US008594335B1

a2y United States Patent (10) Patent No.: US 8.594,335 B1
Izhar et al. 45) Date of Patent: Nov. 26, 2013
(54) KEY VERIFICATION SYSTEM AND METHOD 7,769,176 B2* 82010 Watsonetal. 380/277
7,818,587 B2* 10/2010 Drewetal. 713/193
(75) Inventors: Amnon Izhar, Brookline, MA (US); 2003/00743 19 Al: 4/2003 Jaquetteocovovinnee. 705/51
John Carrel, West Roxbury, MA (US) 2004/0143733 Al 7/2004 Ophiretal. 713/153

OTHER PUBLICATIONS

(73) Assignee: EMC Corporation, Hopkinton, MA
(US) Freeman, William, and Ethan Miller. “Design for a Decentralized

Security System for Networked Attached Storage.” IEEE Sympo-

(*) Notice: Subject to any disclaimer, the term of this sium on Mass Storage Systems, 2000.*
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 1420 days. * cited by examiner
(21) Appl. No.: 11/864,054 Primary Examiner — laghi Aram
Assistant Examiner — Narciso Victoria
(22) Filed: Sep. 28, 2007 (74) Attorney, Agent, or Firm — Brian J. Colandreo; Mark

(51) H. Whittenberger; Holland & Knight LLP
51) Imt. Cl

HO4l 29/06 (2006.01) (57) ABSTRACT
(52) U.S. Cl. A method { duct. and data st i
USPC 380/279; 380/280; 380/277; 713/153 method, computer program product, and data storage sys

tem for associating an encryption key with each of a plurality
ol storage objects within a data storage system, thus defining
a plurality of encryption keys. Each of the plurality of encryp-
tion keys 1s appended to include a key identifier tag, thus
defining a plurality of tagged encryption keys. The key 1den-

(58) Field of Classification Search
USPC e e 380/279
See application file for complete search history.

(56) References Cited tifier tag included within each tagged encryption key identi-
U S. PATENT DOCUMENTS fies the storage object with which the tagged encryption key 1s
associated.
7,272,727 B2* 9/2007 Mimatsuoeee. 713/193
7,362,868 B2* 4/2008 Madoukhetal. 380/277 14 Claims, 3 Drawing Sheets
24
42 client -
S— | DA 3 application
| s '~. / k%j\\)
T 48
o, S — T I) = I A
e Uy By
(R E L e
——— : WAP
client N eg‘
application 10
26 key >
verification
process
| f : data
« | management
application ™~
20
66
64
)
cellular
network / 20
bridge client |) network (18)

application

client
application)

US 8,594,335 B1

Sheet 1 of 3

Nov. 26, 2013

U.S. Patent

. .., . — .
= Y FIEY -
gl s
N b PApTi. s - iy
5y == B B d
e e e rEl on P ..,_..F-m.. o 3
A e o, b 1]
e TR R HIC MY T o .
e e e e - w N
P A A ¥ it
bl Sl O gl L el T s
. .”....l. LTALT L e AP Serre L - he
VEL . _.":._y. #m.m..m_.. ey CD_ mU— aa m
- | e R o cir HE
R A L A W]) -
B SRR - R G
“.u.... [P S Xl l.... ...l..l..uu...“..nu.-....d.“. #: ﬁ _ _ O
-

n .

uoiesydde

(81) dompau | e abpua

-
'S - - L]
»

'-

[MIOMIBU Ok By .

lllllll

......
lllllllllll
p®

»
1._-.. - » r ll.l
-
llllllll - W .l.- .-.- .»I l.-_I i....ll_ll.._-..._..l.l.
"

., I“L. Ii r I - .“ l.il..l.l.l.l

-
*
-

- & r a]] -
o - r - * F——
llllllllllll |I] . a 2 ._.l_...
[4 L - L a =
- mT - '] -
.ll.._...l.ll_.l..l..lll_ " . - L] ' ll
-_ -
T r
-]
- "
[] “a
-
. - L “a_ W
" L. - -,
L]
" L -

02 >
uonedidde

Juswabeuew D
ejep 1 @ = \H\V
n
-

ssaooud
UOIBDIJLIDA

Ad)H o7
oL . 09 uonesijdde
a4 Ul

T

‘---------"-‘

J

-
¥

-
- - -
lllllllllll
€ [8
= " -

L]
....

- r :
- |
- . M

L]
LR 4

-
""""

lllllll

- -
iiiiiiiiiiiiii

lllll
llllllllll
i]

aT
llllllllllll
L]

O uotiedndde 95
U2

US 8,594,335 B1

Sheet 2 of 3

Nov. 26, 2013

U.S. Patent

e

“
e
'__l.

h.
L A B A A A B B B N N B R ERDEJE N JLELRLNEDRJ].

145"

“~{ aInpow ont |

¢ Ol

901 Ol

A%

SINPON O/l

Alowal a|npouwl
ayoeo 10ssa20.d

—_— 9t

el

ssao0.4d
1abeurw

Aa)

Oi1

cOl

—

INPOIN O/

801

NG

001

SINPOW O/l

US 8,594,335 B1

Sheet 3 of 3

Nov. 26, 2013

U.S. Patent

ejep
pajsanbal jJdAioap

|

e}ep palsanbal ulelgo

1

9.l

921nos saynuapi bey

laynuapl Ay WILUOD .J

|

921N0S
10} Aoy uondAuoua
pabbe) uteyqo

e

bLi

~

cll

|
100lgo abeiols
22.n0s Ajljuapl

~

0L1L

Blep palols
10} 1sanbal anla0al

891

€ Old

Bjep PaAIDO3) 210)S

elep panladai jJdAous

)

oL

uoneunssp
saynuspt bHey

l[ynuapr Asy wuuoD)

291

)

LolieulsSap
10} A9y uondAisus
pabbel uielqo

T

103[qo abeio)s

uoneunsap Ajuspl [

D310)S
3Qq O} Bjep SAI993)

8G1L

95|

Aay uonidAuous

pabbe) yoea ydAIoua
¥G1

Aoy uoitdAous yoes
0} be; Asy puadde

» rA]

yo8lqo
abelols yoea yum Aoy

uondAuous a)einosse
0GlL

US 8,594,335 Bl

1
KEY VERIFICATION SYSTEM AND METHOD

TECHNICAL FIELD

This disclosure relates to data storage systems and, more
particularly, to encrypted data storage systems.

BACKGROUND

Centralized data storage systems, such as network attached
storage devices, may use a plurality of disk drives and a
plurality of I/O modules to increase data throughput and to
provide for redundancy in the event of a disk drive failure
and/or an I/O module failure. In order to protect the data
included within these centralized data storage systems, data
encryption methodologies may be utilized. For example, one
or more data encryption keys may be used to encrypt and
decrypt various data portions stored within the centralized
data storage system.

Unfortunately, the use of multiple encryption keys may
allow for the use of an incorrect encryption key. For example,
encryption key “A” may be incorrectly used to encrypt data
that should have been encrypted using encryption key “B”.
Unfortunately, at sometime 1n the future when the system
attempts to decrypt the data using encryption key “B”, the
decryption step may fail due to the use of the incorrect
encryption key. Depending on the strength of the encryption,
this may result in the data being unrecoverable.

SUMMARY OF DISCLOSUR

L1

In a first implementation, a method includes associating an
encryption key with each of a plurality of storage objects
within a data storage system, thus defimng a plurality of
encryption keys. Each of the plurality of encryption keys 1s
appended to include a key identifier tag, thus defining a plu-
rality of tagged encryption keys. The key identifier tag
included within each tagged encryption key identifies the
storage object with which the tagged encryption key 1s asso-
ciated.

One or more of the following features may be included.
Each of the tagged encryption keys may be encrypted to
define a plurality of encrypted tagged encryption keys.

Data to be stored within the data storage system may be
received. A destination storage object for storing the received
data may be 1dentified. The destination storage object may be
chosen from the plurality of storage objects.

The tagged encryption key associated with the destination
storage object may be obtained. The key identifier tag
included within the obtained tagged encryption key may be
confirmed to identily the destination storage object. The
received data may be encrypted using the obtained tagged
encryption key. The recerved data may be stored within the
destination storage object.

A request for data previously stored within the data storage
system may be received. A source storage object in which the
requested data 1s stored may be identified. The source storage
object may be chosen from the plurality of storage objects.

The tagged encryption key associated with the source stor-
age object may be obtaimned. The requested data may be
obtained from the source storage object. The key 1dentifier tag
included within the obtained tagged encryption key may be
confirmed to identily the source storage object. The requested
data may be decrypted using the obtained tagged encryption
key.

At least one of the storage objects may define a portion of
a hard disk drive.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

In another implementation, a computer program product
resides on a computer readable medium that has a plurality of
instructions stored on 1t. When executed by a processor, the
instructions cause the processor to perform operations includ-
ing associating an encryption key with each of a plurality of
storage objects within a data storage system, thus defining a
plurality of encryption keys. Each of the plurality of encryp-
tion keys 1s appended to include a key identifier tag, thus
defining a plurality of tagged encryption keys. The key 1den-
tifier tag included within each tagged encryption key identi-
fies the storage object with which the tagged encryption key 1s
associated.

One or more of the following features may be included.
Each of the tagged encryption keys may be encrypted to
define a plurality of encrypted tagged encryption keys.

Data to be stored within the data storage system may be
received. A destination storage object for storing the received
data may be identified. The destination storage object may be
chosen from the plurality of storage objects.

The tagged encryption key associated with the destination
storage object may be obtained. The key identifier tag
included within the obtained tagged encryption key may be
confirmed to identily the destination storage object. The
received data may be encrypted using the obtained tagged
encryption key. The recerved data may be stored within the
destination storage object.

A request for data previously stored within the data storage
system may be received. A source storage object in which the
requested data 1s stored may be 1dentified. The source storage
object may be chosen from the plurality of storage objects.

The tagged encryption key associated with the source stor-
age object may be obtained. The requested data may be
obtained from the source storage object. The key identifier tag
included within the obtained tagged encryption key may be
confirmed to identily the source storage object. The requested
data may be decrypted using the obtained tagged encryption
key.

At least one of the storage objects may define a portion of
a hard disk drive.

In another implementation, a data storage system 1s con-
figured to perform operations comprising associating an
encryption key with each of a plurality of storage objects
within a data storage system, thus defining a plurality of
encryption keys. Each of the plurality of encryption keys 1s
appended to 1iclude a key identifier tag, thus defining a plu-
rality of tagged encryption keys. The key identifier tag
included within each tagged encryption key identifies the
storage object with which the tagged encryption key 1s asso-
ciated.

One or more of the following features may be included.
Each of the tagged encryption keys may be encrypted to
define a plurality of encrypted tagged encryption keys.

Data to be stored within the data storage system may be
received. A destination storage object for storing the recerved
data may be 1dentified. The destination storage object may be
chosen from the plurality of storage objects.

The tagged encryption key associated with the destination
storage object may be obtained. The key identifier tag
included within the obtained tagged encryption key may be
confirmed to identily the destination storage object. The
received data may be encrypted using the obtained tagged
encryption key. The recerved data may be stored within the
destination storage object.

A request for data previously stored within the data storage
system may be recerved. A source storage object in which the
requested data 1s stored may be 1dentified. The source storage
object may be chosen from the plurality of storage objects.

US 8,594,335 Bl

3

The tagged encryption key associated with the source stor-
age object may be obtaimned. The requested data may be
obtained from the source storage object. The key 1dentifier tag
included within the obtained tagged encryption key may be
confirmed to 1dentily the source storage object. The requested
data may be decrypted using the obtained tagged encryption
key.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features and advantages will become apparent from the
description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagrammatic view of a computing device
including a data storage system executing a key verification
process;

FI1G. 2 15 a detailed view of the data storage system of FIG.
1; and

FIG. 3 1s a flowchart of a process executed by the data
storage system of FIG. 1.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring to FIG. 1, there 1s shown key verification process
10 that may reside on and may be executed by data storage
system 12, which may be connected to network 14 (e.g., the
Internet or a local area network). Examples of data storage
system 12 may include, but are not limited to: a personal
computer, a server computer, a series of server computers, a
mim computer, and a mainframe computer. Data storage sys-
tem 12 may be a web server (or a series of servers) running a
network operating system, examples of which may include
but are not limited to: Microsoft Windows XP Server™;
Novell Netware™; or Redhat Linux™, for example.

As will be discussed below 1n greater detail, key verifica-
tion process 10 may associate an encryption key with each of
a plurality of storage objects within e.g., data storage system
12. Each of the encryption keys may be appended to include
a key 1dentifier tag, wherein the key identifier tag included
identifies the storage object with which the tagged encryption
key 1s associated.

The instruction sets and subroutines of key verification
process 10, which may be stored on storage device 16 coupled
to data storage system 12, may be executed by one or more
processors (not shown) and one or more memory architec-
tures (not shown) incorporated 1nto data storage system 12.
Storage device 16 may include but 1s not limited to: a hard
disk drive; a tape drive; an optical drive; a RAID array; a
random access memory (RAM); and a read-only memory
(ROM).

Data storage system 12 may execute a web server applica-
tion, examples of which may include but are not limited to:
Microsoit IIS™, Novell Webserver™, or Apache Web-
server ™, that allows for HTTP (1.e., HyperText Transier Pro-
tocol) access to data storage system 12 via network 14. Net-
work 14 may be connected to one or more secondary
networks (e.g., network 18), examples of which may include
but are not limited to: a local area network; a wide area
network; or an intranet, for example.

Data storage system 12 may execute data management
application 20 that may allow for distributed access to data
stored within drive system 22. Examples of drive system 22
may include one or more RAID arrays. Key verification pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

cess 10 may be a stand alone application that interfaces with
data management application 20 or an applet/application that
1s executed within data management application 20.

The instruction sets and subroutines of data management
application 20, which may be stored on storage device 16
coupled to data storage system 12 may be executed by one or
more processors (not shown) and one or more memory archi-
tectures (not shown) incorporated into data storage system
12.

The 1nstruction sets and subroutines of client applications
24, 26, 28, 30 which may be stored on storage devices 32, 34,
36, 38 (respectively) coupled to client electronic devices 40,
42, 44, 46 (respectively), may be executed by one or more
processors (not shown) and one or more memory architec-
tures (not shown) incorporated 1nto client electronic devices
40, 42, 44, 46 (respectively). Examples of client applications
24, 26, 28, 30 may include but are not limited to a database
application, a word processing application, a spreadsheet
application, a graphics application, a design application, and
a file viewer application.

Storage devices 32, 34, 36, 38 may include but are not
limited to: hard disk drives; tape drives; optical drives; RAID
arrays; random access memories (RAM); read-only memo-
ries (ROM), compact flash (CF) storage devices, secure digi-
tal (SD) storage devices, and memory stick storage devices.
Examples of computing devices 40, 42, 44, 46 may include,
but are not limited to, personal computer 40, laptop computer
42, personal digital assistant 44, notebook computer 46, a
data-enabled, cellular telephone (not shown), and a dedicated
network device (not shown), for example. Using client appli-
cations 24, 26, 28, 30, users 48, 50, 52, 54 (respectively) may
access data management application 20 and the data stored
within drive system 22.

Users 48, 50, 52, 54 may access data management appli-
cation 20 directly through the device on which the client
application (e.g., client applications 24, 26, 28, 30) is being
executed, namely client electronic devices 40, 42, 44, 46, for
example. Users 48, 50, 52, 54 may access data management
application 20 directly through network 14 or through sec-
ondary network 18. Further, data storage system 12 (1.e., the
system that executes key verification process 10 and data
management application 20) may be connected to network 14
through secondary network 18, as illustrated with phantom
link line 56.

The various client electronic devices may be directly or
indirectly coupled to network 14 (or network 18). For
example, personal computer 40 1s shown directly coupled to
network 14 via a hardwired network connection. Further,
notebook computer 46 1s shown directly coupled to network
18 via a hardwired network connection. Laptop computer 42
1s shown wirelessly coupled to network 14 via wireless com-
munication channel 58 established between laptop computer
42 and wireless access point (1.e., WAP) 60, which 1s shown
directly coupled to network 14. WAP 60 may be, for example,
an IEEE 802.11a, 802.11b, 802.11¢g, Wi1-Fi, and/or Bluetooth
device that 1s capable of establishing wireless communication
channel 58 between laptop computer 42 and WAP 60. Per-
sonal digital assistant 44 1s shown wirelessly coupled to net-
work 14 via wireless communication channel 62 established
between personal digital assistant 44 and cellular network/
bridge 64, which 1s shown directly coupled to network 14.

As 1s known 1n the art, all of the IEEE 802.11x specifica-
tions may use Ethernet protocol and carrier sense multiple
access with collision avoidance (1.e., CSMA/CA) for path
sharing. The various 802.11x specifications may use phase-
shift keying (i.e., PSK) modulation or complementary code
keying (1.e., CCK) modulation, for example. As 1s known in

US 8,594,335 Bl

S

the art, Bluetooth 1s a telecommunications industry specifi-
cation that allows e.g., mobile phones, computers, and per-
sonal digital assistants to be interconnected using a short-
range wireless connection.

Client electronic devices 40, 42, 44, 46 may cach execute
an operating system, examples of which may include but are
not limited to Microsoft Windows™, Microsoft Windows
CE™,_ Redhat Linux™, or a custom operating system.

Key Verification Process

As discussed above, examples of client applications 24, 26,
28, 30 may include but are not limited to a database applica-
tion, a word processing application, a spreadsheet applica-
tion, a graphics application, a design application, and a file
viewer application. Users 48, 50, 52, 54 may use client appli-
cations 24, 26, 28, 30 to access data stored on drive system 22.
During use of client applications 24, 26, 28, 30, one or more
datafiles (e.g., data files 66) may be written to drive system 22
and/or one or more data files (e.g., data files 68) may be
retrieved from drive system 22.

In order to provide security concerning the data stored on
drive system 22, data files recerved from the various client
clectronic devices may be encrypted prior to being written to
drive system 22. For example, data files 66 may be encrypted
prior to being written to drive system 22. Further, data files
retrieved from drive system 22 may be decrypted prior to
being provided to the various client electronic devices. For
example, data files 68 may be decrypted prior to being pro-
vided to e.g. personal computer 40.

Referring also to FIG. 2 and for illustrative purposes, drive
system 22 1s shown to include four discrete drives, namely
disk drive 100, disk drive 102, disk drive 104, and disk drive
106. Additionally, drive system 22 1s shown to include four
I/O modules, namely I/O module 108, I/O module 110, I/O
module 112, and I/O module 114.

In this particular exemplary embodiment, I/O module 108
1s shown to be coupled to disk drives 100, 102; I/O module
110 1s shown to be coupled to disk drives 100, 102; I/O
module 112 1s shown to be coupled to disk drives 104, 106;
and I/O module 114 1s shown to be coupled to disk drives 104,
106.

In this particular example, multiple I/O modules (e.g. I/O
modules 108, 110) are shown to be coupled to each disk drive
(e.g. disk drive 100), and multiple disk drives (e.g. disk drives
100, 102) are shown to be coupled to each I/O module (I/O
module 108). By configuring parallel paths within drive sys-
tem 102, throughput may be increased and/or fault tolerance
may be achieved.

For example, through the use of two I/O modules (e.g. I/O
modules 108, 110) and two disk drives (e.g. disk drives 100,
102), throughput may be increased by striping data across
multiple disk drives (e.g. such as in a RAID O array). Addi-
tionally, the use of two I/O modules (e.g. I/O modules 108,
110) and two disk drives (e.g. disk drives 100, 102) may allow
data to be mirrored across multiple drives to enhance fault
tolerance (e.g. such as 1n a RAID 1 array). Additionally/
alternatively, the various drives included within drive system
22 may be configured 1n accordance with other RAID speci-
fications, such as RAID 3, RAID 5, RAID 10, and RAID 0+1.

When encrypting data files, various methodologies may be
utilized. For example, a single encryption key may be utilized
to encrypt all data on all drives included within drive system
22. For example, a single encryption key may be utilized to
encrypt all of the data stored on disk drives 100, 102, 104,
106. Alternatively and for illustrative purposes, a unique
encryption key may be utilized for each of the four disk
drives. Further and alternatively, a unique decryption key may
be utilized to encrypt data within a certain portion of a disk

10

15

20

25

30

35

40

45

50

55

60

65

6

drive. For illustrative purposes, assume that disk drives 100,
102, 104, 106 each include ten platters, each of which

includes two readable/writable surfaces (thus defimng e1ghty
storage objects). Accordingly, a unique encryption key may
be utilized for each of these eighty storage objects, thus
requiring eighty unique encryption keys to access all of the
data stored within drive system 22.

Reterring also to FIG. 3 and as discussed above, key veri-
fication process 10 may associate 150 an encryption key with
cach of a plurality of storage objects within e.g., data storage
system 12. Each of the associated encryption keys may be
appended 152 to include a key identifier tag, wherein the key
identifier tag identifies the storage object with which the
tagged encryption key 1s associated.

Specifically, the number of encryption keys required may
be decided by the required level of encryption granularity
(1.e., the number of storage objects) of data storage system 12.
As discussed above, a single encryption key may be used for
all disk drives within drive system 22. Alternatively, a single
encryption key may be used for each surface of each of the ten
platters included within a single disk drive.

An administrator (not shown) of data storage system 12
may define the level of encryption granularity utilized within
data storage system 12. Continuing with the above stated
example 1n which drive system 22 includes four discrete disk
drives (1.e., disk drive 100, disk drive 102, disk drive 104, disk
drive 106), assume for 1llustrative purposes that the adminis-
trator (not shown) decides to divide each of the four disk
drives into one-hundred storage objects, for a total of four-
hundred storage objects (1.e. for all four disk drives of drive
system 22).

The size/number of the individual storage objects into

which the disk drives of drive system 22 are divided may vary
depending upon e.g., application/performance requirements/
design criteria. For example, the individual disk drives may
be divided 1nto storage objects based upon disk sectors, disk
platters, disk tracks, and disk clusters. While this list 1s
intended to be 1llustrative, 1t 1s not intended to be all-inclusive.
Accordingly, other division criteria are considered to be
within the scope of this disclosure.

Continuing with the above-stated example 1n which each of
the four disk drives within drive system 22 1s divided into
one-hundred storage objects, the administrator (not shown)
may utilize key manager process 116 to generate one-hundred
unique encryption keys for each of the four disk drives.
Accordingly and as discussed above, key verification process
10 may associate 150 one of the one-hundred encryption keys
(for a particular disk drive) with each of the one-hundred
storage objects mto which that particular disk drive was
divided.

Each of the unique encryption keys generated maybe a
symmetric encryption key. Accordingly, the same encryption
key may be used to encrypt data prior to writing it to drive
system 22 and decrypt data retrieved from drive system 22.

An example of the manner 1n which key verification pro-
cess 10 associates 150 the one-hundred encryption keys of a
particular drive (e.g., disk drive 100) with the one-hundred
storage objects into which that disk drive was divided 1s as
follows:

Disk Drive 100

Encryption Key Associated Storage Object

Key 001
Key 002

Object 001
Object 002

US 8,594,335 Bl

7

-continued

Disk Drive 100

Encryption Key Associlated Storage Object
Key 003 Object 003
Key 004 Object 004
Key 097 Object 097
Key 098 Object 098
Key 099 Object 099
Key 100 Object 100

While the following discussion concerns the one-hundred
storage objects into which disk drive 100 1s divided and the
one-hundred encryption keys associated with each of the
one-hundred storage objects of disk drive 100, this 1s for
illustrative purposes only and 1s not intended to be a limitation
of this disclosure, as the following discussion may apply to
any of the disk drives included within drive system 22.

Once the one-hundred unique encryption keys are gener-
ated for disk drive 100, key verification process 10 may
append 152 a key 1dentifier tag to each of the one-hundred
encryption keys, resulting 1n the generation of one-hundred
tagged encryption keys. The key identifier tag included within
cach of the one-hundred tagged encryption keys may be a
plain text tag and may 1dentity the storage object within disk
drive 100 with which the tagged encryption key 1s associated.
For example, key verification process 10 may append each of
the one-hundred unique encryption keys as follows:

Disk Drive 100

Encryption Key Associated Storage Object

(TAGO01) Key 001 Object 001
(TAG002) Key 002 Object 002
(TAGO003) Key 003 Object 003
(TAG004) Key 004 Object 004
(TAG097) Key 097 Object 097
(TAG098) Key 098 Object 098
(TAG099) Key 099 Object 099
(TAG100) Key 100 Object 100

An example of an encryption key may be a 512 bit number
and an example of akey identifier tag may be a 128 bit number
that e.g. defines the specific storage object with which the
encryption key 1s associated. Alternate/additional informa-
tion may also be included within the key identifier tag.
Accordingly, when appending 152 each of the one-hundred
encryption keys to include a key identifier tag, the 512 bat
encryption key may be appended to include the 128 bit key
identifier tag at the beginning of the 512 bit encryption key.
Therefore, when processing the tagged encryption keys
(which are 640 bits long), the first 128 bits of the tagged
encryption key may be removed and processed as the key
identifier tag. Accordingly, the tagged encryption key for
storage object 001 of disk drive 100 may appear as follows:

10

15

20

25

30

35

40

45

50

55

60

65

Object 001 of Disk Drive 100

128 bit tag 512 bit encryption key

Key verification process 10 may encrypt 154 each of the
one-hundred tagged encryption keys to define a plurality of
encrypted tagged encryption keys. Specifically, when config-
uring data storage process 12, key verification process 10 may
generate (via key manager process 116) a public/private Key
Encryption Key (KEK) pair, which may be used to encrypt
cach of the above-described tagged encryption keys.

For example, once the above-described one-hundred
tagged encryption keys are generated, key verification pro-
cess 10 may encrypt 154 (via e.g., key manager process 116)
cach of the one-hundred tagged encryption keys using the
above-described public key of the KEK pair. As 1s known 1n
the art, once a public key 1s used to encrypt a piece of data, the
encrypted piece of data may only be decrypted using the
associated private key. Accordingly, when a tagged encryp-
tion key 1s encrypted using the public key of the KEK pair, the
encrypted tagged encryption key can only be decrypted using
the private key of the KEK pair.

Once each of the tagged encryption keys are encrypted 154
using the above-described public key of the KEK pair, key
verification process 10 may store the group of one-hundred
encrypted tagged encryption keys as a key table (e.g., key
table 118) within cache memory 120 of processor module
122. Cache memory 120 may be incorporated within the
individual microprocessors of processor module 122 or may
be external to the individual microprocessors of processor
module 122. Processor module 122 may be a multi-processor
module that may include a plurality of microprocessors (e.g.,
Intel Xenon™ microprocessors available from the Intel Cor-
poration of Santa Clara, Calif.).

Key verification process 10 may generate and store (within
cache memory 120) a unique key table for each of the I/O
modules. For example, key verification process 10 may gen-
crate key table 118 for I/O module 108; key verification
process 10 may generate key table 124 for I/O module 110;
key verification process 10 may generate key table 126 for I/O
module 112; and key verification process 10 may generate
key table 128 for I/O module 114.

As discussed above, key verification process 10 may gen-
crate (via key manager process 116) a public/private Key
Encryption Key (KEK) pair for encrypting 154 each of the
above-described tagged encryption keys that are included
within key table 118. For security purposes, a umique KEK

pair may be generated by key verification process 10 for each
of the key tables (e.g., key tables 118, 124, 126, 128) utilized

by each of I/O modules 108, 110, 112, 114 (respectively).
Accordingly, key verification process 10 may store: private
KEK 130 (for key table 118/1/0O module 108); private KEK
132 (for key table 124/1/0O module 110); private KEK 134 (for
key table 126/1/0 module 112); and private KEK 136 (for key
table 128/1/0 module 114), within cache memory 120.

As will be discussed below 1n greater detail, upon receiving
data to be stored within a storage object of a disk drive (e.g.,
disk drive 100), the I/O module assigned to the disk drive may
obtain the appropnate private KEK (e.g., private KEK 130)
from cache memory 120 so that the associated tagged encryp-
tion key may be decrypted (e.g., using private KEK 130), thus
allowing the received data to be encrypted (e.g., using the
decrypted tagged encryption key) prior to writing the
received data to e.g., disk drive 100.

US 8,594,335 Bl

9

Assume for illustrative purposes that data files 66 are
received 156 (via e.g. network 14) by processor module 122
for storage within data storage system 12. Key verification
process 10 may 1dentify 158 a destination storage object for
storing recerved data files 66. Specifically, processor module
122 of data storage system 12 may be configured to identily
158 a particular storage object within a particular disk drive
(e.g., ol drive system 22) for storing data file 66. Accordingly,
assume for illustrative purposes that processor module 122
selects “Storage Object 004” of disk drive 100 for storing data
files 66.

Upon 1dentifying 158 “Storage Object 004™ of disk drive
100 as the destination storage object of data files 66, proces-
sor module 122 may provide data files 66 to I/O module 108
for storage within “Storage Object 004” of disk drive 100. As
discussed above, drive system 22 may utilize multiple I/O
modules for each disk drive. For illustrative purposes, disk

drive 100 1s shown to be coupled to I/O modules 108, 110.

Accordingly, while 1n this example, data files 66 are described
as being provided to I/O module 108, this assumes that /O
module 108 1s functioning (1.¢., has not failed). In the event of

a failure of I/O module 108, control of disk drive 100 may be
assumed by I/O module 110. Accordingly, 1n the event of such
a failure, data files 66 may be provided to I/O module 110.
In addition to providing data files 66 to I/O module 108,
processor module 122 may also provide to I/O module 108

designation instructions concerning where to store data files
66 (namely “Storage Object 004 of disk drive 100). Upon

receiving data files 66 and the above-described designation
istructions, key verification process 10 may obtain 160 the
tagged encryption key associated with the destination storage
object (e.g., “Storage Object 004” of disk drive 100). Specifi-
cally, I/O module 108 of drive system 22 may obtain the
appropriate encryption key so that data file 66 may be
encrypted prior to being stored within “Storage Object 004”
of disk drive 100.

When obtaining 160 the appropriate tagged encryption
key, I/'O module 108 may request from processor module 122
the appropriate encrypted tagged encryption key stored
within cache memory 120. Specifically, I/O module 108 may
request the appropriate encrypted tagged encryption key from
key table 118 stored within cache memory 120. As shown in
the above-illustrated representation of key table 118, the
appropriate encrypted tagged encryption key may appear as
follows:

Object 004 of Disk Drive 100

Key 004 (TAGO04) Object 004

As 1llustrated above, the appropriate encrypted tagged
encryption key for “Storage Object 004 of disk drive 100 1s
shown to include tag “TAGO004”. Upon recewving this
encrypted tagged encryption key for “Storage Object 004” of
disk drive 100 from processor module 122, I/O module 108
may decrypt the encrypted tagged encryption key (using pri-
vate KEK 130 stored within cache memory 120) to generate
the appropnate tagged encryption key. Being that the tagged
encryption key includes a key identifier tag (e.g. TAG004),
once the encrypted tagged encryption key 1s decrypted, key
verification process 10 may confirm 162 that the key identifier
tag (e.g. TAGO04) included within the obtained tagged
encryption key identifies the destination storage object (e.g.,
“Storage Object 004” of disk drive 100).

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Specifically, I/O module 108 may compare the key 1denti-
fier tag (e.g. TAGO004) actually included within the tagged
encryption key with the key identifier tag that 1s expected to
be within the tagged encryption key. In order to determine
what key identifier tag 1s expected to be within the tagged
encryption key, I/O module 108 may e.g. examine key table
118 stored within cache memory 120 of processor module
122. Upon examining key table 118, I/O module 108 waill
determine that the key 1dentifier tag expected to be within the
decrypted tagged encryption key 1s TAG004. Upon perform-
ing the above-described comparison, I/O module 108 may
confirm 162 that the expected key identifier tag and the actual
key identifier tag match.

Accordingly, by confirming 162 that the actual and
expected key 1dentifier tags match, I/O module 108 1s also
confirming that processor module 122 provided I/O module
108 with the appropriate tagged encryption key. Specifically
and for example, assume that when I/O module 108 obtained
160 the tagged encryption key for “Storage Object 004 of
disk drive 100, processor module 122 incorrectly provided
I/O module 108 with the tagged encryption key for “Storage
Object 003” of disk drive 100. Upon I/O module 108 decrypt-
ing the encrypted tagged encryption key for “Storage Object
003 of disk drive 100 (using private KEK 130 stored within
cache memory 120), the tagged encryption key generated
would include the key 1dentifier tag TAGOO03 (as shown in the
above-illustrated representation of key table 118). Accord-
ingly, when I/O module 108 compares the key identifier tag
(e.g. TAGO003) actually included within the tagged encryption
key with the key 1dentifier tag (e.g. TAG004) expected to be
included within the tagged encryption key, the comparison
would fail. Theretfore, key verification process 10 could not
coniirm 162 that the key identifier tag (e.g. TAG003) included
within the obtained tagged encryption key identifies the des-
tination storage object (e.g., “Storage Object 004” of disk
drive 100), thus indicating that e.g., the tagged encryption key
provided by processor module 122 to I/O module 108 was e.g.
corrupt or mncorrect.

Moving forward on the assumption that key verification
process 10 confirmed 162 that the key identifier tag (e.g.
TAGO004) included within the obtained tagged encryption key
properly 1dentifies the destination storage object (e.g., “Stor-
age Object 004” of disk drive 100), key verification process
10 may encrypt 164 data files 66 using the obtained tagged
encryption key, thus generating encrypted data that 1s stored
166 within the destination storage object (e.g., “Storage
Object 004” of disk drive 100).

Once data 1s stored within data storage system 12, the
stored datamay be subsequently retrieved for lateruse by e.g.,
client applications 24, 26, 28, 30. Accordingly, client appli-
cations 24, 26, 28, 30 may request data (e.g. data files 68)
previously stored within data storage system 12. Accordingly,
key verification process 10 may receive 168 a request for data
previously stored within data storage system 12 from one or
more of client applications 24,26, 28, 30. Uponreceiving 168
such a request, key verification process 10 may identity 170
the source storage object in which the requested data (e.g.
data files 68) 1s stored.

Specifically, processor module 122 of data storage system
12 may be configured to i1dentity 170 a particular storage
object within a particular disk drive (e.g., of drive system 22)
within which the requested files (e.g., data files 68) were
previously stored. As discussed above, processor module 122
of data storage system 12 may be configured to identity 158 a
particular storage object within a particular disk drive for
storing various data files. Accordingly, processor module 122
knows the location of the various data files stored within the

US 8,594,335 Bl

11

various storage objects of data storage device 12. Accord-
ingly, as data files 68 were previously stored by processor
module 122, processor module 122 knows the location of data
files 68 when processor module 122 receives the above-de-
scribed request.

Assume for illustrative purposes that processor module

122 i1dentifies 170 the source storage object as “Storage
Object 098 of disk drive 100 (1.¢., the storage object in which

data files 68 were previously stored).

Upon processor module 122 identifying 170 the source
storage object as “Storage Object 098" of disk drive 100, key
verification process 10 may obtain 172 the tagged encryption
key associated with the source storage object (e.g., “Storage
Object 098 of disk drive 100). Specifically, /O module 108
of drive system 22 may obtain the appropriate encryption key
so that data file 68 may be decrypted prior to being provide to
the requestor of data file 68.

When obtaining 172 the appropriate tagged encryption
key, I/O module 108 may request from processor module 122
the appropriate encrypted tagged encryption key stored
within cache memory 120. Specifically, I/O module 108 may
request the appropriate encrypted tagged encryption key from
key table 118 stored within cache memory 120. As shown in
the above-illustrated representation of key table 118, the
appropriate encrypted tagged encryption key may appear as
follows:

Object 098 of Disk Drive 100

Key 098 (TAGO098) Object 098

As 1llustrated above, the appropriate encrypted tagged
encryption key for “Storage Object 098" of disk drive 100 1s
shown to include tag “TAGO098”. Upon recewving this
encrypted tagged encryption key for “Storage Object 098" of
disk drive 100 from processor module 122, I/O module 108
may decrypt the encrypted tagged encryption key (using pri-
vate KEK 130 stored within cache memory 120) to generate
the appropriate tagged encryption key. Being that the tagged
encryption key includes a key identifier tag (e.g. TAG0O98),
once the encrypted tagged encryption key 1s decrypted, key
verification process 10 may confirm 174 that the key identifier
tag (e.g. TAGO98) included within the obtained tagged
encryption key properly 1dentifies the source storage object
(e.g., “Storage Object 098" of disk drive 100).

Specifically, I/O module 108 may compare the key ident-
fier tag (e.g. TAGO98) actually included within the tagged
encryption key with the key identifier tag that 1s expected to
be within the tagged encryption key. As discussed above, in
order to determine what key 1dentifier tag 1s expected to be
within the tagged encryption key, I/O module 108 may e.g.
examine key table 118 stored within cache memory 120 of
processor module 122. Upon examining key table 118, 1/O
module 108 may determine that the key identifier tag
expected to be within the decrypted tagged encryption key 1s
TAGO98. Upon performing the above-described comparison,
I/0 module 108 may confirm 174 that the expected key 1den-
tifier tag and the actual key 1dentifier tag match.

Again and as discussed above, by confirming 174 that the
actual and expected key 1dentifier tags match, I/O module 108
1s also confirming that processor module 122 provided I/O
module 108 with the appropriate tagged encryption key.
Accordingly and for the reasons discussed above, 11 processor
module 122 had incorrectly provided I/O module 108 with the
tagged encryption key for “Storage Object 099 of disk drive

10

15

20

25

30

35

40

45

50

55

60

65

12

100, the above described comparison (of actual and antici-
pated key tag 1identifiers) would fail, thus indicating that e.g.,
the tagged encryption key provided by processor module 122
to I/O module 108 was e.g. corrupt or incorrect.

Moving forward on the assumption that key verification
process 10 confirmed 174 that the key identifier tag (e.g.
TAGO098) included within the obtained tagged encryption key
properly 1dentifies the source storage object (e.g., “Storage
Object 098" of disk drive 100), key verification process 10
may obtain 176 the requested data files (e.g., data files 68)
from e.g., “Storage Object 098” of disk drive 100) and may
decrypt 178 the requested data files prior to providing the
requested data files to the requestor

A number of implementations have been described. Nev-
ertheless, 1t will be understood that various modifications
may be made. Accordingly, other implementations are within
the scope of the following claims.

What 1s claimed 1s:

1. A method comprising;:

assoclating an encryption key with each of a plurality of

storage objects within a data storage system, thus defin-
ing a plurality of encryption keys;

appending each of the plurality of encryption keys to

include a key identifier tag, thus defimng a plurality of
tagged encryption keys, wherein the key identifier tag
included within each tagged encryption key identifies
the storage object with which the tagged encryption key
1s associated, wherein each of the storage objects are
associated with one or more of a disk sector, disk platter,
disk track, and disk cluster;

generating a key table for one or more mput/output mod-

ules (I/0 modules), each of the one or more I/O modules
coupled to a plurality of disk drives associated with the
data storage system:;

recerving data to be stored within the data storage system;

identifying a destination storage object for storing the

received data, wherein the destination storage object 1s
chosen from the plurality of storage objects;

obtaining the tagged encryption key associated with one of

the plurality of the destination storage objects from the
key table;

confirming that the key identifier tag included within the

obtained tagged encryption key identifies the destination
storage object;

encrypting the received data using the obtained tagged

encryption key; and

storing the received data within the destination storage

object.

2. The method of claim 1 further comprising;:

encrypting each of the tagged encryption keys to define a

plurality of encrypted tagged encryption keys.

3. The method of claim 1 further comprising;:

receving a request for data previously stored within the

data storage system;

identifying a source storage object in which the requested

data 1s stored, wherein the source storage object 1s cho-
sen from the plurality of storage objects; and

obtaining the tagged encryption key associated with the

source storage object.

4. The method of claim 3 further comprising;:

obtaining the requested data from the source storage

object;

confirming that the key i1dentifier tag included within the

obtained tagged encryption key identifies the source
storage object; and

decrypting the requested data using the obtained tagged

encryption key.

US 8,594,335 Bl

13

5. The method of claim 1 wherein at least one of the storage
objects defines a portion of a hard disk drive.

6. A computer program product residing on a non-transi-
tory computer readable medium having a plurality of instruc-
tions stored thereon which, when executed by a processor,
cause the processor to perform operations comprising:

associating an encryption key with each of a plurality of

storage objects within a data storage system, thus defin-
ing a plurality of encryption keys;

appending each of the plurality of encryption keys to

include a key identifier tag, thus defining a plurality of
tagged encryption keys, wherein the key identifier tag
included within each tagged encryption key identifies
the storage object with which the tagged encryption key
1s associated, wherein each of the storage objects are
associated with one or more of a disk sector, disk platter,
disk track, and disk cluster;

generating a key table for one or more mput/output mod-

ules (I/0 modules), each of the one or more I/O modules
coupled to a plurality of disk drives associated with the
data storage system:;

receiving data to be stored within the data storage system:;

identifying a destination storage object for storing the

received data, wherein the destination storage object 1s
chosen from the plurality of storage objects;

obtaining the tagged encryption key associated with one of

the plurality of the destination storage objects from the
key table;

confirming that the key identifier tag included within the

obtained tagged encryption key identifies the destination
storage object;

encrypting the received data using the obtained tagged

encryption key; and

storing the recerved data within the destination storage

object.

7. The computer program product of claim 6 further com-
prising instructions for:

encrypting each of the tagged encryption keys to define a

plurality of encrypted tagged encryption keys.

8. The computer program product of claim 6 further com-
prising instructions for:

receiving a request for data previously stored within the

data storage system;

identifying a source storage object 1n which the requested

data 1s stored, wherein the source storage object 1s cho-
sen from the plurality of storage objects; and

obtaining the tagged encryption key associated with the

source storage object.

9. The computer program product of claim 8 further com-
prising instructions for:

obtaining the requested data from the source storage
object;
confirming that the key identifier tag included within the
obtained tagged encryption key identifies the source

storage object; and

decrypting the requested data using the obtained tagged

encryption key.

10. The computer program product of claim 6 wherein at
least one of the storage objects defines a portion of a hard disk
drive.

10

15

20

25

30

35

40

45

50

55

14

11. A data storage system configured to perform operations
comprising;

associating an encryption key with each of a plurality of

storage objects within a data storage system, thus defin-
ing a plurality of encryption keys;

appending each of the plurality of encryption keys to

include a key identifier tag, thus defimng a plurality of
tagged encryption keys, wherein the key i1dentifier tag
included within each tagged encryption key identifies
the storage object with which the tagged encryption key
1s associated, wherein each of the storage objects are
associated with one or more of a disk sector, disk platter,
disk track, and disk cluster;

generating a key table for one or more mput/output mod-

ules (I/0 modules), each of the one or more I/O modules
coupled to a plurality of disk drives associated with the
data storage system:;

recerving data to be stored within the data storage system;

identifying a destination storage object for storing the

received data, wherein the destination storage object 1s
chosen from the plurality of storage objects;

obtaining the tagged encryption key associated with one of

the plurality of the destination storage objects from the
key table;

confirming that the key i1dentifier tag included within the

obtained tagged encryption key identifies the destination
storage object;

encrypting the received data using the obtained tagged

encryption key; and

storing the recerved data within the destination storage

object.

12. The data storage system of claim 11, wherein the data
storage system 1s further configured to perform operations
comprising:

encrypting each of the tagged encryption keys to define a

plurality of encrypted tagged encryption keys.

13. The data storage system of claim 11, wherein the data
storage system 1s further configured to perform operations
comprising;

receving a request for data previously stored within the

data storage system;

identifying a source storage object in which the requested

data 1s stored, wherein the source storage object 1s cho-
sen from the plurality of storage objects; and

obtaining the tagged encryption key associated with the

source storage object.

14. The data storage system of claim 13, wherein the data
storage system 1s further configured to perform operations
comprising:

obtaining the requested data from the source storage

object;

confirming that the key identifier tag included within the

obtained tagged encryption key identifies the source
storage object; and

decrypting the requested data using the obtained tagged
encryption key.

	Front Page
	Drawings
	Specification
	Claims

