12 United States Patent

US008555107B2

(10) Patent No.: US 8,555,107 B2

Yasui et al. 45) Date of Patent: Oct. 8, 2013
(54) COMPUTER SYSTEM AND DATA 7,836,174 B2* 11/2010 Lundeccccovvvvvvenenn.. 709/224
8,108,713 B2* 1/2012 Turneretal. 714/6.2
PROCESSING METHOD FOR COMPUTER 8,281,181 B2* 10/2012 Reschccooviiiiiiiinnnil, 714/6.2
SYSTEM 2002/0162047 Al* 10/2002 Peters etal.o............ 714/5
2005/0010835 Al1* 1/2005 Childsetal. 714/6
(75) Inventors: Takashi Yasui, Fuchu (JP); Toshiyuki 2007/0234107 A1* 10/2007 Davisonccccoveinnns 714/6
Ukai, Machida (JP) 2008/0183991 Al * 7/2008 Cosmadopoulos etal. .. 711/162
2009/0063796 Al* 3/2009 Surtanietal. 711/162
1 *
(73) Assignee: Hitachi, Ltd., Tokyo (JP) 2012/0324275 Al* 12/2012 Reschetal. 714/6.2
(*) Notice: Subject to any disclaimer, the term of this FORBIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 TP 2000322297 A 11/2000
U.S.C. 154(b) by 326 days. JP 2001-100149 A 4/2001
(21) Appl. No.: 13/012,094 OTHER PUBLICATIONS
o GemStone Systems, Inc., GemFire Enterprise, Technical White
(22) Filed: Jan. 24, 2011 Paper, 2007.
(65) Prior Publication Data * cited by examiner
US 2012/0084597 Al Apr. 5, 2012 _
Primary Examiner — Yolanda L Wilson
(30) Foreign Application Priority Data (74) Attorney, Agent, or Firm — Mattingly & Malur, PC
Sep. 30,2010 (IP) woveeeeee e 2010-220223 (57) ABSTRACT
A plurality of computers to execute jobs, a management com-
(51) Int. Cl. puter to manage the execution of jobs and the disposition of
GOOF 11/00 (2006.01) data 1n the computers and a storage device storing data are
(52) U.S. Cl. interconnected via a network. The management program for
g prog
USPC e, 714/4.11:;711/162 the management computer divides the data into distributed
(58) FKield of Classification Search data according to hint information and distributively disposes
USPC AR A SRR A 714/411, 62,J 711/162 the distributed data and their replicas 1mn memory Storages
See application file for complete search history. allocated 1n memories of the computers. The computers
_ execute the job using the distributed data allocated to their
(56) References Cited own memory. In the event of a fault in any of the computers,

U.S. PATENT DOCUMENTS

7,203,871 B2* 4/2007 Turneretal. 714/710
7,734,643 Bl1* 6/2010 Waterhouseetal. 707/770
7,818,607 B2* 10/2010 Turneretal. 714/6.12

DISTRBUTED DATD

DISPOSITION PROCESS

ABOUT DISTRBUTED
DATADISPOSITION

ACQUIRE HINT INFORMATION

2605

IS [T DATAUSED BY
PRECEDING JOBS ?

the management computer requests computers having the
replicas of those distributed data disposed 1n the faulted com-
puter to re-execute the job.

10 Claims, 18 Drawing Sheets

\\YES
/

NO

2610 ~

ALLOCATE SAME NUMBER
OF COMPUTERSWITH
LEAST MEMORY USE ASTHE
DISTRBUTION NUMBER

ALLOCATE SAME
COMPUTERS AS THOSE
FOR PRECEDNG JOBS

DISTRIBUTED DATA

2685~ DiSFoSEDORTARY

CALCULATE NUMBER OF
DISPOSED DASTRBUTED

i

X

SRR)

ISDISTRBUTED DATA \ vES

NO

2No

CANDTRBUTED _ \ NO
DATABE REDISTREUTED?)

(=)

YES

REDISTRIBUTION
DISPOSITION PROCESS

REDISPOSITION PROCESS

U.S. Patent Oct. 8, 2013 Sheet 1 of 18 US 8,555,107 B2

FIG.1
110

COMPUTER 111
MEMORY 112
JOB PROGRAM 200
DISTRIBUTED MEMORY | 210

MANAGEMENT CLIENT PROGRAM 113
MEMORY STORAGE MANAGEMENT INFORMATION 212
I/F IR

MEMORY STORAGE l 713
DISTRIBUTED DATA 214

120 100
MANAGEMENT COMPUTER 121

PROCESSOR
MEMORY 100 | 123
DISTRIBUTED MEMORY MANAGEMENT IIF
IIF

130

SERVER PROGRAM | I 220 [F_
JOBEXECUTION MANAGEMENT UNIT 221
DISTRIBUTED MEMORY l 293
STORAGE MANAGEMENT UNIT -
JOB EXECUTION MANAGEMENT INFORMATION 222
DISTRIBUTED MEMORY STORAGE
MANAGEMENT INFORMATION 224 I DATA I
DISTRIBUTED DATA DISPOSITION INFORMATION 225 230
DISTRIBUTED DATA DISPOSITION HINT INFORMATION H— 226

U.S. Patent Oct. 8, 2013 Sheet 2 of 18 US 8,555,107 B2

3

MEMORY
ADDRESS

NUMBER

RECORD

S

g |52 |8|=|2(8(2|8
g6 (C|E (8|2 |E |8
E% il o
-
5

§88| =& 2
7
Q

310
RECORD
LENGTH

100B

212
300
DATADD

U.S. Patent Oct. 8, 2013 Sheet 3 of 18 US 8,555,107 B2

g = | = | =

e ‘aX 8%
H I

460
RE-EXECUTION

440 450
EXECUTION
COMPUTERID STATUS
Running
Nomal End
Co
Ci

FIG.3
430
DISTRIBUTION
NUMBER

420
QUTPUT
DATAID

D3

410
INPUT
DATAID
DOD1

J1

- '
q

U.S. Patent Oct. 8, 2013 Sheet 4 of 18 US 8,555,107 B2

FIG.4

500

DISTRIBUTION EXECUTION
RE-EXECUTION ID NUMBER COMPUTERID STATUS
n-

'§

FIG.5
224

600

DISTRIBUTED COMPUTER COMPUTEH
MEMORY ID NUMBER

.

EMPTY
MEMORY AREA

TOTAL
MEMORY AREA

lg

8G 7GB
GB

B 7GB

4GB

U.S. Patent Oct. 8, 2013 Sheet 5 of 18 US 8,555,107 B2

770

760

COMPUTER | RepricaiD

750

DISTRIBUTION RECORD
KEY RANGE NUMBER

B N

ow | o

N

ow

D1_0
D1_1

0
Lil
ég
<
0
2
3=
=

D1_2

710

720
DISTRBUTION | DISTRIBUTION
NUMBER KEY
-
.

DATAID

U.S. Patent Oct. 8, 2013 Sheet 6 of 18 US 8,555,107 B2

N
H

C2
Co
Ci

100

K50- K92
K100-K174
K175-K199

S
5

840
DISTRIBUTION RECORD
KEY RANGE NUMBER COMPUTERID
: 300

0
EQ - e -
BEAEIREE
=% |8 |8 |8
oo T
o_| gt
==
QO =
7P
O

REPLICAID

<

U.S. Patent Oct. 8, 2013 Sheet 7 of 18 US 8,555,107 B2

_lem| 3 5
51 83 2 *
g | &
S
24
B =
§ é’” %” gl
59 19/3]3(3|3)|%
S
e
=t
Sl

KEY RANGE
KO- K99

2
"
S
A

DISTRIBUTION

920
DISTRIBUTION | DISTRIBUTION
NUMBER KEY

U.S. Patent Oct. 8, 2013 Sheet 8 of 18 US 8,555,107 B2

FIG.9

DATADEPOSITION PROCESS

RECENE DATADISPOSITION INFORMATION FROM 1100
DISTRIBUTED MEMORY MANAGEMENT SERVER

DISPOSE DATA IN MEMORY STORAGE 1110

REGISTER DATADISPOSITION INFORMATION WITH 1190
MEMORY STORAGE MANAGEMENT INFORMATION

FIG.10

MEMORY STORAGE DATA RELEASING PROCESS

RECEIVE DATA RELEASE REQUEST FROM 1200
DISTRIBUTED MEMORY MANAGEMENT SERVER
RELEASE MEMORY STORAGE IN WHICH DATA IS DISPOSED 1210

DELETE DATA DISPOSITION INFORMATION FROM 1990
MEMORY STORAGE MANAGEMENT INFORMATION

U.S. Patent Oct. 8, 2013 Sheet 9 of 18 US 8,555,107 B2
MEMORY STORAGE FIG.11
ACCESSPROCESS

1300
ISACCESS SPECIFIED\ NO
BY DATAID ?
ISIT THE ACCESSTO\ NO
THE OWN DISTRIBUTED 1410
1310 DATA?
STHERE VES
DISTRIBUTED DATA NO /. IS THERE REPLICA
INCLUDING SPECIFIED (A OF DISTRIBUTED DATA
KEY ? 1500 SPECIFIED BY KEY 7
NO SIT NO YES
WRITE-ACCESS ?
ACQUIRE DISTRIBUTED
ACCESS REPLICAOF
DATADISPOSTION 1320 YES DISTRIBUTED DATA
' UPDATE '
1920~ DISTRIBUTED DATA 1420
BT | 0 ©
COMPUTERHAVING 1330
DISTRIBUTED DATA ACQUIRE REPLICA
DISPOSITION
INFORMATION FROM
DISTRIBUTED MEMORY
MANAGEMENT SERVER
ISSUE ACCESS
1610 REQUEST TO
COMPUTER
HAVING REPLICA 1510

ACCESS
DISTRIBUTED DATA

RETURN
ACCESSREsuLT [~ 1940

U.S. Patent Oct. 8, 2013 Sheet 10 of 18 US 8,555,107 B2

FIG.12

INTER-COMPUTER
MEMORY STORAGE
ACCESSING PROCESS

1700
STWRITE-ACCESS? \/ES
NO
1790 UPDATE DISTRIBUTED
DATAIN MEMORY STORAGE
1740 ACCESS DISTRIBUTED
DATAIN MEMORY STORAGE

T

800
SIT ACCESSTOREPLICA \ YES
OF DISTRIBUTED DATA?
1745 ~| TRANSFER ACCESSRESULT
TOREQUESTING COMPUTER

ACQUIRE DISTRIBUTED

1810 DATA REPLICA
DISPOSITION INFORMATION

1815 ISSUE ACCESS
REQUEST TOCOMPUTER

1820 TRANSFER ACCESSRESULT
TOREQUESTING COMPUTER

U.S. Patent Oct. 8, 2013 Sheet 11 of 18 US 8,555,107 B2

FIG.13

JOB EXECUTION ACCEPTANCE PROCESS

ACQUIRE DISTRIBUTED DATA
DISPOSITION HINT INFORMATION

ISSUE DISTRIBUTED DATA DISPOSITION REQUEST 1910

ACQUIRE INFORMATION ABOUT COMPUTERS 1920
IN WHICH DISTRIBUTED DATAIS DISPOSED

REGISTER JOB INFORMATION WITH JOB 1930
EXECUTION MANAGEMENT INFORMATION

U.S. Patent Oct. 8, 2013 Sheet 12 of 18 US 8,555,107 B2

FIG.14
JOB EXECUTION
PROCESS
2000
IS THERE JOB NO
THAT NEEDS TOBE

RE-EXECUTED ? 2005

YES YES ARE ALL JOBS

Q NORMALLY

COMPLETE?

NO
2010 2100

NO IS THERE JOB ISTHERE JOB NO

2900 WAITING FOR WAITINGTORE

RE-EXECUTION ? EXECUTED ?

YES
CHECKFOR
FIE-EXECl(J;TION RESULT| 2020 2110
JOINING PROCESS ISRE-EXECUTION \ YES S EXEGUTION
COMPUTER COMPUTER
EXECUTING JOB? EXECUTINGJOB?

REQUEST COMPUTER
TOEXECUTE
RE-EXECUTION RESULT
JOINING PROCESS

REQUEST COMPUTER
TORE-EXECUTEJOB

2210
(8 2030
(™

REQUEST COMPUTER
TOEXECUTEJOB
2120

U.S. Patent Oct. 8, 2013 Sheet 13 of 18 US 8,555,107 B2

JOBRESULT FIG.15

ACCEPTANCE
PROCESS

IS NOTIFICATION
ABOUT RE-EXECUTION\ NO
RESULT JOINING
PROCESS?
YES 2400
ISIT NOTIFICATION \\ YES
ISSUE REQUEST TO OF RE-EXEGUTION
UPDATEDISPOSITION | _ 94y JOB?
INFORMATION ABOUT NO
JOINED RESULT
ISSUEREQUEST TO UPDATE EXECUTION
RELEASE DISTRIBUTED | ooy 2410 STATUSOF
DATANOT USED IN RE-EXECUTION
SUBSEQUENT JOBS INFORMATION
UPDATE EXECUTION UPDATE EXECUTION
STATUS OF JOB STATUS OF JOB
EXECUTION 2330 EXECUTION 2500
MANAGEMENT MANAGEMENT
INFORMATION INFORMATION
NO / ISDISTRIBUTED 2510
JOBNORMALLY
ENDED 2
REGISTER YES
NFORMATION,
2520
AREALL
DISTRIBUTED
JOBS NORMALLY
FINISHED 7
YES
ISSUE REQUEST TO
RELEASE DISTRBUTED | _nean
DATANOT USED IN
SUBSEQUENT JOBS

U.S. Patent Oct. 8, 2013 Sheet 14 of 18 US 8,555,107 B2

DISPOSITION PROCESS

ACQUIRE HINT INFORMATION

ABOUT DISTRIBUTED
200 DATADISPOSITION

2605
ISITDATAUSEDBY '\ YES
PRECEDING JOBS ?

NO

ALLOCATE SAME NUMBER
OF COMPUTERS WITH
LEAST MEMORY USE ASTHE
DISTRIBUTION NUMBER

ALLOCATE SAME
2020 COMPUTERS AS THOSE
FOR PRECEDING JOBS

2610

REQUEST ALLOCATED
2630 COMPUTERS TO DISPOSE
DISTRIBUTED DATA

CALCULATE NUMBER OF
2635 DISPOSED DISTRIBUTED
DATARECORDS

2700
ISDISTRIBUTEDDATA \ YES

REPLICA DISPOSITION
COMPLETE?

- (=™

2710
CAN DISTRIBUTED NO
DATABE RE-DISTRIBUTED ?
YES
2720 I ERSTRBUTON I 2730 I AEDISPOSITION Pnocess

U.S. Patent Oct. 8, 2013 Sheet 15 of 18 US 8,555,107 B2

FIG.17

REDISTRIBUTION
DISPOSITION PROCESS

2800
ISREPLICATION NO
POLICY LEVELING ?

YES

ADJUST REDISTRIBUTION KEY
REDISTRIBUTE DISTRIBUTED

WELCIICIOTO 5 | "R

DATARECORDS

2810

SPECIFIED KEY RANGE

REDISTRIBUTE AND
2815 DISPOSE DISTRIBUTED
DATAACCORDINGTO
REDISTRIBUTION KEY RANGE

REGISTER DISTRIBUTED DATA
REPLICA DISPOSITION RESULT
WITH REPLICAINFORMATION

U.S. Patent Oct. 8, 2013 Sheet 16 of 18 US 8,555,107 B2

FIG.18

REDISPOSITION
PROCESS
2900
IS REPLICATION NO
POLICY LEVELING ?

YES
ADJUST REDISTRIBUTED
DISPOSE REPLICAIN
RECORD NUMBER COMPUTER WITH LEAST
2910 ACCORDINGTO 2920 DISPOSITION RECORD

DISTRIBUTED DATA
RECORD NUMBER RATIO

NUMBER

REDISTRIBUTE AND
DISPOSE DISTRIBUTED
2915 DATAACCORDING TO

REDISTRIBUTED
RECORD NUMBER

REGISTER DISTRIBUTED DATA
2930 —~- REPLICA DISPOSITION RESULT
WITH REPLICAINFORMATION

U.S. Patent Oct. 8, 2013 Sheet 17 of 18 US 8,555,107 B2

FIG.19

DISTRIBUTED DATA DISPOSITION UPDATE PROCESS
RECEIVE REQUEST TOUPDATE DISPOSITION 3000
INFORMATION ABOUT JOINED RESULT DATA

UPDATE INFORMATION ABOUT COMPUTERS IN WHICH 3010
CORRESPONDING DISTRIBUTED DATA IS DISPOSED

FIG.20

DISTRIBUTED DATA RELEASING PROCESS

ACQUIRE INFORMATION OF 3100
DISTRIBUTED DATA TO BE RELEASED

REQUEST COMPUTERS IN WHICH DISTRIBUTED 3110
DATA REPLICAS ARE DISPOSED TO RELEASE THEM

REQUEST COMPUTERS IN WHICH DISTRIBUTED 3120
DATAIS DISPOSED TORELEASE THEM

DELETE INFORMATION OF DISTRIBUTED
DATAFROM DISTRIBUTED DATA DISPOSITION 3130
MANAGEMENT INFORMATION

U.S. Patent Oct. 8, 2013 Sheet 18 of 18 US 8,555,107 B2

FIG.21

DISTRIBUTED
DATADISPOSITION
NOTIFICATION PROCESS

RECEIVE DISTRIBUTED
DATA INFORMATION FROM
DISTRIBUTED MEMORY
MANAGEMENT CLIENT

3205
ISITINQUIRY ABOUT NO
REPLICA DISPOSITION 2

YES
SEARCH FOR COMPUTER SEARCH FOR COMPUTER
3210 ~{ HAVINGREPLICAINCLUDING | 3220 ~{ HAVINGDISTRIBUTED DATA
SPECIFIED KEY INCLUDING SPECIFIED KEY

NOTIFY DISTRIBUTED
MEMORY MANAGEMENT
CLIENT OF SEARCHED
COMPUTER INFORMATION

3200

3230

US 8,555,107 B2

1

COMPUTER SYSTEM AND DATA
PROCESSING METHOD FOR COMPUTER
SYSTEM

INCORPORATION BY REFERENC.

L1l

The present application claims priority from Japanese
application JP2010-220223 filed on Sep. 30, 2010, the con-
tent of which 1s hereby incorporated by reference into this
application.

BACKGROUND OF THE INVENTION

The present mnvention relates to a computer system and a
data processing method 1n the computer system and more
particularly to a computer system for parallelly processing a
large volume of data by a plurality of computers and a data
processing method 1n the event of a fault.

In recent years, the volume of data processed by computer
systems has been growing explosively. This 1 turn has
increased the time taken by data processing, giving rise to a
problem of a job failing to be finished within a predetermined
time. To speed up data processing, it 1s increasingly necessary
that a large volume of data be processed with a plurality of
parallelly connected computers.

Among technologies for processing large volumes of data
using a plurality of computers may be cited a distributed
memory technology, like the one described 1n a document:
GemStone Systems, Inc., “GemFireEnterprise,” Technical
White Paper, 2007. The distributed memory technology 1s a
technology that integrates memories provided 1n a plurality of
computers into one logical memory space 1n which to store
data. In the distributed memory technology, since data is
practically disposed distributed among memories of a plural-
ity of computers, these distributed data can be processed by
these computers parallelly. Further, since data 1s disposed in
memories of the computers, data transfers to and from exter-
nal storages such as disk drives are reduced. This 1n turn
results 1n an 1ncreased speed of data processing.

The distributed memory technology, on the other hand, has
a risk that, 1n the event of a fault in a computer, data held 1n
that computer may be lost. To deal with this problem, it 1s a
common practice 1n the distributed memory technology that
the data held in the memory of a computer 1s replicated and
that the replica of data 1s disposed 1n a memory of another
computer to avoid a possible loss of data that would otherwise
occur 1n the mvent of a fault. When a fault has occurred 1n a
computer, the operation that was being executed by that com-
puter at the time of fault can be executed again by the second
computer that holds the data replica. It 1s noted, however, that
because the re-execution of the operation by the second com-
puter 1n the event of a fault i1s done only after the second
computer has finished the operation that was being executed
at the time of fault, the completion of the overall data pro-
cessing 1s delayed by the fault.

To speed up the re-execution of operation using the repli-
cated data in the event of a computer fault, a technology 1s

available to distributively dispose data in secondary memory
devices of other computers, such as shown 1 JP-A-2000-
322292 and JP-A-2001-100149. The technology disclosed 1n
these patent documents has a replica of the data held by a
computer distributively disposed in secondary memory
devices of a plurality of other computers. When a fault occurs
with a computer, a plurality of other computers with a sec-
ondary memory device holding the replica of the data held by

10

15

20

25

30

35

40

45

50

55

60

65

2

the faulted computer parallelly process the data, thus reduc-
ing the time taken by the re-execution.

SUMMARY OF THE INVENTION

In distributing a large volume of data among a plurality of
computers, the aforementioned conventional distributed
memory technology uses specific information as a key, such
as a name of stock to be traded. So, the volume of data held in
a computer differs from one computer to another, depending
on what mformation i1s used as a key in distributing data.
Theretfore, simply distributing a replica of data contained 1n
cach computer to different computers, as described in JP-A-
2000-322292 and JP-A-2001-100149, can hardly level the
data processing executed by individual computers, including
the time taken by the re-execution.

The present invention has been accomplished with a view
to overcoming the problem described above. That 1s, its
objective 1s to level data processing, including a re-execution
in the event of a fault, in a computer system that parallelly
processes a large volume of data with a plurality of comput-
ers.

The above object and novel features of this invention will
become apparent from the following description and the
accompanying drawings.

Of the mventions disclosed 1n this application, representa-
tive ones may be briefly summarized as follows.

Viewed from one aspect the present invention provides a
computer system having a storage device storing data, a plu-
rality of first computers connected with the storage device and
adapted to manage data processing using the data, and a
plurality of second computers connected with the first com-
puters and adapted to distributively execute the data process-
ing. The first computers each have a distributive disposition
unit and an execution management unit. The distributive dis-
position unit references given hint information idicating a
policy of distributive disposition of the data in a plurality of
the second computers, divides the data held 1n the storage
device mto a plurality of pieces of distributed data and dis-
tributively disposes the pieces of the distributed data and each
piece of replicated data of the distributed data into memories
of the plurality of the second computers. The execution man-
agement unit requests the second computers to execute the
data processing and, in the event of a fault in any of the second
computers, requests another second computer to re-execute
the data processing that was being executed in the faulted
second computer at the time of fault. The second computers
cach have a memory management unit and a data processing
unit. The memory management unit holds the distributed data
in a memory of its own computer in response to a request from
the distributive disposition unit, and the data processing unit
executes the data processing 1n response to a request from the
execution management unit.

Another aspect of the present invention provides a data
processing method 1n a computer system, wherein the com-
puter system 1ncludes a plurality of first computers to dis-
tributively execute data processing, a second computer to
manage the execution of the data processing by the plurality
of the first computer, a storage device storing data used in the
data processing, and a network 1nterconnecting the plurality
of the first computers, the second computer and the storage
devices. According to hint information given to the second
computer and indicating a policy on the distributive disposi-
tion of the data in the first computers, the data processing
method divides the data held in the storage device into a
plurality of pieces of distributed data and distributively dis-
poses the distributed data and replicated data of each piece of

US 8,555,107 B2

3

the distributed data 1n memories of the plurality of the first
computers. It further performs data processing by the plural-
ity of the first computers using the distributed data disposed in
cach of the first computers and, in the event of a fault in any of
the first computers, re-executes the data processing, that was
being executed in the faulted first computer at the time of
fault, by another first computer that holds the replicated data
of those distributed data disposed in the faulted first com-
puter.

Of the mventions disclosed 1n this application, a represen-
tative one may briefly be summarized as follows.

In a computer system that parallelly processes a large vol-
ume of data with a plurality of computers, this invention can
level the load of data processing, including the re-execution
ol job 1n the event of a fault, among the computers.

Other objects, features and advantages of the invention will
become apparent from the following description of the
embodiments of the invention taken 1n conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram showing an outline configuration
of a computer system as one embodiment applying the
present invention.

FIG. 2 1s a conceptual diagram showing a data structure of
memory storage management information 212 used to man-
age distributed data 214 disposed 1n a memory storage 213.

FI1G. 3 1s a conceptual diagram showing a data structure of
10b execution management information 222.

FIG. 4 1s a conceptual diagram showing a structure of
re-execution information.

FIG. 5 1s a conceptual diagram showing a structure of
distributed memory storage management information 224.

FIG. 6 1s a conceptual diagram showing a structure of
distributed data disposition information 225.

FIG. 7 1s a conceptual diagram showing a structure of
replica information.

FIG. 8 1s a conceptual diagram showing a structure of
distributed data disposition hint information 226.

FI1G. 9 1s atflow chart of a process for disposing data into the
memory storage 213, performed by a distributed memory
management client program 210.

FI1G. 10 1s a flow chart of a memory storage data releasing
process performed by the distributed memory management
client program 210.

FI1G. 11 1s a flow chart of a memory storage access process
performed by the distributed memory management client
program 210.

FI1G. 12 1s a flow chart of an inter-computer memory stor-
age accessing process.

FIG. 13 1s a flow chart of a job execution acceptance
process performed by a job execution management umt 221.

FIG. 14 1s aflow chart of a job execution process performed
by the job execution management unit 221.

FIG. 15 1s a flow chart of a job result acceptance process
performed by the job execution management unit 221.

FIG. 16 1s a flow chart of a distributed data disposition
process performed by a distributed memory storage manage-
ment unit 223.

FI1G. 17 1s a tlow chart of a redistribution disposition pro-
Cess.

FI1G. 18 1s a flow chart of a redisposition process.

FIG. 19 1s a flow chart of a distributed data disposition
update process performed by the distributed memory storage
management unit 223.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 20 1s a flow chart of a distributed data releasing
process performed by the distributed memory storage man-

agement umt 223.

FIG. 21 1s a flow chart of a distributed data disposition
notification process performed by the distributed memory
storage management unit 223.

DESCRIPTION OF THE EMBODIMENTS

Now, embodiments of this invention will be described by
referring to the accompanying drawings. In all the drawings
identical members are basically assigned the same reference
numerals and their repetitive explanations omitted.

FIG. 11s a block diagram showing an outline configuration
of an example computer system applying the present mven-
tion.

The computer system of this embodiment includes a plu-
rality of computers 110 to execute jobs; a management com-
puter 120 to manage the execution of jobs by the computers
110; and a storage 130 in which to store data input to jobs
executed by the computers 110 and data output from the
executed jobs. The computers 110 are interconnected among
them and also with the management computer 120 through a
network 100.

The computers 110 each have a processor 111 for compu-
tation, a memory 112 for storing programs and data, and an
interface 113 for connecting the computer 110 to the network
100.

The management computer 120 includes a processor 121
for computation, a memory 122 for storing programs and
data, and an interface 123 for connecting the management
computer 120 to the network 100 and an interface 124 for
connecting 1t to the storage 130.

In the memory 112 of each computer 110 there are stored a
1j0b program 200 that 1s executed by the processor 111 to do
the job requested by the management computer 120 and a
distributed memory management client program 210 to be
executed by the processor 111 to manage the distributed
memory made up of the memories 112 of the individual
computers 110. These programs do not need to be stored 1n
the memory 112 at all times but may be stored 1n an external
storage, such as a disk drive not shown, and read onto the
memory 112 as needed for execution by the processor 111.

In the memory 112 of each computer 110 the distributed
memory management client program 210 described later
allocates a memory storage 213 to build the distributed
memory. These memory storages 213 are provided as one
logical storage by the distributed memory management
server program 220 and the distributed memory management
client program 210. In this specification this unified storage 1s
called a distributed memory. Data to be stored 1n the distrib-
uted memory 1s distributed as distributed data 214 among the
memory storages 213 allocated 1n the plurality of computers
110. In the memory 112 of each computer 110 there 1s held
memory storage management mformation 212 that the dis-
tributed memory management client program 210 i each
computer uses to manage the distributed data 214 disposed 1n
the memory storage 213.

In the memory 122 of the management computer 120 there
1s stored a distributed memory management server program
220 that 1s executed by the processor 121 to manage the
distributed memory made up of memories 112 ofthe plurality
of computers 110. The distributed memory management
server program 220, like the job program 200 and the distrib-
uted memory management client program 210, may also be
stored 1n an external storage not shown, read onto the memory
122 as needed and executed by the processor 121.

US 8,555,107 B2

S

The distributed memory management server program 220
has a job execution management unit 221 that manages jobs
to be executed by the computers 110 and a distributed
memory storage management unit 223 that, together with the
distributed memory management client program 210, man-
ages the distributed memory. Also held in the memory 122 are
10b execution management information 222 used by the job
execution management unit 221 to manage jobs executed by
the plurality of computers 110, distributed memory storage
management information 224 and distributed data disposition
information 223, both of which are used by the distributed
memory storage management unit 223 to manage the distrib-
uted memory and distributed data disposed 1n the distributed
memory, and distributed data disposition hint information
226.

In this embodiment, data 230 used for execution of jobs are
managed 1n specified units, such as files, and stored 1n the
storage 130. The data 230 1s read from the storage 130 before
starting job executions and distributively disposed as distrib-
uted data 214 in the memory storages 213 in memories 112 of
the individual computers 110. In executing the jobs, the job
program 200 on each of the computers 110 uses the distrib-
uted data 214 disposed 1n the memory storage 213 1n its own
computer 110. When the job that was being executed by the
computers 110 1s completed, the distributed data 214 updated
by the job are unified and stored as the data 230 1n the storage
130. In this embodiment, as described above, the job using the
data 230 1s executed distributively on a plurality of computers
110.

In this embodiment the data 230 has a plurality of records.
Each of the records includes at least one field holding values
as data.

FI1G. 2 1s a conceptual diagram showing a data structure of
the memory storage management mnformation 212 used to
manage the distributed data 214 disposed in the memory
storage 213 allocated 1n the memory 112 of the computer 110
on which the distributed memory management client pro-
gram 210 runs. In the diagram, while the memory storage
management information 212 1s shown 1n a table form, it can
be implemented using any desired data structure, such as
arrays and list structures, etc., that can relate different groups
ol mmformation 1items. This also applies to other information
described 1n the following.

The memory storage management information 212
includes: a data identifier (ID) 300 to identify the data 230
stored 1n the storage 130 that represents original data of the
distributed data 214 disposed 1n the memory 112; a record
length 310 of each record making up the data; a distribution
key 320, an ID of the field used as a key in distributively
disposing the data 230 in the distributed memory; a distrib-
uted data ID 330 that identifies the distributed data 214 dis-
posed 1n the memory storage 213; a distribution key range
340 included in each distributed data 214 identified by the
distributed data ID 330 and representing the range of value 1n
a field determined by the distribution key 320; a record num-
ber 350 representing the number of records included 1n the
distributed data 214 identified by the distributed data ID 330;
and a memory address 360 representing the location within
the memory storage 213 of the distributed data 214 1dentified
by the distributed data 1D 330.

When, 1n the memory storage management information
212 of FIG. 2, the data with data ID “D0” 1s considered for
example, 1t 1s seen that the data 1s made up of three groups of
distributed data with a distribution key of “FO”—irst group of
600 records 1n a key range of “K0-K99” with a distributed
data ID of “D0_ 07, disposed in an area beginning at a
memory address “0Ox10000000”, a second group of 100

10

15

20

25

30

35

40

45

50

55

60

65

6

records in a key range of “K175-K 199 with a distributed data
IDof*“D0_1_ 17, disposed 1n an area beginning at a memory
address “0x10040000, and a third group of 100 records 1n a
key range of “K200-K244” with a distributed data ID of
“DO0_2_ 07, disposed 1n an area beginning at a memory
address “Ox10080000. As described later, the distributed
data with distributed dataID of “D0_1_ 17 and “D0_2 07

represent parts of replicas of those distributed data “D0” that
are 1dentified by distributed dataID “D0__1”and “D0__ 2 and

disposed 1n other computers 110.

FIG. 3 1s a conceptual diagram showing a data structure of
the job execution management information 222.

The job execution management information 222 1s used by
the job execution management unit 221 to manage jobs that
are distributively executed by a plurality of computers 110. It
includes a job ID 400 to 1dentify each job; an input data 1D
410 to 1dentity the data 230 used as mputs for jobs; an output
data ID 420 to identify data output as a job execution result; a
distribution number 430 representing the number of comput-
ers 110 that distributively execute a job or the number of part
jobs to be distributively executed; a computer 1D 440 to
identify the computers 110 that distributively execute a job;
an execution status 450 representing the state of a job being
distributively executed by the computers 110; and a re-execu-
tion ID 460 to identily information on re-execution of a job in
the event of a fault in the computer 110 that has been execut-
ing the job.

It 1s seen from the job execution management information
222 of FIG. 3 thatjob “JO” 1s one that takes 1n data “D0, “D1”
as input data and outputs data “D2” and that it 1s distributively
executed by three computers 110 with computer 1Ds “CO0”,
“C17, “C2”. In the execution status 450 the following infor-
mation indicating the status of job execution is set for each of
the computers involved 1n distributively executing the job:
“Running”’ indicating that the job allocated to the computer 1s
being executed; “Normal End” indicating the job has ended
normally; “Abnormal End” indicating the job has ended
abnormally due to a fault in the computer; and “Waiting”
indicating that the job 1s waiting to be executed.

FIG. 4 1s a conceptual diagram showing a structure of
re-execution information.

The re-execution information 460 1s used by the job execu-
tion management unit 221 to manage the statuses of jobsto be
re-executed (hereinafter referred to as re-execution jobs)
when a job that was being executed 1n one of the computers
110 at time of fault 1s re-executed by another computer 110.
The re-execution information includes a re-execution ID 500
to 1dentily a re-execution job, a distribution number 510 for a
re-execution job identified by the re-execution ID 500, a
computer ID 520 to identity the computer to which a re-
execution job 1s assigned, and execution status information
530 representing the execution status of the re-execution job
allocated to each computer.

The distribution number 510 1n this embodiment repre-
sents the number of computers that distributively execute the
re-execution jobs i1dentified by the re-execution ID 500, For
one re-execution ID 500, the same number of computer 1Ds
520 as that specified by the distribution number 510 and the
execution status information 5330 are set. The re-execution ID
500 corresponds to the re-execution ID 460 for the job execu-
tion management information 222. The execution status of
the re-execution job associated with a specific job can be
managed using the re-execution information in which the
same re-execution ID as the re-execution 1D 460 1s set. Thus
by referring to FIG. 3 and FIG. 4, 1t 1s understood that the
re-execution job “RJ0__2” of a job that was a part of the job
“JO” and which was being executed by the computer “CT” 1s

US 8,555,107 B2

7

to be distributively executed by two computers 110 “C0”,
“C1”, with the re-execution job 1n the computer “CO0” 1n the
“Waiting” state and the re-execution job in the computer “C1”
in the “Running’ state or being executed.

In this embodiment the re-execution information 1s sup-
posed to be held in the memory 122 as information accom-
panying the job execution management information 222.
Although 1n this embodiment the job managed by the job
execution management information 222 and the re-execution
information on the re-execution job associated with the job
are related with each other by the re-execution IDs 460, 500,
they may be associated by using pointer information leading,
to the associated re-execution information, instead of the
re-execution ID 460, or by directly holding the re-execution
information as part of the job execution management infor-
mation 222.

FIG. 5 1s a conceptual diagram showing a structure of the
distributed memory storage management information 224.

The distributed memory storage management information
224 1s used by the distributed memory storage management
unit 223 to manage the distributed memory composed of
memories of a plurality of computers 110. In this embodi-
ment, the distributed memory storage management unit 223
can build a plurality of distributed memory storages. The
distributed memory storage management information 224
includes a distributed memory ID 600 to 1dentily individual
distributed memory storages, a computer number 610 repre-
senting the number of computers 110 used 1n forming the
distributed memory 1dentified by the distributed memory ID
600, a computer ID 620 of each of the computers 110 used to
build the distributed memory, a total memory area informa-
tion 630 indicating a total memory capacity of the distributed
memory, and empty memory area information 640 represent-
ing a memory capacity in the distributed memory that is
available for use.

Referring to the distributed memory storage management
information 224 1n FI1G. 5, the distributed memory 1dentified
by distributed memory 1D “0”, for example, 1s made up of
areas on the memories 112 1n those computers 110 1dentified
by the computer IDs “C0”, “C1” and “C2”, each with a total
memory capacity of 8 GB and an empty memory area of 7
GB.

FIG. 6 1s a conceptual diagram showing a structure of the
distributed data disposition information 225.

The distributed data disposition information 225 1s used by
the distributed memory storage management unit 223 to man-
age the disposition of data in the distributed memory. It
includes a data ID 700 to identity data 230 which constitutes
the original of distributed data 214 disposed distributively in
the memories 112 of a plurality of computers 110; a distribu-
tion number 710 representing the number of pieces of data
230 distributively disposed 1n the memories 112 of the com-
puters, 1.e., the number of divided pieces of data 230 or the
number of pieces of distributed data 214 after data division; a
1stribution key 720 to 1dentily a field used as a key when
1viding the data 230 1nto distributed data 214; a distributed
ata ID 730 to identify each piece of distributed data; a
1stribution key range 740 representing a range of value that
the field specified by the distribution key 720 holds 1n each
piece of distributed data; a record number 750 representing
the number of records 1included 1n each piece of distributed
data; a computer 1D 760 of a computer 110 in which each
piece of distributed data 1s disposed; and a replica 1D 770
representing information on a replica of distributed data used
during the re-execution of a job.

Referring to the distributed data disposition information

225 shown 1n FIG. 6, 1t 1s understood that data “D0" 1s divided

C
C
C
C

10

15

20

25

30

35

40

45

50

55

60

65

8

into three pieces of distributed data with a field “FO”” taken as
a distribution key and 1s distributively disposed 1n computers
“C07,*“C1” and *“C2”. The three groups of distributed data are
cach assigned a distributed data ID 730 “D0__ 07, “D0__17,
“D0__2” and respectively include 600 records 1n a field “F0”
of “K0-K99”, 100 records 1n a field of “K100-K199” and 100
records 1n a field of “K200-K299”. It 1s also understood that
the replica information about replicated data of each group of
distributed data 1s represented by a replica ID “RDO0_ 07,
“RD0O__17, “RD0__2".

FIG. 7 1s a conceptual diagram showing a structure of
replica information. In this embodiment a replica of distrib-
uted data (hereinafter referred to as replicated data) 1s further
divided and distributively disposed in a plurality of computers
110 other than those in which original distributed data 1s
disposed. In the following, a portion of replicated data dis-
posed 1n one computer 1s referred to as partial replicated data.

The replica information includes information about a plu-
rality of pieces of replicated data. The replica information
about each piece of replicated data includes a replica 1D 800
to 1dentily the replica information; a distribution number 810
representing the number of computers 1n which to dispose
replicated data; a distributed data ID 820 to identity partial
replicated data distributively disposed in computers; a distri-
bution key range 830 indicating the range of data included in
the partial replicated data identified by the distributed data ID
820; a record number 840 representing the number of records
included 1n the partial replicated data identified by the dis-
tributed data ID 820, and a computer 1D 850 representing the
computer 110 1n which each piece of partial replicated data 1s
disposed.

In FIG. 7 replica information “RD0__ 07, for example, 1s
shown to have 1ts replicated data distributively disposed 1n
two computers and to comprise two pieces ol partial repli-
cated data that are assigned distributed data ID “D0_0_ 0~
and “D0__0__17. It1s also seen that the partial replicated data
“D0__0__0” includes 300 records 1n a distribution key range
of “K0-K49” and 1s disposed 1n a computer “C1” and that the
partial replicated data “DO0__0__1”" includes 300 records in a
distribution key range of “K30-K99” and 1s disposed 1n a
computer “C2”. Reference to the distributed data disposition
information 225 of FIG. 6 reveals that the replica information
“RDO0__07 1s mformation about the replicated data of the
distributed data “D0__07, a part of the data “D0”.

In this embodiment the replica information 1s supposed to
be held in the memory 122 as information accompanying the
distributed data disposition information 225. Further,
although 1n this embodiment the distributed data and the
replica information about the replicated data are related to
cach other by the replica ID 770, 800, they may be related by
using pointer information leading to the associated replica
information, instead of the replica ID 770, or by holding the
replica information as part of the distributed data disposition
information 225.

FIG. 8 1s a conceptual diagram showing a structure of the
distributed data disposition hint information 226.

The distributed data disposition hint information 226
includes a data ID 900 of data 230 to be distributively dis-
posed; a distribution number 910 representing the number of
computers 110 1 which the data 230 1s distributively dis-
posed, 1.e., the number of divided pieces of data 230 or the
number of pieces of distributed data 214 after data division; a
distribution key 920 to identify a field used as a key when
dividing the data 230; a distribution key range 930 represent-
ing a range ol value held 1n a field that 1s used as a key for
distributed data 214 when distributively disposing the data
230; a redistribution process permission 940 1indicating

US 8,555,107 B2

9

whether, during the process of making a replica of distributed
data for re-execution of a job, the replica of distributed data
can further be distributed for processing; a replication policy
950 representing a policy when duplicating the distributed
data; a redistribution range 960 specitying a range of data 1n
which, during the process of making a replica of distributed
data, the replica of the distributed data 1s further distributed;
and a rejoining process information 970 specitying a method
of processing those data written into the memory storages 213
of the computers 110 which have been acquired as a result of
using the replica of distributed data and re-executing the job
200 1n the event of a fault 1n a computer 110.

The information set as the replication policy 950 includes
“leveling” which, 1n making a replica of distributed data,
demands the leveling of processing load among computers
that participate 1in performing the re-execution job during the
10b re-execution process and “fixed key range” that specifies
in advance the range of value in the fields designated by the
distribution key 920. If the replication policy 950 1s set with
the “fixed key range”, the range of value in the fields desig-
nated by the distribution key 920, which 1s used 1n dividing
the distributed data, 1s set in the redistribution range 960 for
cach piece of distributed data.

The rejoining process information 970 may include infor-
mation specitying merge and sort operations to be performed
on those data output to the memory storages 213 of computers
110 as a result of distributing and executing the job 200. The
rejoining process imformation 970 may also be configured to
accept other processing, such as a statistics operation that
stacks output data or an operation prepared by the user. The
execution of the operation designated here now can produce
the same distributed data as the one that would be acquired by
executing a job on the original distributed data.

FIG. 9 1s a tlow chart of a process performed by the dis-
tributed memory management client program 210 in dispos-
ing data in the memory storage 213 1n this embodiment.

In the data disposition process, the distributed memory
management client program 210 accepts mnformation about
the disposition of the distributed data 214 from the distributed
memory management server program 220 of the management
computer 120 (step 1100). The distributed memory manage-
ment client program 210, according to the recerved disposi-
tion information about the distributed data 214, disposes the
distributed data 214 in the memory storage 213 1in the memory
122 of its own computer 110 (step 1110). After disposing the
distributed data 214 in the memory storage 213, the distrib-
uted memory management client program 210 registers with
the memory storage management information 212 the
received disposition information about the distributed data
214 and the address 1n the memory storage 213 at which the
distributed data 214 1s disposed (step 1120).

FI1G. 10 15 a flow chart of a memory storage data releasing
process performed by the distributed memory management
client program 210 in this embodiment. The memory storage
data releasing process 1s executed to release the memory
storage 213 of the distributed data 214 so that 1t can be used
for storing other data.

In the memory storage data releasing process, the distrib-
uted memory management client program 210 first receives
from the distributed memory management server program
220 in the management computer 120 a release request as
distributed data release information which contains an ID of
the distributed data 214 to be released (step 1200). The dis-
tributed memory management client program 210, according,
to the recerved release information about the distributed data
214, releases the memory storage 213 in which the distributed
data 214 1s disposed (step 1210). After this, the distributed

10

15

20

25

30

35

40

45

50

55

60

65

10

memory management client program 210 deletes from the
memory storage management information 212 the disposi-
tion information about the distributed data 214 held 1n the
released memory storage 213 (step 1220).

FIG. 11 1s a flow chart of a memory storage access process
performed by the distributed memory management client
program 210 1n response to a request from the job program
200 1n this embodiment.

The job program 200, when it accesses the data 230 1n
executing a job, 1ssues an access request, which contains an
ID of the data 230 and a key 1n the record that 1t 1s going to
access, to the distributed memory management client pro-
gram 210 1n 1ts own computer 110. The key 1n this case 1s a
value of the field specified by the distribution key 320. If the
access request 1s to the distributed data, an ID of the distrib-
uted data of interest 1s designated instead of the ID of the
original data 230. Upon recewving the access request, the
distributed memory management client program 210 refer-
ences the memory storage management information 212 to
check whether the received access request specifies the ID of
the original data 230 for the distributed data 214 held 1n the
memory storage 213 of 1ts own computer 110 (step 1300).

IT at step 1300 the access request 1s found to specity the ID
of the original data 230, the distributed memory management
client program 210 refers to the memory storage management
information 212 to see 1f the distributed data 214 including
the key specified by the access request 1s held 1n the memory
112 (step 1310).

IT at step 1310 1t 1s decided that the distributed data 214
including the specified key 1s not held 1n the memory 112, the
distributed memory management client program 210 queries
the distributed memory management server program 220 in
the management computer 120 to acquire information about
t
t

ne computer 110 holding the distributed data 214 including
e specified key (step 1320). When 1t acquires information
about the computer 110 holding the distributed data 214 of
interest from the distributed memory management server pro-
gram 220, the distributed memory management client pro-
gram 210 1ssues an access request including the specified key
and the ID of the distributed data 214 containing that key to a
distributed memory management client program 210 1in the
computer 110 1n question (step 1330). Then, the distributed
memory management client program 210 in the request
1ssued computer 110 receives from the computer 110 holding
the distributed data 214 of interest a record corresponding to
the value of the specified key, obtained as a result of accessing
the distributed data 214 containing the specified key, and
returns the record to the job program 200 (step 1340).

I1 step 1300 decides that the access request does not specily
the ID of the original data 230, 1.¢., the access request speci-
fies the ID of distributed data, the distributed memory man-
agement client program 210 refers to the memory storage
management mformation 212 to check 1t the access request 1s
to the distributed data 214 held 1n the memory 112 of 1ts own
computer 110 (step 1400).

I1 the access request 1s for the distributed data of the origi-
nal data 230 not held 1n the memory 112 of 1its own computer
110, the access request 1s one for a replica of the distributed
data 214 held in the memory storage 213 of other computer
110. In this case, the distributed memory management client
program 210 refers to the memory storage management infor-
mation 212 checks whether the replica of the distributed data
including the key specified by the access request from the job
program 200 1s held 1n the memory 112. If the replica of the
distributed data containing the specified key 1s found not held
in the memory 112, the distributed memory management
client program 210 proceeds to step 1600 (step 1410).

US 8,555,107 B2

11

If at step 1410 the replica of the distributed data containing,
the specified key 1s found held in the memory 112, the dis-
tributed memory management client program 210 refers to
the memory storage management information 212 and
accesses the address 1n the memory storage 213 where the
replica of the distributed data of 1nterest 1s held (step 1420).
Then, the distributed memory management client program
210 recerves the result of access to the replica of distributed
data and returns 1t to the job program 200 (step 1340).

If step 1400 decides that the access request 1s for the dis-
tributed data of the original data 230 held 1n the memory 112,
the distributed memory management client program 210
checks whether the access 1s a write access or not (step 1500).

If the access request from the job program 200 1s found not
to be a write access, the distributed memory management
client program 210 refers to the memory storage management
information 212 and accesses the address in the memory
storage 213 where the distributed data of interest 1s held (step
1510). Then the distributed memory management client pro-
gram 210 recerves the result of access to the distributed data
and returns it to the job program 200 (step 1340).

If, on the other hand, step 1500 decides that the access
request from the job program 200 1s a write access, the dis-
tributed memory management client program 210 refers to
the memory storage management information 212 and
updates a record at the address in the memory storage 213
where the distributed data 1s held.

Next, the distributed memory management client program
210 queries the distributed memory management server pro-
gram 220 of the management computer 120 and acquires
information about a computer 110 in which a replica of the
distributed data including the key specified by the access
request1s disposed (step 1600). Then, the distributed memory
management client program 210, based on the information
acquired from the distributed memory management server
program 220, requests the computer 110 of interest to access
the replica of distributed data including the key specified by
the access request. This access request includes an 1D of the
replica of distributed data and the specified key (step 1610).
As a final step, the distributed memory management client
program 210 returns the result of access to the distributed data
including the specified key to the job program 200 (step
1620).

FIG. 12 1s a flow chart of an inter-computer memory stor-
age accessing process. When an access request 1s made to the
computer 110 where the distributed data 1s disposed, the
inter-computer memory storage accessing process in step
1330, 1610 of FIG. 11 1s performed by the distributed
memory management client program 210 in the computer
110 that has received the access request.

When an access request 1s made by other computer 110, the
distributed memory management client program 210 checks
if the recerved access request 1s one asking for a write access
(step 1700). I the received access request 1s not the write
access, the distributed memory management client program
210 refers to the memory storage management imnformation
212, accesses an address 1n the memory storage 213 where the
requested distributed data 1s held, and acquires the requested
data (step 1710). After acquiring the requested record, the
distributed memory management client program 210 returns
it to the computer 110 that has 1ssued the access request (step
1715).

If on the other hand step 1700 decides that the received
access request 1s a write access request, the distributed
memory management client program 210 refers to the
memory storage management information 212 and updates
the data held at the address in the memory storage 213 where

10

15

20

25

30

35

40

45

50

55

60

65

12

the distributed data 1s held (step 1720). The client program
210 further references the memory storage management
information 212 based on the ID and key of the distributed
data specified by the access request and then checks if the
received access request 1s to the replicas of the distributed
data (step 1800).

I1 the recerved access request 1s not the one for the replica
of the distributed data, the distributed memory management
client program 210 queries the distributed memory manage-
ment server program 220 of the management computer 120 to
acquire the information about a computer 110 holding the
replica of the distributed data including the specified key (step
1810) and 1ssues an access request for the replica of the
distributed data including the specified key to the computer
110 identified by the acquired information (step 1815). Upon
receiving the result of the access request 1t has made for the
replica of distributed data, the distributed memory manage-
ment client program 210 returns the access result to the com-
puter 110, the source of the access request (step 1820).

I1 step 1800 decides that the recerved access request 1s for
the replica of the distributed data, the distributed memory
management client program 210 skips step 1810 and 1815
and returns the result of access to the distributed data to the
computer 110 that has made the access request.

FIG. 13 1s a flow chart of a job execution acceptance
process performed by the job execution management unit 221
in this embodiment.

The job execution management unit 221 acquires from the
user hint information, according to which the data used dur-
ing job execution will be distributively disposed in memories
of a plurality of computers 110. More specifically, the job
execution management unit 221 needs only to acquire infor-
mation necessary for setting individual items of the distrib-
uted data disposition hint information 226, in the form of a file
or an iput through a user interface such as display and
keyboard. The job execution management unit 221 holds the
acquired hint information as the distributed data disposition
hint information 226 1n the memory 122 (step 1900).

Next, the job execution management unit 221 hands the
distributed data disposition hint information 226 to the dis-
tributed memory storage management unit 223 and requests 1t
to distributively dispose the data 230 into the memories 112 of
a plurality of computers 110 (step 1910). After the distributive
disposition of the data 230 into the memories 112 of comput-
ers 110 1s complete, the job execution management unit 221
receives from the distributed memory storage management
unmt 223 mformation about the computers 110 in which the
distributed data 1s disposed (step 1920). Then the job execu-
tion management unit 221 creates job execution management
information 222 based on the computer information recerved
from the distributed memory storage management umt 223
and the information about the job to be executed, and holds 1t
in the memory 122 (step 1930).

FIG. 14 1s a flow chart of a job execution process performed
by the job execution management unit 221 1n this embodi-
ment.

The job execution management unit 221 refers to the
execution status 450 1n the job execution management infor-
mation 222 to see 1 there 1s any job 200 that has failed to end
normally due to a fault (step 2000). If no abnormally ended
10b 1s found, the job execution management unit 221 refer-
ences the execution status 450 to check 11 all the jobs are
completed normally. When all the jobs are finished normally,
the job execution management umt 221 ends the job execu-
tion process (step 2005). If on the other hand not all jobs have
yet been finished, the job execution management unit 221
references the job execution management mnformation 222 to

US 8,555,107 B2

13

see 1I any job 200 using distributed data 1s waiting to be
executed. I the waiting job 200 using distributed data 1s not
found, the job execution management umt 221 returns to step
2000 (step 2100). If such a job 1s found at step 2100, the job
execution management umt 221 references the job execution
management information 222 to check whether, among the
computers 110 assigned to execute the waiting jobs, there are
any computers 110 that are executing other jobs. If such a
computer 1s found, the job execution management unit 221
returns to step 2000 (step 2110).

If, among the computers 110 assigned to execute the wait-
ing jobs, no computers are found that are currently executing
other jobs, the job execution management unit 221 requests
these computers 110 to execute the assigned jobs using dis-
tributed data (step 2120).

If step 2000 finds any job 200 that has failed to end nor-
mally, the re-execution using replicas of distributed data
needs to be done. The job execution management unit 221
references the re-execution mformation by using the re-ex-
ecution ID 460 of the job execution management information
222 as a key and checks whether there 1s any job 200 waiting
to be re-executed using replicas of distributed data (step
2010). If such a waiting job 200 exists, the job execution
management unit 221 further refers to the re-execution infor-
mation to check whether the computer 110 that 1s assigned to
execute the job 200 waiting to be re-executed 1s currently
executing other job. IT the computer 110 of interest 1s found to
be executing other job, the job execution management unit
221 returns to step 2000 (step 2020).

If the computer 110 assigned to execute the job 200 waiting
to be re-executed 1s found not executing other job, the job
execution management unit 221 requests that computer 110
to re-execute the job using replicas of distributed data. Then,
the job execution management unit 221 returns to step 2000
(step 2030).

I, as aresult of referencing the re-execution information at
step 2010, no job 200 1s found waiting to be re-executed that
uses the replicas of distributed data, the re-execution using the
replicas of distributed data has already been completed. Then,
the job execution management unit 221 references the dis-
tributed data disposition hint information 226 to check for a
designation of a joining process on the results of re-execus-
tions by the computers 110 using the replicated distributed
data (step 2200). Then the job execution management unit
221 requests the computer 110 that has re-executed the job
using the replicas of distributed data to execute the joining
process specified, before exiting the processing (step 2210).

FIG. 15 1s a flow chart of a job result acceptance process
performed by the job execution management unit 221.

Upon recerving a job result notification from the computer
110, the job execution management unit 221 checks whether
the notification recerved 1s a notification of the process for
joimng the results of re-execution using replicas of distrib-
uted data (step 2300). If the result notification received 1s a
notification of the process for joining the results of re-execu-
tion using the distributed data replicas, the job execution
management unit 221 requests the distributed memory stor-
age management unit 223 to update the disposition informa-
tion about the rejoined data of re-execution results.

Next, the job execution management unit 221 references
the job execution management information 222 and requests
the distributed memory storage management unit 223 to
release the distributed data that will not used 1n the subse-
quent jobs (step 2320). Further, the job execution manage-
ment umt 221 references the job execution management
information 222 and updates the execution status of the origi-
nal job 200 that has been re-executed (step 2330).

10

15

20

25

30

35

40

45

50

55

60

65

14

I1 step 2300 decides that the received result notification 1s
not about the process for joining the results of re-execution
using the distributed data replicas, the job execution manage-
ment unit 221 checks whether the job result notification
received from the computer 110 1s a notification of the result
ol re-execution ol the job using the replicas of distributed data
(step 2400). I so, the job execution management unit 221
references the re-execution 1D 460 of the job execution man-
agement information 222 and updates the execution status of
the re-executed job (step 2410).

I1 step 2400 decides that the result notification 1s not about
the result of job re-execution using the distributed data repli-
cas, the job execution management unit 221 updates the
execution status 450 of the job execution management infor-
mation 222 according to the result notification of job execu-
tion received from the computer 110.

Next, the job execution management unit 221 checks
whether the execution of job using the distributed data 1s
normally completed (step 2510). If it 1s decided that the job
execution using distributed data has not finished normally, the
10b execution management unit 221 receives from the distrib-
uted memory storage management unit 223 information
about the computer 110 holding the replicas of distributed
data used in the execution of the job that has failed to be
completed normally, and registers 1t with the re-execution
information (step 2515).

On the other hand, if step 2510 decides that the execution of
a job using distributed data has normally been completed, the
10b execution management unit 221 refers to the job execu-
tion management information 222 to see 1 the execution of a
10b using other pieces of distributed data associated with the
original data 230 1s normally finished. If any jobs remain that
failed to be normally completed, the job execution manage-
ment unit 221 ends the processing (step 2520).

I1 step 2520 decides that the execution of jobs using other
pieces ol distributed data has normally been completed, the
10b execution management unit 221 refers to the job execu-
tion management mmformation 222 to check for distributed
data that will not be used in subsequent jobs, and requests the
distributed memory storage management unit 223 to release
the distributed data.

FIG. 16 15 a flow chart of distributed data disposition pro-
cess performed by the distributed memory storage manage-
ment unit 223 1n this embodiment. This process 1s triggered
by a distributed data disposition request from the job execu-
tion management unit 221.

In the distributed data disposition process, the distributed
memory storage management unit 223 acquires hint informa-
tion 226, based on which the data 230 used during job execu-
tion 1s distributively disposed in memories of a plurality of
computers 110, along with the distributed data disposition
request, from the job execution management unit 221 (step
2600). The distributed memory storage management unit 223
refers to the distributed data disposition information 225 to
see 1f data already distributively disposed for the execution of
the preceding jobs 1s included 1n the data requested to be
distributively disposed (step 2605).

If the data requested to be distributively disposed does not
include the data already distributively disposed for the execu-
tion of the preceding jobs, the distributed memory storage
management unit 223 references the distributed memory stor-
age management mnformation 224 to allocate as many com-
puters as necessary for the requested distributive disposition
of data, 1n order from the least memory use to the greatest
(step 2610). If on the other hand the data already distribu-
tively disposed for the execution of the preceding jobs 1s
included 1n the data requested to be distributively disposed.,

US 8,555,107 B2

15

the distributed memory storage management unit 223 allo-
cates the same computers 110 as those for the preceding jobs
(step 2620).

After securing the computers 110 at step 2610 or 1620, the
distributed memory storage management unit 223 references
the distributed data disposition hint information 226, requests
the distributed memory management client program 210 to
distributively dispose the distributed data making up the data
requested to be distributively disposed and then registers
information about these computers (computer 1Ds) with the
distributed data disposition information 225 (step 2630).
Next, the distributed memory storage management unit 223
calculates the number of records of the distributed data dis-
posed 1n the allocated computers 110 and registers it in the
corresponding entry 1n the distributed data disposition infor-
mation 225 (step 2635).

With the above information registered with the distributed
data disposition information 225, the distributed memory
storage management unit 223 checks whether the replica 1D
770 1s set 1n the distributed data disposition information 2235
to determine whether the distributive disposition of the rep-
licas for all the distributed data disposed in the allocated
computers 110 1s finished. Ifthe distributive disposition of the
replicas for all the distributed data 1s found completed, the
distributed data disposition process 1s ended (step 2700).

If on the other hand there 1s distributed data whose replica
disposition has not yet been finished, the distributed memory
storage management unit 223 references the distributed data
disposition hint information 226 to determine whether the
distributed data, from which a replica will be made, can be
redistributed 1n a field that 1s used as a key (step 2710). If 1t 1s
decided that the distributed data can be redistributed, the
distributed memory storage management unit 223 performs a
redistribution disposition process described later (step 2720).
I1 not, the distributed memory storage management unit 223
performs a redisposition process described later (step 2730).

FI1G. 17 1s a tlow chart of a redistribution disposition pro-
cess performed to redistribute the distributed data when cre-
ating a replica during the distributed data disposition process.

If 1t 1s found that the distributed data can be redistributed
and disposed, the distributed memory storage management
unit 223 references the distributed data disposition hint infor-
mation 226 to see whether the replica generation policy 1s a
leveling (step 2800). If so, the distributed memory storage
management unit 223 references the distributed data dispo-
sition information 2235 and adjusts the range of value 1n that
field which 1s used as a key during redistribution so that ratios
of the numbers of records of distributed data distributively
disposed 1n other computers 110 than those with the distrib-
uted data, from which replicas are to be made, will, after the
redistribution, become reciprocals of the ratios (step 2810).
After adjusting the range of value 1n that field which 1s used as
a key during redistribution, the distributed memory storage
management unit 223 according to the range of field value
requests the distributed memory management client program
210 1n those computers 110 in which the replicas are to be
disposed that the client program 210 dispose the replicated
distributed data (step 2815).

Then, the distributed memory storage management unit
223 registers the information about the distributed data rep-
licas in the replica information and also registers 1ts replica 1D
in a replica ID column in the distributed data disposition
information 225 (step 2830).

If on the other hand step 2800 decides that the replica
generation policy 1s not a leveling, the distributed memory
storage management unit 223 references the distributed data
disposition hint information 226 and, according to the range

10

15

20

25

30

35

40

45

50

55

60

65

16

of value 1n the field to be used as a user-specified key, requests
the distributed memory management client program 210
executed 1n other computers 110 than those with the distrib-
uted data that the client program 210 dispose the replicated
distributed data. After this, the distributed memory storage
management unit 223 proceeds to step 2830 (step 2820).

FIG. 18 1s a flow chart of a redisposition process performed
when the distributed data cannot be redistributed during the
process of making a replica 1n the distributed data disposition
pProcess.

When the distributed data cannot be distributively disposed
again, the distributed memory storage management unit 223
references the distributed data disposition hint information
226 to determine whether the replica making policy 1s a
leveling. (step 2900). IT the replica making policy 1s a level-
ing, the distributed memory storage management unmt 223
references the distributed data disposition information 2235
and adjusts the number of records 1n which to dispose the
distributed data, by using reciprocals of ratios of the number
of records of distributed data held 1n other computers 110 than
those with the distributed data, from which replicas are to be
created, 1n order to level the volumes of distributed data
disposed in the computers 110 (step 2910). After the adjust-
ment of the number of records, the distributed memory stor-
age management unit 223 according to the adjusted number
of records requests the distributed memory management cli-
ent program 210 1n the remaining computers 110 to dispose
the distributed data replicas (step 2915).

After this, the distributed memory storage management
unmt 223 registers the imnformation about the distributed data
replicas with the replica information and also registers their
replica IDs 1n the replica ID column of the distributed data
disposition information 223 (step 2930).

If on the other hand step 2900 decides that the replica
making policy 1s not a leveling, the distributed memory stor-
age management unmt 223 references the distributed data dis-
position 1information 225 and requests the distributed
memory management client program 210 in one of the
remaining computers 110—other than those with distributed
data from which replicas are to be created—which has the
least number of records that the client program 210 dispose
the distributed data replicas. Then, the distributed memory
storage management unit 223 proceeds to step 2930 (step
2915).

FIG. 19 1s a flow chart of a distributed data disposition
update process performed by the distributed memory storage
management unit 223 1n this embodiment. When a job 1s
re-executed using the replicas of distributed data, this nor-
mally results in the data being disposed differently than when
the original distributed data was processed. In such situations
the distributed data disposition update process 1s performed
to update the disposition information.

Uponreceiving a request for updating the disposition infor-
mation on the joined re-execution result data from the job
execution management unit 221 (step 3000), the distributed
memory storage management unit 223 references the distrib-
uted data disposition information 225 and updates the infor-
mation about the computers 110 with the original distributed
data corresponding to the re-execution result data to the infor-
mation about the computers 110 1n which the re-execution
result data 1s disposed (step 3010).

FIG. 20 1s a flow chart of a distributed data releasing
process performed by the distributed memory storage man-
agement umt 223 1n this embodiment. This process 1s trig-
gered by a release request 1ssued by the job execution man-
agement unit 221 at step 23530 during the job result receiving
Process.

US 8,555,107 B2

17

The distributed memory storage management unit 223
acquires from the job execution management unit 221 a dis-
tributed data release request and a data ID as information
about the distributed data to be released (step 3100). The
distributed memory storage management unit 223 references
the replica information by using as a key the replica informa-
tion ID 770 that was registered 1n connection with the data 1D
acquired as the distributed data disposition mnformation 223
and locates the computers 110 in which the distributed data
replicas to be released are disposed. The distributed memory
storage management unit 223 then requests the distributed
memory management client program 210 in the located com-
puters 110 to release the arecas of memory storage 213 in
which the replicas are stored (step 3110). The distributed
memory storage management unit 223 further references the
distributed data disposition information 2235 to locate the
computers 110 1n which the distributed data of the acquired
data ID 1s disposed and requests the distributed memory
management client program 210 1n these computers to release
the areas of the memory storage 213 1n which the distributed
data of interest 1s stored (step 3120).

After 1ssuing a memory release request to the associated
computers 110, the distributed memory storage management
unit 223 deletes the disposition information about the distrib-
uted data for which the release request has been made (step
3130).

FIG. 21 1s a flow chart of a distributed data disposition
notification process performed by the distributed memory
storage management unit 223 1n this embodiment. This pro-
cess 1s performed 1n response to a query from the distributed
memory management client program 210, 1.¢., in response to
a query 1ssued by step 1320, 1600 in the memory storage
access process and by step 1815 in the inter-computer access-
ing process. This query includes as information an ID of the
distributed data of interest and a key to locate records.

Upon recerving the inquiry from the distributed memory
management client program 210 1n a computer 110 (step
3200), the distributed memory storage management unit 223
based on the ID of the distributed data specified by the inquiry
checks whether the received inquiry about the disposition of
the distributed data concerns the replica of the distributed data
(step 3205).

If the recerved inquury 1s for the replica of distributed data,
the distributed memory storage management unit 223 refer-
ences the replica ID 770 of the distributed data disposition
information 223 and searches for acomputer 110 in which the
replica including the key specified by the inquiry 1s disposed
(step 3210). If on the other hand the recerved inquiry does not
concern the disposition of replica, the distributed memory
storage management unit 223 references the distributed data
disposition information 223 and searches for a computer 110
in which the distributed data including the key specified by
the inquiry 1s disposed (step 3220).

If at step 3210 or 3120 the computer 110 of interest 1s
found, the distributed memory storage management unit 223
returns the information including the computer ID to the
distributed memory management client program 210 1n the
computer, the source of the inquiry (step 3230).

In this embodiment, the distributed memory management
server program distributively dispose distributed data and 1ts
replicas 1n a plurality of computers according to the distrib-
uted data disposition hint information entered by the user. The
disposition of the replicas among the computers 1s deter-
mined according to the ratio of the number of distributed data
records disposed 1n each computer. This allows the process-
ing executed in each of the computers, including the re-
execution of jobs 1n the event of a fault, to be leveled among

10

15

20

25

30

35

40

45

50

55

60

65

18

the computers. Further, even with the distributed data that
cannot be redistributed, the distributed memory management
client program 210 can have their replicas so distributively
disposed as to level the amount of memory use among the
computers by making the accesses from jobs to the redistrib-
uted replicas look transparent to those accesses to the original

distributed data.

This invention has been described in detail with reference
to the embodiment. It 1s needless to say that the invention 1s
not limited to the above embodiment and that various modi-
fications and changes may be made without departing from
the spirit of the invention.

This mvention 1s applicable to the processing method per-
formed 1n the event of a fault 1n a computer system and
particularly the method of re-executing data processing in the
event of a fault 1n a system where large volumes of data are
parallelly processed by a plurality of computers.

It should be further understood by those skilled in the art
that although the foregoing description has been made on
embodiments of the invention, the invention 1s not limited
thereto and various changes and modifications may be made
without departing from the spirit of the mvention and the
scope of the appended claims.

The mvention claimed 1s:
1. A data processing method 1in a computer system having
a plurality of first computers to distributively execute data
processing, a second computer to manage the execution of the
data processing by the plurality of the first computers, a
storage device storing data used 1n the data processing, and a
network interconnecting the plurality of the first computers,
the second computer and the storage devices, the data pro-
cessing method comprising the steps of:
according to hint information given to the second computer
and 1ndicating a policy on the distributive disposition of
the data 1n the plurality of the first computers, dividing
the data held 1n the storage device mto a plurality of
pieces of distributed data;
distributively disposing the distributed data and replicated
data of each piece of the distributed data in memories of
the plurality of the first computers; and
performing data processing by the plurality of the first
computers using the distributed data disposed 1n each of
the first computers,
wherein, 1n the event of a fault in any of the first computers,
the data processing that was being executed in the faulty
first computer at the time of the fault i1s re-executed by
another first computer that holds the replicated data of
the distributed data disposed 1n the faulty first computer,
wherein the hint information includes information about
whether the distributed data can be further distributively
disposed, and
wherein, when the hint information indicates that the dis-
tributed data can be further distributed, the distributively
disposing step further includes dividing each of the
pieces of the distributed data according to the hint infor-
mation, creating the replicated data of the further
divided distributed data, and disposing the pieces of the
replicated data 1n first computers other than the first
computer in which 1s disposed the original distributed
data from which the replicated data has been created.
2. A data processing method according to claim 1,
wherein, when the hint information indicates that the dis-
tributed data cannot be further distributed, the distribu-
tively disposing step distributively disposes the repli-
cated data of each piece of the distributed data so that the

US 8,555,107 B2

19

volumes of the distributed data and the replicated data
placed 1n the first computers are leveled among the com-
puters.

3. A data processing method according to claim 2,

wherein the hint information includes information speci-
ftying a processing method performed on the result of
re-execution ol data processing using the replicated
data, and

wherein, after the re-execution of data processing using the
replicated data, the second computer requests, according,
to the information specitying the processing method, the
first computers to perform processing on the result of
re-execution of data processing using the replicated
data.

4. A data processing method according to claim 1,

wherein, when the hint information indicates that the dis-
tributed data cannot be further distributed, the distribu-
tively disposing step disposes the replicated data in a
first computer with a least amount of the disposed dis-
tributed data.

5. A computer system comprising:

a storage device storing data;

a plurality of first computers connected with the storage
device and configured to manage data processing using
the data; and

a plurality of second computers connected with the first
computers and configured to distributively execute the
data processing,

wherein the first computers each have a distributive dispo-
sition unit and an execution management unit,

the distributive disposition unit configured to reference
given hint information indicating a policy of distributive
disposition of the data in a plurality of the second com-
puters, divide the data held 1n the storage device into a
plurality of pieces of distributed data and distributively
dispose the pieces of the distributed data and each piece
of replicated data of the distributed data into memories
of the plurality of the second computers, and

the execution management unit configured to request the
second computers to execute the data processing and, in
the event of a fault in any of the second computers,
request another second computer to re-execute the data
processing that was being executed 1n the faulted second
computer at the time of fault,

5

10

15

20

25

30

35

40

20

wherein the second computers each have a memory man-

agement unit and a data processing unit,

the memory management unit being configured to hold the

distributed data 1n a memory of its own computer 1n
response to a request from the distributive disposition
unit, and

the data processing unit being configured to execute the

data processing 1n response to a request from the execu-
tion management unit,

wherein the hint information includes information indicat-

ing whether each piece of replicated data of the distrib-
uted data can be further distributively disposed.

6. A computer system according to claim 3, wherein, when
the hint information indicates that the distributed data can
turther be distributed, the distributive disposition unit accord-
ing to the hint information turther divides each piece of the
distributed data, creates the duplicated data and disposes each
piece of the duplicated data 1n second computers other than
the second computer in which 1s disposed the original distrib-
uted data from which the replicated data has been created.

7. A computer system according to claim 6, wherein, when
the hint information indicates that the distributed data cannot
be further distributed, the distributive disposition unit dis-
poses the duplicated data of each piece of the distributed data
so that the volumes of the distributed data and the duplicated
data disposed 1n the second computers are leveled among the
computers.

8. A computer system according to claim 6, wherein, when
the hint information 1ndicates that the distributed data cannot
be further distributed, the distributive disposition unit dis-
poses the duplicated data 1n a second computer with a least
amount of the disposed distributed data.

9. A computer system according to claim 35, wherein the
hint information 1ncludes information specitying a process-
ing method performed on the result of re-execution of data
processing using the replicated data.

10. A computer system according to claim 9, wherein, after
the re-execution of data processing using the replicated data,
the distributive disposition unit requests, according to the
information specitying the processing method, the second
computers to perform processing on the result of re-execution
of data processing using the replicated data.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

