12 United States Patent

US008566909B2

(10) Patent No.: US 8.566.909 B2

Yalamanchi 45) Date of Patent: Oct. 22, 2013
(54) ROW-LEVEL SECURITY WITH EXPRESSION (56) References Cited
DATA TYPE
U.S. PATENT DOCUMENTS
(75) Inventor: Aravind Yalamanchi, Nashua, NH (US) 5418950 A * 5/1995 Lietals v 715781
6,487,552 Bl ™ 11/2002 Leiretal.oooooevniiiinnnnn, 1/1
(73) Assignee: Oracle International Corporation, 200436102122(53; 22 : 12/{ %883 galtimanfhli etal. ... - % 3
Redwood Shores, CA (US) 20050177570 AL* 82005 Duttactal. - 707/9
2005/0289342 Al 12/2005 Needham et al.
(*) Notice: Subject to any disclaimer, the term of this 2006/0041421 Al* 2/2006 Taetal.ccoeoevirenrnnn, 704/5
patent 1s extended or adjusted under 35 ¥ cited hy examiner
U.S.C. 154(b) by 665 days. Y
Primary Examiner — Carl Colin
(21) Appl. No.: 12/012,258 Assistant Examiner — S. Al1 Zaidi
(74) Attorney, Agent, or Firm — Kraguljac Law Group LLC
(22) Filed: Feb. 1, 2008 (57) ABSTRACT
(65) Prior Publication Data Systems, methods, and other embodiments associated with
row level security for a database table are described. One
US 2009/0199273 Al Aug. 6, 2009 example method includes detecting an access statement seek-
ing access to a row 1n a database table for which row level
(51) Inmt.ClL. security 1s active. The method includes adding a predicate to
GOGEF 17/30 (2006.01) the access statement. The predicate 1s based on an access
GOGEF 1728 (2006.01) control expression associated with the row. The access con-
(52) U.S.CL trol expression depends on an 1mstance of an expression data
uspcC 726/4: 715/781: 707/3: 707/9: 704/5 type associated with the row. The method includes populating
(58) Field of Classification Search an attribute of the predicate, and controll.ing access to the row
USPC oo 726/4: 705/713, 781 715,781 pased ona computed value for the predicate.

See application file for complete search history.

(st)

28 Claims, 6 Drawing Sheets

202

'—-)Eeive Vocabulary -/

204

Receive Definition
Of Access Control Expression

210

Detect Access Statement ‘/

l

220

Create Predicate "/ 200
|
230

Populate Predicate i’

1

240
Evaluate Predicate _I/

End

Control Row Access

250

U.S. Patent Oct. 22,2013 Sheet 1 of 6 US 8,566,909 B2

/ 100
Start
110
120
130
Populate Predicate
140
Evaluate Predicate
150

Control Row Access

End

Figure |

U.S. Patent

Start

End

Oct. 22, 2013 Sheet 2 of 6

Receive Vocabulary

Receive Definition
Of Access Control Expression

Detect Access Statement

Create Predicate

Populate Predicate

Evaluate Predicate

Control Row Access

Figure 2

202

204

210

220

230

240

250

US 8,566,909 B2

200

U.S. Patent

Oct. 22, 2013 Sheet 3 of 6

Start

Receive Vocabulary

Receive Definition
Of Access Control Expression

Create Access Control Policy

Associate
Access Control Policy

End

Figure 3

302

304

306

308

300

US 8,566,909 B2

U.S. Patent Oct. 22,2013 Sheet 4 of 6 US 8,566,909 B2

System 400

Vocabulary Logic VPD Logic
410

440

Access Control
Policy Logic
420

Security Logic

450

Database Table 430

Expression

Column
432

Figure 4

U.S. Patent Oct. 22, 2013 Sheet 5 of 6 US 8.566.,909 B2

System 500

Vocabulary Logic VPD Logic
210 340

Access Control
Policy Logic
520

Security Logic

330

Access Control Policy
560

Access Control Access Control Access Control
Expression Expression Expression

262 264 268

Database Table 530

Expression
Column

332

Figure 5

U.S. Patent Oct. 22, 2013 Sheet 6 of 6 US 8.566.,909 B2

600
Computer
630
602 604
Row-Level
Logic

Bus

610 608
[/O Ports

/O _ 606
618 Network 620
Devices

Figure 6

US 8,566,909 B2

1

ROW-LEVEL SECURITY WITH EXPRESSION
DATA TYPE

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction of the
patent document or the patent disclosure as it appears 1n the
Patent and Trademark Office patent file or records, but other-
wise reserves all copyright rights whatsoever.

BACKGROUND

Database tables include rows and colummns. It may be
desired to control access to a database on a row by row basis.
Conventionally, controlling row level access may have been
implemented using labels (e.g., classification labels, sensitiv-
ity labels). A sensitivity label may have been assigned to an
individual row 1n a database table. The label may have
enabled row level security. The labels may have been stored 1in
a dedicated column 1n the database table. Conventional labels
were typically static items that identified a group or some
other entity or characteristic upon which access was con-
trolled. For example, a conventional label may have indicated
that a user associated with a first group could access a row
while a user associated with a second, different group could
not. Similarly, a conventional label may have indicated a
security level that a user had to meet or exceed belore the user
could access the row. For example, the label may have indi-
cated a required security level of x, and a first user who had a
security level of x or greater may have been allowed to access
the row while a second user who had a security level less than
x may not have been allowed to access the row. While 1nclu-
stve traits (e.g., group membership) and quantifiable traits
(e.g., security level) are described, 1t 1s to be appreciated that
labels may have addressed other attributes.

Conventional systems may have compared user attributes
to required attributes stored 1n the label associated with the
row to be accessed 1n the dedicated column 1n the table that
the user was attempting to access. The user attributes may
have been accessible from a user label and/or session label.
These labels define user attributes. In the example above, the
labels may have provided values for security level and group
membership. While two attributes are defined, it 1s to be
appreciated that a user label and/or session label may 1include
other, different attributes. However, this was one 1ssue with
label based security systems. Both the creator of the table and
the user of the table needed to conform to the same fixed
language concerning security. Thus, label based security
tended to be limited in terms of dynamically responding to
changing situations and to handling complex security consid-
erations.

Some conventional systems extended the label approach
into the virtual private database (VPD) domain. A VPD facili-
tates binding a stored procedure to a database object like a
table, a view, and so on. A VPD object may be accessed using
access statements including, for example, query statements,
data manipulation operation (DMO) statements, and so on.
When the VPD object was accessed, the accessing statement
may have been mtercepted and a stored procedure associated
with the database object may have been executed. The stored
procedure may have rewritten the accessing statement to
achieve different ends including, for example, improving eifi-
ciency, improving security, and so on. Rewriting the access-
ing statement may have included inserting a dynamically
generated clause to the access statement. The dynamically

10

15

20

25

30

35

40

45

50

55

60

65

2

generated clause may have included variables available from
the accessing environment. For example, variables associated
with the user label, the session label, the machine, and so on,
may have been present 1n the dynamically generated clause.

The dynamically generated clause may have been, for
example, a “where” (e.g., SQL WHERE) clause. More gen-
erally, the generated clause may be treated as a “predicate”.
Thus, row level security may be enhanced 1n these conven-
tional systems by rewriting an access statement to include a
predicate (e.g., WHERE clause) that must be evaluated 1n a
certain way belfore access to a row will be granted. While
usetul, this conventional approach still had limitations. For
example, the exact nature of the relationship between the user
accessing the data and the data itself needed to be defined
ahead of time by a database administrator (DBA), an appli-
cation developer, or other individual. Impertect knowledge
about security policies may have existed. Therefore, it may
have been difficult, 11 possible at all, to pre-design a static
system to handle a wide and/or complete spectrum of access
policies. Thus, improvements to row level security are still
desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are icorporated 1n
and constitute a part of the specification, illustrate various
example systems, methods, and other example embodiments
of various aspects of the invention. It will be appreciated that
the illustrated element boundaries (e.g., boxes, groups of
boxes, or other shapes) 1n the figures represent one example of
the boundaries. One of ordinary skill in the art will appreciate
that in some examples one element may be designed as mul-
tiple elements or that multiple elements may be designed as
one clement. In some examples, an element shown as an
internal component of another element may be implemented
as an external component and vice versa. Furthermore, ele-
ments may not be drawn to scale.

FIG. 1 illustrates an example method associated with row-
level security that employs an expression data type.

FIG. 2 illustrates another example method associated with
row-level security that employs an expression data type.

FIG. 3 illustrates another example method associated with
row-level security that employs an expression data type.

FIG. 4 1llustrates an example system associated with row-
level security that employs an expression data type.

FIG. 5 1llustrates another example system associated with
row-level security that employs an expression data type.

FIG. 6 illustrates an example computing environment 1n
which example systems and methods, and equivalents, may
operate.

DETAILED DESCRIPTION

Example systems and methods described herein concern
row-level security that employs an expression data type. In
one example, the expression data type may be the EXPRES-
SION data type provided in Oracle® Database systems. In
one example, the EXPRESSION data type 1s a virtual data
type that 1s created by placing a constraint on a VARCHAR?2
column 1n a user table that stores expressions. The EXPRES-
SION data type may be processed using an EVALUATE
operator. One skilled 1n the art will recognize the EVALUATE
operator as an operator that evaluates expressions for data
items.

Example systems and methods are tasked with including a
row 1n the result set of a user operation (e.g., query, DMO) 1t
and only 11 a conditional expression (e.g., predicate) added to

US 8,566,909 B2

3

the user operation by a stored security policy evaluates to a
desired value (e.g., TRUE) when evaluated 1n light of the
user/session profile of entity accessing the row. Unlike con-
ventional systems that employ static labels, example systems
and methods may employ an expression at the row level to
provide security. The expression may be embodied in an
instance ol an expression data type. Thus, example systems
and methods define row-level access control policies using an
expression data type.

A database table may include a number of rows and col-
umns. An expression column may be added to a table. The
expression column may hold instances of an expression data
type. For example, the expression column may hold one
instance per row 1n the table. Instances of the expression data
type may be evaluated to control access to corresponding
rows. Thus, the additional column may be viewed as storing
access policies. An access policy may be implemented as a
conditional expression that may be referred to as an access
control statement or access control expression. The condi-
tional expression may have a set of predicates that are joined
by a set of operators. The predicates may be expressed, for
example, in SQL WHERE clause format. Therefore, the
expression may use SQL operators including, for example,
BETWEEN (e.g.,range), IN (e.g., list), LIKE, and so on, in1ts
predicate(s). When an expression includes two or more predi-
cates, the predicates may be related (e.g., joined) by conjunc-
tions (e.g., AND), disjunctions (e.g., or), and so on. In one
example, an expression may also include an approved list of
user-defined functions 1n 1ts functions.

Example systems and methods support row level security
using an expression data type. Different rows 1n a table may
have different expressions that control row access. The
expressions are to be used to control access to a row 1n light of
the attributes of the entity trying to access the row. Thus, a
user may acquire access to a row 1f the user’s profile makes
the expression evaluate to a desired value (e.g., TRUE). Since
different rows may have different expressions, 1 one
example, different rows 1n a table may have different access
policies. In one example, each row 1n a table could have its
own unique access policy.

An expression may have access to a set of attributes asso-
clated with a user (e.g., user profile, session profile). An
expression may also have access to a set of attributes associ-
ated with an environment (e.g., computer identifier, IP
address, time of day). An expression may also have access to
a set of attributes associated with an access statement (e.g.,
query 1dentifier, DMO 1identifier, operation type). For
example, a DMO may be 1dentified by an opcode that 1den-
tifies whether the DMO 1s an update, delete, and so on. There-
fore, complex security that addresses diflerent attributes may
be implemented. For example, access may be granted based
on user attributes, environment attributes, and/or access
attributes. Access may only be granted to a row 1f a condi-
tional expression that considers all these attributes evaluates
to a desired value (e.g., TRUE).

An expression may be crafted 1n light of a vocabulary. In
one example, the vocabulary may be user-defined and/or
application specific. A DBA, security admainistrator, applica-
tion developer, and so on, may define a vocabulary for an
access control policy. The access control policy may be appli-
cation specific and thus the vocabulary may be application
specific. The access control policy may be unique for each
table for which row level security 1s applied. The access
control policy need not be limited to conventional label type
characteristics (e.g., level, compartment, group). An access
control policy may have different attributes, including, for

example, both simple attributes (e.g., NUMBER, DATE,

10

15

20

25

30

35

40

45

50

55

60

65

4

VARCHAR) and complex attributes (e.g., XMLIype, SPA-
TIAL, TEXT). One skilled 1n the art will recognize terms like
NUMBER, XMLIype, and so on, as referring to data types
available in arelational database. When a vocabulary includes
an XMLtype attribute, then a corresponding predicate 1n an
access control expression may use the EXISTSNODE opera-
tor. One skilled in the art will recognize EXISTSNODE as an
XML operator that matches an XML Document with an
XPath expression with predicates on the contents of the docu-
ment. While EXISTSNODE 1s described, it 1s to be appreci-
ated that other XML operators may also be employed. Since
environment and/or statement contexts may be accessible to a
security policy, a security policy may be dynamic. For
example, a security policy may change based on time of day,
on accessing computer, onload, and so on. More generally, an
access control expression may have different results based on
the value of dynamic values available to the expression.

An access control policy may be associated with a table to
enable expression data type row level security for the table. In
one example, associating the access control policy with the
table may initiate creation of the expression column 1n the
database table. Recall that the expression column can store
instances of an EXPRESSION data type. Associating the
access control policy with the table may also establish the
access control vocabulary as the metadata for formulating
access control expressions.

An access control policy may be processed when an access
statement seeks access to a row. Before access 1s granted,
attributes 1n an access control expression may be initialized
with values taken from the user, environment, and/or state-
ment contexts. The attributes 1n the access control expression
may be processed in accordance with the access control
vocabulary defined by a secunity policy. To determine
whether to grant access, the mstance of the EXPRESSION
data type associated with the row to be accessed may be
evaluated. Thus, the security policy may return a predicate
having an EVALUATE operator. One skilled 1n the art wall
recognize the EVALUATE operator as an operator that evalu-
ates expressions for data items. The EVALUATE operator
operates on the instance of the EXPRESSION data type asso-
ciated with the row being accessed. The EVALUATE operator
computes the result of the predicate 1n light of the mnitialized
values for the attributes in the access control expression.
Access to the row 1s then selectively granted or denied based
on the computed result.

The following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The examples
are not mntended to be limiting. Both singular and plural forms
of terms may be within the definitions.

References to “one embodiment™, “an embodiment”, “one
example”, “an example”, and so on, indicate that the embodi-
ment(s) or example(s) so described may include a particular
feature, structure, characteristic, property, element, or limita-
tion, but that not every embodiment or example necessarily
includes that particular feature, structure, characteristic,
property, element or limitation. Furthermore, repeated use of
the phrase “1n one embodiment™ does not necessarily refer to
the same embodiment, though 1t may.

ASIC: application specific integrated circuit.

CD: compact disk.
CD-R: CD recordable.

CD-RW: CD rewriteable.

DVD: digital versatile disk and/or digital video disk.
HTTP: hypertext transier protocol.

LLAN: local area network.

US 8,566,909 B2

S

PCI: peripheral component interconnect.

PCIE: PCI express.

RAM: random access memory.

DRAM: dynamic RAM.

SRAM: synchronous RAM.

ROM: read only memory.

PROM: programmable ROM.

EPROM: erasable PROM.

EEPROM: electrically erasable PROM.

USB: universal serial bus.

XML: extensible markup language.

WAN: wide area network.

“Computer component”, as used herein, refers to a com-
puter-related entity (e.g., hardware, firmware, soitware in
execution, combinations thereof). Computer components
may include, for example, a process running on a processor, a
processor, an object, an executable, a thread of execution, and
a computer. A computer component(s) may reside within a
process and/or thread. A computer component may be local-
ized on one computer and/or may be distributed between
multiple computers.

“Computer communication”, as used herein, refers to a
communication between computing devices (e.g., computer,
personal digital assistant, cellular telephone) and can be, for
example, a network transier, a file transfer, an applet transier,
an email, an HTTP transfer, and so on. A computer commu-

nication can occur across, for example, a wireless system
(e.g., IEEE 802.11), an Ethernet system (e.g., IEEE 802.3), a

token ring system (e.g., IEEE 802.5), a LAN, a WAN, a
point-to-point system, a circuit switching system, a packet
switching system, and so on.

“Computer-readable medium”, as used herein, refers to a
medium that stores signals, instructions, and/or data. A com-
puter-readable medium may take forms, including, but not
limited to, non-volatile media, and volatile media. Non-vola-
tile media may include, for example, optical disks, magnetic
disks, and so on. Volatile media may include, for example,
semiconductor memories, dynamic memory, and so on. Com-
mon forms of a computer-readable medium may include, but
are not limited to, a floppy disk, a flexible disk, a hard disk, a
magnetic tape, other magnetic medium, an ASIC, a CD, other
optical medium, a RAM, a ROM, a memory chip or card, a
memory stick, and other media from which a computer, a
processor or other electronic device can read.

“Data store”, as used herein, refers to a physical and/or
logical entity that can store data. A data store may be, for
example, a database, a table, a {ile, a list, a queue, a heap, a
memory, a register, and so on. In different examples, a data
store may reside 1n one logical and/or physical entity and/or
may be distributed between two or more logical and/or physi-
cal entities.

“Logic”, as used herein, mncludes but i1s not limited to,
hardware, firmware, software in execution on a machine,
and/or combinations of each to perform a function(s) or an
action(s), and/or to cause a function or action from another
logic, method, and/or system. Logic may include a software
controlled microprocessor, a discreet logic (e.g., ASIC), an
analog circuit, a digital circuit, a programmed logic device, a
memory device containing instructions, and so on. Logic may
include one or more gates, combinations of gates, or other
circuit components. Where multiple logical logics are
described, 1t may be possible to ncorporate the multiple
logical logics 1nto one physical logic. Similarly, where a
single logical logic 1s described, it may be possible to distrib-
ute that single logical logic between multiple physical logics.

An “operable connection”, or a connection by which enti-
ties are “operably connected”, 1s one in which signals, physi-

10

15

20

25

30

35

40

45

50

55

60

65

6

cal communications, and/or logical communications may be
sent and/or received. An operable connection may include a
physical interface, an electrical interface, and/or a data inter-
face. An operable connection may include differing combi-
nations of interfaces and/or connections suificient to allow
operable control. For example, two entities can be operably
connected to communicate signals to each other directly or
through one or more intermediate entities (e.g., processor,
operating system, logic, software). Logical and/or physical
communication channels can be used to create an operable
connection.

“Signal”, as used herein, includes but 1s not limited to,
clectrical signals, optical signals, analog signals, digital sig-
nals, data, computer instructions, processor instructions,
messages, a bit, a bit stream, or other means that can be
recetved, transmitted and/or detected.

“Software™, as used herein, includes but 1s not limited to,
one or more executable mstructions that cause a computer,
processor, or other electronic device to perform functions,
actions and/or behave 1n a desired manner. “Software” does
not refer to stored source-level instructions being claimed as
stored source-level instructions per se (e.g., a program list-
ing). The mnstructions may be embodied in various forms
including routines, algorithms, modules, methods, threads,
and/or programs including separate applications or code from
dynamically linked libraries.

“User”, as used herein, includes but 1s not limited to one or
more persons, software, computers or other devices, or com-
binations of these.

Some portions of the detailed descriptions that follow are
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a memory. These algo-
rithmic descriptions and representations are used by those
skilled 1n the art to convey the substance of their work to
others. An algorithm, here and generally, 1s concerved to be a
sequence ol operations that produce a result. The operations
may include physical manipulations of physical quantities.
Usually, though not necessarily, the physical quantities take
the form of electrical or magnetic signals capable of being
stored, transferred, combined, compared, and otherwise
mamipulated 1n a logic, and so on. The physical manipulations
create a concrete, tangible, usetul, real-world result.

It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, ele-
ments, symbols, characters, terms, numbers, and so on. It
should be borne 1n mind, however, that these and similar
terms are to be associated with the appropriate physical quan-
tities and are merely convenient labels applied to these quan-
tities. Unless specifically stated otherwise, it 1s appreciated
that throughout the description, terms including processing,
computing, determining, and so on, refer to actions and pro-
cesses of a computer system, logic, processor, or similar
clectronic device that manipulates and transforms data rep-
resented as physical (electronic) quantities.

Example methods may be better appreciated with refer-
ence to flow diagrams. While for purposes of simplicity of
explanation, the illustrated methodologies are shown and
described as a series of blocks, 1t 1s to be appreciated that the
methodologies are not limited by the order of the blocks, as
some blocks can occur in different orders and/or concurrently
with other blocks from that shown and described. Moreover,
less than all the 1llustrated blocks may be required to 1mple-
ment an example methodology. Blocks may be combined or
separated mnto multiple components. Furthermore, additional
and/or alternative methodologies can employ additional, not
illustrated blocks.

US 8,566,909 B2

7

FI1G. 1 illustrates a method 100 associated with row-level
security based on an expression data type. Method 100 may
include, at 110, detecting an access statement that seeks
access to arow 1n a database table for which row level security
1s active. The access statement may be, for example, a query,
a data manipulation operation (DMO), and so on. Detecting
the access statement may include receiving a signal from a
virtual private database (VPD), momtoring a query reader,
and so on.

Method 100 may also include, at 120, creating a predicate
for the access statement. The predicate will depend, at least 1n
part, on an access control expression associated with the row.
The access control expression will 1tself depend, at least 1n
part, on an instance of an expression data type associated with
the row. In one example, the predicate 1s an SQL WHERE
clause. The predicate may include various functions. For
example, the predicate may include a user defined function, a
system defined function, and so on.

Method 100 may also include, at 130, populating an
attribute of the predicate. The attribute may be populated with
a value acquired from a context associated with the entity that
provided the access statement. The context may be, for
example, a user environment profile, a session profile, and so
on. The value may also be populated with a value associated
with an environment from which the access statement was
provided. For example, the access statement may have come
from a computer having a certain IP address, or located 1n a
certain time zone. The value may also be populated with a
value associated with the access statement itself. For
example, the access statement may have an opcode that 1den-
tifies whether the access statement 1s an update or a delete or
SO On.

Method 100 may also include, at 140, evaluating the predi-
cate. Evaluating the predicate may include, for example,
computing a value for the predicate. The value may be com-
puted 1n light of the attribute values populated from the vari-
ous contexts described above. It may be desired to have the
predicate yield a single value. For example, alogical TRUE or
logical FALSE result may facilitate determining whether to
provide access to the row. Therefore, 1n one example, the
predicate may be inserted into an EVALUATE operator that
can be resolved to a single logical value.

Method 100 may also include, at 150, selectively providing,
access to the row associated with the access statement
detected at 110. Whether access 1s granted to the row will
depend, at least in part, on the predicate value. In one
example, granting access to the row includes providing row
content as a row result to the access statement. For example,
if the access statement was a query, then row content may be
provided as a query result.

While FIG. 1 illustrates various actions occurring in serial,
it 1s to be appreciated that various actions 1llustrated 1n FI1G. 1
could occur substantially in parallel. By way of illustration, a
first process could detect access statements, a second process
could create and populate predicates, and a third process
could evaluate predicates and control row access. While three
processes are described, 1t 1s to be appreciated that a greater
and/or lesser number of processes could be employed and that
lightweight processes, regular processes, threads, and other
approaches could be employed.

In one example, a method may be implemented as com-
puter executable istructions. Thus, in one example, a com-
puter-readable medium may store computer executable
instructions that 11 executed by a machine (e.g., processor)
cause the machine to perform method 100. While executable
instructions associated with the method 100 are described as
being stored on a computer-readable medium, 1t 1s to be

10

15

20

25

30

35

40

45

50

55

60

65

8

appreciated that executable instructions associated with other
example methods described herein may also be stored on a
computer-readable medium.

FIG. 2 illustrates a method 200 associated with row-level
security based on an expression data type. Method 200
includes some actions similar to those described in connec-
tion with method 100. For example, method 200 includes
detecting an access statement at 210, creating a predicate at
220, populating the predicate at 230, evaluating the predicate
at 240, and controlling row access at 250. However, method
200 may include actions performed before these actions.

For example, method 200 may include, at 202, recerving a
vocabulary associated with an access control policy for the
database table for which row level secunity 1s active. The
vocabulary may be, for example, user-defined and application
specific. Thus, row level security supported by method 200 1s
not limited to a pre-defined set of labels.

The vocabulary may be used to define access control
expressions, and access control policies. Thus, the vocabulary
may facilitate establishing metadata associated with creating
access control expressions, and access control policies. Inone
example, the vocabulary may be communicated using XML.
In one example, the vocabulary may include an attribute
having a simple data type. In another example, the vocabulary
may include an attribute having a complex data type. Com-
binations of simple and complex data types may be found in
some examples. The vocabulary may include data that
describes dynamic elements. For example, the vocabulary
may 1nclude data that describes how an attribute can be con-
figured to accept a time of day value, a location value, and so
on. Thus, row control may be dynamic based on factors like
the time of day when a row 1s accessed, from where the access
statement 1s recerved, and so on.

Method 200 may also include, at 204, recerving a definition
of an access control expression for a row 1n the database table
for which row level security 1s active. The access control
expression may be parsed to insure that 1t conforms to the
vocabulary recerved at 202. The access control expression
may then be stored 1n a row 1n the database table to control
access to the row.

FIG. 3 illustrates a method 300 associated with row-level
security based on an expression data type. Method 300
includes some actions similar to those described 1n connec-
tion with method 200. For example, method 300 includes
receiving a vocabulary at 302 and recerving a definition of an
access control expression at 304. However, method 300 may
include additional actions.

For example, method 300 may include, at 306, creating an
access control policy for the database table for which row
level security 1s active. The access control policy may define
row level security for rows 1n the database table. Row level
security 1s to be controlled, at least 1n part, by access control
expressions associated with rows. Different rows may be
associated with different expressions and thus may have indi-
vidualized row level security. In one example, a first row 1n
the database table may have a first row level security defined
by a first access control expression in the access control
policy and a second, different row 1n the database table may
have a second, different row level security defined by a sec-
ond, different access control expression in the access control
policy. In one example, each row may have 1ts own access
control expression.

Method 300 may include, at 308, associating the access
control policy with the database table for which row level
security 1s active. This may include, for example, establishing
an expression column 1n the database table and then populat-
ing the expression column with an access control expression

US 8,566,909 B2

9

tor arow for which row level security 1s to be provided. Recall
that access control expressions are to conform with the
vocabulary received at 302. Recall also that access control
expressions may be populated at access time with values
retrieved from an environment(s) associated with the access.
Therefore, associating the access control policy with the data-
base table may include establishing the vocabulary as meta-
data available for processing attributes of access control
eXpressions.

The expression column may be configured to store a par-
ticular data type. For example, the expression column may
store 1nstances of the EXPRESSION data type. In one
example, an mstance of the EXPRESSION data type may be
encapsulated mn an EVALUATE operator.

FIG. 4 illustrates a system 400 that provides row-level
security based on an expression data type. System 400
includes a vocabulary logic 410. Vocabulary logic 410 1s to
establish a set of metadata associated with a set of attributes
that are candidates for membership in a row level access
control expression. In one example, the metadata may be
established as a set of attributes and values recorded 1n an
XML document. In another example, the metadata may be
established as attributes and/or values 1n a relational database
table. The row level access control expression will protect a
row 1n database table 420. The row level access control
expression 1s to be stored in an expression column 432 1n
database table 430. In one example, the vocabulary logic 410
1s to establish the set of metadata 1n accordance with user-
defined, application specific semantics. For example, an
accounts receivable application may have a first set of secu-
rity semantics relevant to an accounting department while a
parts database may have a second set of security semantics
relevant to a manufacturing environment. Rather than con-
strain the two dissimilar entities to implement row level secu-
rity using a fixed set of labels, each entity may define a
security vocabulary that 1s then used for producing, populat-
ing, and evaluating access control statements associated with
providing row level security. In one example, the vocabulary
logic 410 1s to establish the set of metadata 1n accordance with
SQL operators and data types.

System 400 includes an access control policy logic 420.
Access control policy logic 420 1s to establish row level
access control expressions that get associated with rows 1n
database table 430. The access control policy logic 420 1s to
establish and populate the expression column 432 in the data-
base table 430. In one example, entries placed 1n the expres-
sion column 432 by access control policy logic 420 are
instances of an EXPRESSION data type. An mnstance will
depend, at least 1n part, on a row level access control expres-
s1on that conforms with the set of metadata established by the
vocabulary logic 410.

System 400 includes a virtual private database (VPD) logic
440. VPD logic 440 1s to intercept an access statement
directed at a row 1n the database table 430. Rather than just let
the access statement have unfettered access to the row, VPD
logic 440 1s to produce a condition that must be satisfied
before access 1s granted. The condition may be coded into a
predicate that 1s added to the access statement. In one
example, the predicate 1s based on the instance of the
EXPRESSION data type associated with the row 1n the data-
base table 430. In one example, the VPD logic 440 1s to place
the predicate in an EVALUATE operator.

System 400 includes a security logic 450 to determine a
value for the predicate produced by VPD logic 440. Security
logic 450 will only selectively return a row content 1n
response to the access statement based on the value for the
predicate. The predicate includes attributes that conform to

10

15

20

25

30

35

40

45

50

55

60

65

10

the vocabulary established by vocabulary logic 410. The
attributes may be populated with values retrieved from a
context associated with the access statement. These contexts
may include, for example, a user profile, a session profile, a
computational environment, and an access statement context.

FIG. 5 illustrates a system 300 that provides row-level
security based on an expression data type. System 300
includes some elements similar to system 400 (FIG. 4). For
example, system 500 includes a vocabulary logic 510, an
access control policy logic 520, a VPD logic 540, and a
security logic 550 that provide row level security for a data-
base table 530 by storing access control expressions an
expression column 532.

In one example, the access control policy logic 520 1s to
receive a definition of an access control expression for a row
in the database table 530. The access control expression 1s to
conform to the set of metadata established by the vocabulary
logic 510. Access control expressions may be grouped
together to facilitate providing row level security for database
table 530. Thus, 1n one example, the access control policy
logic 520 1s to create an access control policy 560 for the
database table 530. The access control policy 560 may con-
tain a set of access control expressions (e.g., access control
expression 562, and access control expressions 364 through
568). At different points in time and/or from different points
of view the access control policy 560 may or may not be
associated with database table 5330. Thus, in one example, row
level security may be switched on/off by controlling whether
access control expressions in access control policy 560 are
associated with database table 530.

As described above, access control policy 560 may include
a set of access control statements. Therefore, a first row 1n the
database table 530 may have a first row level security defined
by a first access control expression (e.g., 562) 1n the access
control policy 560 while a second, different row in the data-
base table 530 may have a second, different row level security
defined by a second, different access control expression (e.g.,
564) 1n the access control policy 560. While a single access
control policy 560 1s 1llustrated, 1t 1s to be appreciated that
system 500 may produce different access control policies.
Therefore, database table 530 may be associated with differ-
ent access control policies under different conditions. For
example, a first access control policy may be associated with
database table 530 when access statements are generated by a
low level manager while a second access control policy may
be associated with database table 530 when access statements
are generated by an executive. Different access control
expressions 1n access control policy 560 may be placed 1n
expression column 332 1n database table 330. A single access
control expression (e.g., 362) may be placed 1n a set of entries
in expression column 4532. For example, a single access
control expression (e.g., 562) may be placed 1n all the entries
in expression column 332. However, 1n a different example, a
different access control expression may be placed 1n each
entry 1n expression column 532.

FIG. 6 illustrates an example computing device in which
example systems and methods described herein, and equiva-
lents, may operate. The example computing device may be a
computer 600 that includes a processor 602, a memory 604,
and mput/output ports 610 operably connected by a bus 608.
In one example, the computer 600 may include a row level
security logic 630 to provide row level security for rows 1n a
database table. The row level security may be provided by
storing access control statements 1n an expression column 1n
the database table to be protected. The access control state-
ments may be instances ol an expression data type (e.g.,

EXPRESSION data type) encapsulated 1n an EVALUATE

US 8,566,909 B2

11

operator. In different examples, the logic 630 may be imple-
mented 1n hardware, software, firmware, and/or combina-
tions thereof. While the logic 630 1s 1llustrated as a hardware
component attached to the bus 608, it 1s to be appreciated that
in one example, the logic 630 could be implemented 1n the
processor 602.

Logic 630 may provide means (e.g., hardware, software in
execution, firmware) for intercepting an access statement to a
row 1n a database. In one example, the access statement may
be intercepted by a query logic tasked with querying a table
while 1n another example the access statement may be inter-
cepted by a rewrite logic tasked with taking an input access
statement and producing an output access statement that con-
forms to a rewrite doctrine (e.g., efficiency). Logic 630 may
also include means (e.g., hardware, software 1n execution,
firmware) for manipulating the access statement to include a
predicate. The predicate may be constrained to include
attributes defined 1n accordance with a security vocabulary.
Logic 630 may also include means (e.g., hardware, software
in execution, firmware) for populating the predicate from a
context associated with the access statement. Logic 630 may
also 1include means (e.g., hardware, solftware in execution,
firmware) for controlling access to the row based on an evalu-
ation of the predicate as populated. In one example, the logic

630 may be implemented as an ASIC programmed to perform
all and/or portions of method 100 (FIG. 1), method 200 (FIG.

2), and/or method 300 (FIG. 3).

Generally describing an example configuration of the com-
puter 600, the processor 602 may be a variety of various
processors including dual microprocessor and other multi-
processor architectures. A memory 604 may include volatile
memory and/or non-volatile memory. Non-volatile memory
may 1nclude, for example, ROM, PROM, and so on. Volatile

memory may include, for example, RAM, SRAM, DRAM,
and so on.

A disk 606 may be operably connected to the computer 600
via, for example, an input/output interface (e.g., card, device)
618 and an mnput/output port 610. The disk 606 may be, for
example, a magnetic disk drive, a solid state disk drive, a
floppy disk drive, a tape drive, a Zip drive, a flash memory
card, a memory stick, and so on. Furthermore, the disk 606
may be a CD-ROM drive, a CD-R drive, a CD-RW drive, a
DVD ROM, and so on. The memory 604 can store a process
614 and/or a data 616, for example. The disk 606 and/or the
memory 604 can store an operating system that controls and
allocates resources of the computer 600.

The bus 608 may be a single internal bus interconnect
architecture and/or other bus or mesh architectures. While a
single bus 1s illustrated, 1t 1s to be appreciated that the com-
puter 600 may communicate with various devices, logics, and
peripherals using other busses (e.g., PCIE, 1394, USB, Eth-
ernet). The bus 608 can be types including, for example, a
memory bus, a memory controller, a peripheral bus, an exter-
nal bus, a crossbar switch, and/or a local bus.

The computer 600 may interact with iput/output devices
via the I/O interfaces 618 and the input/output ports 610.
Input/output devices may be, for example, a keyboard, a
microphone, a pointing and selection device, cameras, video
cards, displays, the disk 606, the network devices 620, and so
on. The mmput/output ports 610 may include, for example,
serial ports, parallel ports, and USB ports.

The computer 600 can operate 1n a network environment
and thus may be connected to the network devices 620 via the
I/O interfaces 618, and/or the I/O ports 610. Through the
network devices 620, the computer 600 may interact with a
network. Through the network, the computer 600 may be
logically connected to remote computers. Networks with

10

15

20

25

30

35

40

45

50

55

60

65

12

which the computer 600 may interact include, but are not
limited to, a LAN, a WAN, and other networks.

While example systems, methods, and so on have been
illustrated by describing examples, and while the examples
have been described 1n considerable detail, it 1s not the inten-
tion of the applicants to restrict or 1n any way limit the scope
of the appended claims to such detail. It 1s, of course, not
possible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing the sys-
tems, methods, and so on described herein. Therefore, the
invention 1s not limited to the specific details, the representa-
tive apparatus, and 1illustrative examples shown and
described. Thus, this application 1s intended to embrace alter-
ations, modifications, and variations that fall within the scope
of the appended claims.

To the extent that the term “includes™ or “including” 1s
employed in the detailed description or the claims, it 1s
intended to be inclusive in a manner similar to the term
“comprising” as that term 1s interpreted when employed as a
transitional word 1n a claim.

To the extent that the term “or” 1s employed 1n the detailed
description or claims (e.g., A or B) it 1s intended to mean “A
or B or both”. When the applicants intend to indicate “only A
or B but not both™ then the term “only A or B but not both” will
be employed. Thus, use of the term “or’” herein 1s the nclu-
stve, and not the exclusive use. See, Bryan A. Garner, A
Dictionary of Modern Legal Usage 624 (2d. Ed. 1995).

To the extent that the phrase “one or more of, A, B, and C”
1s employed herein, (e.g., a data store configured to store one
or more of, A, B, and C) it 1s intended to convey the set of
possibilities A, B, C, AB, AC, BC, and/or ABC (e.g., the data
store may store only A, only B, only C, A&B, A&C, B&C,
and/or A&B&C). It1s not intended to require one of A, one of
B, and one of C. When the applicants intend to indicate “at
least one of A, at least one of B, and at least one of C”°, then the
phrasing “at least one of A, at least one of B, and at least one
of C” will be employed.

What 1s claimed 1s:

1. A non-transitory computer-readable medium storing
computer-executable instructions that when executed by a
computer cause the computer to perform a method, the
method comprising:

detecting a first access statement that seeks access to a first

row 1n a database table for which row level security 1s
active;

detecting a second access statement that seeks access to a

second row 1n the database table for which row level
security 1s active;
identifying a first access control expression stored in the
first row, where the first access control expression 1s a
first predicate embodied as a first instance of an expres-
sion data type that conforms to a vocabulary;

evaluating the i1dentified first access control expression;

1dentifying a second access control expression stored in the
second row, where the second access control expression
1s a second predicate embodied as a second 1nstance of
the expression data type that conforms to the vocabu-
lary:

evaluating the 1dentified second access control expression;

and

selectively executing the first and second access statements

based, at least 1n part, on a result of the evaluating of the
first and second access control expressions.

2. The non-transitory computer-readable medium of claim
1, where the computer-executable instructions for selectively
executing the first access statement include providing a first

US 8,566,909 B2

13

row content as a row result to the first access statement 11 the
first access statement evaluates to true.

3. The non-transitory computer-readable medium of claim
1, where the computer-executable instructions include
receiving the vocabulary associated with at least one access
control policy for the database table for which row level
security 1s active.

4. The non-transitory computer-readable medium of claim
3, where the vocabulary 1s user-defined and application spe-
cific.

5. The non-transitory computer-readable medium of claim
3, where the computer-executable instructions include
receiving a definition of the first access control expression for
the first row 1n the database table for which row level security
1s active.

6. The non-transitory computer-readable medium of claim
5, where the first access control expression includes a
dynamic element.

7. The non-transitory computer-readable medium of claim
5, where the computer-executable instructions include stor-
ing the first access control expression and the second access
control expression 1n a column of the database table accord-
ing to the at least one access control policy for the database
table for which row level security 1s active, where the access
control policy defines row level security for the first row and
the second row 1n the database table, and where the row level
security 1s controlled, at least 1n part, by an access control
expression stored 1n that row.

8. The non-transitory computer-readable medium of claim
3, where the computer-executable mstructions iclude asso-
ciating an access control policy with the database table by
establishing an expression column in the database table,
populating the expression column with an access control
expression for a row for which row level security 1s to be
provided, and establishing the vocabulary as metadata avail-
able for processing attributes of access control expressions.

9. The non-transitory computer-readable medium of claim
8, where the expression column stores an instance of the
EXPRESSION data type and where the computer-executable
instructions include indexing elements of the expression col-
umn, where indexing elements of the expression column
includes indexing expressions stored in the expression col-
umn to facilitate processing with the EVALUATE operator.

10. The non-transitory computer-readable medium of
claim 1, where the computer-executable instructions include
evaluating the {first access control expression on one of a
context associated with the entity that provided the first
access statement, an environment from which the first access
statement was provided, and a context associated with the first
access statement.

11. A system, comprising:

a memory;

a Processor;

an interface that connects the memory, the processor, and a

set of logics, the set of logics comprising;:

an access control policy logic configured to populate
rows 1n an expression column 1n a database table with
respective individual access control expressions for
respective individual rows;

a virtual private database (VPD) logic configured to
intercept an access statement directed at a row 1n the
database table and to i1dentily the individual access
control expression 1n the individual row, where the
individual access control expression i1s a predicate
embodied as an 1nstance of an expression data type
that conforms to a vocabulary; and

10

15

20

25

30

35

40

45

50

55

60

65

14

a security logic configured to evaluate the individual
access control expression and to selectively return a
row content in response to the individual access state-
ment based on the evaluating of the individual access
control expression.

12. The system of claim 11, further comprising a vocabu-
lary logic to establish a set of metadata associated with a set
ol attributes that are candidates for membership in the indi-
vidual access control expression and where the vocabulary
logic 1s to establish the set of metadata 1n accordance with
user-defined, application specific semantics.

13. The system of claim 11, further comprising a vocabu-
lary logic to establish a set of metadata associated with a set
ol attributes that are candidates for membership 1n the indi-
vidual access control expression and where the vocabulary
logic 1s to establish the set of metadata 1n accordance with
SQL operators and data types.

14. The system of claim 11, where the access control policy
logic 1s configured to receive a defimition of the individual
access control expression for the individual row 1n the data-
base table, where the individual access control expression
conforms to the set of metadata; and where the individual
access control policy logic 1s configured to create an access
control policy for the database table based, at least 1n part, on
the definition of the individual access control expression.

15. The system of claim 14, where a first row 1n the data-
base table has a first row level security defined by a first access
control expression stored 1in the first row, and where a second,
different row in the database table has a second, different row
level security defined by a second, different access control
expression stored in the second row.

16. A computer-implemented method, comprising:

storing an access control expression 1n a row, the access

control expression having a set of predicates that are
joined by a set of operators, where a predicate 1s embod-
ied as an mstance ol an expression data type that con-
forms to a vocabulary;

receving an access statement against a database table;

accessing the row retrieved by the access statement to

identily the access control expression stored in the row;
evaluating the set of predicates on a context of the access
statement; and

granting access to the row when the set of predicates evalu-

ates to a predetermined value.

17. The computer implemented method of claim 16, where
the access control expression depends, at least 1n part, on an
instance of an expression data type associated with the row.

18. The computer implemented method of claim 16,
including creating an access control policy for the database
table, where the access control policy defines the row level
security for a row 1n the database table, and where the row
level security 1s controlled, at least in part, by the access
control expression.

19. The computer implemented method of claim 18,
including receiving a vocabulary associated with the access
control policy for the database table for which row level
security 1s active; and where the access control policy creates
an access control policy for the database table based, at least
in part, on the definition of the access control expression.

20. The computer implemented method of claim 19, where
the vocabulary establishes a set of metadata associated with a
set of attributes that are candidates for membership 1n a row
level access control expression.

21. The computer implemented method of claim 16, where
a first row 1n the database table has a first row level security
defined by a first access control expression stored in the first
row, and where a second row 1n the database table has a

US 8,566,909 B2

15

second row level security defined by a second access control
expression stored in the second row.

22. The computer implemented method of claim 21,
including associating the access control policy with the data-
base table for which row level security 1s active.

23. The computer implemented method of claim 22, where
associating the access control policy with the database table
includes establishing an expression column in the database

table, populating the expression column with an access con-
trol expression for a row for which row level security 1s to be
provided, and establishing the vocabulary as metadata avail-
able for processing attributes of access control expressions.
24. The computer implemented method of claim 16, where
the access statement 1s one of a query and a data manipulation
operation, and where the predicate 1s an SQL WHERE clause.
25. A non-transitory computer-readable medium storing
computer-executable instructions that when executed by a
computer cause the computer to perform a method, the
method comprising:
detecting a query that seeks access to data stored 1n a table
for which row level security is active;
retrieving a first row and a second row from the table 1n
response to executing the query; and

10

15

20

16

selectively returning the first row and the second row as a
query result, based at least 1n part, on evaluating a first
access control expression and a second access control
exXpression;
where the first access control expression 1s stored in the
first row and the second access control expression 1s
stored 1n the second row; and

where the first access control expression is a first predi-
cate embodied as a first instance of an expression data
type that conforms to a vocabulary and the second
access control expression 1s a second predicate
embodied as a second 1nstance of an expression data
type that conforms to the vocabulary.

26. The non-transitory computer-readable medium of
claim 25, where the first row 1s returned as the query result
when the {irst access control expression evaluates to true.

27. The non-transitory computer-readable medium of
claim 25, where the query contains an attribute, and where the
vocabulary defines how to configure the attribute.

28. The non-transitory computer-readable medium of
claim 27, where the attribute comprises information about a
user or information about an environment.

¥ o # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,566,909 B2 Page 1 of 1
APPLICATION NO. : 12/012258

DATED : October 22, 2013

INVENTOR(S) . Yalamanchi

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In column 10, line 51, delete “4532.” and 1nsert -- 532. --, therefor.

Signed and Sealed this
Third Day of June, 2014

TDecbatle X oo

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

