) 8]BDIURLINY
K [Sjenuapain “b'a) Blep UOEDRUSLINE PUSS
13J0UO0D AEma)en) (180npoid) TETIER),
BJEDPEION AJLIN0BS . Juai|
N\ 8021 \— 9021 ¥0Z1 _. 202l

U.S. Patent Dec. 3, 2013 Sheet 9 of 29 US 8.601,307 B2

Determine a security level associated with a user device based at Ineas"t_;artiallf on |/ 1302
credentials received from the user device

Filter a metadata registry to generate a filtered metadata registry, where the metadata |

registry includes data identifying a plurality of infrastructure functions that are hosted on a a 1304

shared storage system {e.g., insfructions to implement the services that are striped across
a plurality of physical devices of the shared storage system) (and decryption keys), and

where the filtered metadata registry identifies infrastructure functions that are accessible by
the user device pased on the security level of the user device, based on a security level

associated with the infrastructure functions, and based on a data security level associated
with data accessed by the infrastructure functions

o Skeeseylouminude

Send the filtered registry to the user device

e

Receive a request from the user device to implement a first infrastructure function, where '
the first infrastructure function is selected from the filtered metadata registry

1306

1308

Send storage location information identifying storage locations in the shared storage
system of instructions to implement the first infrastructure function, where the user device
reads the instructions from the shared storage system using the storage location
information to generate a first instance of the first infrastructure function, and where the
user device executas the first instance of the first infrastructure function to determine output
data (e.g., dummy response information selected to satisfy a connection message expected
by a second user device)

l " Receive a r!equ“est to allocate storage space for the output data

/S 1314
Allocate storage space for the output dafa in the shared storage |[

1310

Update the metadata registry to include storage location information identifying the lf 1316
allocated storage space for the output data

I

oend the storage location mformation identifying the allocated storage space for the output
data {and an encryption key) to the user device, wherein the user device writes the output /- 1318
data to the shared storage system using the storage location information {(and the
encryption key)

Terminate the first instance of the infrastructure function without storing state information 1320
associated with the infrastructure function

. I
Read {he output data from the shared storage system by a second instance of the / 1322
infrastructure function or a second infrastructure function after the first instance of the

‘ infrastructure function is ferminated

FIG. 13

U.S. Patent Dec. 3, 2013 Sheet 10 of 29 US 8,601,307 B2

Determine a security level associated with a user device based atnlegstgarti'ally on i/ 1402
credentials received from the user device

e e

Filter a metadata registry to generate a filtered metadata registry, where the metadata V 1404
registry includes data identifying a plurality of services that are hosted on a shared storage
system (e.g., instructions ta implement the services that are striped across a piurality of
physical devices of the shared storage system) (and decryption keys), and where the
fiitered metadata registry identifies services that are accessible by the user device based on
the security level of the user device, based on a service security level associated with the
services, and based on a data security level associated with data accessed by the services

/1406

Send the filtered registry to the user device

l

Receive a request from the user device to implement a first service, where the first service f 1408
s selected from the filtered metadata registry

Send storage location information identifying storage locations in the shared storage
system of Instructions to implement the first service, where the user device reads the s 1410
instructions from the shared storage system using the storage location information to

| generale a first instance of the first service, and where the user device executes the first
instance of the first service to determine output data

1412

Receive a request to allocate storage space for the output data

1414

Allocate storage space for the output data in the shared storage
Update the metadata registry to include storage location information identifyingthe [/~ 1416
allocated storage space for the oufput data

P s
M

Enéend the storage iocation information identifying the allocated storage space for the output

data {(and an encryption key) to the user device, wherein the user device writes the oufput /-

data fo the shared storage system using the storage location iniormation {and the
encryption key)

1418

Terminate the first instance of the service without storing state information associated with 1420
the service

1422

Read the output data from the shared storage system by a second instance of the service
or a second service after the first instance of the service is terminated

FIG. 14

U.S. Patent Dec. 3, 2013 Sheet 11 of 29 US 8,601,307 B2

User

1502 —~ &

/\

19504 " N"Single View through Virtualized Layer
N

1572 T\ SAN N

L 1570 ™ SAN 2

SAN 1

i 1520
Storage device(s) 1

Data, Services and/ors 1522
Infrastructure functions

~N

j=

1530

Storage device(s)

Data, Services and/or 1532 |

Infrastructure functions

&

1540 |
Storage device(s)

1542 ™\ Data. Services and/or l
Infrastructure functions

FIG. 15

U.S. Patent Dec. 3, 2013 Sheet 12 of 29 US 8,601,307 B2

1504
i Single View through Virtualized Layer

1602

Virtual SAN

Y I 4 D

. "’

- ;H
~ dBemote ?ﬁﬂj | ocal SAN 3cal SAN
1608 7___/ 1612

1610

FIG. 16

U.S. Patent Dec. 3, 2013 Sheet 13 of 29 US 8,601,307 B2

1504
1606
Remote SAN
%M.“'“*--..__HH (m,__“___ _.--"""i . e
~ | T T '
~ _____Eemote SADI,! Local SAN \Lical Sfﬂ“

h B S~——
| 11606 (\‘1612

| 1610
1602 Virtual SAN

FIG. 17

U.S. Patent Dec. 3, 2013 Sheet 14 of 29 US 8,601,307 B2

Single View through Virtualized Layer

1802

i
ST,
._.‘-:-:_-._‘.
i
wgy
b
1 8 Oll : III
i
|
I
1

Original 1806

Replication

! ¥
. Local SAN Qmote SAQ

Mirrored |
File |

FIG. 18

6L "©Oid

US 8,601,307 B2

Z NVS [BNLIA N <7 L NVS [ENHIA
2061

9]l4 i0

[Epe
fdoD L DO S e e L

- . . e Ado9
[E90] paziuotysuAhs saidod sji4 1007

Aﬂwcm _ 15

z161 U

OL61 So1d0D 9fl) [E20] UlM YIOM siash ~

__
o N\ 906G1I O) Z0G1

706l

Sheet 15 of 29

¢c061

'USMOIQ S| UONDSUUOD UBUM

Dec. 3, 2013

Jawinsuon 18onpold

U.S. Patent

0¢ "Old 0L0cC

US 8,601,307 B2

800¢ ———

19jjoNuU0D
ElIEPEIDIAl PUZ

Sheet 16 of 29

Dec. 3, 2013

U.S. Patent

900¢

NVS 1SL

71L0c
JUSIO

S m \
eyepeloiN 1si 7]

U.S. Patent Dec. 3, 2013 Sheet 17 of 29 US 8,601,307 B2

2102 2104

Single View through Virtualized Layer

2120

Original Moved
il — R

Move for optimization

Local SAN Remote SAN

2112 2122

FIG. 21

U.S. Patent Dec. 3, 2013 Sheet 18 of 29 US 8,601,307 B2

/— 1502 PN o
O .

/\ «
1504 _\ !

File |

2212

Virtual SAN EIG. 29

US 8,601,307 B2

£Z 'Ol)
NVS Uy |~ CEEC
<>
0EEZ
&N
o ~
S 19j|01uo) w O~
= ElepPeEISN Ui ~ //, ~
. ~ N 20ec
g ~ el L
= AN
N N NYS 1St
e N ~
NVYS pigl— €CeC CLET R T
. NV'S pUZ ~
u _ A yOEZ c0eC
g
S L —
2 ” ———legl=—>
e g— — :”_l.. — — -
= Jusio

12]]0J1U0N
Belepelsn pie

U.S. Patent

elepeloy 1st Z]

13]|OJUOCT) Olee

elepelsin puz

U.S. Patent Dec. 3, 2013 Sheet 20 of 29 US 8,601,307 B2

User

1502 N\ O

1504 ™\
| Singfe View through Virtualized Layer |

2470 N\ SAN 2
SAN 1

2402 7\| Consumer requests
access to data

2404 ﬁ——_‘ |

- |

_______ EJ Determine security . 2406
level of data l

/" 2410

I Reject Consumer
B Request

Rules /
policies

Authorized?

2412
' Consumer accesses | ‘

data

2414

Shared
Storage

FIG. 24

U.S. Patent Dec. 3, 2013 Sheet 21 of 29 US 8,601,307 B2

User

1502 ‘\Q
/\

1504
Single View through Virtualized La?é?)
2574 "\
2572 SAN n!
50N sANZ |

SAN 1|
(e.g., service|

2502 or infrastructure
;————— function)

| Data, services and/or |

infrastructure functions I

|

l é -
Shared Shared | ® ® ° | Shared |
Storage Storage Storage | ;
ﬂp@l/ Stripe 2 —Stripe n
2504 2506 ™~ 2508 |

FIG. 25

US 8,601,307 B2

Sheet 22 of 29

Dec. 3, 2013

U.S. Patent

9¢ Old
s - 0292 o - 2197
~aa [4d aq ad
AsiBoy AlisibDoay Ansibay Ansiboy
> < _ _
089 \ | __- T 8192 - Trae” i =~ me,.muwf
_ CWETVELS C lanleg i 18AIBS ¢ 19AIDG Z Jan1eg _ _ WEIVELS
yioMIeU syowy | |¥29Z S 229¢ \.V_EEE_._ |B00T 3}I0M]BU Q10LISY P192 -/ 0192 - yiomiau (2007
F 809¢ r 909¢ r r09C ﬁ ¢09¢
) .. 1A pazifenuiA ybnolyy maip a|bulsg 4
_ 051
N
O 401°1
198

U.S. Patent Dec. 3, 2013 Sheet 23 of 29 US 8,601,307 B2

1504

Single View through Vi?tu'almized'Layemr
2774 ™\

2772 SAN N
2770 SAN 2
B SAN 1
v "]
| | Remove data, service or Add new data, service or
infrastructure function infrastructure function

. e |
2702 ' 2704
| 27006 |

Registry

NN —

| 2708 ; |

 Act on data, service ? |
and/or infrastructure
function

2710 \ el |
-_\ Act on data, service

and/or infrastructure
function i

e @ o]

i
| 2712 \I Act on data, service | B

and/or infrastructure |

function ;

FIG. 27

U.S. Patent Dec. 3, 2013 Sheet 24 of 29 US 8,601,307 B2

1504 T\
l Single View through Virtualized Layer I
2874 ‘\
| 2872 “_ SAN n!
2870 3 SAN ZI |
SAN 1 !
a 2802

Access data, service, or
infrastructure function

; a 2804 ;

Update data, service, or
infrastructure function

! 2806

Store updated data,
service, or infrastructure
function in shared storage

>

— Shared [<«———

~-3torage -

2808 —

FIG. 28

U.S. Patent Dec. 3, 2013 Sheet 25 of 29 US 8,601,307 B2

2972 ™\ SAN n

| 2970 ™ SAN 2

SAN 1

User
credentials

l

2900 2 \ |

Recelve user request access 1o data,
service and/or infrastructure
functions in shared storage

2908 ﬁ 2910 ™\
e — — _ _me Authorizec No - Reject user
user? request |
Yes
2912 *\ v

Grant access to requested item(s)
from shared storage S

et s s s vt esoraresswewid

FIG. 29

U.S. Patent Dec. 3, 2013 Sheet 26 of 29

US 8,601,307 B2

1504
l Single View through Virtualized Layer |

3074
3072 ™
3070 ™)

credential

3008

3006 3004 j v
Service or infrastructure
Storage i function inherits !

e

User accesses service of
infrastructure function from
shared storage

characteristics of user
credentials

I A—

| function accesses shared

Service or infrastructure

storage based on inherited

characteristics |
! 3010 '/ |

FIG. 30

U.S. Patent Dec. 3, 2013 Sheet 27 of 29 US 8,601,307 B2

1504
l Single View through Virtualized Layer | |

3174
3172 SAN N
1 3170 ™ SAN 1

3102 SAN 1

3104 —
\ Stateless service or
i
|

3106 _ y I
-\ Retrieve stateless service
or Infrastructure function l

3108 —_— g :
\ Run stateless service or

infrastructure function

\ Exit without storing state -

information

FIG. 31

US 8,601,307 B2

¢t Old
“ j SIWAS j A WAS ﬁ 80c¢e ﬂl 002 _
|
_ 9}9[dLoD 8|qissod § _ “ snupuon 18A0[Ie} S1BIIu]
soljsoubel(y ‘PINGal 10 1081109
A POCe 4
S9
& °N % paseiunoous A -
. ON PolEH SoA
x TATA .
2
= SUoRoUN; SINjon.selu snjels siempley %osys
10 92IAJDS ‘Blep
10 sonsoubelp wiosd r A4S

" L NVS |] 4 |
— P N N\ 082Z¢
< ¢ NVS
s} UNVS _ 7828 |
S N\ ¥82¢
D -

U.S. Patent

U.S. Patent Dec. 3, 2013 Sheet 29 of 29 US 8,601,307 B2

Maintain a federated metadata regisiry including storage location information regarding data stored at|

a first shared storage system (e.g., striped across multiple physical storage devices) and storage

location information regarding data stored at one or more remote shared storage systems {e.g., the / 3302

federated metadata registry may include storage location information regarding data striped across
multiple independent storage systems of a storage area network)

e — 3304
dentify storage locations of all user data stored at the first shared storage system and /
storage locations of all user data stored at the one or more remote shared storage system in

the tederated metadata registry - 3306

Synchronizing the federated metadata registry with a remote federated metadata registry
associate with the one or more remote shared storage systems

— X e
Maintain a federated service catalog, wherein the federated service catalog includes storage location / 5308
information to enable reconstruction of instructions to implement a plurality of services, where the
instructions to implement a first set of the plurality of services are stored at the first shared storage
system and wnerein the instructions to implement a second set of the plurality of services are stored
at the one or more remote shared storage systems

RS

- Maintaining a federated infrastructure function catalog, where the federated infrastructure function / 3310
catalog includes data descriptive of storage location information to enable reconstruction of
Insiructions to implement a plurality of infrastructure functions, where the instructions to implement a
first set of the plurality of infrastructure functions are stored at the first shared storage system and
wherein the instructions to implement a second set of the plurality of infrastructure functions are
stored atf the one or more remote shared storage systems

| . . 3312
Receive a request to access the federated metadata registry f

/3314

Filter the federated metadata registry based on authentication information associated with &
requesting device o generate a filtered federated metadata registry, where the filtered federated
metadata registry does not include storage location information regarding data that the requesting
device is not authorized to access based on the authentication information

l / 3316

>end the filtered federated metadata registry to the requasting device

FIG. 33

US 8,601,307 B2

1

COMPUTER ARCHITECTURES USING
SHARED STORAGE

CLAIM OF PRIORITY

This patent application claims priority from and 1s a con-
tinuation of U.S. patent application Ser. No. 12/750,608, filed
on Mar. 30, 2010 and entitled “Computer Architectures Using
Shared Storage”, which claims priority from U.S. Provisional
Patent Application No. 61/164,717, filed Mar. 30, 2009, from
U.S. Provisional Patent Application No. 61/164,7352, filed
Mar. 30, 2009, and from U.S. Provisional Patent Application
No. 61/171,170, filed Apr. 21, 2009, the contents of each of
which are expressly incorporated herein by reference 1n their
entirety.

FIELD OF THE DISCLOSUR.

(Ll

The present disclosure 1s generally related to computer
architectures and methods using shared storage.

BACKGROUND

Exposing functions of legacy applications to enable the
legacy applications to interact with other applications can
lead to significant cost savings. Certain functions of the
legacy applications can be re-defined as modular, self-con-
tained services. The capabilities of these services may be
independent of context or a state of other services. Addition-
ally, these services may be designed to be mvoked via a
well-defined interface. These services may be enabled 1n a
Service-oriented Architecture (SOA) through an Enterprise
Service Bus (ESB), which connects and mediates communi-
cations and interactions between the services.

As 1nterchange of information increases, there 1s an
increased risk that sensitive information may be unintention-
ally disclosed to unintended parties. SOA architectures are
generally designed to transmit all user messages across one or
more networks. These SOA architectures may use sessions
between users to transmit data or services over a network.

Certain ESB and SOA architectures are not secure. To
address this concern, an ESB or SOA architecture may be
secured by inspecting an entire data stream of communica-
tions using a high assurance data guard over an Internet
Protocol (IP) network. The data guard acts as an intermediary
between users of a service, performing “deep packet inspec-
tion” to examine contents of the data stream for any sensitive
data and or service. For example, the data guard may receive
a message via a service from a first user, inspect the contents
of the message, and then either re-transmit the message to an
intended receiver or block the message when the message 1s
not authorized (e.g., blocking unauthorized distribution of
sensitive information). In addition, it 1s difficult to secure an
SOA or an Enterprise service bus (ESB) over disparate sys-
tems.

ESBs and SOAs may be limited by low bandwidth and high
latency. The low bandwidth and high latency may hinder the
ability of service applications to transmit data in real-time
while simultaneously providing separation by security level.
For example, bandwidth may be limited by a number of
packets that the data guard can process; latency may be lim-
ited by a speed at which the data guard can inspect and
process the data packets. Thus, a full SOA or ESB implemen-
tation may be limited 1n scale by the limited capabilities of the
data guard.

Data transmitted during SOA sessions 1s transient. Thus,
the data cannot be retrieved for later use or analysis. If a user

10

15

20

25

30

35

40

45

50

55

60

65

2

1S not able to receive a communication in real-time, the com-
munication cannot later be retrieved unless a separate, paral-

lel process records and distributes the communication.

Large-scale, distributed computing environments, such as
those that may us a SOA or ESB, often accommodate hetero-
geneous hardware and software components, network links
of varying latencies, and unpredictable hardware or software
failures 1n the network or the computers. In large storage area
network (SAN) or network attached storage (NAS) environ-
ments, hardware or software failures may result 1n abnormal
termination of applications and corrupted data files. Dupli-
cate hardware components may be deployed to address hard-
ware and software failure concerns. The duplicate hardware
may support continual copying of files, file systems and/or
mirrored systems. Additionally, complex, expensive software
may be used to manage local and remote file systems. Manual
intervention may be used to re-construct files from check-
points.

SUMMARY

Systems and methods to enable a robust, high-performance
ESB over shared storage are described. In a particular
embodiment, infrastructure functions of the ESB are deliv-
ered by service providers to service consumers through
shared storage. In this embodiment, a storage layer assumes
the role of the ESB to present data to and access data from
users, programs and infrastructure functions. A data tier may
include user 1dentifications (IDs), security tier, and presenta-
tion tier of the ESB. A particular ESB system includes shared
storage 1ncluding data and file system metadata separated
from the data. The file system metadata includes location data
specilying storage location information related to the data. An
infrastructure function of the ESB system is provided to
enable messaging between providers and consumers through
the shared storage. A particular method includes enabling
communication between a consumer and a producer. An
infrastructure function of an enterprise service bus (ESB) 1s
provided through shared storage to enable messaging
between the providers and the consumer.

Systems and methods to enable a Service-oriented Archi-
tecture (SOA) over shared storage are also described. In a
particular embodiment, infrastructure functions of the SOA
are delivered by service providers to service consumers
through shared storage. Data and services may reside 1n a
storage layer. A particular SOA system includes shared stor-
age including data and file system metadata separated from
the data. The file system metadata includes location data
specilying storage location information related to the data.
The shared storage provides an architecture to loosely inte-
grate a suite of services. A particular method includes
enabling communication between a consumer and a pro-
ducer.

Systems and methods to enable a robust, high-performance
service over shared storage (SOSS) system are also
described. In a particular embodiment, services are delivered
by service providers to service consumers through shared
storage. A particular system includes shared storage includ-
ing data and file system metadata separated from the data. The
file system metadata includes location data specitying storage
location information related to the data. Services are provided
from service providers to service consumers through the
shared storage. A particular method includes hosting services
on shared storage.

Additionally, systems and methods to enable a federated
metadata database are described. A particular system
includes multiple nstances of shared storage. Each of the

US 8,601,307 B2

3

instances ol shared storage includes data and file system
metadata separated from the data. The file system metadata
includes location data speciiying storage location iforma-
tion related to the data. A persistent common view 1s provided
of local and remote files, file systems, and services 1n the
shared storage. The federated metadata database may reside
in the shared storage and may include user IDs, security levels
and locations of data files 1n a local or wide area network.
Thus, local systems may operate independently 11 a network
link 1s down. Additionally, file systems 1n a networked envi-
ronment may automatically synchronize when the network
link 1s back online. The federated metadata database may
ensure that data 1s defined consistently, that the data is re-
useable and shareable, that the data i1s accurate and up-to-
date, and that the data 1s secure and centrally managed.

Various embodiments are disclosed that provide perfor-
mance (in terms of both bandwidth and latency) of a dedi-
cated system and security of a high-assurance guard to protect
sensitive information from inadvertent disclosure.

In a particular embodiment, a metadata registry of avail-
able infrastructure functions resides 1n shared storage. Access
to the registry may be restricted by a security level of a user,
a security level of an application or a security level of data.
The infrastructure functions may be stored in a directory
structure to enable publish and subscribe capability. The
infrastructure functions may be asynchronous, allowing them
to be added, removed or acted upon independent of time.
Enabling the infrastructure functions over shared storage may
reduce costs of duplicating a dedicated system for each clas-
sification of information in a multi-security level environ-
ment.

The features, functions, and advantages that have been
described can be achieved independently in various embodi-
ments or may be combined 1n yet other embodiments, further
details of which are disclosed with reference to the following
description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram 1llustrating a particular embodiment of
data, services and infrastructure functions hosted on shared
storage;

FIG. 2 1s a diagram 1llustrating expanding capacity of a
shared storage system,;

FIG. 3 1s a diagram 1llustrating logging access requests to
shared storage;

FI1G. 4 1s a diagram 1llustrating multiple registries in shared
storage;

FIG. 5 1s a diagram 1llustrating publishing of a directory
structure;

FI1G. 6 1s a diagram 1llustrating writing to and reading from
shared storage asynchronously;

FIG. 7 1s a diagram 1llustrating addition and removal of
services and infrastructure functions with respect to shared
storage;

FIG. 8 1s a diagram 1llustrating accessing services or infra-
structure functions in shared storage independent of server,
CPU, and thread;

FI1G. 9 1s a diagram 1llustrating restricting access to a reg-
1stry;

FIG. 10 1s a diagram 1illustrating restricting access to data,
services or infrastructure functions using a registry;

FIG. 11 1s a diagram 1illustrating reading data 1n a written
order;

FIG. 12 1s a diagram 1llustrating messaging in a shared
storage system;

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 13 1s a flow chart illustrating a method of providing a
Enterprise service bus (ESB) 1n shared storage;

FIG. 14 1s a flow chart 1llustrating a method of providing
services over shared storage;

FIG. 15 1s a diagram 1illustrating a federate shared storage
architecture;

FIG. 16 1s a diagram illustrating a virtual shared storage
architecture;

FIG. 17 1s a diagram 1illustrating sharing access policies;

FIG. 18 1s a diagram 1illustrating replicating files across
shared storage;

FI1G. 19 1s a diagram 1llustrating providing data integrity in
a shared storage architecture;

FIG. 20 1s a diagram 1llustrating synchronizing federated
metadata;

FIG. 21 1s a diagram 1llustrating relocating one or more of
files, file systems and services;

FIG. 22 1s a diagram 1illustrating providing file access 1n a
shared storage architecture;

FIG. 23 1s a diagram 1illustrating maintaining trust relation-
ships between elements of a shared storage system;

FIG. 24 1s a diagram 1llustrating restricting access to infor-
mation using rules or policies;

FIG. 25 1s a diagram illustrating striping data across a
shared storage system:;

FIG. 26 1s a diagram 1illustrating federating data, services
and 1nfrastructure functions 1n shared storage system with
another shared storage system;

FIG. 27 1s a diagram 1illustrating independently adding,
removing and using data, services or infrastructure functions
in a shared storage architecture;

FIG. 28 1s a diagram 1illustrating moditying data, services
and infrastructure functions in a shared storage architecture;

FI1G. 29 1s a diagram 1llustrating hiding or restricting access
in a shared storage architecture;

FIG. 30 1s a diagram 1llustrating a service or infrastructure
function inheriting an 1dentity and/or security level of a con-
sumer 1n a shared storage architecture;

FIG. 31 1s a diagram illustrating stateless services and
infrastructure functions 1n a shared storage architecture;

FIG. 32 1s a diagram 1illustrating diagnostics 1n a shared
storage architecture; and

FIG. 33 1s a tlow chart 1llustrating a method of providing a
tederated shared storage system.

DETAILED DESCRIPTION

Embodiments of systems and methods disclosed herein
provide computer architectures and methods using shared
storage. In a particular embodiment, functions of an Enter-
prise Service Bus (ESB) are provided via the shared storage.
For example, one or more inirastructure functions of the ESB
may be delivered by producers to consumers through the
shared storage. To illustrate, traditional ESBs may connect
and mediate communications and interactions between ser-
vices. Thus, an ESB over shared storage, as described herein,
may mediate communications and interactions between ser-
vices via the shared storage.

In a particular embodiment, ESB 1s a computer system that
provides for communication between soltware applications
using a universal message format that can be used to 1mple-
ment a service-oriented architecture (SOA) within and/or
between enterprises. ESB may be implemented by including
a software layer between soitware applications and by use of
an asynchronous messaging system that carries messages
between the software applications. Using the standardized,
unmiversal message format, a requesting application identifies

US 8,601,307 B2

S

information desired from a specified target application. ESB
soltware associated with the requesting application directs
the request message to the target application over the asyn-
chronous message system. ESB software associated with the
target application may translate the request message nto a
format that 1s understandable by the target application. The
target application generates a response to the request mes-
sage, and the ESB software routes the response over the
asynchronous message system to the requesting application,
and the ESB software translates the response mto a format
understandable by the requesting application.

ESB i1s referred to as a bus by way of analogy. A physical
bus (e.g. a data bus of a computer) receives a message from
one resource, such as a hardware resource, and carries the
message to another resource. In this case, the resources are
cach adapted to use a common bus protocol, such that each of
the resources can communicate with other resources via the
bus without having to first convert requests into particular
formats determined based on the other resource participating
in the exchange. In this regard, ESB operates like a bus. For
example, instead of directing a communication to another
soltware application using the target application’s applica-
tion program interface (API) (the API dictating the form of a
request directed to the respective application), the requesting,
software application issues its request in a standardized
“enterprise message model,” and the ESB software directs
and translates the request as appropriate for the target appli-
cation. ESB software can be distributed to multiple comput-
ers and can be packaged in “containers” that reside with each
of the software applications to handle translation and routing
of messages for each software application.

While the disclosed systems and methods may perform
functions similar to ESB software (such as facilitating com-
munications between different soiftware applications), the
disclosed systems and methods may perform communica-
tions more eificiently by avoiding the additional overhead of
translating between each software application’s particular
format and a standardized umiversal message format.

In another particular embodiment, a Service-oriented
architecture (SOA) 1s provided via the shared storage. A SOA
1s an application architecture 1n which functions, or services,
are delivered by service providers over a network to service
consumers. Because interfaces in a SOA may be platform-
independent, a client program from any device using any
operating system may use a service via the SOA. In an SOA
over shared storage (SOASS) as disclosed herein, data, files,
file systems and non-data aware services may reside in shared
storage and eflectively assume the role of an ESB. Services
may be hosted on the shared storage. For example, the ser-
vices may be delivered by providers to consumers through the
shared storage. An Application Programming Interface (API)
to the shared storage includes standard read and write com-
mands, which many computing systems, users and applica-
tions support. A services over shared storage (SOSS) system,
as disclosed herein, refers to a system wherein files, file
systems and services reside 1n the shared storage.

Additionally, 1n a particular embodiment, the shared stor-
age 1s federated across a plurality of shared storage systems
and devices. For example, a persistent common view of files,
file systems and services in local shared storage and in remote
shared storage may be provided. The persistent common view
can represent multiple file systems distributed across a com-
puter network. Thus, users may be able to view one or more
separate file systems as though they were part of a single file
system. The persistent common view may be maintained by
storing information about the file system (e.g., metadata) in a
specialized database (e.g., a metadata database or registry).

10

15

20

25

30

35

40

45

50

55

60

65

6

Users of the persistent common view can access the metadata
database to resolve file system requests.

FIG. 1 1s a diagram 1illustrating a particular embodiment of
data, services and infrastructure functions hosted on shared
storage 110. In a particular embodiment, a service 1s a modu-
lar and self-contained program. A service does not depend on
context or state of other services and may be designed to be
invoked via a well-defined interface. Services may be called
by other programs that present data to and accept data from
various users. Services may be data aware. That 1s, services
may access, analyze or act upon information content of data
that they process. Infrastructure functions are non-data aware
(also referred to as “data-agnostic™). That 1s, an infrastructure
function 1s independent of the information content of the data
that 1t operates on. An infrastructure function may be gener-
ally considered a part of the infrastructure of a system (e.g., a
background function). To 1llustrate, an infrastructure function
may operate on a size, alocation, a security level, or a protocol
of particular data, but not a data type or data content of the
particular data.

FIG. 11illustrates different levels of security (or sensitivity),
including a first level 122, a second level 142 and a third level
162. The levels of security 122, 142, 162 may relate to sen-
sitivity of data 130, 150, 170 1n a data tier 106; infrastructure
functions 128, 148, 168 and services 126, 146, 166 1n an
application tier 104; or any combination thereof. Servers 124,
144, 164 at a presentation tier 102 operating at different levels
ol security may access the data, infrastructure functions and
services 1n a corresponding security level, separated from the
servers, the data, the infrastructure functions, and the services
at other security levels. To 1llustrate, a first server 124 oper-
ating at the first security level 122 may access the data 130, the
infrastructure functions 128 and the services 126 at the first
security level 122. Additionally, a second server 144 operat-
ing at the second security level 142 may access the data 150,
the infrastructure functions 148 and the services 146 at the
second security level 142. Further, a third server 164 operat-
ing at the third security level 162 may access the data 170, the
infrastructure functions 168 and the services 166 at the third
security level 162.

The shared storage 110 may include a plurality of physical
storage devices. Examples of physical storage devices may
include persistent, non-transitory, tangible storage devices
and systems, such as magnetic media (e.g., hard disks, floppy
disks, and magnetic tape); optical media such as CD-ROM
disks; magneto-optical media (e.g., floptical disks); specially
configured hardware devices; or any combination thereof.

In a particular embodiment, the shared storage 110
includes one or more storage area networks (SANs), one or
more network attached storage (NAS) systems, one or more
shared storage systems, such as a redundant array of indepen-
dent disks (RAID) system, one or more other physical storage
devices, or any combination thereof. For example, the shared
storage 110 may include a dedicated storage network con-
necting remote storage clusters to the servers 124, 144, 164.
In a particular embodiment, the shared storage 110 may be
persistent storage. For example, data stored in the shared
storage 110 may remain stored until it 1s removed.

In a particular embodiment, the application tier 104 and the
data tier 106 are effectively merged in the shared storage 110,
¢.g., a storage tier. For example, the data 130, 150, 170 stored
in the shared storage 110 and instructions to execute the
services 126, 146, 166 and the infrastructure functions 128,
148, 168 may also be stored 1n the shared storage 110. Stan-
dard read and write commands may be used to access the
shared storage 110. In a particular embodiment, a SOA 1s
provided by combining the data tier 106, an external interface

US 8,601,307 B2

7

tier, an application interface tier, and a security tier in the
storage layer, thus simplitying the architecture relative to a

traditional SOA.
In a particular embodiment, the data 130, 150, 170, the
infrastructure functions 128, 148, 168, the services 126, 146,

166, or any combination thereotf, can be transierred without
using server-to-server sessions. For example, a user can
access the data 130 at the first security level 122 via the first
server 124. The first server 124 can access the data 130 using
read commands and can modily the data 130 and store the
modified data using write commands. A second user can
assess the data 130 via fourth server 132 that 1s able to access
the first security level 122. The second user may access the
data 130 using read commands and may store the data 130
using write commands. In a particular embodiment, the first
server 124 and the fourth server 132 may utilize read after
write technology to enable near real-time interaction of the
first user and the second user without server-to-server ses-

sions. For example, the first server 124 may write information
to the data 130 and the fourth server 132 may read the infor-
mation from the data 130 in the shared storage 110 immedi-
ately or nearly immediately after the information 1s written to
the shared storage 110. Since server-to-server sessions are not
used, certain functions associated with ESBs are handled
automatically. For example, ESBs oiten provide protocol
translation to enable two servers that use different communi-
cation protocols to interact. However, since the {irst server
124 writes to the shared storage 110 using a write command
and the fourth server 132 reads from the shared storage 110
using a read command, no protocol translation 1s required to
facilitate interaction of the servers 124, 132.

Other functions associated with ESBs may also be pro-
vided via the shared storage 110. For example, since the
services 126, 146, 166 and the infrastructure functions 128,
148, 168 are not associated with or tied to particular servers,
load balancing may be unnecessary. To 1illustrate, when the
first user accesses the first service 126 an mstance of the first
service 126 may be generated at the first server 124, at the
tourth server 132, or at a client device used by the first user.
When a second user attempts to access the first service 126 a
second 1nstance of the first service 126 may be generated at
the first server 124, at the fourth server 132, or at a client
device used by the second user. Thus, load balancing based on
requests for the first service 126 1s not needed. If a need arises
to provide more instances of the first service 126 than the
shared storage 110 can accommodate (e.g., due to storage
access limitations), the shared storage 110 can be expanded
by adding more storage capacity to accommodate the
increased need. Alternately, or 1n addition, instructions to
implement the first service 126 can be redistributed to better
serve the users (e.g., to provide copies of the 1structions to
implement the first service 126 that are more readily acces-
sible to the users, such as local cache copies). In a particular
embodiment, all of the infrastructure functions of the ESB
system are provided through the shared storage.

In a particular embodiment, capacity of the shared storage
110 to act as an ESB may expand in direct proportion to
capacity of the shared storage 110. In this embodiment, the
ESB over the shared storage 110 can linearly scale to meet
increased demands without a step function as may be required
by traditional ESBs, since the ESB over the shared storage
110 1s not tied to or associated with a particular server. To
illustrate, when the ESB over the shared storage 110 requires
an additional 10% performance, 10% more capacity may be
added to the shared storage 110. In contrast, since traditional
ESBs are tied to servers and transmission control protocol

10

15

20

25

30

35

40

45

50

55

60

65

8

(TCP) networks, and when capacity 1s reached, a new server,
storage, and network may be added to obtain an additional
10% of performance.

In a particular embodiment, the data 130, 150, 170; the
services 126, 146, 166; the infrastructure functions 128, 148,
168; or any combination thereof, may be striped across the
shared storage 110. The shared storage 110 may use one
channel or multiple channels in parallel to provide high speed
performance. To 1llustrate, when a single channel transmits
data at 100 MB/sec, then 10 channels may be used to transmit
data in parallel at 1 GB/sec.

In another example of providing functions of an ESB via
the shared storage 110, binding may be accommodated using
the infrastructure functions 128, 148, 168 1n the shared stor-
age 110. For example, certain legacy applications may be
designed to utilize binding to enable communications. To
accommodate use of these applications, the first infrastruc-
ture Tunction 128 may i1nclude a binding function. The bind-
ing function may generate response messages to the legacy
applications to simulate binding of the legacy application to
another application or server. To illustrate, 1n response to the
legacy application sending a binding message that requires an
acknowledgement, an instance of the first infrastructure func-
tion 128 may be executed by the first server 124 to generate a
dummy acknowledgement message. The legacy application
may accept the dummy acknowledgement message as an
indication that binding has been accomplished and continue
with desired processing.

Other ESB functions may also be provided via the shared
storage 110, such as quality of service control, fault tolerance,
routing, addressing, service registration, discovery, etc. Thus,
by hosting the infrastructure functions 128, 148, 168 on the
shared storage 110, an ESB on shared storage 110 can be
enabled. In a particular embodiment, hosting a particular
service on the shared storage includes enabling a client to read
executable instructions to implement the particular service
from the shared storage and enabling the client to read data
utilized by the service from the shared storage. The execut-
able mstructions to implement the particular service and the
data utilized by the service may be provided to the client
without using a server-to-server connection, a server session,
or an application session.

In a particular embodiment, the shared storage 110 may
include one or more registries 134, 154, 174 of available
services, infrastructure functions, data, or any combination
thereolf. The registries 134, 154, 174 may be resident in the
shared storage 110 and may be accessible with standard file
directory commands. In a particular embodiment, the regis-
tries 134, 154, 174 may be associated with the security levels
122,142, 162. For example, only users that are authorized to
access particular data, services and infrastructure functions
may access a corresponding registry. To illustrate, users
authorized to access the data 130, the services 126, and the
infrastructure functions 128 of the first security level 122 may
be able to access the registry 134 associated with the first
security level 122.

In a particular embodiment, the registries 134, 154, 174
include metadata that 1s associated with the data 130, 150,
170; the services 126, 146, 166; the infrastructure functions
128,148,168 or any combination thereof. The metadata may
include information regarding a physical location of where
the data resides, encryption keys associated with encrypted
data, a security level of the data, and structured information
that describes, explains, locates, or otherwise makes it easier
to retrieve, use, or manage an information resource. The
metadata may be stored separate from files to which the
metadata pertains. Accordingly, the data 130, 150, 170; the

US 8,601,307 B2

9

services 126, 146, 166; the infrastructure functions 128, 148,
168; or any combination thereof can be hidden or restricted
through controlled access to the registries 134,154, 174. In a
particular embodiment, the registries 134, 154, 174 may use
standard file system protections and commands to restrict or
prevent access to contents of the registries 134, 154, 174
without being encrypted and without a guard. In another
particular embodiment, access to the registries 134, 154, 174
may be controlled by a high assurance data guard. Thus, by

providing access controls to the registries 134, 154, 174,
access to the data 130, 150, 170; the services 126, 146, 166;
the infrastructure functions 128, 148, 168; or any combina-
tion thereolf, can be provided without processing an entire
data stream to and from the shared storage 110.

In a particular embodiment, the data 130, 150, 170; the
services 126, 146, 166; the infrastructure functions 128, 148,
168; or any combination thereof; may inherit an identity, a
security level, or both of a requestor. For example, common
data (not shown), common services (not shown), common
infrastructure functions 180, or any combination thereof may
be provided 1n the shared storage 110. The common data,
common services or common inirastructure functions 180
may be accessible via more than one security level 122, 142,
162 and may 1nherit the identity, the security level, or both, of
the requestor. In an illustrative embodiment, the infrastruc-
ture functions 128, 148, 168 may include the common infra-
structure function 180 that 1s shared across more than one of
the security levels 122, 142, 162. In this embodiment, when a
first user associated with the first security level 122 accesses
the common infrastructure function 180, the common infra-
structure function 180 may inherit the identity or the security
level 122 of the first user. When a second user associated with
the second security level 142 accesses the common inira-
structure function 180, the common infrastructure function
180 implemented by the second user (e.g., a second 1nstance
of the common infrastructure function 180) may inherit the
identity or the security level of the second user. Thus, if the
first user 1s authorized to access the data 130 associated with
the first security level 122 and the second user 1s not autho-
rized to access the data 130 associated with the first security
level 122, the common infrastructure function 180 imple-
mented by the first user will be able to access the data 130
associated with the first security level 122, but the common
inirastructure function 180 implement by the second user will
not be able to access the data 130 associated with the first
security level 122. Rule sets and policies can be implemented
to determine the security level of the data 130, 150, 170. For
example, output data of a particular service of the services
126, 146, 166 or of a particular infrastructure function of the
inirastructure functions 128, 148, 168 can be analyzed based
on the rule sets or policies to determine a security level of the
output data. For example, the security level of the output data
may be determined based on a security level of data accessed
by the particular service or infrastructure function, the secu-
rity level of the particular service or infrastructure function,
the security level of a user that caused the output data to be
generated, other factors, or any combination thereof.

The registries 134, 154, 174 may include a list of the data,
the services and the infrastructure functions that are available
in a directory 1n the shared storage 110. The directory can be
virtualized across one or more local and remote locations.
Publishing the services and infrastructure functions in the
directory may enable use of a publish/subscribe 1nterface to
enable users, devices or applications to publish and subscribe
to the services and infrastructure functions over the shared
storage 110.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

In a particular embodiment, the data 130, 150, 170; the
services 126, 146, 166; the infrastructure functions 128, 148,
168; or any combination thereof can be added, removed, or
acted upon independent of time. For example, read and write
operations to the shared storage 110 may be fully decoupled
and independent. Thus, a first application can write data to the
shared storage 110 without communicating with or having
knowledge of a second application, even when the first appli-
cation and the second application access the same data, ser-
vice or infrastructure function. Further, a service 126, 146,
166 or infrastructure function 128, 148, 168 can be modified
while the service 126,146, 166 or infrastructure function 128,
148, 168 1s being used. In an 1llustrative embodiment, the data
130, 150, 170; the services 126, 146, 166; the infrastructure
functions 128, 148, 168; or any combination thereof can be
modified 1n real time. The data 130, 150, 170, the services
126, 146, 166, and the infrastructure functions 128, 148, 168
are not tied to a particular server, a particular CPU, a particu-
lar CPU core or a particular processing thread. That 1s, the
data 130, 150, 170; the services 126, 146, 166; the infrastruc-
ture functions 128, 148, 168; or any combination thereof, may
reside in the shared storage 110 and may be available for use
by any ofthe servers 124, 132,144, 164 or other devices (such
as user client devices) that have authorization to access them.

In a particular embodiment, the services 126, 146, 166, the
infrastructure functions, 128, 148, 168, or both, are stateless.
For example, the services 126, 146, 166, the infrastructure
functions, 128, 148, 168, or both, may not retain or contain
any knowledge of their usage, current state or security level.
To 1llustrate, instructions to implement the services 126, 146,
166, the infrastructure functions, 128, 148, 168, or both, may
be read from the shared storage 110 and discarded after use,
leaving the services 126, 146, 166, the infrastructure func-
tions, 128, 148, 168, or both, unchanged 1n the shared storage
110.

In a particular embodiment, the shared storage 110; the
services 126, 146, 166; the infrastructure functions 128, 148,
168; or any combination thereof, may enable in-order data
transport. For example, information written to the data 130
may be read from the data 130 in the same order that the
information was written. This embodiment may enable 1n-
order data transport for services such as media streaming or
collaboration while eliminating fragmenting and re-assem-
bling messages. To 1llustrate, when a Voice over Internet
Protocol application 1s used for communications between two
users via a server-to-server session, a receving server may
receive packets in a different order than the packets were sent
from a sending server. Thus, the recerve server or a receiving
client may reorder the packets to properly assemble voice
data sent from the sending server. However, by providing
in-order reading of data from the shared storage 110, a service
utilizing the system illustrated 1n FIG. 1 can avoid this time
consuming packet reordering process.

In a particular embodiment, the shared storage 110 may
enable logging of all requests to access the data 130,150, 170;
the services 126, 146, 166; the infrastructure functions 128,
148, 168; or any combination thereof. For example, a perma-
nent (e.g., persistent or indefinite) record of all access
requests may be preserved. Additionally, the shared storage
110 may be configured to be fault tolerant. For example, the
shared storage 110 may be configured to monitor for errors 1n
the data 130, 150, 170; the services 126, 146, 166; the infra-
structure functions 128, 148, 168; or any combination
thereof. The shared storage may utilize automated error
detection and error correction to automatically 1identify and
correct faults and to recover faulted data. Additionally, hard-
ware failures in the shared storage 110 may be addressed by

US 8,601,307 B2

11

automatically reconfiguring the shared storage 110. In a par-
ticular embodiment, the system illustrated in FIG. 1 may
perform diagnostics against hardware of the shared storage
110 and contents of the shared storage 110. The shared stor-
age 110 may be automatically reconfigured when a hardware
failure 1s detected. For example, a failed storage device may
be bypassed or replaced using backup copies of information
stored on the failed storage device. To 1llustrate, a secondary
path and a backup path for access to the shared storage 110
and contents of the shared storage 110 may automatically
assume control. Thus, an N+1 (where N 1s a number of sys-
tems used to provide service and the plus one indicates one
backup or secondary system) implementation may be used to
replace a 2N or 2ZN+M (where N 1s a number of systems used
to provide service and the plus M indicates a number of
backup or secondary system) implementations such as may
be used with ESB systems where data, services or infrastruc-

ture functions are tied to particular servers.

Although FIG. 1 illustrates the data 130, 150, 170; the
services 126, 146, 166; the infrastructure functions 128, 148,
168; and the registries 134, 154, 174 as residing 1n and hosted
on the shared storage 110, other combinations are possible.
To 1llustrate, 1n an enterprise service bus over shared storage
(ESBOSS), the infrastructure functions 128, 148, 168 and
optionally the registries 134, 154, 174 may be hosted on the
shared storage 110. In a service-oriented architecture over
shared storage (SOAOSS), the data 130, 150, 170, the inira-
structure functions 128, 148, 168, and optionally the regis-
tries 134, 154, 174 may be hosted on the shared storage 110.
The SOASS may provide an architecture to loosely integrate
a suite of services and the registries 134, 154, 174 may
include at least one registry of available services of the suite
of services. In a services over shared storage (SOSS), the data
130, 150, 170, the services 126, 146, 166, and optionally the
registries 134, 154, 174 may be hosted on the shared storage

110. In other embodiments, other combinations of the data
130, 150, 170; the services 126, 146, 166; the infrastructure

functions 128, 148, 168; and the registries 134, 154, 174 may
reside 1n and be hosted on the shared storage 110. For sim-
plicity of the following description, the term shared storage
architecture 1s used to refer to any one or more of an ESBOSS,
a SOASS, a SOSS or another embodiment where data, ser-
vices, infrastructure functions, or any combination thereof,
are hosted over shared storage.

FIG. 2 1s a diagram 1illustrating a method of expanding
capacity of a shared storage system. As shown 1n FIG. 2, the
capacity of a shared storage system, such as the shared stor-
age 110 of FIG. 1, can be expanded by adding physical
storage devices and connections. To illustrate, a storage
server 202 may facilitate communications within a shared
storage system. The storage server 202 may be connected to
a first shared storage device 204, a second shared storage
device 206 and one or more additional shared storage devices
208. Providing an added shared storage device and coupling
the added shared storage device to the storage server 202
expands the capacity of the shared storage system. In a par-
ticular embodiment, capacity of the shared storage system to
provide services and infrastructure functions may expand in
direct proportion to capacity of the shared storage system.

FIG. 3 1s a diagram 1llustrating logging access requests to
shared storage. In a particular embodiment, at 302, system
accesses and requests are written to a storage server 304. The
storage server 304 may be an element of a shared storage
system, (such as the storage server 202 of FI1G. 2). The storage
server 304 may log all data access requests. For example, the
storage server may generate a persistent record of requests to

10

15

20

25

30

35

40

45

50

55

60

65

12

access data, services, infrastructure functions, registries, or
any combination thereot, hosted on shared storage.

FI1G. 4 1s a diagram illustrating multiple registries in shared
storage. In a particular embodiment, at 402, a registry of data,
services, infrastructure functions, or any combination thereof

(such as the registries 134, 154, 174 of FIG. 1) may be stored
in shared storage 404 (such as the shared storage 110 of FIG.
1). The data, services, infrastructure functions, or any com-
bination thereof, may also reside 1n the shared storage 404. In
a particular embodiment, multiple registries, such as a {first
registry database 406, a second registry database 408, and one
or more third registry databases 410 may reside 1n the shared
storage 404. In a particular embodiment, the registry data-
bases 406, 408, 410 may include metadata related to data,

services or infrastructure functions at different security lev-

¢ls, such as the security levels 122, 142, 162 of FIG. 1. In a
particular embodiment, the registry databases 406, 408, 410
may include information related to more than one shared

storage system. For example, as explained in more detail
below, the registry databases 406, 408, 410 may be federated
registries that include information related to both a local
shared storage system (e.g., the shared storage 404) and one
or more remote shared storage systems. The registry data-
bases 406, 408, 410 may be maintained by 1dentifying data,
services, and infrastructure functions i1n the shared storage
and registering the identified data, services, and infrastructure
functions.

FIG. 5 1s a diagram 1llustrating publishing of a directory
structure. As shown 1n FIG. 5, services, infrastructure func-
tions, or any combination thereol may be published, at 502, to
a directory structure 506 1n shared storage, such as the shared
storage 110 of FIG. 1. The directory structure 506 may enable
access to the services and/or infrastructure functions using
standard file directory commands. Additionally, the directory
structure may enable use of a publish/subscribe interface to
enable users, devices or applications to publish and subscribe
to the services or mirastructure functions.

FIG. 6 1s a diagram 1illustrating writing to and reading from
the shared storage asynchronously. In a particular embodi-
ment, writing data, services, or infrastructure functions, at
602, to shared storage 604 may be independent of accessing,
at 606, the data, services, or infrastructure functions, from the
shared storage 604. For example, data, services or infrastruc-
ture functions may be written to and read from the shared
storage 604 asynchronously, without having to establish a
session between a writing server and a reader server. 'To
illustrate, hosting a particular service (or infrastructure func-
tion) on the shared storage 604 may enable a client to read
executable instructions to implement the particular service
from the shared storage 604 and to read data utilized by the
service from the shared storage 604. The executable instruc-
tions to implement the particular service and the data utilized
by the service may be provided to the client without using a
server-to-server connection. When the particular service
enables communication between the client and a producer
device, a portion of data written to the shared storage 604 by
the producer device may be read from the shared storage 604
by the client while a second portion of the data 1s being
written to the shared storage 604 by the producer device. To
illustrate, a read behind write process may be used to read data
from the shared storage 604 while data 1s still being written to
the shared storage 604. In a media streaming example, a
provider service may write media data to the shared storage
604 and a consumer service may read the media data from the
shared storage 604 1n real-time or near real-time. This
arrangement may simulate streaming media directly from the

US 8,601,307 B2

13

provider service to the consumer service via a server-to-
server connection but without using a server-to-server con-
nection.

FIG. 7 1s a diagram 1llustrating addition and removal of
services and infrastructure functions with respect to shared
storage. As 1llustrated 1n FI1G. 7, services, infrastructure func-
tions, or both, can be implemented by a producer or a con-
sumer at any time. To illustrate, at 704, a producer infrastruc-
ture function or service may add data to shared storage 702,
such as the shared storage 110 of FI1G. 1. The producer inira-
structure function or service may subsequently be removed or
terminated, 706. For example, the user may terminate the
producer infrastructure function or service. At 708, a con-
sumer infrastructure function or service 1s added or imple-
mented. The consumer infrastructure function or service may
be 1nitiated before the producer infrastructure function or
service, alter the producer infrastructure function or service 1s
initiated but before producer infrastructure function or ser-
vice 1s terminated, or after the producer inirastructure func-
tion or service 1s terminated. At 710, the consumer infrastruc-
ture function or service reads data from the shared storage
702. The consumer infrastructure function or service can read
data written to the shared storage 702 immediately or nearly
immediately after 1t 1s written by the producer infrastructure
function or service or at a later time, e.g., after the producer
infrastructure function or service 1s terminated.

FIG. 8 1s a diagram 1illustrating accessing a service or
infrastructure function in shared storage independent of a
server mstance, a CPU, and a processing thread. In a particu-
lar embodiment, instructions to implement a service or 1nfra-
structure function may reside on shared storage 802, such as
the shared storage 110 of FIG. 1. A first server (or another
processing device, such as a client device) may access the
shared storage 802 and retrieve the service or infrastructure
function, at 804. The service or infrastructure function may be
implemented at the first server in a first processing thread. The
first server may run the service or inirastructure function 1n
the first processing thread at 806 and may exit the service or
infrastructure function, at 808.

In a particular embodiment, the first server may indepen-
dently access the shared storage 802 and retrieve the service
or infrastructure function, at 810. The service or infrastruc-
ture function may be independently implemented at the first
server 1n a second processing thread. The first server may run
the service or infrastructure function 1n the second processing,
thread, at 812, and may exit the service or infrastructure
function, at 814. Additionally, or 1n the alternative, a second
server may independently access the shared storage 802 and
retrieve the service or infrastructure function, at 816. The
service or infrastructure function may be independently
implemented at the second server. The second server may run
the service or infrastructure function, at 818, and may exit the
service or infrastructure function, at 820. Thus, access to and
implementation of services, infrastructure functions, or both,
in the shared storage 802 may be performed independently by
multiple servers, multiple processors, multiple threads, or any
combination thereof. Each instance of a service or infrastruc-
ture function implemented by a server, a processor or a thread
may be independent and may not modify the instructions to
implement the service or infrastructure function in the shared
storage 802.

FI1G. 9 1s a diagram 1llustrating restricting access to a reg-
1stry. In a particular embodiment, consumer credentials 904
may be stored in shared storage 902, such as the shared
storage 110 of FIG. 1. The consumer credentials 904 may
include authentication information, user identification infor-

mation, security level mnformation, access permission nfor-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

mation, and other data that 1s used to determine whether
access to a registry, such as one or more of the registries 134,
154,174 of FIG. 1 1s authorized. When a request to access the
registry 1s recerved from a consumer (€.g., a user, a user
device, an application, a server, a service, an infrastructure
function, or another consumer), at 906, authentication or
access information associated with the request may be com-
pared to the consumer credentials 904. At 908, a determina-
tion 1s made whether the consumer 1s authorized to access the
registry. When the consumer 1s not authorized to access the
registry, the request 1s rejected, at 910. When the consumer 1s
authorized to access the registry, access 1s granted, at 912, to
the registry from the shared storage 902.

In a particular embodiment, the consumer credentials
include a security level associated with a user. The request to
access the registry may include information identifying the
user. Thus, the 1dentification information may be compared to
the consumer credentials 904 to determine whether access to
the registry 1s authorized based on the security level of the
user. Additionally, since services and infrastructure functions
implemented or accessed by the user may inherit the user’s
identification or security level, requests to access the registry
by a service or infrastructure function implemented or
accessed by the user may have the same access rights as the
user.

FIG. 10 1s a diagram 1illustrating restricting access to data,
services or infrastructure functions using a registry. As
described with reference to FIG. 9, access to a registry 1012
may be restricted based on consumer credentials 904. In a
particular embodiment, the registry 1012 may include meta-
data that enables reconstruction of data, services or infra-
structure functions that i1s striped across multiple physical
storage devices of the shared storage 902. The data, services
or infrastructure functions may also be encrypted. The meta-
data 1n the registry 1012 may include information to gather
pieces of the data, services or inirastructure functions from
the shared storage 902. Additionally, when the data, services
or infrastructure functions are encrypted, the metadata may
include keys to decrypt the pieces. Thus, the data, services
and 1nfrastructure functions may be reassembled or recon-
structed and optionally decrypted, using information in the
registry 1012. Accordingly, by controlling access to the reg-
1stry 1012, access to the data, services and inirastructure
functions 1n the shared storage 902 may also be controlled.
Access to the registry 1012 may be restricted based on the
security level of the user, a security level of an application, a
security level of the data in the shared storage 902, rules and
policies, or other criteria.

In a particular embodiment, when a request to access data,
a service or an infrastructure function 1s received from a user,
at 1004, a determination 1s made whether the user 1s autho-
rized to access the data, service or infrastructure function, at
1008. When the user 1s not authorized to access the data,
service or inirastructure tunction, the request 1s rejected, at
1010. When the consumer 1s authorized to access the data,
service or ifrastructure function, access 1s granted, at 1012,
to the data, service or infrastructure function from the shared
storage 902.

FIG. 11 1s a diagram 1llustrating reading data 1n a written
order. In a particular embodiment, data records are stored, at
1102, 1n a particular order in shared storage 1106. The order
in which the data records were written to the shared storage
1106 and the storage locations of the data records are saved,
at 1104, 1n a directory 1108. When a request to access the data
records 1s recerved, at 1110, the directory 1108 1s accessed, at
1112. The order in which the data records were written to the
shared storage 1106 and the storage locations of the data

US 8,601,307 B2

15

records are determined from the directory 1108, and the data
records areretrieved, at 1114, from the shared storage 1106 in
the order that the data records were written to the shared
storage 1106.

By reading the data records in the order that they were
written to the memory, 1m-order data transport 1s provided.
Thus, services that utilize data in a particular order can be
enabled without using a reorder process to sort the data into a
desired order. To 1llustrate, when a media stream 1s sent to a
user device via a server-to-server session, a receiving server
may receive media packets 1n a different order than the media
packets were sent from a sending server. Thus, the receive
server or a receiwving client may sort the media packets to
properly place the media packets 1n a correct order for pre-
sentation of the media stream. However, by providing in-
order reading of data from the shared storage 1106, a service
utilizing the system illustrated in FIG. 11 can avoid this time
consuming sorting process.

FIG. 12 1s a diagram 1illustrating messaging n a shared
storage architecture. In a particular embodiment, the shared
storage architecture includes a producer, such as a first client
1204. The producer 1s configured to implement services,
infrastructure functions, or both, from shared storage, such as
a storage area network (SAN) 1210. Instructions to 1mple-
ment the services, the infrastructure functions, or both, may
be stored at various locations across the SAN 1210. For
example, the instructions may be striped across the SAN
1210. Additionally, the 1nstructions may be stored encoded 1n
the SAN 1210. To access a service (or an infrastructure func-
tion) from the SAN 1210, the producer may use information
about the storage locations of the mnstructions (also called
“metadata”) to assemble an executable version of the mstruc-
tions (1.e., an mstance of the service) at the client 1204. In a
particular embodiment, the shared storage architecture may
restrict access to the service based on user access or security
levels. For example, metadata to access the service may only
be provided to users that are authorized to access the service
based on user credentials. A security gateway 1206 may
check the user credentials or other authentication data and
authorize a metadata controller 1208 to provide certain meta-
datato the client 1204. Thus, the client 1204 1s only able to see
or access services that a user of the client 1s authorized to
access.

A particular embodiment of messaging 1n the shared ser-
vice architecture to implement the process described above 1s
shown 1n FIG. 12. In the particular embodiment, the client
1204 sends authentication data (such as credentials) to the
security gateway 1206. The security gateway 1206 compares
the authentication data to authentication data in a database
(not shown) that 1s accessible to the security gateway 1206 to
determine security settings or attributes associated with the
client 1204. The security gateway 1206 sends a message to
the metadata controller 1208 authenticating the client 1204.
The security gateway 1206 may also send the security settings
or attributes to the metadata controller 1208. The metadata
controller 1208 sends at least a portion of a registry database
to the client 1204. The registry database may include meta-
data for the SAN 1210 and the portion of the registry database
sent to the client 1204 may include metadata related to data,
services or infrastructure functions of the SAN 1210 that the
client 1s authorized to access. In a particular embodiment, the
portion of the registry database sent to the client 1204
includes a directory structure. The directory structure may
identify the data, services and infrastructure functions that the
client 1s authorized to access, but may not include information
needed to access the data, services and infrastructure func-
tions. For example, the directory structure may not include

10

15

20

25

30

35

40

45

50

55

60

65

16

storage location mformation or decryption keys needed to
access the data, services and infrastructure functions.

The client 1204 may send a request to access a service to
the metadata controller 1208. 11 the client 1204 1s authorized
to access the service, the metadata controller 1208 sends
storage location information for the service to the client 1204.
If the mstructions to implement the service are encrypted 1n
the SAN 1210, the metadata controller 1208 may also send
decryption keys.

The client 1204 may read the storage locations of the SAN
1210 that are indicated in the storage location information
and, 1f the instructions are encoded, decode the instructions
using the decryption keys. The client 1204 may execute the
service using the instructions.

In a particular embodiment, the service may inherit access
or security level attributes of the client 1204 to enable the
service to access data from the SAN 1210. For example, the
service may send a request for data to the metadata controller
1208. The metadata controller 1208 may send storage loca-
tion information for the requested data to the client 1204 if the
service 1s authorized to access the data based on attributes
inherited from the user. If the data 1s encrypted in the SAN
1210, the metadata controller 1208 may also send decryption
keys for the data to the client 1204. The service may read the
data from the SAN 1210 using the storage location informa-
tion and may decode the data, 11 needed, using the keys.

Some services may generate results when executed. For
example, a service may analyze or perform computations
using the data accessed from the SAN 1210. In another
example, a user may provide input to the client 1204 that
generates result data via the service. For example, text input
by the user, via the client, may generate result data from the
service. To 1llustrate, the service may be a collaboration appli-
cation, an instant messaging application, a communication
application, or another application that recerved information
at the client 1204 to produce the result data. When the service
generates the result data, the service may send a write request
to the metadata controller 1208. The metadata controller 1208
may allocate a result storage location. The metadata control-
ler may also update metadata associated with the SAN 1210
to indicate that the result data 1s stored at the result storage
location and may write the result storage location to the
registry. The metadata controller 1208 may send the result
storage location to the client 1204. When the result data 1s to
be encrypted for storage, the metadata controller 1208 may
also send encryption keys to be used to encrypt the result data.
The service may encrypt the result data using the encryption
keys and write the result data to the allocated result storage
locations of the SAN 1210. The service may be terminated by
the client 1204 without writing status information regarding,
the service to the SAN 1210.

In a particular embodiment, a second client 1202 may
access the result data from the SAN 1210. For example, the
second client 1202 may be authenticated and may execute a
service 1n a manner similar to that described above with
respect to the first client 1204. The second client 1202 may
implement the same service or a different service indepen-
dently of the first client 1204. The service implemented by the
second client 1202 may send a request to access the result data
produced by the first client 1204 to the metadata controller
1208. I1 the service implemented at the second client 1202 1s
authorized to access the result data, the metadata controller
1208 sends storage location information (and keys 11 needed)
related to the result data to the second client 1202. The service
at the second client 1202 reads the result data from the SAN
1210 using the storage location information (and the keys 1

needed).

US 8,601,307 B2

17

The service at the first client 1204 and the service at the
second client 1202 may be 1nstances of the same service, or
may be different services. Additionally, the services may be
executed concurrently or sequentially. For example, the ser-
vice at the second client 1202 may read the result data from
the SAN 1210 immediately or nearly immediately after the
service at the first client 1204 writes the result data to the SAN
1210. In another example, the service at the second client
1202 may read the result data from the SAN 1210 a significant
time after the service at the first client 1204 writes the result
data to the SAN 1210, e.g., after the service at the first client
1204 has been terminated. Further, the service at the first
client 1204 and the service at the second client 1202 may read
data from the SAN 1210 using standard read commands and
may write data to the SAN 1210 using standard write com-
mands. Accordingly, no communication protocol translation
1s needed. Thus, real-time or delayed interaction between the
first client 1204 and the second client 1202 can be provided
through the SAN 1210.

FI1G. 13 1s a flow chartillustrating a method of providing an
Enterprise service bus (ESB) 1n shared storage. In a particular
embodiment, the method includes, at 1302, determining a
security level associated with a user device based at least
partially on credentials received from the user device. For
example, the security level associated with the user device
may be determined by a security gateway, such as the security
gateway 1206 of FIG. 12.

The method may also include, at 1304, filtering a metadata
registry to generate a filtered metadata registry. For example,
the metadata registry may be filtered by the security gateway
or by a metadata controller, such as the metadata controller
1208 of FIG. 12. The filtered metadata registry may identily
infrastructure functions that are accessible by a user device
based on a security level of the user device, based on security
levels associated with the infrastructure functions, based on a
data security level associated with data accessed by the 1nfra-
structure functions, or any combination thereof. For example,
the metadata registry may be filtered based on the credentials
associated with the user device or the security level associated
with the user device.

The method may also include, at 1306, sending the filtered
metadata registry to the user device. The method may further
include, at 1308, receiving a request from the user device to
implement a first infrastructure function. The first infrastruc-
ture Tunction may be selected from the filtered metadata reg-
1stry. Instructions to implement the first infrastructure func-
tion may be striped across a plurality of physical storage
devices of a shared storage system. The method may include
sending storage location information identifying storage
locations 1n the shared storage system of the instructions to
implement the first infrastructure function. For example, the
storage location mformation may be determined based on
metadata associated with the shared storage system. In an
illustrative embodiment, the metadata registry includes data
identifving a plurality of infrastructure functions that are
hosted on the shared storage system and decryption keys
associated with the infrastructure functions. In this embodi-
ment, the decryption key or keys for the first infrastructure
function may be sent 1n addition to the storage location infor-
mation.

The user device may read the 1nstructions from the shared
storage system using the storage location information to gen-
crate a first istance of the first infrastructure function. If
decryption keys are provided, the user device may also
decrypt the instructions using the decryption keys.

In a particular embodiment, the user device may execute
the first instance of the first infrastructure function. During,

10

15

20

25

30

35

40

45

50

55

60

65

18

execution of the first instance, the first instance may be
restricted from accessing data stored in the shared storage
system based at least partially on the security level of the user
device. In a particular embodiment, the first instance may
determine output data, and the method may include, at 1312,
receiving a request to allocate storage space for the output
data. For example, the first instance of the first infrastructure
function may generate or select dummy response mforma-
tion. To 1llustrate, the dummy response information may be
selected to satisiy a connection message expected by a second
user device. Thus, the first infrastructure function may simu-
late a binding function of an ESB.

The method may also include, at 1314, allocating storage
space for the output data in the shared storage system and
updating the metadata registry to include storage location
information 1dentifying the allocated storage space for the
output data, at 1316. The method may further include, at
1318, sending the storage location information identifying
the allocated storage space to the user device.

The user device may write the output data to the shared
storage system using the storage location information. In a
particular embodiment, the user device may terminate the
first istance of the infrastructure function without storing
state information associated with the infrastructure function,
at 1320. Additionally, the output data may be read from the
shared storage system by a second instance of the infrastruc-
ture function or a second infrastructure function after the first
instance of the infrastructure function 1s terminated, at 1322.

FIG. 14 1s a flow chart illustrating a method of providing
services over shared storage. In a particular embodiment, the
method includes, at 1402, determining a security level asso-
ciated with a user device based at least partially on credentials
received from the user device. For example, the secunity level
associated with the user device may be determined by a
security gateway, such as the security gateway 1206 of FIG.
12.

The method may also include, at 1404, filtering a metadata
registry to generate a filtered metadata registry. For example,
the metadata registry may be filtered by the security gateway
or by a metadata controller, such as the metadata controller
1208 of FIG. 12. The metadata registry may identily services
including data identifying a plurality of services that are
hosted on a shared storage system. For example, instructions
to implement the services may be striped across a plurality of
physical devices of the shared storage system. The metadata
registry may also include decryption keys when the mnstruc-
tions are stored 1n an encrypted format. The filtered metadata
registry may include information about services hosted on the
shared storage system that are accessible by the user device
based on the security level of the user device, based on secu-
rity levels associated with the services, based on a data secu-
rity level associated with data accessed by the services, or any
combination thereof. For example, the metadata registry may
be filtered based on the credentials associated with the user
device or the security level associated with the user device.

The method may also include, at 1406, sending the filtered
metadata registry to the user device. The method may further
include, at 1408, receiving a request from the user device to
implement a first service. The first service may be selected
from the filtered metadata registry.

The method may include, at 1410, sending storage location
information 1dentifying storage locations 1n the shared stor-
age system of the instructions to implement the first service.
For example, the storage location information may be deter-
mined based on metadata associated with the shared storage
system. In an 1llustrative embodiment, the metadata registry
includes data identifying a plurality of services that are hosted

US 8,601,307 B2

19

on the shared storage system and decryption keys associated
with the services. In this embodiment, the decryption key or
keys for the first service may be sent in addition to the storage
location information.

The user device may read the 1nstructions from the shared
storage system using the storage location information to gen-
erate a first instance of the first service. If decryption keys are
provided, the user device may also decrypt the instructions
using the decryption keys.

In a particular embodiment, the user device may execute
the first instance of the first service. During execution of the
first instance, the first instance may be restricted from access-
ing data stored in the shared storage system based at least
partially on the security level of the user device. In a particular
embodiment, the first instance may determine output data,
and the method may include, at 1412, receiving a request to
allocate storage space for the output data.

The method may also include, at 1414, allocating storage
space for the output data 1n the shared storage system, and
updating the metadata registry to include storage location
information i1dentitying the allocated storage space for the
output data, at 1416. The method may further include, at
1418, sending the storage location information i1dentifying
the allocated storage space to the user device. When the
output data 1s to be encrypted 1n the shared storage system,
encryption keys to be used to encrypt the output data may also
be send to the user device.

The user device may write the output data to the shared
storage system using the storage location information (and
the encryption keys, if provided). In a particular embodiment,
the user device may terminate the first instance of the inira-
structure function without storing state information associ-
ated with the infrastructure function, at 1420. Additionally,

the output data may be read from the shared storage system by
a second 1nstance of the service or a second service after the
first instance of the first service 1s terminated, at 1422.

FI1G. 15 1s a diagram 1llustrating a federated shared storage
architecture. In a particular embodiment, a plurality of shared
storage systems, such as a first storage area network (SAN)
1570, a second SAN 1572 and one or more third SANs 1574

may be provided as multiple instances of shared storage 1n a
shared storage architecture. The SANs 1570, 1572, 1574 may
cach include one or more storage devices, such as a first
storage device 1520, a second storage device 1530 and one or
more third storage devices 1540. Each of the instances of
shared storage (e.g., the first SAN 1570, the second SAN
1572 and the third SAN 1574, or the {irst storage device 1520,
the second storage device 1530, the third storage device 1540)
may includes data 1522, 1532, 1542 and file system metadata
separated from the data to implement a shared storage archi-
tecture, such as one of the shared storage architectures
described with reference to FI1G. 1. The file system metadata
may include location data that specifies storage location
information related to the data 1522, 1532, 1542.

In a particular embodiment, a persistent common view of
local and remote files, file systems, services, iirastructure
functions, or any combination thereof, may be provided via a
single view through a virtualized layer 1504. For example,
when a user has direct access to the first SAN 1570 (e.g., the
first SAN 1570 1s local to the user, and the user has remote
access to the second SAN 1572), the single view through the

virtualized layer 1504 may include federated metadata asso-
ciated with the first SAN 1570 and with the second SAN

1572. Thus, data, services and infrastructure functions avail-
able 1n the first SAN 1570 and data, services and infrastruc-
ture functions available in the second SAN 1572 may be
accessed via the persistent common view (e.g., as though both

10

15

20

25

30

35

40

45

50

55

60

65

20

the first SAN 1570 and the second SAN 1572 were local to the
user 1502). To provide the persistent common view, metadata
associated with the data, services and infrastructure functions
at the first SAN 1570 may be federated with metadata asso-
ciated with the data, services and infrastructure functions at
the second SAN 1572. Additionally, metadata associated with
the data, services and infrastructure functions at the other

SANSs, such as the third SAN 1574 may be federated with the
metadata of the first SAN 1570 and the metadata of the second
SAN 1572. In a particular embodiment, information to gen-
crate the persistent common view, e.g., a federated metadata
database or registry, 1s stored in one or more of the instances
of shared storage. In another particular embodiment, infor-
mation to generate the persistent common view 1s stored at a
metadata controller associated with one or more of the
instances of shared storage.

FIG. 15 1llustrates that multiple instances of shared storage
architectures may 1interact while maintaining operational
independence. For example, data stored at the second SAN
1572 may be visible and accessible to the first user 1502 via
the single view through the virtualized layer 1504 even
though the first user 1502 1s remote from the second SAN
1572. However, the data at the second SAN 1572 may also be
viewed, accessed, used or modified by a user that 1s local to
the second SAN 1572. When changes are made at one of the
SANs 1570,1572,1574 only metadata that 1s used to generate
the single view through the virtualized layer 1504 (1.e., fed-
crated metadata of the SANs 1570, 1572, 1574) may be
updated across all of the SANs 1570, 1572, 1574 to make the
changes accessible at each of the SANs 1570, 1572, 1574.To
illustrate, when data 1n the second SAN 1572 1s modified, the
federated metadata used to provide the single view through
the virtualized layer 1504 to the first user 1502 1s updated at
the first SAN 1570. Modifications to the data may or may not
be propagated to the first SAN 1570, depending on whether
the first SAN 1570 has a copy of the data that was updated.
However, the modified data 1s still available via the first SAN
1570 via the single view through the virtualized layer 1504.
Changes to services, infrastructure functions, or both may be
treated 1n a similar manner for certain shared storage archi-
tectures.

FIG. 16 1s a diagram 1illustrating a virtual shared storage
architecture. In a particular embodiment, providing the single
view through the virtualized layer 1504 of a plurality of
shared storage architectures generates a virtual SAN 1602.
The virtual SAN 1602 may include a plurality of SANs, such
as the first SAN 1570, the second SAN 1572, and the third
SAN 1574 of FIG. 15. For example, the virtual SAN 1602
may include a first local SAN 1610 and a second local SAN
1612. The virtual SAN 1602 may also include one or more
remote SANs 1606. In a particular embodiment, the remote
SAN 1606 may be an ad-hoc SAN. That 1s, the remote SAN
1606 may be accessible at certain times and inaccessible at
other times. To 1llustrate, the ad-hoc SAN may include one or
more ship-based storage devices that are only 1n communi-
cation with the virtual SAN 1602 during a period that the ship
1S 1n communication.

The virtual SAN 1602 may include a metadata catalog
1604. The metadata catalog 1604 may be generated by fed-
crating metadata associated with each of the SANs of the
virtual SAN 1602. Thus, the metadata catalog 1604 may
include information related to data stored at the first local
SAN 1610, data stored at the second local SAN 1612, data
stored at the remote SAN 1606, or data stored across more
than one of the SANSs. In a particular embodiment, the meta-
data catalog 1604 may be stored 1n one or more physical
storage devices of the virtual SAN 1602. For example, the

US 8,601,307 B2

21

metadata catalog 1604 may be stored at one of the SANs of
the virtual SAN 1602, at more than one of the SANs of the
virtual SAN 1602, or across several of the SANs of the virtual
SAN 1602.

The metadata catalog 1604 may be used to provide a per-
sistent common view of the virtual SAN 1602. The metadata
catalog 1604 may support the loss of a storage element while
maintaining operation and consistency without operator
intervention. For example, the metadata catalog 1604 used to
provide the persistent common view 1504 of the virtual SAN
1602 may be maintained at the first local SAN 1610. When a
communication link 1s lost to the remote SAN 1606, the
metadata catalog 1604 may still be accessible and may enable
operation of the virtual SAN 1602 without service interrup-
tion. While communication with the remote SAN 1606 1s
disrupted, requests to access data, services or inirastructure
functions that are available on the remote SAN 1606 may be
rejected, may be queued for execution when the communica-
tion with the remote SAN 1606 1s restored, or may be serviced
by another SAN that has access to the requested data, services
or inirastructure functions (e.g., as a secondary copy). In a
particular embodiment, when a shared storage system 1s
added to the virtual SAN 1602 (e.g., when a new SAN 1s
added), metadata related to the new SAN may be automati-
cally added to the metadata catalog 1604. Accordingly, SANs
may be added to or removed from the virtual SAN 1602
without disrupting operation of the virtual SAN 1602.

In a particular embodiment, the metadata catalog 1604 may
support governance of the virtual SAN 1602 and the SANs
within the virtual SAN 1602. For example, the metadata
catalog 1604 may enable managing a portiolio of services or
infrastructure functions to add new services or infrastructure
functions or to update existing services or inirastructure func-
tions. In another example, the metadata catalog 1604 may
enable management of services and inirastructure functions
lifecycles by ensuring that updates to services and infrastruc-
ture functions do not disrupt current consumers of the ser-
vices or infrastructure functions. In another example, the
metadata catalog 1604 uses rules or policies to restrict behav-
ior. To 1llustrate, rules can be created that apply to selected
services, selected infrastructure functions, all services, or all
infrastructure functions. In another example, the metadata
catalog 1604 may support governance of the virtual SAN
1602 by monitoring performance and availability of services
and infrastructure functions. In a particular embodiment, two
or more 1nstances of shared storage, such at the first local
SAN 1610 and the second local SAN 1612, may have differ-
ent governance policies. For example, each SAN of the vir-
tual SAN 1602 may enforce different governance policies
regarding such things as: computer and data usage, access,
outside or remote access, data retention, malware scanning,
other governance and control policies, or any combination
thereof.

FI1G. 17 1s a diagram 1illustrating sharing access policies. In
a particular embodiment, the virtual SAN 1602 may restrict
access to data, metadata, services, infrastructure functions,
and particular storage elements, e.g., physical storage devices
or SANs using the single view through the virtualized layer
1504. To 1llustrate, access to a particular SAN, such as the
second local SAN 1612 may be provided to the first user 1502
and to a second user 1506 based on identities of the users
1502, 1506 and based on access rules and policies of the
single view through the virtualized layer 1504. The access
rules and policies may be enforced by hiding or restricting,
access to the federated metadata of the virtual SAN 1602 1n
the single view through the virtualized layer 1504. For
example, a metadata controller may enforce the access rules

10

15

20

25

30

35

40

45

50

55

60

65

22

or policies. Access to another particular SAN, such as the first
local SAN 1610 may be provided to the second user 1506 but
not the first user 1502 based on the i1dentities of the users
1502, 1506 and the access rules and policies.

FIG. 18 1s a diagram 1llustrating replicating files across
shared storage. In a particular embodiment, files may be
replicated across multiple 1nstances of shared storage, e.g.,
across SANs of a virtual SAN, such as the virtual SAN 1602
of FIG. 16. The files may include data (e.g., user or applica-
tion data), metadata (e.g., file system metadata), services,
infrastructure functions, or any combination thereof. For
example, an original file 1804 at a local SAN 1802 may be
replicated 1806 to form a mirrored file 1812 at a remote SAN
1810. To 1llustrate, federated metadata (e.g., metadata that 1s
descriptive of files at two or more SANs) may be synchro-
nized between the SANs. Thus, when data 1s updated at the
local SAN 1802, metadata associated with the data may also
be updated. Additionally, data, services or infrastructure
functions may be synchronized across two or more SANs.
Synchronizing the data, services or infrastructure functions
may provide for data integrity. For example, if the original file
1804 15 lost or corrupted, the mirrored file 1812 may be used
as a backup.

FIG. 19 1s a diagram 1llustrating providing data integrity in
a shared storage architecture. In a particular embodiment, a
federated metadata catalog of multiple instances of shared
storage may be used to enable the multiple instance of shared
storage to operate imndependently, without service interrup-
tion, when communication links are interrupted. For
example, the first user 1502 may be a producer that produces
data, and the second user 1506 may be a consumer that
accesses the data. The data generated by the first user 1502
may be saved at a first virtual SAN 1902 1n a first local copy
of a file 1904. A second local copy of the file 1912 may be
saved at a second virtual SAN 1910 as a backup or secondary
copy. When a communication connection 1906 between the
firstuser 1502 and the second virtual SAN 1910 1s broken, the
first user 1502 and the second user 1506 may continue to work
on the first and second copies of the files 1904, 1912, respec-
tively. The first and second local copies of the file 1904, 1912
may be synchronized when a communication connection 1s
re-established. Thus, a persistent common view may be auto-
matically maintained at the first virtual SAN 1902 and at the
second virtual SAN 1910 when a communication link
between the first virtual SAN 1902 and the second virtual
SAN 1910 1s mterrupted.

FIG. 20 1s a diagram 1llustrating synchronizing federated

metadata. In a particular embodiment, a client 2002 has a
communication link 2012 to a first metadata controller 2004
associated with a first SAN 2006 of a shared storage archi-
tecture. The first metadata controller 2004 may also have a
communication connection 2016 to a second metadata con-
troller 2008 associated with a second SAN 2010. At arrow 1,
the client 2002 sends a request for a file system object to the
first metadata controller 2004. At arrow 2, the first metadata
controller 2004 attempts to satisiy a file system request using
information available 1n the first SAN 2006. For example. The
first metadata controller 2004 may search metadata associ-
ated with the first SAN 2006 to determine whether the file

system object refers to data, services or infrastructure func-
tions available at the first SAN 2006. If the first SAN 2006
does not have the information requested, the first metadata
controller 2004 may send a query to one or more other meta-
data controllers, such as to the second metadata controller
2008, at arrow 3. At arrow 4, the second metadata controller
2008 answers the query from the first metadata controller
2004. Atarrow 3, therequested information may be replicated

US 8,601,307 B2

23

from the second SAN 2010 to the first SAN 2006. The first
metadata controller 2004 may update metadata associated
with the first SAN 2006 to indicate that the replicated data 1s
available at the first SAN 2006. At arrow 6, the first metadata
controller 2004 sends metadata, such as information specity-
ing a storage location of the requested data, to the client 2002.
The client 2002 accesses the data from the first SAN 2006 and
updates or modifies the data. At arrow 7, the updates are
synchronized between the first SAN 2006 and the second
SAN 2010.

FI1G. 21 1s a diagram 1illustrating relocating one or more of
files, file systems and services. In a particular embodiment, an
original file 2112 of a shared storage architecture may be
located at a first SAN 2110 that 1s local to a first set of users
2102. A second set of users 2104 may access and view the
original file 2112 via the single view through the virtualized
layer 1504 while the original file 2112 1s stored at the {first
SAN 2110. When 1t 1s determined that performance of the
shared storage architecture can be improved by moving the
original file 2112 closer to the second set of users 2104, such
as to a second SAN 2120 that 1s remote from the local SAN
2110, the original file 2112 may be relocated to the second
SAN 2120 as amoved file 2122. For example, the original file
2112 may be relocated to optimize or improve performance
for the second set of users 2104, the first set of users 2102, or
both. To 1llustrate, when the second set of users 2104 includes
more users that access the file 2112 than the first set of users
2012, the file 2112 may be relocated to be nearer to the second
set of users 2104. The original file 2112 may include data,
metadata, services, infrastructure functions, or any combina-
tion thereof.

FI1G. 22 1s a diagram 1llustrating providing file access 1n a
shared storage architecture. In a particular embodiment, the
firstuser 1502 may have access to afile 2212 1n shared storage
2210, such as 1n the virtual SAN 1602 of FIG. 16, via a high
availability, high bandwidth connection. A second user 1506
may have access to the file 2212 via a lower availability (e.g.,
standard availability), or lower bandwidth (e.g., standard
bandwidth) connection. The shared storage architecture pro-
vided enables meeting quality of service targets for both the
first user 1502 and the second user 1506. For example, the
single view through the virtualized layer 1504 may prioritize
services based on quality of service to meet the quality of
service targets of each of the users 1502, 1506.

In another particular embodiment, the first user 1504 may
have local access to the file 2212 and the second user 1506
may have remote access to the file 2212. The single view
through the virtualized layer 1504 may support proxying to
enable non-direct access clients (1.e., the second user 1506) to
access shared storage of the shared storage architecture.

FI1G. 23 1s a diagram 1llustrating maintaiming trust relation-
ships between elements of a shared storage system. In a
particular embodiment, elements of a shared storage archi-
tecture may only share metadata with verified sources.
Accordingly, trust relationships or certificates may be used to
tederate metadata across the shared storage architecture. For
example, a client 2302 may be 1n communication with a first
metadata controller 2304. The first metadata controller 2304
may be coupled to a second metadata controller 2310 and a
fourth metadata controller 2330. The second metadata con-
troller 2310 may be coupled to a third metadata controller
2320. Each of the first, second, third and fourth metadata
controllers 2304, 2310, 2320, 2330 may be coupled to a
respective SAN 2306, 2312, 2322, 2332. When the client
2302 sends a request to the first metadata controller 2304, at
arrow 1, the client 2302 may send a certificate including
authentication information. At arrow 2, the first metadata

10

15

20

25

30

35

40

45

50

55

60

65

24

controller 2304 may validate the certificate from the client
2302. The first metadata controller 2304 may also send the
certificate from the client 2302 to the other metadata control-
lers 2310, 2320, 2330 or may send a certificate associated
with the first metadata controller 2304 to the other metadata
controllers 2310, 2320, 2330. At arrow 3, validated user
request responses may be sent between the metadata control-
lers 2304, 2310, 2320, 2330 and the client 2302.

FIG. 24 1s a diagram 1illustrating restricting access to infor-
mation using rules or policies. In a particular embodiment,
access to data, metadata, services or infrastructure functions
of a shared storage architecture may be restricted based on an
access level (or security level) of a data consumer using a
virtualization layer. Access level may refer to a set of user
permissions whereas security level may refer to authority to
access or utilize particular information. To 1illustrate, access
level may refer to whether a person can read or write to a
particular file. Secunity level may refer, for example, to the
person’s security clearance or need to know particular infor-
mation.

In a particular embodiment of a shared storage architec-
ture, a consumer may request access to data, at 2402. Rules,
policies, or both 2404 may be used to determine an access
level or security level associated with the data, at 2406. A
determination may be made, at 2408, of whether the con-
sumer 1s authorized to access the data. When the consumer 1s
not authorized to access the data, the request may be rejected,
at 2410. When the consumer 1s authorized to access the data,
the consumer may be provided access to the data, at 2412, via
shared storage 2414.

In a particular embodiment, the single view through the

virtualized layer 1504 may include federated metadata of a
plurality of SANs, such as a first SAN 2470, a second SAN

2472, and one or more third SANs 2474. Fach of the SANs
2470, 2472, 2474 may include one or more instances of
shared storage. By restricting access to the single view
through the virtualized layer 1504, access to data within each
of the SANs 2470, 2472, 24774 can be restricted. For example,
the rules or policies 2404 may be implemented by a metadata
controller to restrict access to federated metadata associated
with the SANs 2470, 2472, 2474,

FIG. 25 1s a diagram illustrating striping data across a
shared storage system. In a particular embodiment of a shared
storage architecture, a shared storage system may include a
plurality of physical storage devices, such as a first shared
storage device 2504, a second shared storage device 2506,
and one or more third shared storage devices 2508. Data,
services or infrastructure functions may be striped across the
plurality of storage devices of a shared storage system to
improve access times and performance speeds of the services
or the infrastructure functions provided over the shared stor-
age. To illustrate, performance speed of a service 1n a services
over shared storage system may be increased by striping
instructions to implement the service across the first shared
storage device 2504, the second shared storage device 2506,
and the one or more third shared storage devices 2508. In
another 1llustrative example, performance speed of an inira-
structure function 1n an ESB over shared storage system may
be increased by striping nstructions to implement the inira-
structure function across the first shared storage device 2504,
the second shared storage device 2506, and the one or more
third shared storage devices 2508.

In a particular embodiment, the single view through the
virtualized layer 1504 may include metadata that includes
information to reconstruct the instructions from instruction
data striped across the shared storage to implement the ser-
vice. Additionally, the single view through the virtualized

US 8,601,307 B2

25

layer 1504 may include federated metadata of data, services
and 1nfrastructure functions stored at multiple instances of
shared storage, such as a first SAN 2570, a second SAN 2572
and one or more third SANs 2574,

FIG. 26 1s a diagram 1llustrating federating data, services
and infrastructure functions in a shared storage system with
another shared storage system. For example, metadata of a
plurality of registry databases 2612, 2616, 2620 of a first
virtual SAN that includes a first local network 2602 and a first
remote network 2604 may be federated with metadata of a
plurality of registry databases 2626, 2628, 2632 of a second
virtual SAN that includes a second local network 2606 and a
second remote network 2608 via communications between a
plurality of servers 2610,2614,2618,2622, 2624, 2630 of the
virtual SANs. The single view through the virtualized layer
1504 may include or provide access to the federated meta-
data.

FIG. 27 1s a diagram illustrating independently adding,
removing and using data, services or infrastructure functions
in a shared storage architecture. In a particular embodiment,
data, services, inifrastructure functions, or any combination
thereol can be added, removed, or acted upon independent of
time 1n a shared storage architecture. For example, at 2702,
data, a service or an infrastructure function may be removed
from a registry 2706 at a first SAN 2770. The registry 2706
may include or be included within metadata of the first SAN
2770. At 2704, new data, a new service or a new infrastructure
function can be added to the registry 2706. At 2708, 2710,
2712, the data, services and infrastructure functions identified
in the registry 2706 can be acted upon (e.g., executed) inde-
pendently of one another and at any time or 1n any order (1.¢.,
independent of time).

In a particular embodiment, the registry 2706 may be fed-
erated with registries of other SANs, such as a second SAN
2772 and one or more third SANs 2774. In this embodiment,
the data, services and infrastructure functions in each of the
SANs 2770, 2772, 2774 can be added, removed and acted
upon independently of one another and at any time. The single
view through the virtualized layer 1504 may be provided
using the federated registries. For example, the single view
through the virtualized layer 1504 may include federated
metadata associated with the data, services and infrastructure
functions hosted by the shared storage 2808 of each of the
SANs 2870, 2872, 2874. Federating the metadata of the
SANs 2770, 2772, 2774 does not limit independent operatio
of or access to the data, services or infrastructure functions of
the SANs 2770, 2772, 2774.

FIG. 28 1s a diagram 1llustrating modilying data, services
and infrastructure functions in a shared storage architecture.
In a particular embodiment, data, services, inirastructure
functions, or any combination thereol can be updated or
modified over shared storage independent of time. For
example, at 2802, data, a service or an infrastructure function
can be accessed from shared storage 2808 ata first SAN 2870.
At 2804, the accessed data, service or infrastructure function
can be updated. At 2806, the updated data, service or inira-
structure function can be stored 1n the shared storage 2808.
Data, services or infrastructure functions at other SANs, such
as a second SAN 2872 and one or more third SANs 2874, can
also be updated or modified independently of one another and
at any time. The single view through the virtualized layer
1504 may be provided using federated metadata associated
with the data, services or infrastructure functions at each of

the SANs 2870, 2872, 2874. Federating the metadata of the
SANs 2770, 2772, 2774 does not limit the capability of inde-
pendently updating or modifying the data, services or inira-

structure functions of the SANs 2770, 2772, 2774.

5

10

15

20

25

30

35

40

45

50

55

60

65

26

FIG. 29 1s a diagram illustrating hiding or restricting access
in a shared storage architecture. In a particular embodiment,
access to files 1n shared storage 2902 can be restricted based
on user credentials 2904. Alternately, or 1n addition, the files
can be hidden or made visible based on the user credentials
2904. For example, at 2906, a user request to access an 1tem
in the shared storage 2902 can be recerved. The requested
item may be data, metadata, a service, an infrastructure func-
tion, or any combination thereof. A determination may be
made, at 2908, whether the user 1s authorized to access the
item. It the user 1s not authorized to access the item, the
request 1s rejected, at 2910. If the user 1s authorized to access
the 1item, access to the requested item may be granted, at 2912.

Access to data, metadata, services or infrastructure func-
tions at other SANSs, such as a second SAN 2972 and one or
more third SANs 2974, can also be restricted or hidden. The
single view through the virtualized layer 1504 may be pro-
vided using federated metadata associated with the data, ser-
vices or infrastructure functions hosted at each of the SANs
2970, 2972, 2974. Data, metadata, services, infrastructure
functions, or any combination thereof from each of the SANs
2970, 2972, 2974 can be hidden or restricted through con-
trolled access to federated metadata of a federated shared
storage architecture.

FIG. 30 1s a diagram 1illustrating a service or infrastructure
function inheriting an 1dentity and/or security level of a con-
sumer 1n a shared storage architecture. In a particular embodi-
ment, services and infrastructure functions provided via
shared storage may 1nherit or take on attributes of a requestor
that caused the service or infrastructure function to be imple-
mented. For example, a service or infrastructure function may
inherit an identity of the requestor, a security level of the
requestor, an access level of the requestor, or an i1dentity
attribute of the requestor that 1s associated with the request-
or’s security level or access level. For example, when a
requestor causes a particular file to be accessed, the particular
file may inherit at least one 1dentity attribute of the requestor
that 1s associated with a security level of the requestor. To
illustrate, at 3002, a user may access a service or infrastruc-
ture function from shared storage 3006. At 3004, the service
or infrastructure function inherits characteristics of user cre-
dentials 3008 of the user. At 3010, the service or infrastructure
function can access the shared storage 3006 based on the
inherited characteristics. For example, the service or inira-
structure function may be authorized to access data that the
user would be authorized to access directly. In another
example, the service or infrastructure function may be
restricted from accessing data that the user would not be
authorized to access.

In a federated shared storage architecture, the service or
inirastructure function may also be able to access data, meta-
data, services or infrastructure functions at other SANs, such
as a second SAN 3072 and one or more third SANs 3074,
based on the mherited characteristics. The single view
through the virtualized layer 1504 may be provided using
federated metadata associated with the data, services or infra-
structure functions at each of the SANs 3070, 3072, 3074.
Data, metadata, services, infrastructure functions, or any
combination thereof from each of the SANs 3070,3072, 3074
can be hidden or restricted from the service or infrastructure
function implemented by the user based on the inherited
characteristics using controlled access to federated metadata.

FIG. 31 1s a diagram illustrating stateless services and
inirastructure functions in a shared storage architecture. In a
particular embodiment, services, infrastructure functions, or
both, hosted on shared storage 3102 are stateless. A stateless
service may not retain information in the shared storage 3102

US 8,601,307 B2

27

after use. Similarly, a stateless infrastructure function may
not retain iformation in the shared storage 3102 after use.
For example, a stateless service or infrastructure function
3104 may not retain information regarding usage, a current
state, and a security level of a requestor, an access level of the
requestor, or any combination thereof, after use. To illustrate,
at 3106, the stateless service or infrastructure function 3104 1s
retrieved from the shared storage 3102. For example, the
stateless service or infrastructure function 3104 may be
retrieved by a server or a client. At 3108, the server or client
may run the stateless service or infrastructure function 3104.
At 3110, the server or client may exit (or terminate) the
stateless service or infrastructure function 3104 without stor-
ing state information regarding the stateless service or infra-
structure function 3104 in the shared storage 3102.

In a particular embodiment, retrieving the stateless service
or infrastructure function 3104 from the shared storage 3102
and running the stateless service or inirastructure function
3104 at a client or server may be referred to as generating an
instance of the service or infrastructure function. To i1llustrate,
instructions to implement a service may be stored in the
shared storage 3102. The 1nstructions to implement the ser-
vice may be retrieved from the shared storage 3102 using
metadata associated with the shared storage 3102 that
includes storage location information of the instructions.
When the mstructions are encoded in the shared storage 3102,
the metadata may also include decryption keys. Thus, the
metadata provides mformation that 1s used by the client to
reconstruct an executable 1instance of the service. As
described with reference to FIG. 30, the instance of the ser-
vice may inherit characteristics of the user, such as security
level or access level of the user. When the client 1s done using
the mstance of the service, the instance of the service may be
terminated and deleted. That 1s, the instance of the service 1s
not retained, although the instructions to generate a new
instance of the service remain 1n the shared storage 3102 and
are not affected by the client generating the instance of the
service.

In a federated shared storage architecture, the stateless
service or infrastructure function 3104 may also be accessible
to users of other SANSs, such as a second SAN 3172 and one
or more third SANs 3174. For example, the single view
through the virtualized layer 1504 may be provided using
federated metadata that includes information regarding the
stateless service or infrastructure function 3104.

FIG. 32 1s a diagram 1llustrating diagnostics 1n a shared
storage architecture. In a particular embodiment, the shared
storage architecture may support diagnostics and monitoring
status of hardware elements (e.g., servers, metadata control-
lers, physical storage devices, etc.) and of data elements,
(e.g., data, metadata, services and infrastructure functions).
For example, at 3202, a hardware status check of a hardware
clement of a shared storage system of a first SAN 3280 may
be performed. The hardware status check may determine
whether the hardware element has failed, at 3204. When the
hardware element has not failed, operation of the first SAN
3280 may continue, at 3208. To 1llustrate, the first SAN 3280
may perform another hardware status check of another hard-
ware element. Hardware elements of the first SAN 3280 may
be checked periodically, according to a schedule, or in
response to an external stimulus, such as a user request. When
the hardware element has failed, a failover process may be
iitiated, at 3206. The failover process may cause shared
storage of the first SAN 3280 to be automatically reconfig-
ured. For example, the shared storage may be reconfigured to
bypass the failed hardware element. In another example, the

10

15

20

25

30

35

40

45

50

55

60

65

28

shared storage may be reconfigured to utilize a backup hard-
ware element to replace the failed hardware element.

In a particular embodiment, at 3210, diagnostics may be
performed of data, services, infrastructure functions, or any
combination thereot, of the first SAN 3280. A determination
may be made, at 3212, of whether an error has been encoun-
tered. For example, an error may be detected using parity or
other error detection information. When no error 1s detected,
the diagnostics may be complete, at 3216. When an error 1s
detected, the error 1s corrected or the data 1s rebuilt if possible,
at 3214. For example, error correction information may be
used to correct the error to recover the faulted data. Alter-
nately, backup or secondary copies of the data may be used to
rebuild the data to recover the faulted data.

In a federated shared storage architecture, hardware ele-
ments and data elements of multiple instances of shared stor-
age may be checked independently. For example, a second
SAN 3282 and one or more third SANs 3284 may perform
diagnostics and status checks of hardware and data elements
of the second SAN 3282 and the third SAN 3284, respec-

tively. When faulted data or failed hardware elements are
detected, federated metadata of the federated shared storage
architecture may be updated to reflect corrective actions taken
in response to the faulted data or failed hardware element. For
example, the second SAN 3282 may be reconfigured as a
result of a failed hardware element, and the federated meta-
data may be updated to avoid sending requests to the failed
hardware element.

FIG. 33 1s a tlow chart 1llustrating a method of providing a
federated shared storage system. The method includes, at
3302, maintaining a federated metadata registry including
storage location information regarding data stored at a first
shared storage system and storage location information
regarding data stored at one or more remote shared storage
systems. In an 1llustrative embodiment, the federated meta-
data registry may be the metadata catalog 1604 of FI1G. 16.

In a particular embodiment, maintaining the federated
metadata registry includes, at 3304, identifying storage loca-
tions of all user data stored at the first shared storage system
and storage locations of all user data stored at the one or more

remote shared storage system 1n the federated metadata reg-
1stry. In a particular embodiment, the data may be striped
across multiple physical storage devices at the first shared
storage system, at the one or more remote shared storage
system, or at any combination thereof For example, the fed-
crated metadata registry may include storage location infor-
mation regarding the data striped across multiple independent
storage systems of one or more storage area networks. In a
particular embodiment, maintaining the federated metadata
registry includes, at 3306, synchronizing the federated meta-
data registry with a remote federated metadata registry asso-
ciated with the one or more remote shared storage systems. To
illustrate, the federated metadata registry and the remote fed-
crated metadata registry may be synchronized through the
shared storage systems or via a communication channel
between two or more metadata controllers (e.g., an internet
protocol communication channel).

The method may further include, at 3308, maintaining a
tederated service catalog. The federated service catalog may
include storage location information to enable reconstruction
of 1nstructions to implement a plurality of services. For
example, instructions to implement a first set of the plurality
of services may be stored at the first shared storage system
and 1nstructions to implement a second set of the plurality of
services may be stored at the one or more remote shared

US 8,601,307 B2

29

storage systems. In an 1llustrative embodiment, the federated
service catalog may be a portion of the metadata catalog 1604
of FIG. 16.

The method may also include, at 3310, maintaining a fed-
crated infrastructure function catalog. The federated infra-
structure function catalog may include data descriptive of
storage location information to enable reconstruction of
instructions to implement a plurality of infrastructure func-
tions. For example, instructions to implement a first set of the
plurality of infrastructure functions may be stored at the first
shared storage system and mstructions to implement a second
set of the plurality of infrastructure functions may be stored at
the one or more remote shared storage systems. In an 1llus-
trative embodiment, the federated infrastructure function
catalog may be a portion of the metadata catalog 1604 of FIG.
16.

The method may also include, at 3312, recerving a request
to access the federated metadata registry. In response to the
request, the method may 1nclude, at 3314, filtering the feder-
ated metadata registry based on authentication information
associated with a requesting device to generate a filtered
tederated metadata registry. The filtered federated metadata
registry may not include storage location information regard-
ing data that the requesting device 1s not authorized to access
based on the authentication information. The method may
also include, at 3316, sending the filtered federated metadata
registry to the requesting device.

In a particular embodiment, one or more of the systems and
methods disclosed herein, or portions thereof may be imple-
mented using a set of istructions executable by one or more
processors. For example, the servers, shared storage systems
(including storage servers, storage area networks, physical
storage devices and other hardware elements of the shared
storage system), clients, security gateways, metadata control-
lers, and other elements may be implemented using one or
more computer systems. A computer system refers to one or
more computing devices or any collection of systems or sub-
systems that individually or jointly execute a set, or multiple
sets, of mstructions to perform one or more computer func-
tions. An exemplary computer system may include at least
one processor subsystem (also referred to as a central pro-
cessing unit, or CPU). The CPU can be implemented using a
single-chip processor or using multiple processors or proces-
sor cores. The CPU may retrieve instructions from a memory,
control the reception and mampulation of mnput data, and the
generation of output data. The CPU may also interact with
other components or subsystems of the exemplary computer
system or with other computing systems.

The 1llustrations of the embodiments described herein are
intended to provide a general understanding of the structure
of the wvarious embodiments. The illustrations are not
intended to serve as a complete description of all of the
clements and features of apparatus and systems that utilize
the structures or methods described herein. Many other
embodiments may be apparent to those of skill in the art upon
reviewing the disclosure. Other embodiments may be utilized
and derived from the disclosure, such that structural and
logical substitutions and changes may be made without
departing from the scope of the disclosure. For example,
method steps may be performed 1n a different order than 1s
shown 1n the figures or one or more method steps may be
omitted. Accordingly, the disclosure and the figures are to be
regarded as 1llustrative rather than restrictive.

Moreover, although specific embodiments have been illus-
trated and described herein, it should be appreciated that any
subsequent arrangement designed to achieve the same or
similar results may be substituted for the specific embodi-

10

15

20

25

30

35

40

45

50

55

60

65

30

ments shown. This disclosure 1s intended to cover any and all
subsequent adaptations or varnations of various embodi-
ments. Combinations of the above embodiments, and other
embodiments not specifically described herein, will be appar-
ent to those of skill in the art upon reviewing the description.
The Abstract of the Disclosure 1s submitted with the under-
standing that 1t will not be used to interpret or limit the scope
or meaning of the claims. In addition, 1n the foregoing
Detailed Description, various {features may be grouped
together or described 1n a single embodiment for the purpose
of streamlining the disclosure. This disclosure 1s not to be
interpreted as retlecting an intention that the claimed embodi-
ments require more features than are expressly recited 1n each
claim. Rather, as the following claims retlect, the claimed
subject matter may be directed to less than all of the features
of any of the disclosed embodiments.
What 1s claimed 1s:
1. A method comprising;:
providing a persistent common view of a virtual shared
storage system, wherein the virtual shared storage sys-
tem comprises a first shared storage system and a second
shared storage system, and wherein the persistent com-
mon view includes information associated with data and
instructions stored at the first shared storage system and
the second shared storage system:;
recerving a request from a requesting device to access a first
service provided via the first shared storage system, and
wherein the first service corresponds to a first set of
instructions stored at the first shared storage system;

retrieving the first set of mstructions from the first shared
storage system;

transmitting the first set of instructions to the requesting

device, wherein the first set of instructions are execut-
able by the requesting device to provide the first service;
and

moditying the first service during execution of the first set

of 1nstructions at the requesting device, wherein modi-
tying the first service does not interrupt the first service
provided during the execution of the first set of nstruc-
tions at the requesting device.

2. The method of claim 1, wherein the first shared storage
system 1s located at a first location, and wherein the virtual
shared storage system 1ncludes at least one other shared stor-
age system that 1s located remote from the first location.

3. The method of claim 1, wherein the first shared storage
system includes a metadata database that includes informa-
tion that identifies one or more storage locations of the first set
ol instructions, wherein the method further comprises access-
ing the metadata database to identify the one or more storage
locations of the first set of instructions, wherein the first set of
instructions are retrieved from the first shared storage system
based on the one or more storage locations.

4. The method of claim 1, wherein the first shared storage
system includes a first registry that identifies data, services,
and infrastructure functions that are accessible via the first
shared storage system, and wherein the second shared storage
system includes a second registry that 1dentifies data, ser-
vices, and infrastructure functions that are accessible via the
second shared storage system, wherein the method further
comprises generating a federated registry based on at least the
first registry and the second registry.

5. The method of claim 1, wherein the first shared storage
system comprises two or more storage devices, and wherein
the first set of instructions stored at the first shared storage
system are striped across the two or more storage devices.

6. The method of claim 1, further comprising, 1n response
to adding a third shared storage system to the virtual shared

US 8,601,307 B2

31

storage system, automatically updating the persistent com-
mon view to include third information associated with other
data and other instructions stored at the third shared storage
system.
7. The method of claim 1, further comprising performing a
relocation operation to relocate particular data, particular
instructions, or a combination thereof, stored at a particular
shared storage system of the virtual shared storage system to
another shared storage system of the virtual shared storage
system, wherein the particular shared storage system 1s
located at a first location, wherein the other shared storage
system 1s located at a second location that 1s remote from the
first location, and wherein the relocation operation 1s 1nitiated
in response to a determination that a first demand for access to
the particular data, the particular instructions, or the combi-
nation thereotf, at the first location 1s less than a second
demand for access to the particular data, the particular
instructions, or the combination thereot, at the second loca-
tion.
8. A system comprising:
a metadata controller communicatively coupled to a plu-
rality of shared storage systems, wherein the metadata
controller 1s configured to:
provide a persistent common view of files, file systems,
and services accessible via the plurality of shared
storage systems;

receive a request from a requesting device to access a
first service provided via a first shared storage system
of the plurality of shared storage systems, and
wherein the first service corresponds to a first set of
instructions stored at the first shared storage system:;

retrieve the first set of instructions from the first shared
storage system;

transmit the first set of 1nstructions to the requesting
device, wherein the first set of instructions are execut-
able by the requesting device to provide the first ser-
vice; and

modity the first service during execution of the first set
of instructions at the requesting device, wherein
modifying the first service does not mterrupt the first
service provided during the execution of the first set of
instructions at the requesting device.

9. The system of claim 8, wherein the metadata controller
1s located at a first location, wherein the first shared storage
system 1s located at the first location, and wherein a second
shared storage system 1s located at a location that 1s remote
from the first location.

10. The system of claim 9, wherein the metadata controller
1s Turther configured to:

receive a request to access content from a requesting
device:

determine whether the content corresponds to at least one
of files, file systems, and services accessible via the first
shared storage system; and

in response to a determination that the content corresponds
to at least one of the files, the file systems, and the
services accessible via the first shared storage system,
transmit metadata associated with the content to the
requesting device, wherein the metadata includes infor-
mation usable by the requesting device to retrieve the
content from the first shared storage system.

11. The system of claim 10, wherein the metadata control-

ler 1s further configured to:

in response to a determination that the content corresponds
to at least one of files, file systems, and services acces-
sible via a second shared storage system of the plurality
of shared storage systems:

5

10

15

20

25

30

35

40

45

50

55

60

65

32

retrieve the content from the second shared storage sys-
tem;

store the retrieved content at the first shared storage
system; and

transmit metadata associated with the retrieved content
to the requesting device, wherein the metadata
includes information usable by the requesting device
to retrieve the retrieved content from the first shared
storage system.

12. The system of claim 11, wherein the metadata control-
ler 1s further configured to:

determine whether the retrieved content stored at the first

shared storage system has been modified; and

in response to a determination that the retrieved content has

been modified, synchronize the retrieved content stored
at the first shared storage system and the content acces-
sible via the second shared storage system.

13. The system of claim 11, wherein the metadata control-
ler 1s further configured to update a metadata database asso-
ciated with the first shared storage system to indicate that the
retrieved content 1s accessible via the first shared storage
system, wherein the metadata database includes information
identifying storage locations of the files, the file systems, and
the services accessible via the first shared storage system.

14. The system of claim 8, wherein the metadata controller
1s configured to automatically add information associated
with an additional shared storage system to the persistent
common view 1n response to adding the additional shared
storage system to the plurality of shared storage systems,
wherein the added information 1s associated with additional
files, file systems, and services accessible via the additional
shared storage system.

15. The system of claim 8, wherein the metadata controller
1s further configured to perform a relocation operation to
relocate particular files, particular file systems, particular ser-
vices, or a combination thereol, stored at a particular shared
storage system of the shared storage system to another shared
storage system of the shared storage system, wherein the
particular shared storage system 1s located at a first location,
wherein the other shared storage system 1s located at a second
location that 1s remote from the first location, and wherein the
relocation operation 1s initiated 1n response to a determination
that a first demand for access to the particular files, the par-
ticular file systems, the particular services, or the combina-
tion thereot, at the first location 1s less than a second demand
for access to the particular files, the particular file systems, the
particular services, or the combination thereof, at the second
location.

16. A non-transitory computer-readable storage medium
comprising instructions that, when executed by a processor,
cause the processor to:

provide a persistent common view of files, file systems, and

services accessible via a plurality of shared storage sys-
tems;

recetve, from a client device, a request to access a first

service accessible via a first shared storage system of the
plurality of shared storage systems, wherein the first
service corresponds to one or more instructions stored at
the first shared storage system:;

in response to the request to access the first service, trans-

mit the one or more 1nstructions to the client device,
wherein the first service enables the client device to
access media content from a media provider; and
when the client device requests access to first media con-
tent from the media provider using the first service:
receive data corresponding to the first media content
from the media provider;

US 8,601,307 B2

33

write the data to the first shared storage system; and

transmit a first portion of the data to the client device
concurrently with writing a second portion of the data
to the first shared storage system, wherein transmit-
ting the first portion of the data to the client device
concurrently with writing the second portion of the
data to the first shared storage system simulates
streaming of the media content from the media pro-
vider to the client device.

17. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions that, when
executed by the processor, cause the processor to activate a
backup path in response to a determination that a primary path
has failed, wherein the primary path and the backup path
provide access to the first shared storage system of the plu-
rality of shared storage systems.

18. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions that, when
executed by the processor, cause the processor to replicate
content stored at the first shared storage system of the plural-
ity of shared storage systems at a second shared storage
system of the plurality of shared storage systems, wherein the
content 1s associated with at least one of files, file systems,
and services stored at the first shared storage system, and
wherein the replicated content comprises copies of the con-
tent stored at the first shared storage system.

19. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions that, when
executed by the processor, cause the processor to:

receive data to be stored at a particular shared storage

system ol the plurality of shared storage systems,
wherein the data comprises an output of a service pro-
vided via the particular shared storage system, a new file,
a new service to be provided via the particular shared
storage system, an output of an infrastructure function
provided via the particular shared storage system, a new
inirastructure function to be provided via the particular
shared storage system, or a combination thereof;

store the data at the particular shared storage system;

10

15

20

25

30

35

34

update a metadata database associated with the particular
shared storage system to indicate that the data 1s acces-
sible via the particular shared storage system; and

update other metadata databases associated with other
shared storage systems of the plurality of shared storage
systems to indicate that the data 1s accessible via the
particular shared storage system, wherein the other
shared storage systems are accessible to the particular
shared storage system.

20. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions that, when
executed by the processor, cause the processor to automati-
cally add information associated with an additional shared
storage system to the persistent common view 1n response to
adding the additional shared storage system to the plurality of
shared storage systems, wherein the added information 1s
associated with additional files, file systems, and services
accessible via the additional shared storage system.

21. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions that, when
executed by the processor, cause the processor to perform a
relocation operation to relocate particular files, particular file
systems, particular services, or a combination thereot, stored
at a particular shared storage system of the shared storage
system to another shared storage system of the shared storage
system, wherein the particular shared storage system 1s
located at a first location, wherein the other shared storage
system 1s located at a second location that 1s remote from the
first location, and wherein the relocation operation 1s initiated
in response to a determination that a first demand for access to
the particular files, the particular file systems, the particular
services, or the combination thereof, at the first location 1s less
than a second demand for access to the particular files, the
particular file systems, the particular services, or the combi-
nation thereof, at the second location.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

