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RISK MANAGEMENT FOR OBJECT
IDENTIFICATION

BACKGROUND

Object 1dentification 1s the process of taking radar mea-
surements and creating a vector ol probabilities that the object
being tracked 1s a known object type. Prior attempts at object
identification focused on ensuring that the largest probabaility
would be assigned to the actual classification of the object as
often as possible which generally resulted 1n overconfident
behavior. As such, uncertainty in identification results was not
represented within the classifications of the objects. Thus, a
need exists 1in the art for improved risk management for object
identification.

SUMMARY

One approach provides a system for risk management for
object 1dentification. The system includes a fusion function
selection module configured to select at least two fusion
functions from a plurality of fusion functions. Each of the
fusion functions 1s associated with a different risk bias. The
system further includes a data fusion module configured to
fuse a recetved set of data based on each fusion function to
form at least two sets of fused data. The system further
includes a probability of identification module configured to
generate a probability of 1dentification of a classification of
the object based on each set of the fused data. The system
turther includes a risk bias determination module configured
to determine a risk bias diflerence between the probability of
identification of each set of the fused data.

Another approach provides a method for risk management
for object 1dentification. The method includes selecting at
least two fusion functions from a plurality of fusion functions,
cach of the fusion functions associated with a different risk
bias; fusing a received set of data based on each fusion func-
tion to form at least two sets of fused data; generating a
probability of identification of the classification of the object
based on each set of the fused data; and determining a risk
bias difference between the probability of i1dentification of
cach set of the fused data.

Another approach provides a computer program product
for risk management for object identification. The computer
program product 1s tangibly embodied 1n an information car-
rier. The computer program product includes instructions
being operable to cause a data processing apparatus to select
at least two fusion functions from a plurality of fusion func-
tions, each of the fusion functions associated with a different
risk bias; fuse a received set of data based on each fusion
function to form at least two sets of fused data; generate a
probability of identification of the classification of the object
based on each set of the fused data; and determine a risk bias
difference between the probability of 1dentification of each
set of the fused data.

In other examples, any of the approaches above can include
one or more of the following features.

In some examples, the system further includes a fusion
function generation module configured to generate the plu-
rality of fusion functions based on a base fusion function and
one or more parameters.

In other examples, the one or more parameters include at
least two sets of alpha and beta parameter pairs. In some
examples, the system further includes a parameter module
configured to determine the least two sets of alpha and beta
parameter pairs. Each alpha parameter 1s associated with a
fusion function. Each beta parameter i1s associated with a

10

15

20

25

30

35

40

45

50

55

60

65

2

degree of expected independence of a received set of data.
The recerved set of data includes information associated with
the classification of the object.

In other examples, a first fusion function 1s associated with
a decisive or robust risk bias and a second fusion function 1s
associated with a neutral risk bias.

In some examples, the fusion function selection module
turther configured to determine the decisive risk bias, the
neutral risk bias, and the robust risk bias based on probabili-
ties of one or more training samples.

In other examples, the parameter module 1s further config-
ured to define the associations between classifications of the
object based on a generalized mean between the probabilities
of the one or more training samples.

In some examples, the decisive risk bias 1s associated with
a higher confidence of identification of the classification of
the object, the neutral risk bias 1s associated with a non-biased
coniidence of identification of the classification of the object,
and the robust risk bias 1s associated with a lower confidence
of 1identification of the classification of the object.

In other examples, the method further includes generating
the plurality of fusion functions based on a base fusion func-
tion and one or more parameters.

In some examples, each of the fusion functions 1n the
plurality of fusion functions 1s different.

In other examples, the method further includes optimizing,
the risk bias associated with each of the fusion functions
based on a risk profile associated with one or more traiming
samples.

In some examples, the probability of 1dentification for each
set of Tused data 1s indicative of the identified object being a
target object.

In other examples, the received set of data comprising radar
signal data.

The risk management for object 1identification techniques
described herein can provide one or more of the following
advantages. An advantage of the technology 1s that the prob-
ability of accurate object 1dentification 1s bound by a confi-
dence interval which accounts for different levels of risk (also
referred to as risk bias), thereby increasing the confidence
level of the object 1dentification and reducing the risk asso-
ciated with the object identification. Another advantage of the
technology 1s the different levels of risk are related by non-
linear statistical coupling which models the degree of contfi-
dence of the identification, thereby optimizing the manage-
ment of the risk of the object 1dentification via the risk bias
difference between the different levels of risk.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following more particular descrip-
tion of the embodiments, as 1llustrated in the accompanying
drawings 1n which like reference characters refer to the same
parts throughout the different views. The drawings are not
necessarily to scale, emphasis mstead being placed upon
illustrating the principles of the embodiments.

FIG. 1 1s a diagram of an exemplary radar environment;

FIG. 2 1s a block diagram of an exemplary radar system;

FIG. 3 1llustrates a diagram of information cost function
with different risk biases;

FIG. 4 1llustrates a diagram of a performance of the risk
management techniques; and

FIG. 5 1s a flowchart of an exemplary radar process.

DETAILED DESCRIPTION

The risk management for object identification method and
apparatus includes technology that, generally, accounts and/
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or manages risk 1n decision and inference techniques for
object identification. The technology utilizes a generalized
information theoretic metric to account for influence of risk
and confidence 1n formulating a posterior probability and
making a maximum likelihood decision. The technology
advantageously enables improved decisions by providing
more informative output via multiple probability outputs.

The technology utilizes a degree of nonlinear statistical
coupling between classes defined by the probability. The
nonlinear coupling can be used to model the degree of nega-
tive risk or optimism (e.g., with a value of zero representing,
risk neutrality, with a predefined value representing a known
risk, etc.). The technology can utilize different fusion func-
tions (e.g., different techniques, different parameters, etc.) to
optimize the probability output with different levels of risk
(e.g., decisive probability, accurate probability, robust prob-
ability). In this example, the decisive and robust probabilities
provide confidence bounds on the accurate probability. The
different risk bias can be utilized to design decision logic
which accounts for risk levels (e.g., via a training sample, via
a test set, etc.).

The technology can be utilized for resource allocation
(e.g., human resource, electronic resource, physical resource,
military resource, medical resources, etc.) and/or planning,
(e.g., financial accounts, military planning, etc.) by improv-
ing the identification of the state of the object (also referred to
as the object classification). The state of the object can be any
type of classification (e.g., physical object classification,
image classification, medical classification, state of nature
classification, stock price classification, financial classifica-
tion, electronic classification, etc.). For example, for optical
character recognition, additional processing resources can be
allocated to the characters and/or words with the largest risk
bias difference to confirm the identification of the characters
and/or words. As another example, for airplane tracking,
tracking resources can be allocated to the airplanes with the
smallest risk bias difference of being a threat to allocate
defensive/otfiensive resources to track/intercept the airplanes.

In some examples, the technology can transmit the object
identification to control units. The control units can allocate
sensor and/or weapon resources and/or make shoot/no-shoot
decisions based on the 1dentifications and/or risk bias differ-
ence. For example, the technology can be utilized for target
object maps to assist exoatmospheric kill vehicles 1n on-board
decisions for disabling a threat (e.g., probability of an object
being a threat, probability of an object being a decoy, etc.).

FIG. 1 1s a diagram of an exemplary radar environment
100. The environment 100 includes a radar console 110, a
radar system 120, and a radar plattorm 130. A radar operator
115 views and/or tracks an object (1n this example, an airplane
142) utilizing the radar console 110. The radar system 120
tracks the airplane 142 at a plurality of times A 140q, B 1405
through 7 140z. The radar platform 130 transmits and/or
receives electromagnetic waves to track the object and/or a
plurality of other objects (not shown). For example, the radar
platform 130 transmits electromagnetic waves over a period
of time and receives the retlection of the electromagnetic
waves from the airplane 142 over the plurality of times A
140a, B 1405 through Z 140z. The radar platform 130 com-
municates data (e.g., digital representation of a radar reflec-
tion of the airplane 142, processed data representation of the
airplane 142, etc.) to the radar system 120.

The radar system 120 analyzes part or all of the received
data to manage the risk of object identification. The manage-
ment of the risk includes determining a risk bias difference
between the probabilities of i1dentification for sets of data
fused by at least two fusion functions, thereby advanta-
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4

geously increasing the confidence of object identification and
maximizing resource allocation. The utilization of different
fusion functions enables the technology to measure how
much risk 1s associated with the object identification by
smoothing out differences between overly optimistic prob-
abilities (robust), neutral probabilities, and/or pessimistic
probabilities (decisive). Table 1 illustrates exemplary risk
biases. Table 2 illustrates exemplary fusion functions.

TABL

L1

1

Exemplary Risk Biases

Risk Bias Confidence Scale (0-10)
Highly Decisive Highest Confidence of 0.0
Identification
Decisive Higher Confidence of 2.5
Identification
Neutral/Accurate/ Non-biased Confidence 5.0
Non-bias of Identification
Robust Lower Confidence of 7.5
Identification
Highly Robust Lowest Confidence of 10.0
Identification
TABLE 2
Exemplary Fusion Functions
Technique Parameters Confidence
Averaging NA Robust
Log-Averaging NA Neutral
Multiplying NA Decisive
Alpha-beta Alpha (a) = 0.0; Beta () = 1.0 Decisive
Alpha-beta Alpha (&) = 0.0; Beta () = 0.0 Neutral
Alpha-beta Alpha (a) = 1.0; Beta () = 0.0 Robust
K-product K=0 Neutral
K-product K=-1 Robust
K-product K=2 Decisive

Although FIG. 1 illustrates the plurality of times A 140a, B
1406 through 7 140z, the radar system 120 can utilize

received data from any number of times for the identification
of objects. Although FIG. 1 illustrates a radar platform 130,
the environment 100 can utilize any number of radar plat-
forms (e.g., ten radar platforms, one hundred radar platiorms,
etc.). For example, the radar system 120 canrecerve radar data
from any number of radar platforms for the same object or
different objects. In other examples, the radar platform 130
can include a plurality of radars and/or other types of sensor
devices (e.g., motion sensor, environmental sensor, heat sen-
sor, etc.).

FIG. 2 1s a block diagram of an exemplary radar system
210. The radar system 210 includes a communication module
211, an fusion function selection module 212, a data fusion
module 213, a probability of identification module 214, a risk
bias determination module 215, a fusion function generation
module 216, a parameter module 217, an input device 291, an
output device 292, a display device 293, a processor 294, and
a storage device 295. The modules and devices described
herein can, for example, utilize the processor 294 to execute
computer executable instructions and/or include a processor
to execute computer executable instructions (e.g., an encryp-
tion processing unit, a field programmable gate array process-
ing umit, etc.). It should be understood that the radar system
210 can include, for example, other modules, devices, and/or
processors known 1n the art and/or varieties of the illustrated
modules, devices, and/or processors.
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The communication module 211 receives the radar data
(e.g., radar signal data, from a radar platform, from an inter-
mediate radar processing device, from a storage device, etc.).
The communication module 211 communicates information
to/from the radar system 210. The communication module
211 can recerve, for example, information associated with a
radar platform. The information associated with the radar
platiorm can be associated with a data signal (e.g., data signal
from a radar platform, processed data signal from a radar
platform, data signal from a motion sensor, data signal {from a
global positioning system, data signal {rom a location system,
etc.).

The fusion function selection module 212 select at least
two fusion functions from a plurality of fusion functions.
Each of the fusion functions 1s associated with a different risk
bias (e.g., decisive, neutral, etc.). In some examples, the
fusion function selection module 212 determines the decisive
risk bias, the neutral risk bias, and the robust risk bias based
on probabilities of one or more training samples (e.g., stored
training samples, real-time training samples, etc.).

The data fusion module 213 fuses a recerved set of data
based on each fusion function to form at least two sets of
tused data. The probability of 1dentification module 214 gen-
erates a probability of identification of a classification of the
object based on each set of the fused data. The risk bias

[l

‘erence

determination module 215 determines a risk bias di

between the probability of i1dentification of each set of the
tused data. The fusion function generation module 216 gen-

erates the plurality of fusion functions based on a base fusion
function and one or more parameters (e.g., alpha-beta fusion

function and a first set of parameters, alpha-beta fusion func-
tion and a second set of parameters, etc.). In some examples,
the one or more parameters includes at least two sets of alpha
and beta parameter pairs.

The parameter module 217 determines at least two sets of
alpha and beta parameter pairs. Each alpha parameter 1s asso-
ciated with a fusion function. Each beta parameter 1s associ-
ated with a degree of expected independence of a received set
of data. The received set of data includes information associ-
ated with the classification of the object.

In other examples, the parameter module 217 defines the
associations between classifications of the object based on a
generalized mean between the probabilities of the one or
more training samples. In other examples, a first fusion func-
tion 1s associated with a decisive or robust risk bias and a
second fusion function 1s associated with a neutral risk bias.

In some examples, the decisive risk bias 1s associated with
a higher confidence of 1dentification of the classification of
the object, the neutral risk bias 1s associated with a non-biased
confidence of identification of the classification of the object,
and the robust risk bias 1s associated with a lower confidence
of 1identification of the classification of the object. The utili-
zation of the decisive risk bias, the neutral risk bias, and the
robust risk bias advantageously enables the technology to
measure the distance between these biases to determine the
risk of the neutral risk bias. For example, a large distance
between the biases can indicate disagreement between the
input references ol the object identification. As another
example, a small distance between the biases can indicate
agreement between the mput references of the object ident-
fication. Tables 3-4 1llustrate exemplary risk bias diflerences.
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TABL.

(Ll
(o

Exemplary Risk Bias Differences

Probability of Risk Bias
Technique Confidence  Identification Difference
Averaging Robust 75% 10%
Log-Averaging Neutral 85% NA
Multiplying Decisive 97% 12%

TABLE 4
Exemplary Risk Bias Dififerences

Probability of Risk Bias
Technique Confidence  Identification Difference
Alpha-beta; Decisive 99% 27%
Alpha (a) = 0.0;
Beta (p) =1.0
Alpha-beta; Neutral 72% NA
Alpha (a) = 0.0;
Beta (p) = 0.0
Alpha-beta; Robust 63% 9%
Alpha (a) = 1.0;
Beta (p) = 0.0

In other examples, the risk bias determination module 215
determines a risk bias difference between the probability of
identification of each set of the fused data and utilizes the risk
bias difference to determine neutral probabaility of identifica-
tion. For example, as illustrated i1n Table 5, the risk bias
determination module 2135 averages the risk bias difference of
the decisive risk bias and the robust risk bias to determine the
probability of identification (1n this example, 85%).

TABL.

(L]

D

Exemplarvy Risk Bias Differences

Probability of
Technique Confidence Identification
Alpha-beta; Alpha Decisive 100%
(a) =0.0; Beta (p) = 1.0
Alpha-beta; Alpha Robust 70%

(a) = 1.0; Beta (p) = 0.0

The input device 291 recerves information associated with
the radar system 210 (e.g., instructions from a user, 1nstruc-
tions from another computing device, etc.) from a user (not
shown) and/or another computing system (not shown). The
iput device 291 can include, for example, a keyboard, a
scanner, etc. The output device 292 outputs information asso-
ciated with the radar system 210 (e.g., information to a printer
(not shown), information to a speaker, etc.).

The display device 293 displays mformation associated
with the radar system 210 (e.g., status information, configu-
ration information, etc.). In some examples, the display
device 293 displays the probability of identification of the
classification of the object and/or any other information asso-
ciated with the radar system 210 to an operator. The processor
294 executes the operating system and/or any other computer
executable instructions for the radar system 210 (e.g.,
executes applications, etc.).
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The storage device 295 stores the received data (e.g., actual
radar data, processed radar data, etc.), the identifications,
and/or any other data associated with the radar system 210.
The storage device 295 can store image information and/or
any other data associated with the radar system 210. The
storage device 293 can include a plurality of storage devices
and/or the radar system 210 can include a plurality of storage
devices (e.g., a radar storage device, an 1dentification storage
device, etc.). The storage device 295 can include, for
example, long-term storage (e.g., a hard drive, a tape storage
device, flash memory, etc.), short-term storage (e.g., a ran-
dom access memory, a graphics memory, etc.), and/or any
other type of computer readable storage.

FIG. 3 illustrates a diagram 300 of the information cost
functions with ditfferent risk biases. The diagram 300 1llus-
trates the coupled-Surprisal as the information cost function
for a given posterior probability of a true event. As 1llustrated
in FIG. 3, the k value 1s the confidence or negative risk. For
k>0, the cost function stays finite and favors algorithms
which are decisive (confident); for k=0, the cost function 1s
equivalent to Shannon surprisal and 1s neutral; and for k<0,
the cost function goes to infinity faster and favors algorithms
which are robust (cautious). The average coupled-Surprisal
can be translated to back to a probabaility utilizing the inverse
of the coupled-Surprisal described herein and the result of the
translation 1s the generalized mean of probabilities

FI1G. 4 1llustrates a diagram 400 of a performance of the risk
management techniques. The diagram 400 illustrates the
comparison of three fusion algorithms optimized for risk
biases of k=-0.4 (robust), k=0 (neutral), k=0.5 (decisive).
The diagram 400 illustrates the generalized mean of the true
event probabilities as the confidence (negative risk) bias var-
1es from K=-2 to Kk=2. The decisive algorithm 1s optimal for
large values of kappa, but degrades quickly for negative val-
ues of kappa. The neutral algorithm 1s optimal for k=0 and
degrades 1n performance for negative kappa values more
gradually. The robust algorithm degrades in performance
more slowly and 1s optimal for small values of kappa.

FIG. 5 1s a flowchart of an exemplary radar process 500
utilizing, for example, the radar system 120 of FIG. 1. The
radar system 120 selects (510) at least two fusion functions
from a plurality of fusion functions. Each of the fusion func-
tions 1s associated with a different risk bias. The radar system
120 fuses (520) a received set of data based on each fusion
function to form at least two sets of fused data. The radar
system 120 generates (530) a probability of 1dentification of
the classification of the object based on each set of the fused
data. The radar system 120 determines (340) a risk bias dii-
terence between the probability of identification of each set of

the fused data.

In some examples, the radar system 120 optimizes (502)
the risk bias associated with each of the fusion functions
based on a risk profile associated with one or more training
samples. In other examples, the radar system 120 generates
(504) the plurality of fusion functions based on a base fusion
function and one or more parameters.

In some examples, each of the fusion functions in the
plurality of fusion functions 1s different. In other examples,
the probability of 1dentification for each set of fused data 1s
indicative of the identified object being a target object. In
some examples, the received set of data includes radar signal
data. Table 6 1llustrates exemplary identification and prob-
abilities.

10

15

20

25

30

35

40

45

50

55

60

65

8
TABL.

(Ll

6

Exemplary Identification and Probabilities

Probability of

Confidence Identification Identification
Decisive Missile Type TR4E 99%
Neutral Missile Type TR4E 85%
Robust Missile Type TR4E 83%

In other examples, the fusion functions are determined
using a configuration process (also referred to as a traiming,
process). The configuration process can use a large set of
training data for a test of the technology. The training data can
be utilized to determine the optimal values. The training data
can be, for example, collected from a true object and/or cre-
ated based on a model of a true object.

For example, various simulations utilizing a plurality of
static values for the fusion functions for each data input 1n the
training data. In this example, for each of these possible
technology configurations (i.e., each fusion function), the
technology 1s analyzed against metrics (e.g., Shannon Sur-
prisal, Brier score, etc.) to determine the optimal set of the
fusion functions for the technology configuration.

In some examples, the fusion function 1s calculated 1n
accordance with equation: If any |a.|<TOL

N
If ) w;<l
=1

W, =1
else
[N 181
Wj = ZWJ'
=1
(N \ Wi
Pw| | | Pei1xp™
=1 /
Plw; [ X1, X2, .0 ¥n) = —
_ N i
E P(L’Uk)(_l_ll Plw; | x;) J]
k=1 a :
else
N
V = ZWJ
=
N
If ) w;<1
=1
W, =V
else
W, = V&
r’l N \’E;i
Plwp)| 7 ) wiPlwi | x)*
L=l
Plw; | x1, X2, .o, Xy) = J

C T Wy T

1 N ay
Z P({Uk)(? Z WJP({U;{ |_xj)ﬂ-’k]

i=1
k=1 L
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whereas

X =Individual classifier execution to be combined

P(w,)=Prior probability of the i class

P(w,Ix,)=Posterior probability of the i” class for the j™
classifier execution, created without the use of prior prob-
abilities

P(w,IX,, ..., X,)=Posterior probability of the i’ class after
fusing classifier executions 1 through N

N=Number of classifier executions

C=Number of object classes

o, 3,=Input parameters that determine the type of combin-
ing, speciiied per class

w~=Weight associated with the i# classifier execution,

deftault value=1

TOL=tolerance
In some examples, the fusion function 1s calculated in
accordance with equation:

Q=

(N 3
P(wr)| ) wiPw; | x;)°
Wadl /

Plw; | x1, x2, ..., Xy) =

S

k=1 L

N _-117_
Py )[Z w; Pty | X_;)‘I]

f=1

whereas

x =Individual classifier execution to be combined

P(w,)=Prior probability of the i’ class

P(w,IX,)=Posterior probability of the i class for the j™
classifier execution, created without the use of prior prob-
abilities

P(w,IX,, ..., X,)=Posterior probability of the i’ class after
tusing classifier executions 1 through N

N=Number of classifier executions

W =Weight associated with the i classifier execution,
default value=1

The above-described systems and methods can be imple-
mented 1n digital electronic circuitry, in computer hardware,
firmware, and/or software. The implementation can be as a
computer program product. The implementation can, for
example, be 1n a machine-readable storage device, for execu-
tion by, or to control the operation of, data processing appa-
ratus. The implementation can, for example, be a program-
mable processor, a computer, and/or multiple computers.

A computer program can be written 1n any form of pro-
gramming language, including compiled and/or interpreted
languages, and the computer program can be deployed in any
form, including as a stand-alone program or as a subroutine,
clement, and/or other unit suitable for use 1 a computing
environment. A computer program can be deployed to be
executed on one computer or on multiple computers at one
site.

Method steps can be performed by one or more program-
mable processors executing a computer program to perform
functions of the invention by operating on input data and
generating output. Method steps can also be performed by
and an apparatus can be implemented as special purposelogic
circuitry. The circuitry can, for example, be a FPGA (field
programmable gate array) and/or an ASIC (application-spe-
cific imntegrated circuit). Subroutines and software agents can
refer to portions of the computer program, the processor, the
special circuitry, software, and/or hardware that implement
that functionality.

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
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purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor receives
instructions and data from a read-only memory or a random
access memory or both. The essential elements of a computer
are a processor for executing instructions and one or more
memory devices for storing instructions and data. Generally,
a computer can be operatively coupled to recerve data from
and/or transfer data to one or more mass storage devices for
storing data (e.g., magnetic, magneto-optical disks, or optical
disks).

Data transmission and instructions can also occur over a
communications network. Computer program products suit-
able for embodying computer program instructions and data
include all forms of non-volatile memory, including by way
ol example semiconductor memory devices. The computer
program products can, for example, be EPROM, EEPROM,
flash memory devices, magnetic disks, internal hard disks,
removable disks, magneto-optical disks, CD-ROM, and/or
DVD-ROM disks. The processor and the memory can be
supplemented by, and/or incorporated in special purpose
logic circuitry.

To provide for interaction with a user, the above described
techniques can be implemented on a computer having a dis-
play device. The display device can, for example, be a cathode
ray tube (CRT) and/or a liquid crystal display (LCD) monitor.
The interaction with a user can, for example, be a display of
information to the user and a keyboard and a pointing device
(e.g., a mouse or a trackball) by which the user can provide
input to the computer (e.g., interact with a user interface
clement). Other kinds of devices can be used to provide for
interaction with a user. Other devices can, for example, be
teedback provided to the user 1n any form of sensory feedback
(e.g., visual feedback, auditory feedback, or tactile feedback).
Input from the user can, for example, be received in any form,
including acoustic, speech, and/or tactile input.

The above described techniques can be implemented 1n a
distributed computing system that includes a back-end com-
ponent. The back-end component can, for example, be a data
server, a middleware component, and/or an application
server. The above described techniques can be implemented
in a distributing computing system that includes a front-end
component. The front-end component can, for example, be a
client computer having a graphical user interface, a Web
browser through which a user can interact with an example
implementation, and/or other graphical user interfaces for a
transmitting device. The components of the system can be
interconnected by any form or medium of digital data com-

munication (e.g., a communication network). Examples of
communication networks include a local area network
(LAN), a wide area network (WAN), the Internet, wired net-
works, and/or wireless networks.

The system can 1nclude clients and servers. A client and a
server are generally remote from each other and typically
interact through a communication network. The relationship
of client and server arises by virtue of computer programs
running on the respective computers and having a client-
server relationship to each other.

Packet-based networks can include, for example, the Inter-
net, a carrier iternet protocol (IP) network (e.g., local area
network (LAN), wide area network (WAN), campus area
network (CAN), metropolitan area network (MAN), home
area network (HAN)), a private IP network, an IP private
branch exchange (IPBX), a wireless network (e.g., radio
access network (RAN), 802.11 network, 802.16 network,
general packet radio service (GPRS) network, HiperLAN),
and/or other packet-based networks. Circuit-based networks
can include, for example, the public switched telephone net-
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work (PSTN), a private branch exchange (PBX), a wireless
network (e.g., RAN, bluetooth, code-division multiple access
(CDMA) network, time division multiple access (TDMA)
network, global system for mobile communications (GSM)
network), and/or other circuit-based networks.

The transmitting device can include, for example, a com-
puter, a computer with a browser device, a telephone, an IP
phone, a mobile device (e.g., cellular phone, personal digital
assistant (PDA) device, laptop computer, electronic mail
device), and/or other communication devices. The browser
device includes, for example, a computer (e.g., desktop com-
puter, laptop computer) with a world wide web browser (e.g.,
Microsoft® Internet Explorer® available from Microsoft
Corporation, Mozilla® Firefox available from Mozilla Cor-
poration). The mobile computing device includes, for
example, a Blackberry®.

Comprise, include, and/or plural forms of each are open
ended and 1nclude the listed parts and can include additional
parts that are not listed. And/or 1s open ended and includes
one or more of the listed parts and combinations of the listed
parts.

One skilled 1n the art will realize the ivention may be
embodied in other specific forms without departing from the
spirit or essential characteristics thereof. The foregoing
embodiments are therefore to be considered 1n all respects
illustrative rather than limiting of the imvention described
herein. Scope of the invention 1s thus indicated by the
appended claims, rather than by the foregoing description,
and all changes that come within the meaning and range of
equivalency of the claims are therefore intended to be
embraced therein.

What 1s claimed 1s:

1. A system for risk management for object identification,
the system comprising:

ONe Or MOore Processors;

a Tusion function selection module, using the one or more
processors, configured to select at least two fusion func-
tions from a plurality of fusion functions, each of the
fusion functions associated with a different risk bias:

a data fusion module, using the one or more processors,
configured to fuse a received set of data based on each
fusion function to form at least two sets of fused data;

a probability of identification module, using the one or
more processors, configured to generate a probability of
identification of a classification of the object based on
each set of the fused data; and

a risk bias determination module, using the one or more
processors, configured to determine a risk bias differ-
ence between the probability of identification of each set
of the fused data, wherein the risk bias difference 1s a
confidence 1nterval which accounts for different levels
of risk corresponding to the probability of identification
of the classification of the object.

2. The system of claim 1, further comprising a fusion
function generation module, using the one or more proces-
sors, configured to generate the plurality of fusion functions
based on a base fusion function and one or more parameters.

3. The system of claim 2, wherein the one or more param-
cters comprises at least two sets of alpha and beta parameter
pairs, and

the system further comprising a parameter module config-
ured to determine the least two sets of alpha and beta
parameter pairs, each alpha parameter associated with a
fusion function, each beta parameter associated with a
degree of expected imndependence of a received set of
data, and the received set of data comprising information
associated with the classification of the object.
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4. The system of claim 1, wherein a first fusion function 1s
associated with a decisive or robust risk bias and a second
fusion function 1s associated with a neutral risk bias.

5. The system of claim 4, wherein the fusion function
selection module, using the one or more processors, 1s further
configured to determine the decisive risk bias, the neutral risk
bias, and the robust risk bias based on probabilities of one or
more training samples.

6. The system of claim 5, wherein the parameter module,
using the one or more processors, 1s further configured to
define the associations between classifications of the object
based on a generalized mean between the probabilities of the
one or more training samples.

7. The system of claim 5, wherein the decisive risk bias 1s
associated with a higher confidence of identification of the
classification of the object, the neutral risk bias 1s associated
with a non-biased confidence of identification of the classifi-
cation of the object, and the robust risk bias 1s associated with
a lower confidence of identification of the classification of the
object.

8. A method for risk management for object 1dentification,
the method comprising:

selecting at least two fusion functions from a plurality of

fusion functions, each of the fusion functions associated
with a different risk bias;

fusing a received set of data based on each fusion function

to form at least two sets of fused data;
generating a probability of identification of the classifica-
tion of the object based on each set of the fused data; and

determiming a risk bias difference between the probability
of identification of each set of the fused data, wherein the
risk bias difference 1s a confidence interval which
accounts for different levels of risk corresponding to the
probability of identification of the classification of the
object.

9. The method of claim 8, further comprising generating,
the plurality of fusion functions based on a base fusion func-
tion and one or more parameters.

10. The method of claim 8, wherein each of the fusion
functions 1n the plurality of fusion functions 1s different.

11. The method of claim 8, further comprising optimizing
the risk bias associated with each of the fusion functions
based on a risk profile associated with one or more training
samples.

12. The method of claim 8, wherein the probability of
identification for each set of fused data 1s indicative of the
identified object being a target object.

13. The method of claim 8, wherein the received set of data
comprising radar signal data.

14. A non-transitory computer program product, tangibly
embodied 1n an information carrier, the computer program
product including instructions being operable to cause a data
processing apparatus to:

select at least two fusion functions from a plurality of

fusion functions, each of the fusion functions associated
with a different risk bias;

fuse a recerved set of data based on each fusion function to

form at least two sets of fused data;
generate a probability of 1dentification of the classification
of the object based on each set of the fused data; and

determine a risk bias difference between the probability of
identification of each set of the fused data, wherein the
risk bias difference 1s a confidence interval which
accounts for different levels of risk corresponding to the
probability of identification of the classification of the
object.
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