United States Patent

US008560736B2

(12) (10) Patent No.: US 8.560.,736 B2
Bubb et al. 45) Date of Patent: Oct. 15, 2013
(54) FACILITATING PROCESSING OF 6,292,910 Bl 9/2001 Cummins
OUT-OF-ORDER DATA TRANSFERS 6,314,477 Bl 11/2001 Cowger et al.
6,557,101 Bl 4/2003 MacDonald et al.
: 6,594,722 Bl 7/2003 Willke, II et al.
(75) Inventors: Clinton E.- Bubb, Pleasant Valley, NY 6.867.614 BI 37005 T eGraverand of al
(US); Daniel F. Casper, Poughkeepsie, 6,937,063 Bl 82005 Sun et al.
NY (US); John R. Flanagan, 7,096,398 Bl 8/2006 Mukherjee
Poughkeepsie, NY (US); Raymond M. 7,210,000 B2 4/2007 Creta et al.
: oo N . 7,231,560 B2 6/2007 Lai et al.
Higgs, Poughkeepsie, NY (US); George 7,349,399 B1* 3/2008 Chenetal.ccccooooo...... 370/394
P. I(ll(.:h,J Poughl(eepsw, NY ([JS), 7.412.555 B2 Q/2008 Wﬂllg
Jeffrey M. Turner, Poughkeepsie, NY 7.412,589 B2 {/2008 Feiste
(US) 7,437,643 B2 10/2008 Khanna et al.
7,443,869 B2 10/2008 Solomon et al.
(73) Assignee: International Business Machines 7,463,056 Bl 12/2008 Anderson et al.
Corporation, Armonk, NY (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 170 days. EP 0947049 A1 10/1999
OTHER PUBLICATIONS
(21) Appl. No.: 13/150,606
_ Chencinski, E-W. et al., “IBM System z10 /O Subsystem,” IBM J.
(22) Filed: Jun. 1, 2011 Res. & Dev., vol. 53, No. 1, p. 6, Jan. 2009, pp. 6:1-6:13.
(65) Prior Publication Data (Continued)
US 2012/0311217 Al Dec. 6, 2012 Primary Examiner — Khanh Dang
(51) Int.CL (74) Attorney, Agent, or Firm — Steven Chiu, Esq.; Blanche
GO6F 3/00 (2006.01) E. Schiller, Esq.; Heslin Rothenberg Farley & Mesit1 P.C.
(52) U.S. CL
USPC oo 7103; 71026 ©7) ABSTRACT
(38) Field of Classification Search Processing of out-of-order data transters 1s facilitated in com-
USPC 710/26, 29, 30, 34, 43, 52, 56, 308, 310 puting environments that enable data to be directly trans-
See application file for complete search history. ferred between a host bus adapter (or other adapter) and a
_ system without first staging the data in hardware disposed
(56) References Cited between the host bus adapter and the system. An address to be

U.S. PATENT DOCUMENTS

5,799,165 A 8/1998 Favor et al.
6,078,736 A 6/2000 Guccione

6,185,620 B1* 2/2001 Weberetal. 709/230
102 1 (3)4
CHANNEL HARDWARE
SYSTEM - AND CHECKED
MICROPROCESSOR
122
hﬁ;ﬁ%@ﬂ LOCAL CHANNEL
MEMORY
120 124

used 1n the data transfer 1s determined, in real-time, by effi-
ciently locating an entry in an address data structure that
includes the address to be used 1n the data transier.

20 Claims, 6 Drawing Sheets

100

106 108
) S

HosTBUs| LINK CONTROL
ADAPTER s UNIT / DEVICES
110

US 8,560,736 B2
Page 2

(56)

7,482,835
7,519,865
7,616,508
7,676,011
7,685,380
7,747,809
7,782,760
7,836,352
7,853,774
7,882,296
7,885,122
2005/0025152
2005/0286526
2006/0075165
2007/0233821
2008/0052728
2008/0126608
2008/0163005
2009/0182988
2009/0292960
2010/0083040
2010/0251055
2010/0325495
2011/0029706
2011/0320759

References Cited

U.S. PATENT DOCUMENTS

AN A NN AN AN

1/2009
4/2009
11/2009
3/201
3/201
6/201
8/201
11/201
12/201
2/201
2/2011
2/2005
12/2005
4/2006
10/2007
2/2008
5/2008
7/2008
7/2009
11/2009
4/201
9/201
12/201
2/201
12/201

—_—0 OO O OO

— O O

Sun et al.
Maly et al.
Landry et al.
Hui et al.
Khu
Hanscom
Froroth et al.
Sharma et al.
Wentzlaft
Reed
Landry et al.
Georgiou et al.

Sood etal.
Huietal.

Sullivan et al.

Steinmetz et al.
Chang et al.

Sonksen et al.

Greiner et al. ..

Haraden et al.
Voigt et al.

Murakam et al.

Talla et al.

Bekooy et al.
Craddock et al.

............. 370/394

.............. 370/394
................ 710/58

............ 719/313

**************** 710/30

********** 712/216

............. 711/206

OTHER PUBLICATIONS

Blank, Annika et al., “Advanced POWER Virtualization on IBM
System p3.,” IBM.com/redbooks, Oct. 2003, pp. 1-452.

Mitchell, Jim et al., “IBM Power5 Process-based Servers: A Highly
Avallable Design for Business-Critical Applications,” Oct. 2005, pp.
1-44.

Patel, Bindesh et al., “Transaction-based Debug of PCI Express

Embedded SoC Platforms,” CompactPCI and AdvancedTCA Sys-
tems, Dec. 2004, pp. 1-4.

Paz-Vincente, R. et al., “Time-Recovering PCI-AER Interface for
Bio-Inspired Spiking Systems,” Proceedings of the SPIE—The Inter-
national Society for Optical Engineering, vol. 5839, No. 1, pp. 111-
118, May 2005 (Abstract Only).

“z/ Architecture—Principles of Operation,” SA22-7932-08, Ninth
Edition, Aug. 2010, pp. 1-1496.

International Search Report and Written Opinion for PCT/IB2012/
052538, dated Oct. 4, 2012, pp. 1-7.

Response to Office Action for U.S. Appl. No. 13/455,336 dated Dec.
11,2012, pp. 1-13.

Notice of Allowance for U.S. Appl. No. 13/455,336 dated Jan. 17,
2013, pp. 1-5.

Office Action for U.S. Appl. No. 13/455,336 dated Sep. 11, 2012.

* cited by examiner

US 8,560,736 B2

L Ol

velL

AJONdN
TANNVHO 1vOOT

Sheet 1 of 6

L0} i
0Ll)
¥31dvav H¥OSSID0UdOHIIN
A3MOIHO ANV
IYVYMAEVYH T3NNVHD

SA0IAdA / LINN

SMNY 1SOH

1041LNQD MN|T

801 901 PO

Oct. 15, 2013

00}

U.S. Patent

ozl

AJOWIWN
NJLSAS

NJLSAS

c0l

d¢ Ol

0clk

vel AYOWIN

AJONIN

NF1SAS

US 8,560,736 B2

TANNVHD IvO071
0Ll B —+—
S3DIAIA / LINN d31dvayv “ F4AR I AT L SAS
TOY1INOD N[SNd 1SOH HOSSIADOHdOHIIN | o
w { a3aXOIHD ANV
& Q01 a0l JHVMUHVYH 1TdNNVHO
o 0l
- 01
5
i
7 P,
a \ A=
S 0zl
P —_—
- vel AHOWIN
> AJOWNdN NILSAS
C TINNVHD VOO0
— .
OLL I ¢l I\
S3OIATA / LINN M3LdVaY | | ¥OSsID0oMdoMON |
109 1NOD SN LSOH| 5 daxO3IHD ANV =] WALSAS
JAINI IHVYMANVH TINNVYHD
801 901 wwv g

U.S. Patent

US 8,560,736 B2

Sheet 3 of 6

Oct. 15, 2013

U.S. Patent

¥ Old

097 ~—X3ANI 3OS ONIXHOM
0P —LNNOD 498 ONIMHOM o
0¥ —1dS440 d3103ddXd LX3IN
0CY —— 145440 ddIdIdIA AP #
Ol —~—H31INIOd LSITOS ®

00t

QHOM TO¥LINOD SS3HaAav
00%
& Ol

08 00¥900X0 g 00Z0%X0| 00VEYS9L ZEVO0000XO

A 0075000 h 0004X0| 0003895 ¥EZL0000X0

pe 00¥00X0 9 0004X0 | 000E8.9S ¥EZL0000X0

ee 00Z+00X0 G 0020%0| 00ZEYS9. ZEYO0000X0

6z 00ZE00X0 v 0004X0| 00068.9S ¥£ZL0000X0

Ll 00ZZ00X0 £ 0001X0| 000E829G ¥£Z10000X0

g 0002000 Z 0020%0 | 000EYS9L ZEYO0000X0
I 000100X0 F 0001X0| 000V8.9S ¥E£Z1L0000X0
0 | 000000%0 0 0001X0| 000/829S ¥€ZL0000X0 |~ ZOE
MOO018 ONILYVLS | 13S440 IAILYIIY | X3ANI 39S | LNNOD SSIHAAV

omm omn omm omm om.m

U.S. Patent Oct. 15, 2013

START

RECEIVE OFFSET

RECEIVED
OFFSET = NEXT EXPECTED
OFFSET ?

NO

RECEIVED
OFFSET < 4K VERIFIED
OFFSET ?

NO

RECEIVED
OFFSET <= EXPECTED
OFFSET ?

NO

SCAN LIST STARTING AT
NEXT EXPECTED OFFSET

502

506

500

US 8,560,736 B2

Sheet 4 of 6
504
YES USE WORKING SGE
INDEX, COUNT
508

)

DETERMINE SGE INDEX,
COUNT USING

YES

SPECIFIED CRITERIA

512

SCAN LIST STARTING AT
4K VERIFIED OFFSET

510

YES

514

FIG. 5

U.S. Patent Oct. 15, 2013 Sheet 5 of 6 US 8.560.,736 B2

FETCH/STORE 502

S

FETCH/STORE DATA AT
ADDRESS IN ENTRY

600

IN-ORDER YES HAVING SPECIFIED BY
TRANSFER ? WORKING SGE INDEX
AND COUNT

NO

610 UPDATE NEXT 604

EXPECTED OFFSET
NO

OFFSET =2 4K COUNT
VERIFIED OFFSET ?

UPDATE 4K COUNT 606
YES VERIFIED OFFSET

SCAN SGE STARTING AT 612
ENTRY POINTED TO BY
4K COUNT VERIFIED

UPDATE 4K COUNT 614
VERIFIED OFFSET

DETERMINE STARTING 620
SG INDEX

DETERMINE OFFSET 622

UPDATE WORKING 608
SGE INDEX & COUNT

FIG. 6

U.S. Patent Oct. 15, 2013 Sheet 6 of 6 US 8.560.,736 B2

COMPUTER
PROGRAM
PRODUCT

700
704 \
PROGRAM
CODE LOGIC

|

COMPUTER /
READABLE
STORAGE
MEDIUM
702

~—

FIG. 7

US 8,560,736 B2

1

FACILITATING PROCESSING OF
OUT-OF-ORDER DATA TRANSFERS

BACKGROUND

One or more aspects of the invention relate, 1n general, to
the transfer of data to and from memory of a computing
environment, and 1n particular, to the processing of out-oi-
order data transiers within the computing environment.

In some computing environments, such as those that
include System z® servers offered by International Business
Machines Corporation, data 1s transierred from memory of a
computing system to input/output devices, and from the
input/output devices to memory using one or more host bus
adapters (HBAs). The host bus adapters are attached to the
system through hardware which 1solates the host bus adapters
from the system. This hardware provides 1solation of the
unchecked host bus adapter from the system, so as to maintain
reliability, availability and serviceability (RAS) for the sys-
tem.

With this type of configuration, all data flowing to/from the
system 1s temporarily stored in the hardware, and then, moved
from the hardware to 1ts intended destination. Thus, a store
and forward delay 1s incurred for each data transfer.

BRIEF SUMMARY

The shortcomings of the prior art are overcome and advan-
tages are provided through the provision of a computer pro-
gram product for facilitating transfers of data 1n a computing
environment. The computer program product includes a com-
puter readable storage medium readable by a processing cir-
cuit and storing instructions for execution by the processing
circuit for performing a method. The method includes, for
instance, determining whether data to be transferred 1s out-
of-order; responsive to the data being out-of-order, compar-
ing a received ollset of the data with a first offset; responsive
to the received ollset being one value with respect to the first
olffset, scanning an address data structure starting at the first
offset or a second offset to locate an entry 1n the address data
structure having the recerved offset and obtaining from the
entry an address to be used to transfer the data; and responsive
to the received offset being another value with respect to the
first oilset, determining at least one of an index and a count to
be used to locate an entry 1n the address data structure, and
obtaining from the entry the address to be used to transier the
data.

Methods and systems relating to one or more aspects of the
present invention are also described and claimed herein. Fur-
ther, services relating to one or more aspects of the present
invention are also described and may be claimed herein.

Additional features and advantages are realized through
the techniques of one or more aspects of the present invention.
Other embodiments and aspects of the invention are
described 1n detail herein and are considered a part of the
claimed invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

One or more aspects of the present mvention are particu-
larly pointed out and distinctly claimed as examples 1n the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of one or more
aspects of the mvention are apparent from the following
detailed description taken 1n conjunction with the accompa-
nying drawings 1n which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 depicts one embodiment of a computing environ-
ment to mcorporate and/or use one or more aspects of the
present invention;

FIG. 2A depicts one embodiment of transferring data
within the computing environment, 1n which the data 1s 1ni-
tially staged 1n the memory of the hardware of the computing
environment;

FIG. 2B depicts one embodiment of transferring data with-
out staging the data 1n the memory of the hardware, 1n accor-
dance with an aspect of the present invention;

FIG. 3 depicts one example of an address data structure
including an address list and other information used 1n accor-
dance with an aspect of the present invention;

FIG. 4 depicts one example of various controls of an
address control word used 1n accordance with an aspect of the
present invention;

FIG. 5 depicts one embodiment of the logic used to scan the
address data structure to locate an address to be used 1n a
requested data transfer, 1n accordance with an aspect of the
present invention;

FIG. 6 depicts further details of one embodiment of the
logic to scan the address data structure to locate an address to
be used 1n a requested data transfer, in accordance with an
aspect of the present invention; and

FIG. 7 depicts one embodiment of a computer program
product 1ncorporating one or more aspects ol the present
ivention.

DETAILED DESCRIPTION

In accordance with an aspect of the present imvention, a
capability 1s provided for facilitating processing of out-oi-
order data transfers. In one particular example, the processing
of out-of-order data transters 1s facilitated in computing envi-
ronments that enable data to be directly transferred between a
host bus adapter (or other adapter) and a system without first
staging the data 1n hardware disposed between the host bus
adapter and the system.

To perform the data transfer, an address 1s to be determined
indicating a location 1n memory at which the data is to be
tetched/stored. Thus, 1n accordance with an aspect of the
present invention, a technique 1s provided to efficiently locate
an entry 1n an address data structure that includes the address
to be used in the data transfer. The technique provides effi-

cient processing even 1 the data transier 1s out-of-order. As
one example, the determination of the address 1s based on an
ollset provided with the data. This offset 1s used to locate the
entry and obtain the memory address. That 1s, a technique 1s
provided for accelerating translation of a recerved offset to a
system address usable 1n directly accessing system memory.

One embodiment of a computing environment to 1ncorpo-
rate and/or use one or more aspects of the present invention 1s
described with reference to FI1G. 1. As shown, in one example,
a system 102 1s coupled to hardware 104, which 1s further
coupled to one or more adapters (e.g., host bus adapters) 106
via one or more links 107 (e.g., PCle links). The host bus
adapters are further coupled to one or more control units/
devices 108 via one or more links 110 (e.g., Fibre Channel
links) System 102 may be, for instance, a System z® server
offered by International Business Machines Corporation
(IBM®); a zEnterprise 196 (z196) server oflered by Interna-
tional Business Machines Corporation; or other systems
offered by International Business Machines Corporations or
other companies. It includes, for instance, one or more central
processing units executing one or more operating systems,

US 8,560,736 B2

3

such as the zOS® operating system offered by International
Business Machines Corporation, as well as system memory
120 (a.k.a., main memory).

Hardware 104 includes, for instance, channel hardware
and a checked microprocessor 122, as well as local channel
memory 124. (Checked indicates 1t 1s compatible with the
system with respect to RAS; in contrast, unchecked would
indicate that it 1s not compatible with respect to RAS.) The
hardware 1s used to transfer data between the host bus adapter
and system memory. For imstance, when data 1s to be read
from system memory or written to system memory, the oper-
ating system creates a command block that includes the
request, a starting block address, a count of the number of
bytes to be transierred and an indication of the direction (e.g.,
read/write), and forwards that command block to the hard-
ware. The hardware then passes the information to the host
bus adapter. The host bus adapter and hardware then perform
the data transfer.

For example, 1n one prior embodiment, as shown in FIG.
2A, the hardware was used, on highly reliable computing
systems, such as System z®, to 1solate the host bus adapter
from the system, such that the hardware appeared as the host
to the host bus adapter. Thus, to perform a data transfer, the
data was staged 1n the local channel memory and then moved
from local channel memory to a selected destination. For
instance, for an outbound transier of data from system 102 to
the mnput/output devices, checked microprocessor 122 would
receive the command block, obtain the requested data from
system memory 120 and write it into local channel memory
124. Further, 1t would communicate the command to the host
bus adapter. Host bus adapter 106 then fetched the data from
local channel memory 124 and forwarded 1t to devices 108.
Similarly, for an inbound transier of data from devices 108,
host bus adapter 106 stored the data in local channel memory
124, and then checked microprocessor 122 accessed the data
in the local channel memory and forwarded it to system
memory 120. This technique is referred to herein as the store
and forward model.

However, 1n accordance with an aspect of the present
invention, the staging of the data in the hardware 1s bypassed
in the transfer of data; instead, data 1s transferred directly, as
depicted i FIG. 2B. As shown 1 FIG. 2B, host bus adapter
106 transfers data directly to system memory 120 through
channel hardware 104 without requiring the data to first be
stored 1n local channel memory 124. Similarly, data 1s trans-
terred directly from system memory 120 to host bus adapter
106 again without storing the data in the local channel
memory. This technique 1s referred to herein as the direct
transier model.

In the direct transfer model, the command block 1s still
torwarded to the hardware (e.g., the channel hardware and/or
checked microprocessor) and from the hardware to the host
bus adapter, but the data 1s not staged in the local channel
memory. The data 1s transferred in one example in-order.
However, certain upper layer protocols, such as the Small
Computer System Interface (SCSI), provide a mode of opera-
tion in which a device can transfer a portion of the data, which
1s most expedient for its design on the link, even if that data 1s
out of sequence. For example, for aread operation, the device
might send the blocks of data which 1t has in its cache first,
overlapped with the staging of the rest of the data from the
media. As another example, error recovery mechanisms built
into the fibre channel link protocol may cause a portion of
either read or write data to be re-transmitted, also resulting 1n
an out-of-order transter. Thus, 1n accordance with an aspect of
the present invention, the direct transfer ol both read and write

10

15

20

25

30

35

40

45

50

55

60

65

4

data between the host bus adapter and system memory sup-
ports out-of-order data transfers.

To transfer data, either in-order or out-of-order, one or
more frames are used, each including a particular amount of
data. The frame has a header that includes descriptive infor-
mation about the frame to be transferred. For instance, 1in one
embodiment in which a fibre channel link protocol 1s used 1n
the transfer of data, the header includes a relative offset. The
relative offset indicates the offset of the first byte of payload
data contained in the frame relative to the beginming of a
contiguous block of data to be transferred (referred to herein
as a logical block). The first byte of data specified 1n a com-
mand block 1s at relative offset 0. Normal “in-order” transiers
have a continuously increasing relative offset, 1.e., the first
frame sent 1s with offset 0, and subsequent frames with rela-
tive offsets 2K, 4K, etc. (assuming each frame includes 2K
bytes) until the count specified in the command block 1s
satisfied. However, when a device elects to transfer data out-
of-order (e.g., for performance reasons), relative oflsets can
be recerved on the link 1n random order.

For example, consider a SCSI read request to transfer 31
blocks of data (where each block equals 512 bytes) starting at
logical block 3000. Further, assume that blocks 3018-3034
are 1n the device’s cache. The device may elect to transier the
blocks 1n the cache first, overlapped with the staging of the
rest of the data 1n from the media. Therefore, 1t may transier
blocks 3018-3034, 3000-3017, and 3035-3050 1n that order,
as an example. This would translate into a sequence of frames
with relative offsets in the following three ranges: 0x2400-
0x4400; 0x0-0x2200; and 0x4600-0x6400.

The relative offsets are used in determining addresses at
which to fetch or store the frames. For example, in the store
and forward model described with retference to FIG. 2A, fora
data store example, the host bus adapter recerves the data over
the link, possibly out-of-order, and loads the data into the
designated butlers in local channel memory per the relative
offset before 1t notifies the channel microprocessor of the
completion of the data transfer. Then, the channel micropro-
cessor determines the addresses at which the data 1s to be
stored by translating the buller address 1nto a series of real
addresses 1n memory. The channel microprocessor then
stores the data at the determined addresses in-order in system
memory, without any knowledge that the data actually arrived
out-of-order on the link.

However, for the direct transfer model, the relative offsets
received at the host bus adapter are passed to the channel
hardware to be translated by the channel hardware into cor-
responding addresses 1n system memory 1n real-time, as the
frames are arriving. This 1s a complex task in those systems
where memory 1s not a flat, contiguous address space, but
instead, employ virtual addressing. Due to virtual memory
requirements, the storage assigned to 1/0O operations 1s typi-
cally provided as a list of non-contiguous 4K page butfers.
Additionally, 1n this example, a scatter and gather capability
within the virtual space is provided. Thus, the system memory
area for the I/O operation 1s specified as a scatter gather (SG)
list, where each entry (SGE) 1n the list includes an address and
count pair. This 1s to allow, for instance, metadata to be stored
contiguously with the real data on the media, but separately 1n
system memory (e.g., the data may be stored 1n application
builfers, but the metadata may be stored 1n operating system
space).

One example of a scatter gather list 1s described with ret-
erence to FIG. 3. Referring to FI1G. 3, an address data structure
(e.g., table) 300 1s provided that includes a plurality of entries
302. FEach entry includes an address 310, a count 320, an

index 330, a relative offset 340 and a starting block 350. The

US 8,560,736 B2

S

address and count are referred to as the scatter gather list. The
additional information 1s used to facilitate determining an
address associated with an offset, as described below.

Continuing with the above example, 11 there 1s one block of
metadata for every eight blocks of data, then an example
scatter gather list for the 51 block transier 1s shown in the first
two columns of FIG. 3. The combination of random counts in
the scatter gather list plus random relative offsets of the data
previously required that the scatter gather list be scanned
from the top for each recerved frame or data request 1n order
to determine the system address which corresponds to a given
relative offset.

Thus, 1 accordance with an aspect of the present mven-
tion, a capability 1s provided to facilitate determination of a
system address such that the scatter gather list does not have
to be scanned from the top for each frame or data request. The
capability works with completely random combinations of
scatter gather counts and relative offsets. This allows the
acceleration of out-of-order data transfers.

In one example, effective optimizations are realized based

on the following practical usage of the counts and offsets. For
instance, for a given 1I/O operation, discontinuities in the
relative offsets are rare. Therefore, 1n one example, the design
1s optimized for continuous relative ot

sets. Further, the most
common use of the scatter gather capability 1s for specitying
virtual memory page buiters. Therefore, in one example, the
design 1s optimized for scatter gather counts of 4096. How-
ever, in other implementations, the optimizations may be
different or 1ignored. Further details regarding the technique
to facilitate look-up of a system address are described below.

In one example, various fields of a control block, referred
to as an address control word (ACW), are used 1n the logic to
locate a system address 1n a list, such as a scatter gather list.
The ACW 1s built by the channel microprocessor responsive
to receiving a transier command from the operating system.
There 1s one ACW {for each I/O operation (e.g., controlling
cach transfer from beginning to end), in one example. Each
control block 1s stored, for instance, in local channel memory
124.

Referring to FIG. 4, in one example, an address control
word 400 includes, for instance, the following fields used in
accordance with an aspect of the present invention (ACW 400
may 1include additional, different or less fields in other
embodiments or for other uses):

Scatter Gather List Pointer 410: This field includes a
memory address of the top of the scatter gather list. This
list may either be 1in system memory or 1t may be 1n local
channel memory.

4K Verified Ofiset 420: Thas field represents the first two
bytes of an offset corresponding to the first scatter gather
entry, which has not been verified as having a count of
exactly 4096. (In other examples, the count may be other
than 4096.) This value 1s 1nitialized to zero on the first
access to the address control word. Each scatter gather
entry 1s processed sequentially, either through normal
(1n-order) operation, or through scanning, 1f out-of-or-
der transiers occur on the link, as described below. For
cach scatter gather entry processed, this value 1is
advanced by, for istance, 16, 11 the scatter gather entry
had a count of exactly 4096. When a scatter gather entry
with a count less than 4096 1s encountered, the 4K veri-
fied offset value 1s frozen.

In one example, only two bytes of the three-byte ofiset are
stored since, by defimition, the low order byte is zero.
(However, 1n other embodiments, more or less bytes are

stored.) When an out-of-order offset is encountered,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

which 1s less than this value, the corresponding scatter
gather index and count may be computed by a shift and
mask, respectively.

Next Expected Offset 430: This value 1s set to zero on the
initial access to the address control word. For each
request (e.g., PCI request), this value 1s compared to the
offset recerved from the host bus adapter. If they are
equal, then the transfer was 1n-order with respect to the
previous transier, and the data can be fetched or stored
using the working scatter gather entry index and count.
If they are not equal, then the transier occurred out-oi-
order, and defined rules are applied to determine the
scatter gather index to use to transfer the data, as
described 1n further detail below.

Working Scatter Gather Entry Count 440 and Working
Scatter Gather Entry Index 450: On the completion of
cach host bus adapter request, the scatter gather index
and count of the next sequential byte to be transferred are
saved 1n these fields. IT the current transier exactly sat-
isfied the count 1n the current scatter gather entry, then
the scatter gather entry index is incremented to the next
value and the scatter gather entry count is set to zero. I
the relative ofiset in the next host bus adapter request
matches the next expected oifset in the address control
word, these values are used to continue the data transfer
for the new request. These values are set to zero on the
initial access to the address control word.

As described above, predefined rules are employed by the
channel hardware to locate an address for a data transter. One
example of these rules 1s described with reference to FIG. 5.
Referring to FIG. §, mitially a request to transfer data is
received with a specified relative offset (initially provided in
the frame header), STEP 500. A determination 1s made as to
whether this recerved offset 1s equal to the next expected
ollset specified 1n the address control word, INQUIRY 502. If
the recerved offset 1s equal to the next expected oflset, then the
data transfer 1s in-order, and therefore, the working scatter
gather entry index and count specified 1n the address control
word are used to locate an entry 1n the address data structure
and obtain from the entry the address at which the data 1s to be
stored or fetched, STEP 504.

However, if the received ofiset 1s not equal to the next
expected offset, INQUIRY 502, then the data transfer 1s an
out-of-order data transter. Therefore, 1n this example, a deter-
mination 1s made as to whether the recerved ofiset is less than
the 4K vernfied offset specified in the address control word,
INQUIRY 506. If the recewved offset i1s less than the 4K
verified oflset, then the scatter gather entry index and count
are determined, STEP 508. In one example, to determine the
scatter gather entry index, the recerved offset 1s right shifted
by a defined value, e.g., 12. Further, the scatter gather entry
count 1s equal to a selected number (e.g., 12) of the low order
bits of the recerved offset. The determined count and index are
then used to locate an entry in the address data structure from
which the address 1s obtained.

Returning to INQUIRY 506, 11 the recerved oilset1s greater
than or equal to the 4K verified offset, then a further determi-
nation 1s made as to whether the recerved offset 1s less than or
equal to the expected offset, INQUIRY 310. If the recerved
offset 1s less than or equal to the expected oflset, then the
address data structure 1s scanned starting at the 4K verified
offset until an entry contammg the received olffset 1s found.
The address within that entry 1s obtained for the data transfer,
STEP 512. Otherwise, the address data structure 1s scanned
starting at the next expected offset until an entry containing,
the received oflset 1s found, STEP 514. The address within
that entry 1s obtained for the data transfer.

US 8,560,736 B2

7

By using the rules above, the entire address data structure
(or scatter gather list) does not need to be scanned from the
top each time an out-of-order transier 1s receiwved. This
enhances system performance and accelerates out-of-order
data transiers.

Further details regarding the processing associated with
transierring data, including transferring data out-of-order, are
described with reference to FIG. 6. Initially, subsequent to
receiving a fetch or store request from the link, such as the
PCle link, a determination 1s made as to whether the transfer
1s mn-order, INQUIRY 600. That 1s, a determination 1s made as
to whether the offset specified 1n the request matches the next
expected offset. I 1t does, then the transier occurred in-order
and contiguous with respect to the one immediately preced-
ing. Thus, the hardware fetches or stores the data starting at
the system address in the entry specified by the working
scatter gather entry index and count, STEP 602. At the
completion of the request, the next expected oflset 1s updated
to point to the next sequential byte of data for the next request,
STEP 604. As long as the transfers on the link occur mn-order,
it does not matter 11 the scatter gather entry counts are random
Or not.

As the hardware 1s processing entries in the scatter gather
list, when the entry 1s complete and the count 1n the entry 1s
exactly 4096 (in one example), the 4K count verified offset 1s
advanced by, for instance, 16, STEP 606. Thus, the 4K count
verified offset represents the value below which all corre-
sponding scatter gather entries have been verified to have
counts of, for instance, 4096. If a scatter gather 1s encountered
whose count 1s not 4096, the 4K count verified offset 1s
frozen.

Additionally, hardware updates the working scatter gather
entry index and the working scatter gather entry count corre-
sponding to the next sequential byte of data, STEP 608. These
two values specily the scatter gather entry index and byte
position within the scatter gather entry which corresponds to
the next sequential offset.

Returming to INQUIRY 600, if the transfer 1s an out-oi-
order transfer, then a determination 1s made as to whether the
received olfset 1s greater than or equal to the 4K count verified
offset, INQUIRY 610. If an out-of-order offset value 1is
received 1n the request, which 1s larger than or equal to the 4K
count verified offset, the hardware scans each scatter gather
entry starting at the one pointed to by the 4K count verified
offset, summing the counts to locate the scatter gather entry
which contains the recerved ofiset, STEP 612. During this
scan, the 4K count verified offset, 1f not already frozen, 1s
advanced for each scatter gather entry scanned whose count is
4096, STEP 614. The data for the request 1s fetched or stored
at the proper address, and the next expected ofiset, the work-
ing scatter gather entry index and the working scatter gather
entry count are updated to point to the next contiguous byte of
the new transfer, STEP 608.

Returning to INQUIRY 610, 11 an out-of-order offset value
1s received 1n arequest which 1s less than the 4K count verified
olfset, the starting scatter gather index for the transier can be
determined by a right shifting of the received ofiset by, for
instance, 12 (dividing 1t by 4K), STEP 620. Further, the offset
from the start of the scatter gather entry 1s obtained by mask-
ing ofl all but the lower order 12 bits (as an example), STEP
622.

Hardware updates the working scatter gather entry index
and the working scatter gather entry count corresponding to
the next sequential byte of data, STEP 608.

In one example, applying these rules to the 31 block out-
of-order transfer example described above results in the fol-
lowing:

10

15

20

25

30

35

40

45

50

55

60

65

8

At the beginning of the transfer, the address control word
fields, described above, are zero.

The first frame of the transier arrives with offset 0x002400.
This does not equal the next expected oilset, so the 4K
verified offset 1s checked. The recerved offset 1s greater
than the 4K verified offset, so the list 1s scanned from the
top. A oftset 0x002000, the SGE with the count of 0x200
1s found, so the 4K verified offset 1s frozen at 0x0200.
The scan continues, and the SGE containing the recerved
offset1s found at SGE index 3, count 0x200. The transfer
starts at system address 0x00001234 56783200. The
remainder of the transier of the first sequence proceeds
in order. At the end of the transfer, the next expected
offset 15 0x004600, the 4K verified offset 1s 0x0020, the

working SGE 1ndex 1s 6, and the working SGE count 1s
0x200.

The first frame of the second sequence arrives with offset
0x000000. This value 1s not the expected value, and 1s
now less than the 4K verified offset, so the beginming
SGE 1ndex 1s obtained by a rnight shift of 12 bits. The
starting system address 1s the address in SGE 0 plus the
low order 12 bits of the received offset, or 0x00001234
56787000. At the end of this sequence, the next expected
offset 1s 0x002400, the 4K verified offset 1s still frozen at
0x0020, the working SGE 1ndex is 3, and the working
SGE count 1s 0x200.

The first frame of the last sequence arrives with offset
0x004600, again not the expected value. This 1s larger
than both the 4K verified offset and the next expected
offset, so the SG list 1s scanned from the working SGE
index (3) and count. The recerved offset 1s discovered at
0x200 bytes into SGE 1ndex 6. Thus starting address for
the transfer 1s 0x00001234 5678B200. The transier pro-
ceeds 1n order from that point to the end.

Described 1in detail above 1s an efficient techmique for locat-
ing an address 1 a list to be used in a data transter. The
technique facilitates a look-up of the address 1n situations in
which a data transfer request 1s out-of-order.

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system”. Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
clectronic, magnetic, optical, electromagnetic, infrared or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium include the following: an electrical connection hav-
Ing one or more wires, a portable computer diskette, a hard
disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible

US 8,560,736 B2

9

medium that can contain or store a program for use by or in
connection with an 1nstruction execution system, apparatus,
or device.

Referring now to FIG. 7, in one example, a computer
program product 700 includes, for instance, one or more
non-transitory computer readable storage media 702 to store
computer readable program code means or logic 704 thereon
to provide and facilitate one or more aspects of the present
ivention.

Program code embodied on a computer readable medium
may be transmitted using an appropriate medium, including,
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object orniented programming language, such as Java,
Smalltalk, C++ or the like, and conventional procedural pro-
gramming languages, such as the “C” programming lan-
guage, assembler or similar programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Aspects of the present invention are described herein with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart i1llustrations and/
or block diagrams, and combinations of blocks in the tlow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function 1n a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified 1n the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present

10

15

20

25

30

35

40

45

50

55

60

65

10

invention. In this regard, each block 1n the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or tlowchart
illustration, and combinations of blocks in the block diagrams
and/or tlowchart 1llustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer 1nstructions.

In addition to the above, one or more aspects of the present
invention may be provided, offered, deployed, managed, ser-
viced, etc. by a service provider who oflers management of
customer environments. For instance, the service provider
can create, maintain, support, etc. computer code and/or a
computer infrastructure that performs one or more aspects of
the present invention for one or more customers. In return, the
service provider may receive payment from the customer
under a subscription and/or fee agreement, as examples.
Additionally or alternatively, the service provider may
receive payment from the sale of advertising content to one or
more third parties.

In one aspect of the present invention, an application may
be deployed for performing one or more aspects of the present
invention. As one example, the deploying of an application
comprises providing computer inirastructure operable to per-
form one or more aspects of the present invention.

As a further aspect of the present invention, a computing
inirastructure may be deployed comprising integrating com-
puter readable code into a computing system, in which the
code in combination with the computing system 1s capable of
performing one or more aspects of the present invention.

As vyet a further aspect of the present invention, a process
for integrating computing infrastructure comprising integrat-
ing computer readable code 1nto a computer system may be
provided. The computer system comprises a computer read-
able medium, 1n which the computer medium comprises one
or more aspects of the present invention. The code 1n combi-
nation with the computer system 1s capable of performing one
or more aspects of the present invention.

Although various embodiments are described above, these
are only examples. For example, computing environments of
other architectures can incorporate and use one or more
aspects of the present invention. As examples, servers other
than System z or z196 servers can include, use and/or benefit
from one or more aspects of the present invention. Further,
other types of adapters and/or links can benefit from one or
more aspects of the present invention. Moreover, more, less
and/or different rules may be used to facilitate the address
look-up. Many vanations are possible.

Further, other types of computing environments can benefit
from one or more aspects of the present invention. As an
example, a data processing system suitable for storing and/or
executing program code 1s usable that includes at least two
processors coupled directly or indirectly to memory elements
through a system bus. The memory elements include, for
instance, local memory employed during actual execution of
the program code, bulk storage, and cache memory which
provide temporary storage of at least some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.

US 8,560,736 B2

11

Input/Output or I/O devices (1including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
I/0 controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems, and Ethernet cards are just a
tew of the available types of network adapters.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not imtended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
turther understood that the terms “comprises” and/or “com-
prising”’, when used 1n this specification, specity the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
clements, components and/or groups thereof.

The corresponding structures, matenals, acts, and equiva-
lents of all means or step plus function elements in the claims
below, 11 any, are intended to 1include any structure, material,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the invention 1n the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described 1n order to best explain the principles of the mven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiment with various modifications as are suited to the
particular use contemplated.

What 1s claimed 1s:

1. A computer program product for facilitating transfers of
data 1n a computing environment, said computer program
product comprising;:

a non-transitory computer readable storage medium read-
able by a processing circuit and storing instructions that
when executed by the processing circuit perform a
method comprising:
determining whether data to be transierred 1s out-oi-

order;
based on the data being out-of-order, comparing a
received offset of the data with a first offset, wherein
the first offset 1s a verified offset, and wherein the
verified offset comprises at least a portion of an oifset
corresponding to a first entry in an address data struc-
ture which has not been verified as having a specified

count;
based on the received offset being one value with respect
to the first offset, scanning the address data structure
starting at the first ofiset or a second offset to locate an
entry in the address data structure having the received
offset and obtaiming from the entry an address to be
used to transter the data, wherein the second offset 1s

a next expected offset; and
based on the received olifset being another value with

respect to the first offset, determining at least one of an

index and a count to be used to locate an entry in the
address data structure, and obtaining from the entry

the address to be used to transter the data.

10

15

20

25

30

35

40

45

50

55

60

65

12

2. The computer program product of claim 1, wherein the
one value 1s greater than or equal to and the another value 1s
less than.

3. The computer program product of claim 1, wherein the
specified count 1s 4096, and wherein the verified offset 1s
frozen based on encountering the first entry in the address
data structure 1s not equal to the specified count.

4. The computer program product of claim 1, wherein
based on the received oflset being one value with respect to
the first oilset, scanning the address data structure starting at
the first oifset, based on the received oflset being less than or
equal to the second offset.

5. The computer program product of claim 1, wherein
based on the received offset being one value with respect to
the first oflset, scanning the address data structure starting at
the second offset, based on the recerved oflset being greater
than the second off:

set.

6. The computer program product of claim 1, wherein
determining the index comprises shifting the received offset
in a select direction by a predefined number of bits.

7. The computer program product of claim 6, wherein the
select direction 1s to the right and the predefined number of
bits 1s 12.

8. The computer program product of claim 1, wherein
determining the count comprises selecting a set number of
bits of the received offset as the count.

9. The computer program product of claim 1, wherein the
method further comprises based on the data being in-order,
using at least one of a working count and a working index to
locate an entry 1n the address data structure, and obtaining
from the entry the address to be used to transier the data.

10. The computer program product of claim 1, wherein the
determining whether the data 1s out-of-order comprises com-
paring the received offset to the next expected oflset, wherein
inequality indicates an out-of-order data transfer.

11. The computer program product of claim 1, wherein the
method further comprises:

using the address to transter the data; and

updating one or more controls, based on transferring the

data.

12. The computer program product of claim 1, wherein the
received offset 1s a relative offset, relative to a beginning of a
block of data to be transferred.

13. A computer system for facilitating transfers of datain a
computing environment, said computer system comprising:

a memory; and

a processor in communications with the memory, wherein

the computer system 1s configured to perform a method,

said method comprising:

determining whether data to be transierred 1s out-oi-
order;

based on the data being out-of-order, comparing a
recetved offset of the data with a first offset, wherein
the first offset 1s a verified offset, and wherein the
verified offset comprises at least a portion of an offset
corresponding to a first entry 1n an address data struc-
ture which has not been verified as having a specified
count;

based on the recerved oifset being one value with respect
to the first offset, scanning the address data structure
starting at the first offset or a second offset to locate an
entry in the address data structure having the received
offset and obtaining from the entry an address to be
used to transfer the data, wherein the second offset 1s
a next expected olffset;

based on the received oifset being another value with
respect to the first offset, determining at least one of an

US 8,560,736 B2

13

index and a count to be used to locate an entry 1n the
address data structure, and obtaining from the entry
the address to be used to transier the data.

14. The computer system of claim 13, wherein the one
value 1s greater than or equal to and the another value 1s less
than.

15. The computer system of claim 13, wherein based on the
received offset being one value with respect to the first offset,
scanning the address data structure starting at the first offset,
based on the recerved offset being less than or equal to the
second offset.

16. The computer system of claim 13, wherein based on the
received offset being one value with respect to the first offset,
scanning the address data structure starting at the second
offset, based on the received oflset being greater than the
second offset.

17. The computer system of claim 13, wherein determining
the mdex comprises shifting the recerved offset 1n a select
direction by a predefined number of bits, and wherein deter-
mimng the count comprises selecting a set number of bits of
the received olfset as the count.

18. A computer program product for facilitating transfers
of data 1n a computing environment, said computer program
product comprising:

a non-transitory computer readable storage medium read-

10

15

20

able by a processing circuit and storing instructions that ;5

when executed by the processing circuit perform a
method comprising:

14

determining whether data to be transterred 1s out-oi-
order;

based on the data being out-of-order, comparing a
recetved offset of the data with a first offset;

based on the received ollfset being one value with respect
to the first ofiset, scanning an address data structure
starting at the first offset or a second offset to locate an
entry in the address data structure having the received
offset and obtaining from the entry an address to be
used to transfer the data; and

based on the received oifset being another value with
respect to the first oifset, determining at least one of an
index and a count to be used to locate an entry in the
address data structure, and obtaining from the entry
the address to be used to transter the data, and wherein
the determining the index comprises shifting the
received oflset 1n a select direction by a predefined
number of bits.

19. The computer program product of claim 18, wherein

the select direction 1s to the right and the predefined number
of bits 1s 12.

20. The computer program product of claim 18, wherein
determining the count comprises selecting a set number of
bits of the recetved offset as the count.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

