US008566943B2
a2y United States Patent (10) Patent No.: US 8.566,943 B2
Martynenko et al. 45) Date of Patent: Oct. 22, 2013
(54) ASYNCHRONOUS PROCESSING OF EVENTS 7,664,626 Bl * 2/2010 Ferri€ ...ocooooveveeeveveeennnns, 703/23
FOR MAIWARE DETECTION 7,797,743 B2* 9/2010 Treacyetal. 726/22
7,854,004 B2* 12/2010 wvanderMade 726/23
. 7,900,258 B2* 3/2011 wvanderMade 726/24
(75) Inventors: Vladislav V. Martynenko, Moscow 7.004.456 B2* 3/2011 Hennan et al. 707/737
(RU); Andrey V. Sobko, Moscow (RU) 7,984,500 Bl * 7/2011 Khannaetal.co........ 726/22
8,307,428 B1™* 11/2012 Hearndenetal. 726/22
(73) Assignee: Kaspersky Lab, ZAO, Moscow (RU) 2002/0093553 Al 7/2002 Judge et al.
2004/0102923 Al 5/2004 Tracy et al.
% e - - ; + 2005/0193291 Al 9/2005 Subramanian et al.
(*) Notice: Subject. to any cclilsglalme;{ the ’éerm (;_jf this 5005/0103207 Al 02005 Tin ef al
patent 1s extended or adjusted under 35 2005/0193295 Al 9/2005 Fenech Saint Genieys

U.S.C. 154(b) by 843 days.
(b) by A (Continued)

21) Appl. No.: 12/618,521
(21) Appl. No FOREIGN PATENT DOCUMENTS

(22) Filed: Nov. 13, 2009

WO WO02007660333 12/2006
(65) Prior Publication Data OTHER PUBLICATIONS
US 201170083176 Al Apr. 7, 2011 Network Communication API. W3C Public CVS Repository. Edi-
: . C tor’s Draft Jul. 27, 2007 Retrieved Feb. 8, 2013, from http://dev.w3.
(30) Foreign Application Priority Data org/cvsweb/~checkout~/2006/webapi/network-api/network-api.
Oct. 1,2009 (RU) ooeveeeeeeeeeeee . 2009136239 html?rev=1.2.%
Oct. 1,2009 (RU) .o, 2009136240

Primary Examiner — April Y Blair
(51) Int.Cl. Assistant Examiner — Feliciano Mejia

GOo6F 11/00 (2006.01) (74) Attorney, Agent, or Firm — Bardmesser Law Group
GO6F 12/14 (2006.01)
GOG6F 13/00 (2006.01) (57) ABSTRACT
GO6l" 17/30 (2006.01) A system, method and computer program product for mal-
G11C 7700 (2006-O;~) ware detection based on the behavior of applications running
G055 23/00 (2006.01) on a computer system, including: asynchronous processing of
(52) U.S. Cl system events for malware threat analysis using application
USPC ...l 726/24;°726/22;°726/23; 726/25; filters; analyzing events using heuristic and signature data;
726/26 analyzing applications behavior and detecting abnormal
(58) Field of Classification Search behavior of “clean” applications; automatically classifying
USPC e 713/188; 726/22-24 applications (i.e., detecting new versions) based on behavior
See application file for complete search history. analysis; automatically analyzing the reliability of web sites
based on behavior triggered by the web site accesses; 1n
(36) References Cited enterprise networks, detecting abnormalities in configuration

of user computer systems; recognizing a user by his behavior

U.S. PATENT DOCUMENTS profile and using the profile for an automatic configuration of

6021438 A 2/2000 Duvvoori et al. user applications.
6.789.088 Bl 9/2004 Lee et al.
7.483.972 B2 1/2009 Bhattacharya et al. 20 Claims, 10 Drawing Sheets

310 J Ceatect message about
new event

l

___/" Stream scanner processes
320 the event through filters

Does event pass
through the filter?

Yeas

325

330__J | Create event copy

I S

34D_f Add event copy 1o gueale

Pass evant for further
34 SI processing

US 8,566,943 B2

Page 2
(56) References Cited 2008/0168555 Al 7/2008 Kratzer et al.
2008/0196099 Al 8/2008 Shastri
U.S. PATENT DOCUMENTS 2008/0288827 Al 11/2008 Chagoly et al.

2008/0320075 A1 12/2008 Livshits et al.
2005/0194075 Al 9/2005 Iwai et al. 2008/0320594 Al1* 12/2008 Jiangccccccovviiniiinnnn, 726/24
2005/0194078 Al 9/2005 Ogawa 2009/0024991 Al 1/2009 Campbell et al.
2006/0806964 7/2007 Lietal. 2009/0044024 Al1* 2/2009 Oberheide etal. 713/188
2007/0156895 Al 7/2007 Vuong 2009/0083852 Al 3/2009 Kuo et al.
2007/0174704 Al 7/2007 Shih
2007/0226248 Al 9/2007 Darr * cited by examiner

U.S. Patent Oct. 22,2013 Sheet 1 of 10 US 8,566,943 B2

110 Receive message about
new event

115 Filter event

No 120
Does event pass
through filter?
Yes
Conventional
Art
130
Check system event for
cleanness
135
Yes NoO

150

140

Further event processing Terminaling process which

caused the event

FIG. 1

U.S. Patent Oct. 22,2013 Sheet 2 of 10 US 8,566,943 B2

N
-

f———f—————q—————— = — —_— -

- |
|

240 _ /™| Filter 1 Filter 2 .. | FiterN |
|

. |

L e e e Jor e v o o v od - - o— — — — — — - — —

230 Stream scanner

220 OS Driver
210 System events

FIG. 2

U.S. Patent Oct. 22,2013 Sheet 3 of 10 US 8,566,943 B2

310 Detect message about
new event

Stream scanner processes

320 the event through filters
325 Does event pass No
through the filter?
Yes
330 Create event copy
340 Add event copy to queue
45 Pass event for further

processing

FIG. 3

U.S. Patent Oct. 22,2013 Sheet 4 of 10 US 8,566,943 B2

410 Module accepts event
copies from driver

420

Are there events
from driver in a
queue?

Yes

430 Take the next event copy
from the queue

Create control record using
440 information about the
event

Delete the event from the
450 queue

460 Send control record for

cleanness check

FIG. 4

U.S. Patent Oct. 22,2013 Sheet 5 of 10 US 8,566,943 B2

510 Event
COopy

g

Stream scanner

530

Anti-emulation
540 feature

Behavior

590

550

Short detect
module

595

Partial
detect
module

|
|
|
|
|
|
; 560
|
|
|
|

|
I I
; False |
| |
| I
I I
| I

U.S. Patent

Oct

610

620

630

640

650

660

. 22,2013 Sheet 6 of 10

Accept event copies from

OS driver

Apply signature and
heuristics detection

Send process to emulator
for further execution

Check process for anti-
emulation tricks and
packers existence

Record data to behavior
log after check is complete

Add process to whitelist or
blacklist

US 8,566,943 B2

U.S. Patent Oct. 22,2013 Sheet 7 of 10 US 8,566,943 B2

710 720 730

III%HHHIII

740 760 760

——
N

750

FIG. 7

US 8,566,943 B2

| ~
| |
S o “ 5P
_ % v 7
®) ®) . @)
| = f= “ f=
_ + + =
D @ “ O
_ N) ép,
| - - ~ -
© _ N ~ o0
— _ 0 O cO
- |
ot b e e o o o — - —r. - - - —— - — — - — -
=
oo
~
P
e
i
7.
er) G/ -7 " - - -1 " 007 000~ -
e
= | _ _
. | - N P N % |
3 | = = = = < _
- | O Q. O O Q |
& | - - - - - _
- o O O e O
| O O - O - O - O O O |
o0 00 00 o0 00 _
|

U.S. Patent

FIG. 8

U.S. Patent Oct. 22,2013 Sheet 9 of 10 US 8,566,943 B2

910 \/\
R W [sy R
Application Control 939
Basic
915 Network Attacks

Application Control 940
Medium

ot T Network Atiacks
t
[Spam Fiterng
i
:
!
:
|
, Application Control 945
Advanced -
925 Network Attacks manual

Spam Filtering manual

Security Risk manual

Application Control manual 950

Network Attacks

Expert

O
D
-

manual

______________d

Spam Filtering manual

FIG. 9

US 8,566,943 B2

Sheet 10 of 10

Oct. 22,2013

U.S. Patent

0L "Old

—& SWVHOOHJ
NOLLVOIldd

$37NAON
INVNO0Ud
WVHOOUd | 86 WIHLO | NOLLYDITddV | ONILYEILO

{slrsndwiod
djowmI Y

HIOMION BolY SPIAA \\o i 8 . e -
bes b fan ae : o e Ll daa e o T ii.,!-f.i,..t...;bq.ﬂ.... e Hu.hu...r...... . el sl S S

w

}
67 =] |B=R]] W W
|)
1544 S 14 £C ~ AN
| - vivQ |
_ D0oLIDIU] @0BLI0} U 2o€i193 4] SoeLIa U] 68 NVYHOOMA w
LS auMﬂmME od SALIO AL ASIO AL H
HOMISN T jeoi3dy { | onasubBen H

Xsig pieH 8¢ SIINAOW

WY HOO¥A ¥3HLO

1¢ SNV HOOMA
NOWLYDIdd VY

g8 waisas
e - 3nd

WILSAS
ONUYHILO

aotasQ
58vi1032

S WoIsAS

3HuUn

Buisses0id

Flpulepulpuiipulily.

...y lAOW
AIOWBI WaISAS

Bmamp R phhe mhpehy pehphy adpehs iy chpely gy S mgs mpeme e mgeme e borw

US 8,566,943 B2

1

ASYNCHRONOUS PROCESSING OF EVENTS
FOR MALWARE DETECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to Russian Patent Appli-
cation No. 2009136240, filed Oct. 1, 2009, and to Russian

Patent Application No. 2009136239, filed Oct. 1, 2009, both
of which are incorporated by reference herein 1n their entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mvention 1s related to anti-malware technol-
ogy, and more particularly, to malware detection based on the
behavior of applications running on a computer system.

2. Description of the Related Art

Detection of viruses and malware has been a concern
throughout the era of the personal computer. With the growth
of communication networks such as the Internet and increas-
ing interchange of data, including the rapid growth 1n the use
of e-mail for communications, the infection of computers
through communications or file exchanges 1s an increasingly
significant consideration. Infections take various forms and
are typically related to computer viruses, Trojan programs or
other forms of malicious code (i.e., malware).

Recent 1ncidents of e-mail mediated virus attacks have
been dramatic both for the speed of propagation and for the
extent ol damage, with Internet service providers (ISPs) and
companies sullering from service problems and a loss of
¢-mail capability. In many 1nstances, attempts to adequately
prevent file exchange or e-mail mediated infections signifi-
cantly inconvenience computer users. Improved strategies for
detecting and dealing with virus attacks are desired.

A conventional approach to detecting viruses 1s signature
scanning. Signature scanning systems use sample code pat-
terns extracted from the known malware code and scan for the
occurrence ol these patterns 1n another program code. A
primary limitation of the signature scanning method 1s that
only the known malicious code 1s detected, that 1s, only the
code that matches the stored sample signatures of known
malicious code 1s 1dentified as being infected. All viruses or
malicious code not previously identified, and all viruses or
malicious code created after the last update of the signature
database will not be detected.

Another conventional approach 1s emulation of malware
components. An ability to emulate an execution of a sus-
pected malware component on a computer system prior to
executing it on a user system 1s critical 1in terms of providing
security and maintaining integrity of a computer system data.
Emulation 1s typically used for anti-virus and malware detec-
tion. In order to analyze the behavior of malware components,
such as viruses, and to collect statistics (heuristics), a com-
puter system 1s emulated and the viruses are run on the emu-
lated computer system. The behavior of the suspected com-
ponent during emulation 1s logged. The behavior log 1s later
compared to normal behavior patterns.

However, over the past decade malware components and
viruses have become more sophisticated. Modern malware
components can avoid emulation. Additionally, heuristic
analyses of a potential malware component cannot always be
performed 1n a timely manner. Event interception and on-the-
fly synchronous analysis can also be used. For example, such
a system 1s disclosed 1n the WO2008048665A2. However, a

synchronous analysis delays the execution of the process

10

15

20

25

30

35

40

45

50

55

60

65

2

generating the suspicious event. In turn, 1t causes a delay 1n
functionality of the entire system.

Event filtering techniques are also used for analyzing the
behavior of running suspicious applications. For example,
such a method i1s described inthe U.S. Pat. No. 7,406,199. The
processes generating suspicious events which have been {il-
tered out are checked first and then sent for further process-
ing. An algorithm of a conventional filtering method, using a
synchronous event processing, 1s depicted in FIG. 1.

In this method, an event 1s sent for processing aiter the
process which triggered the event has been checked. After an
occurrence of a system event 1s detected 1n real time, 1n step
110, a system driver processes the event through a number of
filters 1n step 115. I1 the event passes through the filter(s) n
step 120, the event 1s sent to be checked by system modules 1n
step 130.

If 1in step 135, it 1s determined that the event 1s not clean
(1.e., presents a potential threat to the system), the process that
caused the event 1s terminated in step 150. If the event 1s
determined to be clean (1n step 133) or the event does not pass
through the filter (1n step 120), the event 1s released for further
processing 1n step 140. This method 1s time consuming and
requires a lot of system resources, which 1s also quite costly.

It 1s apparent that an improved efficient method for analyz-
ing the behavior of applications running on a computer sys-
tem 1s desired. Accordingly, there 1s a need 1n the art for a
system and method that addresses the need for detection of
malware based on the behavior of applications running on a
computer system.

SUMMARY OF THE INVENTION

The present invention 1s itended as a method and system
for malware detection based on the behavior of applications
running on a computer system that substantially obviates one
or several of the disadvantages of the related art.

In one aspect of the invention, there 1s provided a system,
method and computer program product for malware detection
based on a behavior of applications running on a computer
system, including: asynchronous processing of system events
for malware threat analyses using application filters; analyz-
ing events using heuristic and signature data; analyzing appli-
cations behavior and detecting abnormal behavior of “clean™
applications; automatically classitying applications (i.e.,
detecting new versions) based on the behavior analysis; auto-
matically analyzing the reliability of web sites based on the
behavior triggered by the web site accesses; 1 enterprise
networks, detecting abnormalities 1n configuration of user
computer systems; recognizing a user by his behavior profile
and using the profile for an automatic configuration of user
applications.

The malicious object (1.e., component) can be, for
example, a trojan, a virus, a rootkit or a worm. According to an
exemplary embodiment, the existing methods of malware
detection are accelerated. In one aspect, the system events are
processed asynchronously and the applications generating
the events are analyzed in terms of being malicious. The
proposed method allows comparing the behavior of an appli-
cation against a set of rules defining a sequence of the normal
system activities. Each rule defines a set of actions of a trusted
application and actions of malware components. Therefore, a
proposed method optimizes processing of a malware threat
and increases probability of malware detection.

Additional features and advantages of the invention will be
set Torth 1n the description that follows, and in part will be
apparent from the description, or may be learned by practice
of the mvention. The advantages of the invention will be

US 8,566,943 B2

3

realized and attained by the structure particularly pointed out
in the written description and claims hereof as well as the
appended drawings.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are intended to provide further
explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE AI'TACHED
FIGURES

The accompanying drawings, which are included to pro-
vide a further understanding of the ivention and are incor-
porated 1n and constitute a part of this specification, illustrate
embodiments of the invention and, together with the descrip-
tion, serve to explain the principles of the mvention.

In the drawings:

FIG. 1 1llustrates a conventional method for malware
detection using synchronous processing of system events;

FI1G. 2 1llustrates a system for malware detection, 1n accor-
dance with an exemplary embodiment;

FIG. 3 illustrates an algorithm for asynchronous event
processing, 1n accordance with the exemplary embodiment;

FI1G. 4 1llustrates an algorithm for asynchronous process-
ing of system events by a stream scanner, 1n accordance with
the exemplary embodiment;

FI1G. 5 1llustrates event handling 1n an AV module, in accor-
dance with the exemplary embodiment;

FIG. 6 illustrates a method for updating the white and black
lists, 1n accordance with the exemplary embodiment;

FIG. 7 1llustrates detection of malicious web sites, 1n accor-
dance with the exemplary embodiment;

FIG. 8 illustrates detection of abnormalities 1n network
configurations, in accordance with the exemplary embodi-
ment;

FIG. 9 illustrates an example of different levels of user
settings used for working with AV application, 1n accordance
with the exemplary embodiment;

FIG. 10 illustrates a schematic of an exemplary computer
system on which the invention can be implemented.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Reference will now be made in detail to the preferred
embodiments of the present invention, examples of which are
illustrated in the accompanying drawings.

In one aspect of the invention, there 1s provided a system,
method and computer program product for malware detection
based on behavior of applications running on a computer
system.

According to the exemplary embodiment, the existing
methods of malware detection are accelerated. The events are
processed asynchronously and the applications generating,
the events are analyzed in terms of being malicious. The
asynchronous processing of the events allows to process the
events caused by processes (i.e., applications) while these
processes continue to run on a computer system. According to
the proposed method the behavior of an application can be
compared against a set of rules defining a sequence of the
normal system activities (i.e., behavior patterns). Fach rule
defines a set of actions of a trusted application and the actions
of malware components.

FIG. 2 illustrates a system 200 for malware detection, in
accordance with the exemplary embodiment. An OS driver
220 controls execution of application modules 250 via a
stream scanner 230. The applications can be, for example, a

10

15

20

25

30

35

40

45

50

55

60

65

4

HIPS (Host Intrusion Prevention System), a PDM (Proactive
Detfence Module, intended to detect malware based on their
behavior—the behavior of the software 1s compared to a
particular template, and 1f the behavior corresponds to the
template, the user 1s grven a warning, and, 1f necessary, further
activity of the application is blocked, and any system changes
made by the application are rolled back), a firewall, web AV
(antivirus), mail AV, traific AV, script AV, emulator, etc. The
OS driver 220 also communicates with other anti-virus (AV)
components through the stream scanner 230. The stream
scanner 230 allows the OS driver 220 to create and configure
filters 240 for application modules 250. Each application
module 250 can have 1ts own filter 240 for a particular appli-
cation. Note that the filters 240 allow through the core system
events 210 (such as system calls for file creation, call for
reading registry, etc.)

After the OS driver 220 intercepts the new event 210, 1t
passes the event 210 to the stream scanner 230, which puts the
event 210 through the filters 240. If the event 210 passes
through at least one filter 240, the stream scanner 230 copies
the event 210 and places 1t1n a queue of events to be processed
by application modules 250. Then, the original event 210 1s
released for further processing.

An algorithm of asynchronous event processing 1s shown
in FIG. 3. After an occurrence of a system event 1s detected 1n
step 310, 1t 1s intercepted by the system driver for processing,
it through a number of filters of different system modules 1n
step 320. It the event passes through the filter(s) in step 325,
a copy of the event1s created in step 330. The copy of the event
1s added to the event queue 1n step 340. Then the original event
1s released for further processing in step 345. I, 1n step 325,
the event does not pass through at least on of the filters (1.¢.,
does not match a filtering security criteria) it 1s sent for further
processing 1n step 343,

FIG. 4 1llustrates an algorithm for asynchronous process-
ing of the system events by a stream scanner. At certain time
intervals, each system module checks, in step 410, for events
passed through 1ts filter and placed 1n a queue. If an event 1s
detected 1n step 420, the system module makes a copy of the
event for processing 1n step 430. During processing, the event
1s converted 1nto a control record 1n step 440. Then, the copy
of the event 1s removed from the queue 1n step 450. The
control record 1s passed to the anti-virus utility for an AV
check 1n step 460. If the AV check reveals a malicious nature
of the event, the process that caused the event, 1s blocked and
terminated.

According to the exemplary embodiment, the event pro-
cessing 1s advantageously asynchronous. The event 1is
released and the process, which caused the event, continues
its uninterrupted execution. Thus, the system does not stop
any processes and malware check 1s performed without being
noticed by a system user. While reaction of the OS core
system to a malware process 1s delayed, compared to a syn-
chronous event processing, the delay 1s a very short period of
time and the malicious process cannot harm the computer.
The harm caused by malware process during the delay period
can be easily compensated by roll backs, incremental backups
(snapshots), virtual copies etc. Therefore, the proposed
method advantageously optimizes functionality of the com-
puter system.

FIG. S1llustrates event handling 1n an AV module, 1n accor-
dance with the exemplary embodiment. The event copy 1s
received by the stream scanner 1n step 510. Then methods of
signature scanning 520 and heuristic detection 580 are
applied. The signature scanning 320, in the exemplary
embodiment, can use short signatures (1.e., behavior charac-
teristics taken over a short period of time) for malware detec-

US 8,566,943 B2

S

tion. These signatures can reflect, for example, a combination
with an IP address or creation of a file in system directory. A
life of a signature or a security level can also be pre-set.

A suspicious process can be executed 1n an emulator 530.
While the emulator 530 uses the anti-emulation feature 540,
it can still be deceived by some modern malware processes.

These processes change its execution algorithm, once they
detect that they are being executed on the emulator. This
problem 1s solved, 1n the exemplary embodiment, by gener-
ating a behavior log 580 of a suspicious process. Combination
of the behavior log 5380 and signature scanning 520 allows
generation of a white list 550 and a black list 560 AV records.
The black list 560 and the white list 550 are analyzed for
collisions by a false positive utility 570 of a detect module.

The white lists are the lists of known “clean” software
components, links, libraries and other clean objects. In order
to compare a suspect object against the white list, hash values
can be used. For example, a white list can consist of hashes of
known “clean” applications. Also, checksums can be calcu-
lated and compared against the known checksums. A black
list 1s a collection of known malware objects. In order to be
effective, the white lists and the black lists have to be con-
stantly updated. The proposed system can be used for updat-
ing the white and black lists.

Based on a short time behavior detection, the white list 550
can contain “short time detect” modules 590, the modules that
are detected based on their behavior statistics collected over a
short period of time. These modules can have the following
behavior patterns: writing into a new branch of a registry,
loading a certain library, reading from the system registry, etc.

The black list 560 can contain “partial detect” modules
595. These are components that could not be definitively
determined to be malware. These modules can have the fol-
lowing behavior patterns: self-copying, registration in the
system registry, copying into a system folder, etc.

The data from the white list 550 and the black list 560 1s not
normally shown to a user. Instead, it 1s sent, by the AV appli-
cation installed on the user system, to an AV lab. Then, the
data 1s added to the global white and black lists respectively
for further research of suspicious processes.

The anti-emulator feature works as follows:

The first thing that a malicious program might try to do 1s
to determine whether 1t 1s running under an emulator. This can
happen, for example by (a) initiating a “rare” system API call,
knowing in advance what the return value of the API call
should be. If this API call 1s not supported by the emulator,
then the return value 1s not what a “live” system would return.
The malicious program would then conclude that it 1s running
under an emulator. Another common approach 1s (b) invoking
an undocumented system or invoking a standard API but with
unusual or borderline parameters. If the emulator does not
support this undocumented API or these parameters, then the
return result will not be the same as with a “live” system. The
malicious program will therefore know that 1t 1s running
under an emulator. In that case, it will terminate 1ts activity
without performing any malicious acts. On the other hand, 1T
it believes that it 1s running on a “live” system, 1t will feel free
to perform malicious acts.

A method for updating the white and black lists using
asynchronous event processing 1s illustrated in FIG. 6. It step
610, an event (suspicious object) copy 1s received from the

10

15

20

25

30

35

40

45

50

55

60

65

6

stream scanner. Signature and heuristic detection methods are
applied to the event copy in step 620. The process, which
caused the event, 1s sent to an emulator for further analysis 1n
step 630. The process 1s checked for anti-emulation features
and packers 1n step 640. Then, the heuristic data 1s recorded
into a behavior log in step 650. The process 1s classified as
“clean” or malicious and 1s added to either white or black list,
accordingly (in step 660).

FIG. 7 1illustrates dealing with potentially malicious web
sites. Detection and quick reaction to malicious web sites 1s
important. The main criterion of a potentially malicious web
site 15 a massive number of accesses from difierent users over
a short period of time. FIG. 7 illustrates an example of moni-
toring a number of sites over a short period of time. Sites 710
and 720 are the sites working 1n a normal mode, 1.¢., being
accessed by a normal number of users 740 and 750. Site 730
has an abnormal number of site accesses by N number of
users 760. If the number of users N exceeds a certain limit, the
site 730 can be considered malicious.

In another embodiment, abnormalities within network
configurations can be used for malware detection. FIG. 8
1llustrates detection of abnormalities 1n the network configu-
rations. A corporate network 800 including computer systems
810-850 1s monitored. A set of computer configurations (set-
tings) 890, including subsets of settings of different security
levels (860 and 870), allows to detect abnormalities of the
network 800. For example, if a computer system 8350 has
configurations 880, that are not included 1n an allowed set of
configuration settings 890, it can be concluded that the com-
puter system 850 1s infected (or 1s being used against network
policy).

Using the abnormalities detection method, the behavior of
a network user can also be monitored. A set of heuristic data
can be created for each network user. An abnormal behavior
ol a particular network user can trigger certain limitations
(1.e., user access rights and policies can be revoked). While
monitoring the network, the AV application can create back-
ups, incremental backups, snapshots and roll back points for
stronger network protection.

Based on recorded user behavior patterns, some default
setting can be assigned to a user for working with the AV
application. Different levels of user settings are depicted 1n
FIG. 9. For example, while choosing AV settings 910, a user
can select basic settings 915, medium settings 920, advanced
settings 925, and expert settings 930. For each of these set-
tings the following security types are assigned:

Security Risk components for threat detection and system
monitoring, which monaitor file system, web clients and web
activities of a user;

Application Control, which controls execution of running
applications and blocks execution of dangerous operations;

Network Attacks, which prevents attacks on the network;

Spam Filtering, intended for protection from spam.

The protection levels can be high, recommended level, and
manual security configurations. “High” uses previously setup
parameters intended for an inexperienced user and requiring
a significant degree of protection. “Recommended” refers to
an average user, with somewhat lower degree of protection.
“Manual” gives the user complete freedom to change the
settings of the application. Those of ordinary skill in the art
will appreciate that the proposed system and method optimize

US 8,566,943 B2

7 3
functionality of a computer system by asynchronous process- downloads the rest ol the program. However, based on the fact
ing of the events without any interruption of execution of the that the previous version wrote the same registry keys, per-

processes that caused the events. formed many of the same functions as the new version, etc.,
Note that a common situation 1s a new version of a legiti- the new version will be classified as non-malicious.

mate program that behaves similar to the old version, but has ; For example, consider the Opera browser version 9.5.1 and
some new functionality. The new version 1s not yet added to 9.5.2. Some of the differences are as follows (see portions of
the database of the legitimate programs. The new version 1s the log below, ditferences shown 1n bold, note also that this 1s
initially treated as unknown, but may be 1nitially viewed as a small fraction of the actual log, with most of the rest of the
malicious, since 1t first downloads a downloader, and then logs being 1dentical):

Opera 9.5.1

‘\DevicetHarddiskVolumeliDocume
nts and Settings‘kulich'Local
Settings‘\Application
Data'\Opera'\Opera'‘profile\opcache‘assoch

‘\DevicetHarddiskVolumeltDocume
nts and Settings‘kulich'Local
Settings\Application
Data\Opera\Opera\profileivpsh

0000

‘Device\HarddiskVolumeliDocume
nts and Settings‘kulich'l.ocal
Settings\Application
Data'\Opera'\Opera'‘profile\vps\00004

adoc.bx
adoc.bx-j
md.dat
md.dat-|
url.ax
url.ax-j
Ww.ax
W.aX-|
wb.vx
wh.vx-

\Device\Harddisk Volume1\GIMM
NOPERAS\

951

\Device\HarddiskVolume1\GIMM
NOPERAS\I951\

‘\Device'HarddiskVolume1'PROGR
AM FILESH

‘\Device'HarddiskVolume1'PROGR
AM FILESV\OPERAL

ENCODING.BIN
ENGLISH.LNG
OPERA.DLL
OPERA.EXE
OPERADEF6.INI
SEARCH.INI

‘Device'\HarddiskVolume1l'PROGR

AM FILES\OPERAWDEFAULTSY
DIALOG.INI
FASTFORWARD.INI
PLUGIN-IGNORE.INI
SPELLCHECK.INI
STANDARD_KEYBOARD.INI
STANDARD MENU.INI
STANDARD_MOUSE.INI
STANDARD__TOOLBAR.INI
STANDARD VOICE.INI

\Device\Harddisk Volumel\PROG
RAM FILES\OPERA\LOCALE:\

‘\Device'\HarddiskVolume1l'PROGR
AM FILES\OPERAVLOCALE'\RU\

RU.LNG

\Device'HarddiskVolume1'PROGR
AM FILES\OPERAWPROGRAM?

‘Device\HarddiskVolumel'\PROGR
AM
FILES\OPERA'WPROGRAM'\PLUGINSY

‘Device'\HarddiskVolume1l'PROGR
AM FILES\OPERA\SKINY

STANDARD_ SKIN.ZIP

‘\Device'HarddiskVolume1'PROGR

Unknown program (probably new
version of Opera)

‘Device'HarddiskVolumeliDocume
nts and Settings'kulich\Local
Settings‘\Application
Data'\Opera'\Opera'‘profile\opcachetassoch

‘Device'HarddiskVolumeliDocume
nts and Settings‘kulich'Local
Settings‘\Application
Data\Opera\Opera\profile\vpsh

0000

‘Device\HarddiskVolumeliDocume
nts and Settings‘kulich\Local
Settings'Application
Data'\Opera'\Opera'‘profile\vps\00004

adoc.bx
adoc.bx-j
md.dat
md.dat-|
url.ax
url.ax-j
w.ax
W.aX-]
wh.vx
wh.vX-]

‘\Device'HarddiskVolume1'PROGR
AM FILESH
‘\Device'HarddiskVolume1'PROGR
AM FILES\OPERA
ENCODING.BIN
ENGLISH.LNG
OPERA.DLL
OPERA.EXE
OPERADEF6.INI
SEARCH.INI
‘\Device'HarddiskVolume1'PROGR
AM FILES\OPERA\DEFAULTSY
DIALOG.INI
FASTFORWARD.INI
PLUGIN-IGNORE.INI
SPELLCHECK.INI

STANDARD _KEYBOARD.INI
STANDARD_ _MENU.INI
STANDARD__MOUSE.INI
STANDARD__TOOLBAR.INI
STANDARD__VOICE.INI

\DevicetHarddiskVolumel'\PROGR
AM FILES\OPERA\LOCALE\RU?Y
RU.LNG
\Device\HarddiskVolume1'\PROGR
AM FILESVOPERA'WPROGRAM:
\Device\HarddiskVolumel'\PROGR
AM
FILES'OPERA'\PROGRAM'\PLUGINS!
\DevicetHarddiskVolumel'\PROGR
AM FILESVWOPERANVSKINY
STANDARD SKIN.ZIP
\Device\HarddiskVolumel'\PROGR

US 8,566,943 B2

9 10
-continued
Unknown program (probably new

Opera 9.5.1 version of Opera)

AM FILESVOPERA'STYLESY AM FILESVOPERA'TYLESY
CONTENTBLOCK.CSS CONTENTBLOCK.CSS
MATHML.CSS MATHML.CSS
WML.CSS WML.CSS

\Device'HarddiskVolume1'PROGR \Device\HarddiskVolume1'PROGR

AM FILESVOPERA'STYLESWUSERL AM FILESVOPERASTYLESWSERL
DISABLEBREAKS.CSS DISABLEBREAKS.CSS
DISABLEFLOATS.CSS DISABLEFLOATS.CSS
DISABLEFORMS.CSS DISABLEFORMS.CSS
DISABLEPOSITIONING.CSS DISABLEPOSITIONING.CSS
DISABLETABLES.CSS DISABLETABLES.CSS
TABLELAYOUT.CSS TABLELAYOUT.CSS

\Device\HarddiskVolume 1\ PROGR \Device\HarddiskVolume1'\PROGR

A~T1N A~T1N

‘\Device\HarddiskVolume 1\ PROGR ‘\Device\HarddiskVolume1'\PROGR
A~T'\KASPER~1Y A~T'\KASPER~1Y
‘\Device\HarddiskVolume 1\ PROGR ‘\Device\HarddiskVolume1'\PROGR

A~T'\KASPER~1'KASPER~1" A~T'\KASPER~1'KASPER~1'

Opera 9.5.1 wrote some data into its own folder cache n the folder

Device\HarddiskVolume 1I\GIMMBINOPERASY, while the Volume \DOCUMENTS
new version does not write to that folder. '

Another example 1s where the new version has an expanded

\Devicel

AND

caching mechanism (the new version stores more data in the OPERAVOPERA\PROFILEACACHE4Y):

Harddisk
SETTINGSA

KULICH\LOCAL SETTINGSV\APPLICATION DATA\

Unknown program (probably new

Opera 9.5.1 version of Opera)
\Device\HarddiskVolume1\DOCUM \DevicetHarddiskVolume1'DOCU
ENTS AND SETTINGS\KULICHV\LOCAL MENTS AND
SETTINGS'APPLICATION SETTINGS\KULICH\LOCAL
DATAOPERAVOPERAPROFILE! SETTINGS'APPLICATION
\Device\HarddiskVolume1'\DOCUM DATAOPERAVOPERA'\PROFILE
ENTS AND SETTINGS\KULICH\LOCAL
SETTINGS'APPLICATION ‘\Device\HarddiskVolume1'\DOCU
DATAOPERAVWOPERA\PROFILE! MENTS AND
CACHE4: SETTINGS\KULICH\LOCAL
DCACHE4.URL SETTINGS'APPLICATION
OPRO0O0O0O2 DATAOPERAVOPERA'\PROFILE
OPRO0O00O3 \CACHE4
OPRO0O0O0O9 DCACHE4.URL
OPROOOOA OPRO0002
OPROO0OOB OPRO0O00O3
OPROOOOF OPRO0O0O09
OPROOOOY OPROO0DOA
OPRO000Z OPROO0O0OB
OPROO0O10 OPROOOOF
OPRO0011 OPRO0O0OOY
OPRO0O0O0Z
OPRO0014 OPRO0O010
OPRO0O0O15 OPRO0011
OPR0O0012
OPRO0014
OPROO0O18 OPRO0O0O15
OPR0O0016
OPRO0017
OPROO0O1C OPROO0O18
OPR00019
OPROOO1E OPRO001B
OPRO0O0O1C
OPRO0O0O1G OPRO001D
OPROOO1H OPROOO1E
OPROO0O1I OPROO0O1F
OPRO0O0O1K OPRO0O0O1G
OPROOO1H
OPROOO1IN OPROOO1I
OPROOO1P OPROO0O1K
OPRO001Q) OPR0O001L
OPROOO1IR OPROOOIN
OPROOO1T OPROOO1P
OPRO0OO1U OPRO001Q)
OPROOO1IW OPROOO1IR

11

-continued

US 8,566,943 B2

12

Unknown program (probably new

Opera 9.5.1 version of Opera)
OPRO0O0O1X OPROOO1T
OPRO0O0O1Y OPROOO1U
OPRO0O01Z OPROOO1W
OPRO0020 OPRO0O01X
OPR0O0021 OPROOO1Y
OPR0O0022 OPROO0O1Z
OPR0O0023 OPRO0020
OPR0O0024 OPRO0021
OPROOO2E OPRO0022
OPRO002Z OPRO0023
OPRO0030 OPRO0O0024
OPRO0031 OPROOO2E

OPRO002Z
OPR0O0034 OPRO0030
OPRO0035 OPRO0031
OPRO0036 OPR00033
OPRO0034
OPROO0O038 OPRO0035
OPROO0O3A OPRO0036
OPR00037
OPROOO3F OPRO0O0O38
OPROO0O3H OPROOO3A
OPR0003B
OPROOO3F
OPRO0O03M OPROOO3H
OPROOO3N OPR0O003K
OPRO0030O OPRO003L
OPROO0O3P OPROO0O3M
OPRO003Q OPROOO3N
OPROO0O3R OPRO0030
OPRO0O03S OPROOO3P
OPRO003Q)
OPROOO3R
OPRO0O03W OPRO0O03S
OPRO003X OPRO0003T
OPRO003Y OPR0O003U
OPRO003Z OPROOO3W
OPR0O0041 OPRO003X
OPR0O0043 OPRO0O03Y
OPR0O0044 OPRO0O03Z
OPR0O0045 OPR0O0041
OPRO0046 OPRO0043
OPRO004D OPRO0044
OPRO0052 OPRO0045
OPRO0033 OPRO0046
OPRO005Q OPRO0O04D
OPRO0052
OPRO0033
OPRO005Q)
OPR00064
OPRO0O0067
OPRO00O6GN
\Device\HarddiskVolume1'\DOCUM OPR00060
ENTS AND SETTINGS\KULICH\LOCAL OPR0O006Z
SETTINGS\APPLICATION OPR00070
DATAVOPERANOPERAVPROFILE?Y \Device\HarddiskVolume1'\DOCU

CACHE4'\REVOCATIONY MENTS AND
DCACHE4.URL SETTINGS\KULICH'\LOCAL
VLINK4.DAT SETTINGSVAPPLICATION

DATAVOPERAVOPERA'\PROFILE
WCACHE4\REVOCATIONY
DCACHE4.URL
VLINK4.DAT

All the above examples show “good” changes (i.e., they
use only resources o:

1t can be concluded t]
other hand, 11 the new version had, for example, the following

activities:

Use of system folders
Changing of drivers
Use of binary files

'the Opera browser 1tsell), and therefore,

nat this 1s a new version of Opera. On the

Then 1t could be concluded that this 1s malicious activity,
and the browser 1s mnfected. Other examples of malicious
60 activities 1n the Opera browser are those affecting the follow-
ng:
DeviceHardDiskVolumel\windows\system32
notepad.exe
regedit.exe
65 calc.exe
DeviceHardDiskVolumeliwindows\system32\drivers
AcCp1.5ys

US 8,566,943 B2

13

http.sys

beep.sys

With reference to FIG. 10, an exemplary system for imple-
menting the imvention includes a general purpose computing
device 1n the form of a computer or server 20 or the like,
including a processing umit 21, a system memory 22, and a
system bus 23 that couples various system components
including the system memory to the processing unit 21. The
system bus 23 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architectures.
The system memory includes read-only memory (ROM) 24
and random access memory (RAM) 25. A basic input/output
system 26 (BIOS), contaiming the basic routines that help
transier information between elements within the computer
20, such as during start-up, 1s stored in ROM 24.

The computer 20 may further include a hard disk drive 27
for reading from and writing to a hard disk, not shown, a
magnetic disk drive 28 for reading from or writing to a remov-
able magnetic disk 29, and an optical disk drive 30 for reading

from or writing to a removable optical disk 31 such as a
CD-ROM, DVD-ROM or other optical media. The hard disk
drive 27, magnetic disk drive 28, and optical disk drive 30 are
connected to the system bus 23 by a hard disk drive interface
32, a magnetic disk drive interface 33, and an optical drive
interface 34, respectively. The drives and their associated
computer-readable media provide a non-volatile storage of
computer readable instructions, data structures, program
modules and other data for the computer 20.

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a
removable optical disk 31, 1t should be appreciated by those
skilled 1n the art that other types of computer readable media
that can store data that 1s accessible by a computer, such as
magnetic cassettes, flash memory cards, digital video disks,
Bernoull1 cartridges, random access memories (RAMs),
read-only memories (ROMs) and the like may also be used in
the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25,
including an operating system 33. The computer 20 includes
a file system 36 associated with or included within the oper-
ating system 35, one or more application programs 37, other
program modules 38 and program data 39. A user may enter
commands and information into the computer 20 through
input devices such as a keyboard 40 and pointing device 42.
Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner or the like.

These and other input devices are often connected to the
processing unit 21 through a serial port interface 46 that 1s
coupled to the system bus, but may be connected by other
interfaces, such as a parallel port, game port or umiversal serial
bus (USB). A monitor 47 or other type of display device 1s
also connected to the system bus 23 via an mterface, such as
a video adapter 48. In addition to the monitor 47, personal
computers typically include other peripheral output devices
(not shown), such as speakers and printers.

The computer 20 may operate 1n a networked environment
using logical connections to one or more remote computers
49. The remote computer (or computers) 49 may be another
computer, a server, a router, a network PC, a peer device or
other common network node, and typically includes many or
all of the elements described above relative to the computer
20, although only a memory storage device 50 has been
illustrated. The logical connections include a local area net-

work (LAN) 51 and a wide area network (WAN) 52. Such

10

15

20

25

30

35

40

45

50

55

60

65

14

networking environments are commonplace in oflices, enter-
prise-wide computer networks, Intranets and the Internet.

When used 1mn a LAN networking environment, the com-
puter 20 1s connected to the local network 51 through a
network interface or adapter 53. When used 1n a WAN net-
working environment, the computer 20 typically includes a
modem 34 or other means for establishing communications
over the wide area network 52, such as the Internet. The
modem 54, which may be internal or external, 1s connected to
the system bus 23 via the senial port interface 46. In a net-
worked environment, program modules depicted relative to
the computer 20, or portions thereof, may be stored in the
remote memory storage device. It will be appreciated that the
network connections shown are exemplary and other means
of establishing a communications link between the computers
may be used.

Having thus described a preferred embodiment, 1t should
be apparent to those skilled in the art that certain advantages
of the described method and apparatus have been achieved. In
particular, those skilled 1n the art would appreciate that the
proposed system and method provide for an effective, on-the-
fly detection of malware based on asynchronous processing
ol events generated by applications running on a computer
system.

It should also be appreciated that various modifications,
adaptations and alternative embodiments thereol may be
made within the scope and spirit of the present invention. The
invention 1s further defined by the following claims.

What 1s claimed 1s:

1. A method for asynchronous processing of events on a

computer system, the method comprising;

(a) detecting a system call on the computer system;

(b) filtering the system call to determine when the system
call matches a security criteria;

(c) creating a copy of the system call and asynchronously
processing the system call copy, 1f the system call does
not pass through at least one filter, and at least one of the
filter security criteria does not match the system call;

(d) placing the system call into a queue for processing;

() releasing the system call by performing further process-
ing on the event copy;

(1) deleting the system call copy from the queue;

(g) processing the system call copy, wherein the processing
of the system call copy comprises anti-virus (AV) check-
ing of the system call copy and terminating an object that
caused the system call, when the AV check reveals a
malicious nature of the system call; and

(h) for an object associated with the system call that has
behavior differences compared to a previous known
non-malicious version of the object but also similarities
to the previous known non-malicious object, classifying
the object as non-malicious,

wherein steps (b)-(h) are performed sequentially on the
computer system without interrupting execution of the
system call on the computer system.

2. The method of claim 1, further comprising generating a

behavior log for the object that caused the system call.

3. The method of claim 2, wherein the behavior log 1s used

for the AV check of network configurations.

4. The method of claim 2, wherein the behavior log and a
number of accesses ol a web site are used for the AV check of
the web site.

5. The method of claim 1, wherein the filtering of the
system call comprises processing the system call through at
least one filter.

US 8,566,943 B2

15

6. The method of claim 1 further comprising creating a
control record based on the system call copy, wherein the
control record contains heuristic data related to the system
call.

7. The method of claim 6, wherein AV checking the system
call comprises an AV check of the control record.

8. The method of claim 2, wherein the processing of the
behavior log comprises any of:

a signature detection;

an event emulation; and

a heuristic detection.

9. The method of claim 8, wherein heuristic detection
employs data from any of the behavior log, from a remote
database and a local database.

10. The method of claim 1, wherein the processing of the
system call copy further comprises adding the object, which
caused the system call, to a whaite list or to a black list, based
on the degree of similarity to a previously known object.

11. The method of claim 10, wherein the white list and the
black list are analyzed for false positives.

12. The method of claim 11, wherein the false positive
analysis comprises detecting collisions between the white list
and the black list.

13. A system for asynchronous processing of events, the
system comprising a processor, a memory coupled to the
processor, and computer code loaded 1nto the memory for
implementing the steps of:

(a) detecting a system call on the computer system:;

(b) filtering the system call to determine when the system

call matches a security critena;

(c) creating a copy of the system call and asynchronously
processing the system call copy, 1f the system call does
not pass through at least one filter, and at least one of the
filter security criteria does not match the system call;

(d) placing the system call into a queue for processing;

(e) releasing the system call by performing further process-
ing on the event copy;

(1) deleting the system call copy from the queue;

10

15

20

25

30

35

16

(g) processing the system call copy, wherein the processing
of the system call copy comprises anti-virus (AV) check-
ing of the system call copy and terminating an object that
caused the system call, when the AV check reveals a
malicious nature of the system call; and

(h) for an object associated with the system call that has
behavior differences compared to a previous known
non-malicious version of the object but also similarities

to the previous known non-malicious object, classifying
the object as non-malicious,

wherein steps (b)-(h) are performed sequentially on the
computer system without interrupting execution of the

system call on the computer system.
14. The system of claim 13, wherein processing of the

object that caused the system call by an AV module deter-
mines whether the object 1s malicious.

15. The system of claim 14, wherein when the object 1s
deemed malicious, activity of the object 1s terminated.

16. The system of claim 14, wherein when the object 1s
deemed malicious, functionality of the object 1s restricted.

17. The system of claim 14, wherein when the object 1s
deemed malicious on a different computer, the object 1s also
deemed malicious on the computer system.

18. The system of claim 13, wherein the system further
includes any of the following application modules:

a firewall;

an AV (antivirus) module;

a HIPS (host intrusion protection system);

a web AV (anfivirus);

a mail AV;

a traffic AV;

a script AV;

an emulator; and

a PDM (proactive defense module).

19. The system of claim 13, wherein the at least one filter
allows through core system calls.

20. The system of claim 19, wherein the system calls are
AV-checked when they pass through the at least one filter.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

