12 United States Patent

Mora et al.

US008589604B2

US 8,589,604 B2
Nov. 19, 2013

(10) Patent No.:
45) Date of Patent:

(54) INCREASED SPEED OF PROCESSING OF
DATA RECEIVED OVER A
COMMUNICATIONS LINK

(71) Applicant: Apple Inc., Cupertino, CA (US)

(72) Inventors: Matthew Xavier Mora, Fremont, CA
(US); Niel D. Warren, Soquel, CA (US)

(73) Assignee: Apple Inc., Cupertino, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/717,505

(22) Filed: Dec. 17, 2012
(65) Prior Publication Data
US 2013/0184842 Al Jul. 18, 2013

Related U.S. Application Data

(63) Continuation of application No. 13/252,106, filed on
Oct. 3, 2011, now Pat. No. 8,335,874, which 1s a
continuation of application No. 11/279,866, filed on

Apr. 14, 2006, now Pat. No. 8,032,672.

(51) Int.CL

GO6F 3/00 (2006.01)

GO6I 5/00 (2006.01)
(52) U.S. CL

USPC e, 710/52; 700/94; 709/234
(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,434913 A
5,508,942 A

7/1995 Tung et al.
4/1996 Agarwal

5,544,161 A 8/1996 Bigham et al.
5,563,892 A 10/1996 Kostreski et al.
5,650,994 A 7/1997 Daley
5,661,518 A 8/1997 Palm et al.
5,666,293 A 9/1997 Metz et al.
5,677,905 A 10/1997 Bigham et al.
5,708,659 A 1/1998 Rostoker et al.
5,729,549 A 3/1998 Kostreski et al.
5,729,825 A 3/1998 Kostreski et al.
5,734,589 A 3/1998 Kostreski et al.
5,751,707 A 5/1998 Voit et al.
5,784,683 A 7/1998 Sistanizadeh et al.
5,815,583 A 9/1998 Solomon et al.
5,847,771 A 12/1998 Cloutier et al.
5,887,187 A 3/1999 Rostoker et al.
5,949,891 A 9/1999 Wagner et al.
5,951,664 A 9/1999 Lambrecht
5,973,684 A 10/1999 Brooks et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO W02006/039051 4/2006
WO W02007/002551 1/2007
WO W0O2007/078958 7/2007

Primary Examiner — Henry Tsai
Assistant Examiner — Michael Sun

(74) Attorney, Agent, or Firm — Gazdzinski & Associates,
PC

(57) ABSTRACT

A method and apparatus for processing data samples utilizes
a channel map populated by device descriptor, or by an appli-
cation program interface. Packet processing code loops
through all of the samples contained 1n a packet while 1ncre-
menting through a channel map and steering table without
having to look up a table to determine 1n what audio butfer the
sample 1s to be stored or read. Additionally, the present inven-
tion utilizes a stride map, so the audio subsystem knows how
many samples to skip 1n order to reach the next sample frame.
The present invention can be used for handling received pack-
cts as well as forming packets to send over a bus.

24 Claims, 4 Drawing Sheets

To
Channel Hardware
Buffers or OS

US 8,589,604 B2

Page 2
(56) References Cited 2002/0015401 A1 2/2002 Subramanian et al.
2002/0031120 Al 3/2002 Rakib
U.S. PATENT DOCUMENTS 2002/0169902 Al 11/2002 Horiuchi et al.
2002/0178449 Al 11/2002 Yamamoto et al.
6,016,401 A 1/2000 Rostoker et al. 2003/0215218 Al 11/2003 Chang
6,125398 A 9/2000 Mirashrafi et al. 2003/0223733 Al 122003 Chang
6.185396 Bl 2/2001 Aizawa et al. 2004/0049379 Al 3/2004 Thumpudi et al.
6,188,699 B1* 2/2001 Langetal.ccc........ 370/463 2004/0174835 A1 9/2004 Godwin et al.
6,215,748 B1 ~ 4/2001 Greenwood et al. 2005/0021885 Al 12005 Anderson
6,226,441 Bl 5/2001 Hartung et al. 386/314 2005/0117601 Af 6/2005 Anderson
6,292,844 Bl 9/2001 Smyers 2005/0120079 Al 6/2005 Anderson
6373.954 Bl 4/2002 Malcolm et al. 2005/0125840 Al 6/2005 Anderson
6,611,537 Bl 8/2003 Edens et al. 2005/0135390 Al 6/2005 Anderson
6,628,999 Bl 9/2003 Klaas et al. 20050160453 Al 7/2005 Kim
6,640,044 B2 10/2003 Greenwood et al. 2005/0213593 A1 9/2005 Anderson
6,640,147 Bl 10/2003 Duvall et al. 2005/0262537 Al 11/2005 Baran et al.
6,665,749 Bl 12/2003 Ansari 2006/0034326 Al 2/2006 Anderson
6.690.428 Bl 2/2004 Hudelson et al. 2006/0241796 Al 10/2006 Messer et al.
6.760.772 B2 7/2004 Zou et al. 2006/0253656 Al 11/2006 Donawa et al.
6.850.496 Bl 2/2005 Knappe et al 2007/0105631 Al 5/2007 Herr et al.
6,948,030 B1 9/2005 Gupta et al. 2007/0126747 AL 6/2007 Wu
. 2007/0153774 Al 7/2007 Shay et al.
7,274,862 B2 9/2007 Komori _
2008/0134864 Al 6/2008 Puryear
7,349,391 B2 3/2008 Ben-Dor et al. _ o
2464304 Bl 127008 Gordon ef al 2010/0046383 Al 2/2010 Williams et al.
204, * 2010/0157950 Al1* 6/2010 Ozluturk et al. 370/335
7,672,743 B2 3/2010 Messer et al. A et a
7,831,127 B2 11/2010 Wilkinson * cited by examiner

U.S. Patent Nov. 19, 2013 Sheet 1 of 4 US 8,589,604 B2

100
________ L o o e s -
| |
| Driver Hardware
or OS5

i
112

'

Table Map 110 |

, |

:

- I

I
;
l
I
|
|

U.S. Patent Nov. 19, 2013 Sheet 2 of 4 US 8,589,604 B2

110

U.S. Patent

Nov. 19, 2013 Sheet 3 of 4

ead start address .- 302
from chnnel map |

Read address offset
304
from sampie buffer

Read multiplier from 306
stride map

Generate address:;
channe! map address +
(offset * muitiplier * size of
sample)

Write audio data to
generated address in 310
channel buffer

312

308

313

ame index

US 8,589,604 B2

Increment sample

End of NO
Frame? | |

Reset sampie frame
index

Increment sample 316
| buffer index
| 318
NO End of YES

Packet?

FIG. 8

U.S. Patent Nov. 19, 2013 Sheet 4 of 4 US 8,589,604 B2

START

Read start address 402
fram channel map

Read address offset 404
from sample buffer

Read multiplier from 406
stride map |

Genherafe address:

channel map address +
(offset * multipiier * size of

sample) 408
Read data fram
N d add
ge eate address 410
Write data 1o
packet | 412

415

114 |
End of NO Increment sample
| Frame? frame index
Reset sample frame
index

Increment sample 418
buffer index 427

NO End of YES Begin new packet if
! Packet? | necessary

FIG. 9

US 8,589,604 B2

1

INCREASED SPEED OF PROCESSING OF
DATA RECEIVED OVER A
COMMUNICATIONS LINK

PRIORITY

This application 1s a continuation of and claims priority to
co-owned U.S. patent application Ser. No. 13/252,106 filed
Oct. 3, 2011 and entitled “INCREASED SPEED OF PRO-
CESSING OF DATA RECEIVED OVER A COMMUNICA -
TIONS LINK (1ssuing as U.S. Pat. No. 8,335,874), which 1s
a continuation of U.S. patent application Ser. No. 11/279,866
filed Apr. 14, 2006 and entitled “INCREASED SPEED OF
PROCESSING OF AUDIO SAMPLES RECEIVED OVER
A SERIAL COMMUNICATIONS LINK BY USE OF
CHANNEL MAP AND STEERING TABLE” (now U.S. Pat.
No. 8,032,672), each of the forgoing being incorporated
herein by reference 1n 1ts entirety.

FIELD OF THE INVENTION

The present invention relates broadly to digital audio trans-
mitted between devices on a network. Specifically, the
present invention relates to storing audio data 1n audio butfers
in locations as determined by the contents of steering registers
and channel maps.

BACKGROUND OF THE INVENTION

A data bus can be utilized for interconnecting electronic
devices such as computers, audio systems, television receiv-
ers, display devices, video recorders, and home control
devices such as security system or appliance control systems.
Communication using a data bus occurs 1n accordance with a
bus protocol recognized by devices attached to the bus.
Examples of bus protocols include the IEEE 1394 High Per-
formance Serial Bus and the Umiversal Serial Bus (USB). A
bus protocol typically provides for communicating both con-
trol information and data. On an IEEE 1394 serial bus, control
information 1s generally passed using the asynchronous ser-
vices of the serial bus. Control information for a particular
application can be defined using, for example, Common
Application Language (CAL) or Audio-Video/Control (A
VIC).

Like video processing, in audio processing applications,
audio samples can be packed in the order the samples enter an
audio processing engine. The order could be by stereo pairs,
mono channels, interleaved channels, or whatever order the
audio hardware chooses to packetize the audio data. This
places a significant processing burden on the packetizer or
depacketizer to determine which audio channel butfer 1s asso-
ciated with each audio sample 1n the packet. The complexity
1s Turther compounded when multiple devices transmit audio
data to the audio processing engine, as the different devices
do not conform to a single standard or sample ordering.
Rather, existing audio devices order the audio samples within
the packet as efficiently as possible for themselves, and this
eificiency does not necessarily apply to the target device that
receives the audio packets.

While device descriptors are commonly used on the com-
munication bus, current device descriptors can only describe
the channel ordering used to insert audio samples 1n the
packet, this only works for in-order processing. With multiple
devices, there are multiple channel orderings, so there 1s a
question as to how to handle all possible sample orderings and
interleaved as well as noninterleaved butfers. As there 1s no

10

15

20

25

30

35

40

45

50

55

60

65

2

current solution to this problem, the burden on the audio
processing engine remains, and device performance suifers.

SUMMARY OF THE INVENTION

The present disclosure provides methods and apparatus for
processing data samples. Methods and apparatus are dis-

closed that utilize a channel map that 1s populated by a modi-
fied device descriptor, or by an application program interface.
In accordance with the present disclosure, low-level packet
processing code loops through all of the samples contained in
a packet while incrementing through a channel map and steer-
ing table without having to look up a table to determine 1n
what audio buifer the sample 1s to be stored or read. This
method and apparatus functions regardless of whether or not
the audio builer 1s interleaved or not, and regardless of how
many channels are accommodated by an iterleaved audio
butiter. Additionally, the present disclosure utilizes a stride
map, so the audio subsystem knows how many samples to
skip 1n order to reach the next sample frame. The present
disclosure can be used for handling recerved packets as well
as forming packets to send over a bus.

In a preferred embodiment, the present disclosure encom-
passes software commands executed by a processor to per-
form the methods of the present disclosure. In another pre-
terred embodiment, hardware 1s configured to execute the
methods of the present disclosure.

Many other features and advantages of the present disclo-
sure will become apparent from reading the following
detailed description, when considered in conjunction with the
accompanying drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates 1n block diagram form functional com-
ponents used 1n embodiments of the present invention;

FIG. 2 illustrates the format of a CIP packet used 1n
embodiments of the present invention;

FIG. 3 illustrates a steering table used in accordance with
the present invention;

FIGS. 4 and 5 illustrate sample buiiers having different
stride si1zes;

FIG. 6 1illustrates the organization of a stride map array
used 1 accordance with the present invention;

FIG. 7 illustrates the organization of a channel map used 1n
accordance with the present invention;

FIG. 8 1llustrates the organization of audio channel butfers
used 1n accordance with the present invention;

FIG. 9 1llustrates 1n tlow diagram form a sequence of acts
performed 1n accordance with the present invention;

DETAILED DESCRIPTION

Directing attention to FIG. 1, there 1s shown a contem-
plated audio subsystem 100. Device 102 1s in communication
with driver 104 and sends driver 104 audio packets as well as
control information. Driver 104 typically includes a packetiz-
ing/depacketizing engine that functions to either form pack-
cts 1n the case of packetization, or process recerved packets
into audio streams 1n the case of depacketization. Driver 104
consults steering table 106, channel map 108 and stride map
110 to select the approprnate builer from audio channel buil-
ers 112. Audio butlers 112 can feed output to an operating
system of the host of audio subsystem 100, or audio butfers
112 can be fed to hardware devices. Steering table 106 1s a
lookup table that returns an address of a sample butfer based
on the channel index of the audio sample 1n the packet. Chan-

US 8,589,604 B2

3

nel map 108 1s a pointer array that contains starting addresses
of individual sample builers associated with samples 1in the
packet. Stride map 110 1s an array of step sizes for increment-
ing audio pointers to the next sample 1n the packet.

Channel map 108 can be allocated to the size of the audio
packets’ sampleframe width. Channel map 108 can also
accommodate mismatched sample size or packet size with
respect to application stream size. For example, 11 an audio
application 1s only recording a stereo stream but device 102 1s
sending data over 24 audio channels, channel map 108 can be
configured to publish only a stereo stream while still extract-
ing a large sample frame from the packet. This increases
eificiency because driver 104 1s only processing samples
belonging to the stereo stream that will be recorded by the
application.

The present invention thus also provides etficient hardware
playthrough support. By steering the input channel map to an
output channel map on a channel-by-channel-basis, any chan-
nel can be played through directly 1n the driver. Custom
channel-steering can also be performed by the present mnven-
tion; a single channel can be sent to all available channels by
duplicating the same starting sample butler pointer in channel
map 108.

A Common Isochronous Packet (CIP packet) having an
AM 824 format 1s contemplated for use with an embodiment
of the present invention utilizing an IEEE 1394 High Pertor-
mance Serial Bus, but other packet formats can be used as
well. Directing attention to FIG. 2, the organization of exem-
plary CIP packet 200 1s shown. CIP packet 200 has two
headers, header 202 and 204. Following headers 202, 204 are
various audio samples, packed in numerical order from left to
right, top to bottom. As illustrated in FI1G. 2, CIP packet 200
1s divided into sample frames. Sample frame 206 comprises
samples 1 through 6. Next 1s sample frame 208, comprising
audio samples 7-12. This 6-sample frame size continues for
additional sample frames until the end of CIP packet 200.
Typically, there are eight sample frames 1n one CIP packet.
However, other packet configurations can be used 1n embodi-
ments of the present mvention.

Directing attention to FIG. 3, steering table 106 describes
an indexed channel order of 1, 3, 5, 2, 4, 6 for each 6-channel
sample frame 1n CIP packet 200. This means that the first
sample 1s processed 1n the sample frame, followed by the third
sample, the fifth sample, the second sample, the fourth
sample, and the sixth sample. This indexed order can be
provided 1n a device descriptor passed from device 102 to
system 100. In an alternative embodiment, the indexed order
can be supplied during execution to audio system 100 by an
application program interface (API) or other software execut-
ing on audio subsystem 100. This 1s especially usetul when
different devices are connected to audio subsystem 100, and
packet processing shifts from one device to another.

FIGS. 4 and 5 illustrate sample butfer 150 having different
stride sizes as used 1n accordance with stride map 110. In each
case, the address offset can be obtained from the pointer to
sample buifer 150. FIG. 4 shows sample bulfer 150 as a
two-channel sample buffer used for a stereo audio stream,
having a left channel and a right channel. In this example, the
stride size 1s two, as the samples alternate between left and
right, so one sample 1s skipped for example, when reading or
writing the left channel or the right channel. Similarly, FIG. 5

illustrates sample buffer 150 as four-channel sample butier,
where the stride size 1s four, as the samples repeat a four-

clement sequence. In this case, to read channel 1, three

samples are skipped alter each time the sample for channel 1
1s read. Thus, the stride size indicates the number of samples
to skip 1n a sample butfer. In FIG. 4, where the stride size 1s

10

15

20

25

30

35

40

45

50

55

60

65

4

two, two samples are skipped to reach the desired channel,
and, 1n FIG. 5, where the stride size 1s four, four samples are
skipped.

FIG. 6 illustrates stride map 110, which is an array of stride
s1zes for sample bulfers used in embodiments of the present
invention. As shown, the first exemplary element indicates a
stride size of two, and corresponds to a sample bulfer as
shown 1n F1G. 4. The next two elements each have a stride size
of four, followed by a stride size of two and additional ele-
ments having stride sizes of four.

FIG. 7 1llustrates channel map 108, which 1s an array of
pointers that constitute the starting addresses of the individual
sample buflers 1in audio channel buffers 112. As shown, the
first element of channel map 108 has a pointer having the
value 100, which indicates a starting address o1 100. The next
clement 1s a pointer having the value 200. The third pointer
has a value 208, followed by a pointer having the value 104,
a pointer having the value 204 and another pointer having the
value 212.

Audio subsystem 100 initializes by obtaining the channel
order and number of channels to process. As described earlier,
this information can be obtained by driver 104 from device
102 1n the form of a device descriptor passed from device 102
to driver 104. Also as described above, this information can be
passed to driver 104 from a process executing on audio sub-
system 100, such as an API or other process. In an embodi-
ment, such information could be passed to driver 104 when a
user manipulates a device interface, such as an interface that
allows the user to select from a plurality of devices connected
to audio subsystem 100. Such information also could be
passed to driver 104 when a user selects a particular operating
mode of a connected audio device, such as an operating mode
that requires a change in the amount of data processed by
audio subsystem 100. For example, 11 a user wishes to change
from four-channel audio to stereo audio, channel information
sent to driver 104 would also change to reflect the change 1n
operating mode.

At act 302, driver 104 uses the information received 1n act
300 to construct steering table 106, channel map 108, and
stride map 110. Channel order mformation 1s reflected 1n
steering table 106, number of channels 1s reflected 1n stride
map 110, and assignment of audio sample streams 1s made to
audio channel buffers 112 1n channel map 108.

Operation of the present invention 1 a depacketizing
embodiment 1s illustrated 1n flow diagram form as shown 1n
FIG. 8. Beginning at act 300, mitialization having already
been performed on driver 104, a packet 1s received at audio
subsystem 100. Driver 104 obtains the starting address from
channel map 108 based on the sample frame imndex supplied
by steering table 106 (which channel 1n the frame 1s being
processed) 1n act 302. Atact 304, driver 104 reads the sample
buifer index, indicating which sample in main sample butier
150. At act 306, device driver 104 reads the stride size from
stride map 110. At act 308, an address within audio channel
butilers 112 1s calculated as the starting address of the channel
read 1n act 302 plus the product of the ofiset value read 1n act
304 multiplied by the value read from stride map 110 1n act
306 multiplied by the size of the sample.

At act 310, the audio data read from the packet i1s then
written 1n audio channel butlers 112 at the address generated
in act 308. If the end of a frame has not been reached (decision
act 312), control proceeds to act 313, where the sample frame
index 1s incremented. If the end of a frame has been reached,
control transitions to act 314, where the sample frame index 1s
reset and the sample builer index 1s incremented (act 316). At
decision act 318, 1f the end of a packet being processed has
been reached, control transitions back to act 300 where pro-

US 8,589,604 B2

S

cessing of a new packet begins. If the end of the packet has not
been reached, then control transitions back to act 302, where
processing advances on the current packet. This sequence of
acts repeats until there are no more additional packets to be
processed.

FI1G. 9 1llustrates a sequence of acts performed when driver
104 1s applied as a packetizing function on data stored 1n
audio channel buffers. Rather than receiving packets, as
shown 1n FIG. 8, packets are being constructed and transmit-
ted to device 102. Directing attention to FIG. 9, in1tialization
having already been performed on device driver 104, in
preparation for sending data stored in audio channel butters
112, obtains the starting address from channel map 108 based
on the sample frame index supplied by steering table 106
(which channel in the frame 1s being processed) in act 402. At
act 404, driver 104 reads the sample builer index, indicating
which sample in main sample buifer 150. At act 406, driver
104 reads the stride size from stride map 110. At act 408, an
address within audio channel buffers 112 1s calculated as the
starting address read in act 40 plus the product of the offset
value read 1n act 404 multiplied by the value read from stride
map 110 1n act 306.

At act 410, audio data 1s read from audio channels butfer
112 at the address generated in act 408. This data 1s then
written to a packet formed by driver 104 1n act 412. If the end
ol a frame has not been reached (decision act 414), control
proceeds to act 415, where the sample frame index is 1ncre-
mented. If the end of a frame has been reached, control
transitions to act 416, where the sample frame index 1s reset
and the sample buffer index 1s incremented (act 418). At
decision act 420, 1f the end of a packet being processed has
been reached, control transitions to act 422, where a new
packet 1s begun and control loops back to act 402 where
processing of the new packet begins. It the end of the packet
has not been reached, then control still transitions back to act
402, where processing advances on the current packet. This
sequence of acts repeats until there are no more additional
packets to be processed. The constructed packets are then sent
to device 102.

Combining the functionality of FIGS. 8 and 9 1nto a single
driver 104 allows audio subsystem 100 to operate 1n play-
through mode. Referring back to FIG. I, in this embodiment,
there are two channel maps 108-1 and 108-2. Channel map
108-1 1s designated for input as described with respect to FIG.
8 and channel map 108-2 1s designated for output as described
with respect to FIG. 9. By steering channel map 108-1 to
channel map 108-2 on a channel-by-channel basis, the audio
data recerved from device 102 can be played through any
channel 1n driver 104 to device 103.

While the present invention has been described and 1llus-
trated 1n detail, 1t 1s to be understood that many changes and
modifications can be made to the various embodiments of the
invention without departing from the spirit thereof.

What 1s claimed 1s:
1. A method for providing support for at least one media

device dniver, the method comprising:
obtaining a channel order and a number of channels to

process; and
based at least 1n part on the obtained channel order and the

number of channels to process, determining:
a first element indicating the channel order, the channel

order describing an order of packed data channels

within frames of data;
a second element indicating at least one parameter, the at
least one parameter determining a number of data

5

10

15

20

25

30

35

40

45

50

55

60

65

6

samples to skip, corresponding to others of the data
channels, between sequential data samples of the
same data channel; and

a third element indicating one or more start addresses for
the data channels.

2. The method of claim 1, wherein the first element, second
clement, and third element comprise a steering table, stride
map, and channel map, respectively.

3. The method of claim 2, wherein the one or more start
addresses reside within a sample butfer.

4. The method of claim 1, wherein the one or more start
addresses reside within a sample butfer.

5. The method of claim 2, further comprising publishing,
the determined steering table, stride map, and channel map to
the at least on media device driver.

6. The method of claim S, wherein the act of publishing the
steering table, the stride map, and the channel map substan-
tially offloads processing from the at least one media device
driver, thereby enhancing its efliciency.

7. The method of claim 1, wherein the channel order and
number of channels to process are obtained upon detecting a
user selecting a mode of operation for the at least one media
device driver.

8. The method of claim 2, wherein the channel map 1s
further configured to accommodate a mismatched sample
s1Ze or packet size with respect to an application stream size.

9. An apparatus for processing frames of data comprising a
plurality of data channels, each data channel comprising a
plurality of sequential data samples, the data channels dis-
posed within the frames of data, the apparatus comprising:

a first interface configured to receive packetized data com-

prising at least frames of data;

a sample butler configured for of storage of one or more of

the frames of data; and

a computer readable apparatus comprising media non-tran-

sitory storage comprising a plurality of instructions, the

plurality of instructions which are configured to, when

executed, cause the apparatus to:

receive information enabling unpacking of the frames of
data;

read one or more of the frames of data in the sample
butter;

unpack the read one or more frames of data into a first set
of data channels based at least in part on the informa-
tion; and

publish a second set of data channels to at least one audio
device driver.

10. The apparatus of claim 9, wherein the at least one audio
device driver processes only the published second set of data
channels.

11. The apparatus of claim 9, wherein the packetized data
turther comprises a device descriptor; and

wherein the information enabling unpacking of the frames

1s based at least 1n part on the device descriptor.

12. The apparatus of claim 9, wherein the information
enabling unpacking of the frames comprises information
received via an application programming interface (API).

13. The apparatus of claim 9, wherein each data channel
comprises one or more Common Isochronous Packets (CIP).

14. The apparatus of claim 9, wherein the first interface
comprises an interface to an IEEE Std. 1394-compliant bus.

15. The apparatus of claim 9, wherein the first interface
comprises an interface to a-Universal Serial Bus (USB)-com-
pliant bus.

16. The apparatus of claim 9, further comprising a second
interface configured to transmit the second set of data chan-

nels to at least one second device.

US 8,589,604 B2

7

17. The apparatus of claam 16, wherein the at least one
audio device driver 1s resident within the at least one other
second device.

18. The apparatus of claim 9, wherein the atleast one audio
device driver 1s local to the apparatus.

19. A method for processing data samples for at least one
media device driver, the method comprising:

obtaining information enabling unpacking of frames of

data stored 1n a buffer;

reading one or more of the frames of data 1n the buiffer;

unpacking the read one or more frames nto a first set of

data channels based at least in part on the obtained
information;

packing a second set of data channels from the first set of

data channels based at least in part on the obtained
information; and

publishing the second set of data channels to at least one

media device driver;

wherein the at least one media device driver processes only

the published second set of data channels.

10

15

8

20. The method of claim 19, wherein the information
enabling unpacking of frames of data comprises a device

descriptor associated with the frames of data stored in the
buifer.

21. The method of claim 19, wherein the information
enabling unpacking of frames of data i1s received from a
process executing on an audio subsystem via an application
programming interface (API).

22. The method of claim 21, wherein the information
enabling unpacking of frames of data 1s generated when a
change of a configuration of the audio subsystem 1s detected.

23. The method of claim 22, wherein the detected change
of the configuration comprises a change 1n a number of audio
channels operating 1n the audio subsystem.

24. The method of claim 19, wherein the publishing of the
second set of data channels offloads processing from the at
least one media device driver.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

