US008549241B2

12 United States Patent (10) Patent No.: US 8.549,241 B2

Scales et al. 45) Date of Patent: Oct. 1, 2013
(54) METHOD AND SYSTEM FOR FREQUENT 7,962,703 B1* 6/2011 Shahetal.ccc........... 711/154
CHECKPOINTING 2008/0022032 Al* 1/2008 Nicholasetal. 711/100
2008/0294937 Al 11/2008 Ueda
| . o 2009/0182976 Al 7/2009 Agesen
(75) Inventors: Daniel J. Scales, Mountain View, CA 2009/0319580 AL* 12/2009 Lorenz et al. ... 707/203
(US); Pratap Subrahmanyam, 2010/0070678 Al* 3/2010 Zhangetal. ..ocooovvvvevnr... 711/6
Saratoga, CA (US); Ganesh 2010/0106930 Al1* 4/2010 Foltzetal.ccece.... 711/165
Venkitachalam, Mountain View, CA %88? 8822; i gggg Eﬂ—ﬂgkﬂ— it ﬂil*
. . 1 1 1 Tank <1 al.
(US); Michael Nelson, Alamo, CA (US) 2010/0191887 Al 7/2010 Serebrin
_ 2011/0016290 Al 1/2011 Chobotaro et al.
(73) Assignee: VMware, Inc., Palo Alto, CA (US) 2011/0167194 Al 7/2011 Scales et al.
2011/0167195 Al 7/2011 Scales et al.

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 474 days.

* cited by examiner

Primary Examiner — Kaushikkumar Patel

(21) Appl. No.: 12/683,288
(57) ABSTRACT

A virtualization platform provides fault tolerance for a pri-
mary virtual machine by continuously transmitting check-

(22) Filed: Jan. 6, 2010

(65) prior Publication Data point information of the primary virtual machine to a collec-
US 2011/0167196 Al Jul. 7, 2011 tor process, such as a backup virtual machine. When
implemented on a hardware platform comprising a multi-
(51) Int.Cl. processor that supports nested page tables, the virtualization
GO6F 12/16 (2006.01) platform leverages the nested page table support to quickly
(52) U.S. CL identily memory pages that have been modified between
USPC oo, 711/162; 711/6; 711/154 checkpoints. The backup virtual machine provides feedback
(58) Field of Classification Search information to assist the virtualization platform in identifying
USPC e 711/162,163 candidate memory pages for transmitting actual modifica-
See application file for complete search history. tions to the memory pages rather than the entire memory page
as part of the checkpoint information. The virtualization plat-
(56) References Cited form further maintains a modification history data structure to
identily memory pages that can be transmitted simultaneous
U.S. PATENT DOCUMENTS with the execution of the primary virtual machine rather than
7.093,086 Bl * 82006 van Rietschote 711/161 while the primary virtual machine has been stunned.
7,380,051 B2* 5/2008 Burelletal. 711/103
7,627,728 B1* 12/2009 Roecketal.cc......... 711/162 20 Claims, 7 Drawing Sheets

Incrementat Checkpoint Module
+18

fdentily memory pages of the primary VM's virtual memory space ihai
have been modified sinca the iast chackpoint (i.e., stap 500)

¥
Reterence maodification history data strusture for each identified memory }/ 805

page t¢ detarmine whelher its history satisfies heuristic (e.g., memory
aage has not been modified in pripr 2 checkpoint intervals, &ic.)

Mark memory page for
lazy transmission {(while =<
 primary VM s runiing)

Doss memory

paga satisfy
heuristic?

Mark memory paga for
regular transmission {while
primary VM is stunned)

gag
; -
tndate modification history data siructure based
Ll on identified memorsy pages {e.g.. shifting ang -
setting bils)
A 8

T;ansmet MSmory Dages marked for regular tfransmission 1o
backup compulsr system (while primary VM is stunhed)

y

Set page protection {8.g., read-onrly} on all memory pages o
marked for jazy transmission

¥
. Resume execution (8., un-stu) £40
F nrimaty VM {l.e., step 48E)
4,
—E 880
Primaty VM Ay :
attempts to write 10 memoty pages Yes Tffig :;?:W
page protectad marked for tazy n%n?puter syst e?n
SMOry DAGe T, fransrmission? ,l, y
880 Remave page |
y Yos 7 I L nrotection from
Lopy Curnent state of Trarsmit aik copied pages transmitted memory |
from step 850 io backup S
accessed mamory page page

L gormputer system

Lindate modification \“ﬂﬂ \—ﬁ'ﬁﬁ

853
i nhistory daia structure ¥~
i megarding page faul

US 8,549,241 B2

Sheet 1 of 7

Oct. 1, 2013

U.S. Patent

Al A A A AT A A ol A e el el i e R AN N NN TN NS NN NN NI N

g e e g

NGTT
; %.&E :

A
(P FER RN .._n..i.._!._-.._n.._nni.._-.._-.._-..._-.“

(e g r r ey sy

l-..__lal__ll._.l-._}_........li_.l.._.;

%
-,

A

F O W o L e e

PRy e

NGl

AIAA

T R e N . =

’

?ﬁ.\‘h‘%ﬁ\t

SRS A B AR R R W R AR W SR A ofal e bl ofdh dis bW wfeh Jeie w wfe app e sy

=

Y

"

o JE Ny

A
AlA
T

L

W W A e e Bl R SR CWW O A W AR AR

&

“n

A o ol ol e

Ul o o o o i e g

TR F R raad s

YA

E gt g o JF FE P ot b Ko g ol gF gl o G N R R g P R

ELT ek

L
o'y ' w a a S FS L AL TERTTEFE]

L e

Pt FE P E P

ot o o ar o g o P Pt e

F NN LT T

FFFFFEFFN LN NN 5w

ol il

o

4]
AICILIBIN

2 &5

e mxnxn\xxm

e g ol g e e sk

(LT 1085890id 9100-HIIN

iy gy Py

WAISAR

L iy gt ot

PP R A N F

b okl

SO OBl DIBMDIE}

ol ot o o ot gt

#{H
HU{
abeio)sn

S0
AR

T 3, ~

s

g4
iSR!

I

YW W AR WA et b ele’ ek deide

111111111111111111

¢07)
AN

F x-

F L ey o rae]

f“m‘“-lﬂhhmﬂhlhh.h“w“
e BB L TR R RO R N, A e ———

“*ull-—-—m

P A a A o ala a l a a

A I N A,

Pl ¥ JF A,

et e e " a

r
ﬁ_l

ol e et e ey

R

(T ETTENET T

QL UG

Iy Ty =g
f.3

i

' i ol g g

PR PPN PR

0371 aveds unIPaxs SUILOE ENUA

TR AR CRRS Wk A A s A W e e YT 00 R T YT O 08 v e K L EE N AR B SR A R GER R R LA SR AR RS o AN SRR Gl dbu WA AN A el A e W o T EEe id dide e wed mms e map s g gy rmp g g P

L

GO Lu81sAS SOINon

&

CEER L LRl e e e et Dl T g g TR LTI P Er T PELY PR T

e e e e el e e e e e by L S EE T ERLELEL TN

Oy

m.-t-_.. i ST N S s e

Pl sl il at o)

i
;i

]

e
wAAGACT P4

o B ot o g At st e opheopie

A A A A A

SHT 0By SUINOEA [2NLIA

R FE A Rdd e S o B PP A TR ke M T gt P BT wah et e et Ml W mlaf da'w Wm el S mm o mEp REE EW SRR R A A R 1.-541555..?:!!5;.?!1‘.

g o ey

Lo L wussAg Buneledn 1ssns

'

‘e ¢ r oy
r
o
b
1
R 2
o
o

F iy P ey e s

e

g L L L 8 g 1 (g) A gl 1 0 P o o o ¥ o o o i i ok ot o o ol T i o o o il o N N e e A A R
FFAFEAST IR RS, A A A N e T e T —————— A P I R B T A A o i o i i o i B faph op oo gl ol i
Ealall b e R R PR E R B EAR P
1T JosialadA
2Lt G5 Al
walstm S dfete dube W nay WFT TR FFC ST W R Ly s Ry L SLR RRY WP R Ry WA A R WA R WO S P W S e o A o S G e A W NEe rrm TR e I

A
i
!
4
¢
b
b
t
}
i
3
3
:
)

#

.___.\1..-..-.uﬂ...i_n_l_..fr__...._n.nl_.._._.._.tiiiii!iiﬁﬁaiiﬂ.uﬂii-.u.u_l.-..h..l.l-hu.lH.ll_i_l.l_Hl.!ll!!uﬂi..‘h;fl

i

&

-1

e EmEERETRERETR SRR ERY
L3

-

et O kn e dEn WD W CR DN O R bl okl AR

A
L
"

F
[
thhh\h\\h\\th

US 8,549,241 B2

e

Sl

[x F w

Bl jale ALHp
Adua @)a8) ebed ey
062

557 :

a.ﬂ.l_.h.l.l..l..l...l..l...l”.l.n.lulhlklrlhl...l.

Et L F R n gy

SN

L l.-.".___ - Py e 7

B o o et M Attty g = YWY 2 A il

F o ‘H‘E&Eﬂg FoE] [

bt DR S T T R EE TN

P i m R F

[rwry s a rg v

1
1 WA A A A e e e e e e e T AN A

Sheet 2 of 7

L B e S L

o

A A A

0L saqe}
30% 4 DIISaN

afied Aloussu
reoisAyd Ul 19SY0
SOMACIE s58IDDER

Oct. 1, 2013

il

L, '
-.....@ MARAr S SN APE R P SEE oS

L N N F oy E)

U.S. Patent

e Eenh 10 uoucy

SO7
Qe obe) 1senn

 p e r iy

Biqey abed 1send ol
IBBH0 SEALIC SSIDDE
LA 1880 10 U010

ﬂ.ﬂnﬁ.ﬁmu e ,
2 r _

WH Fah LS Wr FEY FEE OCWR EFR AFE W SEa E e Al Lk, g

e dah fafa wd wau dmm owm wEy SAR FFE, FEp of R S WA A R WA AL A WAL Fl RS o At Wb e Faw wfe Ve vey

‘l\llﬂiﬂh‘.k‘.‘hlﬂthmm
Pt gt R R R R WA o o ol o

(87 $52UPPY |EMSAUL ILUSISAR

Pt gt E P T

g R R e e T e T T T T

& AN

cssauppe leosdud wasis v et
spr 1. 2fed paisan o) Bupund
02¢ 918109y 10AUOD) WBIRAS

o gt gt P gt P

g gt e g gt

e e e e e . mwr Lt b LT E TR RN

27 soige)
BHe 4 PEIZON

seaippe [eoisiyd
BISAS 0] BSeUDE -
emsAyd 15enb aejsue |
0GE

PN BT W Ry TR At P Wl Fau e wiaF dwm faw oww e app- w

¢
t
:
;

(GONOTLASU B 10y DOssasoe VHa)
QLT S8aupPY [ENUIA 1SBNE)

L

Oys SSmnpy IE0SAYd B

AL,

002 MEasHcl
2ige] sbe

A " e "

AICIOHD DR
JESUG Sapa0d
= GREINDE BRLUA
1SeE 10 U0

rwrrprraw ny

Sy

ll.lll.:.l.l.ll.lul.l'!.l-..i.l..t..‘..alﬂ...”lq.ql1.-.ll..1..1...‘..1..1..‘.1..1..1..1..1%

Lalalaial o ot o ot ' of ot g gt ot ot ot W T F MR T A MR - -

FRe

il oF oF P

e s ey R R T
o P
B A A N N R A P P P o 0 o o o A o P st

Ty gy

FoF

Pt i F o S

W e e e e e e e T

e g g ¥ .

g agss e P ERT FE PPy EErr FEEL LR ey y

1‘
1
]
'
'
1
A _
.—.'
E
E
L) .
-
gl
am
,
" '
" \

A e

LR AR

sl

e

L ey

12 seme]
2be 4 NEISON

SHNCY

Pl ol g gl P S s P e s

SRR
eolsAuE 8134

0] SSEIEEE [BoIsAUG
159Nk syesuei g

GeL

LN N RN

LE g e o iy

(ssaippe wasiudisan e a7y
Aegoaiiry abe g pano o) Bupeod -
657 Josihay 1I08U073 1SN0

gt

o g

US 8,549,241 B2

Sheet 3 of 7

Oct. 1, 2013

U.S. Patent

AL A o A e A R NN RN EE PR EEEEEEE

41001 LB
UIBISAL

Pl grL F s o st

Cr aty ' oy n

g ot A

LRICIBd SIEMPIE L

PoF o F PR L

HIBHE

HULY
ABEINIS

P

BAGTY I m

FEFEAEE R R R ..I....I..I.tl-‘dwl

A

11!551!!!!3!!31‘1.1:-1&#

% JOSIAIBTAL

L
DNPCIAl RIOEYIOUTY [BIUSIUE0U)
e

allqn.l.lb;rﬂw._.l-ulrmlrlﬂlld..ﬂu.iun!mq.ﬂ-ﬂiiinFlsim}_ir}‘.l.liqu\.iil.ﬂ.rt#

‘e sy ey

A NN

HOSE &E&
207N

IO 61 DICAELEH 1BTIA

.MEEE; 3! ﬁ_umé A

{ii‘;‘i;giﬁﬂ\rs‘l!!rﬁl"iﬂlrﬁlrrulﬂlrhlf}ia‘.ﬂﬂhlﬂilu

nky whph Py AW AT AR W ol e e sl pa,

.

P p o p R ‘i rr re ey Y

AR R Y W T S WS S I e S e o R O I e R R D R SO O G AL i

o , . , "
A AT TR LA ELS b

[off of it o o aP o oF o pf o WP p? P o WO RC R o p o gy e

_. * WsisAS bupesad(1sens

P G e o g g g e

' o ey ry ey

suoiEd|ddy

e P P P

o o o o A A A A A A A

e

02€ MA Bnyoey

Pl P o o P F

-u-.--..-;

% @U 5 ..U_

X,

~ BOUNOSXS Ui [BNLEA

o _i.-h._l..__.ii.!-.E__q.-_._..___-.iiﬁ\ﬁa\&i&h?fﬂ:fh?t&iik}i{iiiignﬂ.

ST wesAs dandion dnyaeg

™,

-~

s

i,

P S ol ol gt e

“‘ﬂ_ﬂ;!—w“l“wﬁﬂ'

lllll
llllllllll

@ 2

LIRS
Wi s e Ay
LRSI

¢ AMNES

i

ot e

LD

WHCARDBLET

eSS IO

e ol " o "l

20CE

"

KB O
PGS

R BLIEIOU

& 5B

Fr R RNy
=
1

f
3
;
1
:
i
t
]
i
1
}
:

¥

o

i
;

y

:
£
FE
3
'

1

¢

%
»

WE s A R BT Ay wh A WE R I WX F i s s cai xm mES TRA N ERR GNE Am S WS LA XSSP

M Ko o of o "

A ‘\‘l‘\.‘.\.‘n‘.‘.\n‘n‘n‘n‘“

o

EYINGTEiTE h

=

iyl o L I o L e o e o aa a

o o L o o o o o S o o o o i e

e d o ad S P

Br R S LY W A B TR PR W W S TR

4

NRON IDSEYIBUYD

i gt n g S L R R

‘mw

pAAA S

A A A A L

ot et gt o Ry gty g

FCNUCK SLYORIN BTN

Py r i E E L

P A A A A e el

AR

B o A Al A AN A A ¢

Pl gt g g g g gt gt gt gt g gt g gt e

gy

SIS AR m:;m&mo 1SS

i R

A

ZASIYE LTI ALY,

A A A A

tRRISUIS I

Ty [rocm s F A IILE
[108500014 || N AT
BIO RN - SY=I

LAOLRI & BIBMDIRH |RTLIA

A

o, Fafm At ﬂlﬂr-nlr.llnlj&‘u‘.ia-ﬂlE.rﬁltiliiiii.\‘hstl;tlﬂ

e w'mh FET PR WD SRR CE - ARG FA RAr WA W SR W R N WA FET W Wah Sawy s omah dus e owpy

i,

o'y 'y E

COL s AR

oA UORNDBKT SUILNER IBNLIA

G0 WaIsAG sBnduiony Argilli

e

Py e et

AL,

h’ﬂﬂﬁ-_—ﬁnmnmﬂﬁi—ﬂ&ﬂ

ol gt

Em__ﬁmmmi

&

\HH.H\.\\\.E;-J

NN

E#ﬁm_& S MR

iy W SN OWW W Sy el ulels dele RS

e

U.S. Patent Oct. 1, 2013 Sheet 4 of 7 US 8,549,241 B2

Frimary Compuier System 330 Backup Computer System 315

Faapiepieppiregry

{Hypervisorn {MHypervisor)

recatvad snapshct 4o

. i A
% Enat antiate primary VM G—é—% Recaive snanshot of
. y P DEIMENY VIR £15
Take snapshat of m{ﬂmaw & devioe S B
tate of primary VM *- ‘ ST '
SR pnen , 29 ; instantiate backup VM based on
i
§
}
!

afafalsf

Lk F ol dhdiaddaas

ffff-"ﬂ'ﬂ'ﬂ'ﬂ%
Pl L N N L

!

AT F el sl Lol sl o al ol a e Ty ey,

s

AT A bl RSt el g o o o o it o o il A T e e A E T Ty &

oy Ff o i o A t
. ‘I -i'l
- - ~
‘I"‘ *
‘_- F
z ;

-

-

ra

-nl'

[, :..-"
v
"

Transmit snapshol o ackup

initiate fimer for continuous s
. T 3
incramenial checkpointing ':’
(8.g., every 10 mililsacongs) 4251 s

1Deia and quele all oulgong E“Eﬁftw{}m
data pacheis of primary VA ﬁ:‘.ﬁf}

~ Transmit disk write data to backup
computer sysiem 4351

Tranamit disk writes compistions o
DECKUD computsr sysiem

packel and transmit 1o backup
Eﬂi‘ﬂpﬂfﬁ*‘ %5“&*‘9

Receive Eﬂﬂﬂmi’}WiEﬁngi 1ent from
backup computer systerm 480

Resume iumsiuﬁ} sf}r*ma*}; Vi i&é

¢

:
i
;
/

¢

compuler system

b

Recewve disk wiile dala from
primacy compuier system 440

)
S —
N

L o i .

T

g

Recgive disk write compietions {o
DACKUD computer system 450

:
:

.'::l

o

e
5
b
3
:
N
3
g
b
3
$
3
}
3
3
3
‘

nacyst

Eah P FE Kdm ubd e b YhE ey o g, O S b e e e WER Py

------ -) Transmit
; acknowiedgement 51
-

iwramwﬁmw-'ﬁ-ﬂvrm“wmﬂﬂﬂm-‘---.-‘..mwmw R, o AR N By W A Wi P ey o

Commit Sisk write data 10 backup
Vi disk relating 1o all received disk
wiiie compistions from

step 4506 4G

8

W
"

o T

~ EXpired L

integrate checxpoiry packed
nformation indo current siate of
packup VM 454

3
]

nnnnn

A AR o R A A A D S N KW e e e % :
Gas‘ﬁara*e -:::hﬁ:*%\ﬂﬂ *Ti ; ﬁﬁrma t:m E

i
!

' I}e*ﬂ *
fallure of
DYENAry e
~, Y7 A

365§

PETE—————

itd A dghy e e SEE WP P dgts a0 i dels als Emy nmm wvan.#nnn.r;.rﬁvdmeﬂlﬁﬂmwwumwit

s N

| Resume execution of 0 f"‘sar‘y Vi |

I||-

¥ from last acknowlsdned
Hegase quauss E! checkpoint in Dackup VM
nafwork packets 4aG; 0 e

U.S. Patent Oct. 1, 2013 Sheet 5 of 7 US 8,549,241 B2

incremental Checkpoint Module
Sl

dentity memory pages of the primary
\F

VIA's virtual mamory spaoe that have 7 w3
bean modified since the last

g
o
3

A N R EREEEEEFEFFFE

Uetermine whether each identified
maemaory page should be transmitled In |
its entirety or whether oniy the :
Gifterences should be transmitied
(See Figure 7)

51-'

I

3 LDetermine which memory pages shall
ve ransmitied affer rasuming

gxacution of the primary VM {8.9.,
after unstunning onmary VM)

HOGURE 5

o L Ll TR
m;\‘m"’;;!;;’ﬁr” ’

‘ o i . . S16iH;
Sean nested page tabie entries
Yeas

N,

Store guest and system physical P ==
address of pags o transmit page {o
nackup Vg

Clear dirty bit in entry

3
o

A N N R EFFFEFEFEEE PR P AP, Lttt

NO 7 Finished
' scanning?

B
{12
i
Ad
{t%
o

US 8,549,241 B2

Sheet 6 of 7

Oct. 1, 2013

U.S. Patent

LoANOEN S

abipd DapusULLIONE

L R D RN R ONCL. MR R,

ﬁl““\ ' i A A A [WAl Al ol o ol o ol ol ol il il]
“ ' -~
@ b . .-l-
' - omL g

et _ e i, e w _MW

- JI .-I. ” "

+

T i o o o ol o ol il ol ol ol ol ol il il ol ol ol ol o ol e el e el il il i il el e T e e e e e e s .n . .

(e niaiul E:&ﬁm% LAY
06 tasAs nddos Aleiuiid
) Sebed (HepuRliilods-un
CUE) pRpUsL E,uu& I B puasuBRL |

I,

7§ ONTEA YU
, PIOUSRIL) 2
DRN area Junon

b
3

el il il i

AINIONAS
| 21E0 UDNEPUBLULLGSS)
Lt siied Az0Wa 10y

3 azREus O™
sabed Aiclusw
| AN .

A o A e

S -)

mm?EE_afm\q ﬁmx_ﬂr 3 abed uﬁ_w_.:EQuE

U3 PUE QUMIDNNIS 218D UONBRUSWIIIODS: | z e _.mm@h: s
| & "
Ui abud AOWSLW JO) SNBA JINCD 1888y w, STHBA B0

T

RN EF NNy gy

wiohioeus snowald 10 s1ms 12

pt 2DR0 LIOWIBLI JO uoisiea SnolABId pue abed b

EaEmE DOARDSS LOBS URSMISN P UL

..... A R o o P R P P o S S S, o g ot gt P P R L E R E P R R R R R R R PR R

Ty

yaNoed USISSILISUEE IHChHneUD Biatlain)
L7 10 1480 52 ssbed AGIUAL PBIIROL SAIRTON

ol ol ol il ol ol o ol ol o ol ool ¥ ol ol ol ol o o ol o o o o o A o o

ol Sl o ol ol o ol ol ol o o o o o o o o S o o o P S

(mie wmshn smndwos dyoerg 1oy 504
Cre SINPOR 1UGBIvay s (IUaUISIDU]

Ala Wt wh S Wik e Rlat GAS RS b A iy Yt it Ay e A Ay wbee wiai deim wegt pate A eiel phyfa ey pit iy et wwh Sew v WSS WY WY RV W

A A o T A A a2l " o i "l

R SE mmﬁu AL M8

| onjea N0 JUBLIBIU| _

054"

1;SEQEEE$E.EEEEEESE‘EEl.._ll.

é‘%&
FaFalal sl o aFaF alel

SROUAIID
A g

H Rl Aluo guisues
“ 151} JOISELU POPUBLILINDTD w7’ SOA
“ Ai04) abed saousY “ e "~
“ rrererernncct e “"u, S TTI PSSP TIPS ﬂwz | ~ m.amw.wwmw A .u_»w_ __n.:
“ SOV — S OIOUSBIUL »
_ GLE wasAs agndwiocn dippzeq | 1S BIYEA Ui
: 0} sbed E@E@E ajua Jusues ,_. =
SN Vot Sttt i el ‘ o
m G T i
|

154 pOPUBLLAUODES LI BaPrd AICWsil paynLsDs
10 albed Aoussul Yous uo SISARUE LD BLIOLS

F E e e N

Pl T oF o P E gl E F) F o

151 Jasel W 10U (fog ders woly) sebed
AU panuat jo abied AJOLLBW BIjUS JLusuR) |

AR NN P,
o

e 5 #

7 PRALY

E 4'- d .
) ¥
. L r -“ g
- F u- ! .
u ._l.
o o o o war A, .‘.‘.‘.ﬁ.ﬁ.ﬁ.‘% A A A S S S e e e e e e

%Y DARUSILLUOSSS 1I8ISBU) UIM 188 DBASDES am_wm@u@m

mmimw:_ JLHOOYIBUD 5 Bu Hils}
ewied DapUSWIUCDISS 10 151 SAISDEM

\“%ﬁﬁﬁﬁh“ﬁﬁﬁ“ﬁ“ﬁﬁﬁﬂﬂﬂ\hl_.l..m.l.l.l.!.l.l.l..l_.l_.l..I.l.l.l.l_..ﬂ.l.l.l_..l.l.l_..l..l..l..l..l..l_..l..l..l..h..l.lulr'.lri..I.rl..I.rl.rl.nl. N

T T TR e Oak EOr B0 e W rEl el gt SN CEE W SN W U AR M e il bl Wt AR Al A Rk e wki

..I..‘..I..‘..I.‘;‘;‘L‘L‘L‘..I..I..‘LILIL‘L‘LILILILILILILILI..1..1..1..1..1..1..‘[1..1..1..1%LHHLLLHEELHEE

eysed UDISSHUSLER IBDHNOaUD |EUBILaIOU
10 ed s sabed ACLuBud RDOBIDOLL B WISUE]

i {00¢ wmsAg sandwion Auglg 1o)
LE BINPCR LNGOYI8U Ty IRIUSUISI DU

U.S. Patent Oct. 1, 2013 Sheet 7 of 7 US 8,549,241 B2

ncremental Chackpoing Modulie
Kyt

geniify mamory pages of the primary VM's virtuat memory space that | 800

Refarence modification history data structure for each idaeniified memaory 3 ans

pags o detarmine whether ifs history satisfies heuristic (8.g., memory
page has not bean modified in prior 2 checkpoint intervals, elg)

................

Lot

- 818

815

Does memaory
nage salisty
haunstic?

pMark memory page for | Yes o~
tazy transrission {while
imary VM s ruaning)

No | Mark memory page for
4 reguiar transmission {whils

orimary VM is stunned) }

Pl o g e ol o 4
[
.
b
1
b
.‘ k
L
L
-
L
] o
r .
[
.
b
I o A L o ol S i

Update modification history data structure based |
on identified memory pages {e.g., shifling and &
setling hils
........... . g biis) B30

e T

Transmit memoy pages marksd for reguiar ransmission 0
backup compuier systent (while primary ViV 8 stumnad)

Ll

ﬂﬂﬂﬂﬂﬂ

Set page protection {(e.q., read-only} on all memory pagss
raarked for lazy fransmission

f#’ffffﬁj g g gt g g R S g
.ﬂ
i-..d-’

g Resume exscution {Le., un-stun) r,,_. 844
> nrimary VM (e, step 485} ;
E
E PP ST PTTTee
E ¥
t 1; 0
Primary VM N Any - - —
o~ S ~ No Y . Yez | ransmit memory |
A attempts 1o wrile 10 S MEMOY pages . o S i ;
age protecied o marked for gz PAJE 30 Dackup t
-. J¢ Prtet N e }! computar system
MSMNY DEGE7 = ransmission? . o
¥ page . _ . R
by ‘f"ﬁ:’% oy ¢:o39. ! N Remove page |
T . = T L protection from |
. ranamitiad mamor
trom step 890 10 backup bage Y]
computer sysiem ‘
: : o T - .h*_ :EE:‘E
% Update moditicaion 855 /D .

nistory dafa struciure
regarding page fault

]

US 8,549,241 B2

1

METHOD AND SYSTEM FOR FREQUENT
CHECKPOINTING

RELATED APPLICATIONS

This application 1s related to U.S. application Ser. No.
12/683,2°73 and U.S. application Ser. No. 12/683,2°/8 filed on
the same date.

BACKGROUND

The advantages of virtual machine (VM) technology have
become widely recognized. Among these advantages 1s the
ability to run multiple virtual machines on a single host plat-
form. This makes better use of the capacity of the hardware,
while still ensuring that each user enjoys the features of a
“complete,” 1solated computer.

The advantages of various types of checkpointing are also
widely recognized, such as providing a backup of some
aspect of a computer system and providing the ability to revert
back to a previously generated checkpoint to undo changes to
some aspect of a computer system or to recover from a failure
affecting the computer system. One particular use of check-
pointing that 1s advantageous 1s to capture the state of a
long-running computation, so that, if the computation fails at
some point, 1t can be resumed from the checkpointed state,
instead of having to restart the computation from the begin-
ning.

Fast and frequent checkpointing of virtual machines 1s a
useiul technology for a number of applications: (1) continu-
ous checkpointing allows users to revert back their applica-
tion to almost any previous point 1n time; (2) reverse debug-
ging based on determimstic replay also requires frequent
checkpoints to reduce the amount of replay from a previous
checkpoint that 1s required to execute backwards; (3) fast
checkpoints can enable the possibility of speeding up an
application by allowing speculative calculations that can be
reverted 11 necessary; and (4) fast checkpoints provides a way
of providing fault tolerance. With respect to (4), fast and
frequent checkpointing is especially attractive, since it can be
used for symmetric multiprocessing (SMP) virtual machines.
Deterministic replay 1s typically very hard to do efficiently for
SMP VMs, so fault tolerance based on deterministic replay 1s
typically only supported for single processor VMs.

SUMMARY

One or more embodiments of the present invention provide
techniques to frequently transmit an updated state of a pri-
mary VM to a collector process. In certain of such embodi-
ments, the collector process 1s a backup VM (1.e., thereby
enabling immediate resumption of the primary VM upon a
failure). The primary VM 1s frequently and periodically sus-
pended (each such suspended period referred to herein as a
“checkpoint”) during the course of execution to determine
any modifications made to the state of the primary VM since
the prior checkpoint. As used herein, suspending a VM 1s also
referred to as “stunning” the VM, and resuming the VM 1s
also referred to as “unstunning’” the VM. Once the modifica-
tions (sometimes referred to herein as “checkpoint informa-
tion”) are determined, they are transmitted to the backup VM
which 1s then able to merge the modifications 1nto its current
state, thereby reflecting an accurate state of the primary VM at
the time of the checkpoint. Such frequent checkpointing tech-
niques provide a viable option for providing fault tolerance
tor SMP based VMs, which are not able to utilize prior non-
deterministic instruction stream record-replay techniques. In

10

15

20

25

30

35

40

45

50

55

60

65

2

certain embodiment, certain modifications are transmitted to
the backup VM while the primary VM 1s executing 1n order to
reduce the amount of time the primary VM 1s stunned. In such
embodiments, a memory page’s history 1s tracked over recent
checkpoint intervals i order to decide whether such a
memory page 1s a good candidate for transmission while the
primary VM 1s executing. For example, a memory page 1s a
good candidate 11 1t 15 likely that 1t will not be modified 1n the
next interval.

One method, according to such an embodiment, transmits
modifications made to a memory page of a virtual machine
during a current time interval. The method comprises main-
taining a data structure comprising an entry corresponding to
the memory page that indicates a history of modifications
made to the memory page in previous time intervals, stunning
the virtual machine at the end of the current time interval;
confirming that the entry in the data structure satisfies a heu-
ristic indicating a level of absence of modifications to the
memory page in previous time intervals, resuming execution
of the virtual machine; and transmitting at least a portion of
the memory page to a backup computer system while the
virtual machine 1s executing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of an SMP-based virtual-
1zed computer system.

FIG. 2 depicts a logic diagram for memory address trans-
lations utilizing a CPU that supports nested page tables.

FIG. 3 depicts a block diagram of a primary VM and
backup VM engaged 1n incremental and continuous check-
pointing.

FIG. 4 depicts a flow diagram for transmitting incremental
and continuous checkpoint information packets from a pri-
mary VM to a backup VM.

FIG. § depicts a flow diagram for optimizing the transmis-
sion of checkpoint information packets.

FIG. 6 depicts a flow diagram for identifying memory
pages 1n the virtual memory space of a primary VM that have
been modified since a last checkpoint information packet.

FIG. 7 depicts a flow diagram for determiming whether to
transmit an entire memory page ol a primary VM or only
modifications made to the memory page since the last check-
point.

FIG. 8 depicts a tlow diagram for determiming whether to
“lazy” transmit a memory page of a primary VM after un-
stunning the primary VM.

DETAILED DESCRIPTION

FIG. 1 depicts a block diagram of an SMP-based virtual-
1zed computer system. In one embodiment, both a primary
and a backup VM are implemented 1n separate physical com-
puter systems similar to the SMP-based virtualized system of
FIG. 1. Host computer system 100 may be constructed on a
desktop, laptop or server grade hardware platform 102 such
as an x86 architecture platform. Such a hardware platiorm
may include a local storage unit 104, such as a hard drive,
network adapter (NIC 106), system memory 108, symmetric
multi-core processor 110 and other I/O devices such as, for
example and without limitation, a mouse and keyboard (not
shown 1n FIG. 1). Symmetric multi-core processor 110 pro-
vides multiple CPUs 112, to 112,, which operate concur-
rently and can read and write to any portion of system
memory 108. Each of CPUs 112, to 112 ,,includes a memory
management unit (MMU) 114, with a support module 116,
for traversing nested page tables (NPT) that, as further

US 8,549,241 B2

3

described below, translate received physical addresses of a
VM’s guest operating system into the actual corresponding
physical addresses of system memory 108 (support module
116,; also referred to herein as the “hardware NPT walker™).
One example of a multi-core processor 110 that supports such
nested page table structures 1s AMD’s Opteron™ family of
multi-core processors. It should be recogmized that nested
page tables are also sometimes referred to as extended page
tables.

A virtualization software layer, also referred to hereinafter
as hypervisor 118, 1s installed on top of hardware platiform
102. Hypervisor 118 supports virtual machine execution
space 120 within which multiple VMs may be concurrently
instantiated and executed. As shown, virtual execution space
120 mncludes VMs 122,-122 ... For each of VMs 122,-122,,
hypervisor 118 manages a corresponding virtual hardware
platform (1.e., virtual hardware platforms 124,-124,,) that
includes emulated hardware such as virtual hard drive 126,,
virtual NIC 128, multiple virtual CPUs 130, _, to 130, -,,and
RAM 132, for VM 122, . For example, virtual hardware plat-
form 124, may function as an equivalent of a standard x86
hardware architecture such that any x86 supported operating,
system, e.g., Microsoft Windows®, Linux®, Solaris® x86,
NetWare, FreeBSD, etc., may be installed as guest operating,
system 134 to execute any supported application in applica-
tion layer 136 for user VM 122, . Guest operating system 134
of VM 122, includes device drivers (e.g., pre-existing device
drivers available for guest operating system 134 etc.) that
interact with emulated devices in virtual hardware platiorm
124, asif such emulated devices were actual physical devices.
Hypervisor 118 1s responsible for transforming requests from
device drivers in guest operating system 134 that are recerved
by emulated devices 1n virtual platform 124,, into corre-
sponding requests to corresponding physical devices 1n hard-
ware platiform 102.

It should be recognized that the various terms, layers and
categorizations used to describe the virtualization compo-
nents in FIG. 1 may be referred to differently without depart-
ing from their functionality or the spirit or scope of the mven-
tion. For example, virtual hardware platforms 124 -124,,, may
be considered to be part of virtual machine monitors (VMM)
140,-140,, which implement the virtual system support
needed to coordinate operations between hypervisor 118 and
their respective VMs. Alternatively, virtual hardware plat-
forms 124,-124,, may also be considered to be separate from
VMMs 140,-140,,, and VMMs 140, -140.,.may be considered
to be separate from hypervisor 118. One example of hyper-
visor 118 that may be used 1s included as a component of
VMware’s ESX™ product, which 1s commercially available
from VMware, Inc. of Palo Alto, Calif. It should further be
recognized that other virtualized computer system architec-
tures may be used consistent with the teachings herein, such
as hosted virtual machine systems, where the hypervisor 1s
designed to run on top of a host operating system, or a shared
storage array network (SAN) that 1s shared among various
virtualized computer systems (e.g., clusters) in order to store
virtual hard drives such as hard drive 126,.

FIG. 2 depicts a logic diagram for memory address trans-
lations utilizing a CPU that supports nested page tables. For
example, each of CPUs 112, to 112, of multi-core processor
110 includes an MMU 114,-114,,, respectively, that imple-
ments a hardware NPT walker (e.g.,116,-116,,). Guest oper-
ating system 134 utilizes and maintains a guest page table
structure that stores mappings from guest virtual address to
guest physical addresses. For example, the embodiment of
FIG. 2 depicts a two level page table structure comprising a
guest page directory 200 that includes a list of guest physical

5

10

15

20

25

30

35

40

45

50

55

60

65

4

addresses referencing one of a plurality of guest page tables,
such as guest table 205, that each includes a list of guest
physical addresses referencing one of a plurality of memory
pages. Simultaneously, hypervisor 118 maintains nested page
tables 210 that store page table entries of mappings from
guest physical addresses to system physical addresses.
Although not depicted 1n FIG. 2, 1t should be recognized that
nested page tables 210 may also be implemented as multi-
leveled page tables similar to the guest page table structures.
Hypervisor 118 provides hardware NPT walker 116, access
to both guest page table structure (1.e., guest page directory
200 and guest table 205) and the nested page tables 210 when
performing memory address translations from a guest virtual
address to a system physical address.

For example, when guest operating system 134 receives an
instruction to write data to guest virtual address 213, guest
operating system 134 commumnicates with virtual RAM 132,
in hypervisor 118. Hypervisor 118, in turn, requests hardware
NPT walker 116,,to access a system control register 220 that
stores a system physical address pointing to nested page
tables 210 (sometimes referred to as control register CR3) as
shown by arrow 225. Hardware NPT walker 116,, then
accesses a guest control register 230 maintained by VM 122,
(e.g., sometimes referred to as guest control register gCR3)
that stores a guest physical address pointing to guest page
directory 200 and determines the actual system physical
address of guest page directory 200 by “walking™ nested page
tables 210 as shown by arrows 235. Hardware NPT walker
116, then accesses a first bit portion of guest virtual address
215 to determine an offset within guest page directory 200
that corresponds to an entry for guest physical address 240
that references and corresponds to guest page table 205, as
shown by arrow 245. Hardware NPT walker 116,, walks
nested page tables 210 again to determine the actual system
physical address ol guest page table 205, corresponding to
guest physical address 240, as shown by arrows 250. Once the
system physical address of guest page table 205 has been
determined, hardware NPT walker 116,,then accesses a sec-
ond bit portion of guest virtual address 213 to determine an
olfset within guest page table 205 that corresponds to a guest
physical address 255 that references the page of guest physi-
cal memory containing guest virtual address 215, as shown by
arrow 260. Hardware NPT walker 116,, walks nested page
tables 210 again to determine the system physical address
corresponding to guest physical address 255, as shown by
arrows 265 and 270. Once the system physical address has
been determined, hardware NPT walker 116, then accesses a
third bit portion of guest virtual address 215 to determine an
offset, as shown by arrow 275, within the page of system
physical memory pointed to by the determined system physi-
cal address 1n order to finally access system physical address
280 corresponding to guest physical address 215. Once the
relevant data has been written to system physical address 280
in accordance with the write instruction, the page table entry
of nested page table 210 1s marked “dirty” (e.g., setting
“dirty”” bat) indicating that the page has been written to, as
shown by marked entry 290.

FIG. 3 depicts a block diagram of a prnmary VM and
backup VM engaged 1n incremental and continuous check-
pointing. A primary computer system 300 hosts primary VM
305 and includes an incremental checkpointing module 310
in 1ts hypervisor. Incremental checkpointing module 310 con-
tinually and frequently transmits incremental checkpoint
information packets (see, e.g., 330 , to 330,) over a network
to a backup computer system 315 that hosts backup VM 320.
Each checkpoint information packet includes information
reflecting changes 1n the state of primary VM’s 305 memory

US 8,549,241 B2

S

and emulated devices from the prior transmitted incremental
checkpoint information packet. On backup computer system
315, incremental checkpointing module 325 of the hypervi-
sor ultimately recerves each of the transmitted checkpoint
information packets and accordingly updates the state of the
memory and emulated devices of backup VM 320 based on
the checkpoint information packets. In one embodiment, 1ni-
tiation of the transmission of checkpoint information packets
by incremental checkpointing module 310 occurs frequently,
for example, once every 10 milliseconds.

FI1G. 4 depicts a tlow diagram for transmitting incremental
and continuous checkpoint information packets from a pri-
mary VM to a backup VM. In step 400, the hypervisor of
primary computer system 300 instantiates primary VM 305.
In step 405, the hypervisor of primary computer system 300
takes an 1nitial snapshot of the state of primary VM 303 (e.g.,
state of memory and all emulated devices, etc.) and transmuits
the snapshot to backup computer system 315 1n step 410. For
example, 1n an embodiment utilizing VMware’s ESX™ vir-
tualization platform, VMware’s VMotion technology can be
used to create and transmit this 1nitial snapshot. In step 4185,
backup computer system 313 recerves the snapshot and its
hypervisor mstantiates backup VM 320 based upon the snap-
shot 1n step 420. In step 425, the hypervisor (e.g., 1ts incre-
mental checkpoint module 310) of primary VM 300 1nitiates
a timer to frequently trigger the 1nitiation of checkpoints to
generate checkpoint information packets (e.g., every 10 mil-
liseconds, etc.). Prior to the expiration of the timer, 1n step
430, the hypervisor delays and queues any and all outbound
network packets generated by primary VM 305. In step 435,
prior to the expiration of the timer, the hypervisor transmits
any data for disk writes made by primary VM 305 during 1ts
execution to backup computer system 315, which recerves the
data 1n step 440. Similarly, 1n step 445, prior to the expiration
of the timer, the hypervisor transmits all corresponding disk
write completion messages to backup computer system 315,
which receives the completion in step 4350.

Once the timer expires (e.g., 10 milliseconds has lapsed) in
step 43535, the hypervisor initiates a checkpoint by stunning
primary VM 305 (1.e., freezes its execution state) 1n step 460
and generates a checkpoint information packet reflecting the
current state of stunned primary VM 305 and transmits the
checkpoint information packet to backup computer system
315 1 step 4635. In step 470, the hypervisor of backup com-
puter system 3135 successiully recerves the transmitted check-
point information packet and 1n step 475 transmits an
acknowledgement of successiul receipt back to primary com-
puter system 300. Once the hypervisor of primary computer
system 300 receives the transmitted acknowledgement 1n step
480, the hypervisor resumes execution of primary VM 305 1n
step 483 and releases all the queued up network packets (from
step 430) 1n step 490 betore returning back to step 430. Once
the hypervisor (e.g., 1ts incremental checkpoint module 325)
of backup computer system 313 transmits the acknowledge-
ment 1n step 475, 1n step 492, the hypervisor commiuts to the
disk of backup VM 320 all disk write data received prior to the
expiration of the timer in step 440 for which the hypervisor
also received a disk write completion signal 1n step 450. In
step 494, the hypervisor of backup computer system 315 then
merges or otherwise integrates the updated state reflected in
the received checkpoint information packet (from step 470)
into the current state of backup VM 320. Subsequently, 1n step
496, if backup computer system 315 detects that primary
computer system 300 has failed, then in step 498, backup
computer system 315 resumes execution of primary VM 303
as backup VM 320 from the last recerved (and acknowledged)

checkpoint information packet. Delaying and queuing the

10

15

20

25

30

35

40

45

50

55

60

65

6

outbound network packets in step 430 and releasing them
only after an acknowledged checkpoint transaction (e.g.,
steps 475 to 480) 1n step 490 ensures that restoration of
primary VM 305 by backup computer system 3135 upon a
failure of primary computer system 300 1s based on a state of
primary VM 305 that can properly resume network commu-
nications with external entities (i.e., re-transmit outbound
network packets since the recovered state without confusing,
recipients, re-receive inbound network packets that it 1s
expecting, etc.).

Transmitting a checkpoint information packet, as 1n step
465 of FIG. 4 comprises two main tasks: (1) capturing and
transmitting the current state of the emulated devices of pri-
mary VM 305 that were modified since the last checkpoint
information packet transmitted to backup computer system
315, and (2) capturing and transmitting modifications to the
state of the memory of primary VM 305 since the last check-
point mnformation packet to transmitted backup computer
system 315. In one embodiment, upon completion of the
foregoing two tasks, the hypervisor of primary computer
system 300 transmits an end-of-checkpoint message to
backup computer system 3135 indicating completion of its
transmission of the checkpoint information packet, which
serves as a trigger for backup computer system 315 to trans-
mit 1ts acknowledgement of receipt 1n step 475. With respect
to capturing the current state of the modified emulated
devices, 1n one embodiment, when the timer expires 1n step
4355 of F1G. 4, the hypervisor ol primary computer system 300
immediately stuns primary VM 305 without waiting for any
current “in-thight” disk I/O operations to complete. Once
primary VM 305 1s stunned, incremental checkpoint module
310 captures the state of modified emulated devices of pri-
mary VM 305 as well as the state of any in-flight disk 1I/O
operations for transmaission to backup computer system 315
as part of a checkpoint information packet. In this manner,
although the 1n-flight disk I/O operations are not part of the
actual checkpoint state (i.e., because they have not com-
pleted), a resumption of execution at the completed check-
point state by backup VM 320 will result 1n the re-1ssuance of
the in-thight disk I/O operations.

FIG. § depicts a flow diagram for optimizing the transmis-
s10n of checkpoint information packets. In order to etfficiently
capture and transmit modifications to the state of the memory
of primary VM 3035 1n a timely fashion, one embodiment
implements three optimization phases as depicted by FIG. 5
to minimize the amount of time utilized to capture modifica-
tions to the state of memory of primary VM 303 while pri-
mary VM 305 remains stunned. In step 500, incremental
checkpoint module 310 identifies those memory pages 1n the
virtual memory space of primary VM 3035 that have been
modified since the last checkpoint information packet. In step
503, for each identified memory page, incremental check-
point module 310 determines whether the entire memory
page should be transmitted to backup computer system 315
(due to significant modifications within the memory page) or
whether only the specific modifications 1n the memory page
should be transmitted to backup computer system 315. In step
510, incremental checkpoint module 310 identifies those
memory pages that can be transmitted 1n a “lazy” fashion, as

further detailed below, after resuming execution of primary
VM 305 1n step 485 of FIG. 4 (1.¢., un-stunning primary VM

305).

FIG. 6 depicts a flow diagram for identilying memory
pages 1n the virtual memory space of a primary VM that have
been modified since a last checkpoint information packet
(1.e., step 500 of FIG. 5). To identity modified memory pages,
one embodiment leverages the setting of dirty bits 1n nested

US 8,549,241 B2

7

page table entries by hardware NPT walker 116, when writ-
ing to a system physical page as described 1n FIG. 2. Assum-
ing that nested page table entries are cleared of all set dirty
bits during the start of a checkpoint time 1interval (1.e., the time
period between two consecutive checkpoints), 1n step 600,
incremental checkpoint module 310 scans the page table
entries 1n nested page tables 210. If, 1n step 605, incremental
checkpoint module 310 encounters a page table entry with a
set dirty bit, then 1in step 610, incremental checkpoint module
310 stores the guest physical address and system physical
address corresponding to the page table entry with the set
dirty bit 1n order to subsequently transmit the memory page
(or analyze the memory page for transmission) to backup
VM. In step 613, incremental checkpoint module 310 clears
the set dirty bit for the nested page table entry in preparation
for the next checkpoint time interval. In step 620, 1f scanning
of the nested page table entries has not been completed, the
flow returns to step 600. As described 1n the context of FI1G. 2,
because the dirty bits of nested page table entries are set by
hardware NPT walker 116, when a write operation 1s per-
formed 1n a memory page, the foregoing steps enable incre-
mental checkpoint module 310 to efficiently 1dentity modi-
fied memory pages since the last checkpoint information
packet.

It should be recognized that 1n certain embodiments, nested
page tables are hierarchical, with multiple levels of page
tables and page directories having entries pointing to different
page tables (similar to guest page directory 200 and guest
page table 205 1n FIG. 2). In one such embodiment, hardware
NPT walker 116,, also marks a page directory entry with a
dirty bit 1f any memory page 1n the page directory entry’s
corresponding page table has been written. An alternative
embodiment may mark page directory entries with an
“access’” bit if any memory page in a page directory entry’s
corresponding page table has been accessed (e.g., read or
written). In either of such embodiments, incremental check-
point module 310 can utilize hierarchical scanning of the
nested page tables to further increase efficiencies, by only
descending to the next level if a page directory entry has been
marked with a dirty bit or an access bit. This optimization of
hierarchical scanning using “access” or “dirty” bits 1n the
page directories 1s particularly usetul for very large memory
VMs, since a large part of the memory of a VM may not be
accessed or modified in each interval. In yet another alterna-
tive embodiment, the scanning of page table entries can be
turther optimized by subdividing the scanning task to be
executed by multiple parallel executing threads. For example,
subdivided scanning tasks can be assigned to parallel execut-
ing threads in a static round-robin fashion at the lowest page
table level. The static assignment ensures that there 1s little
overhead for assigning the tasks to threads, and the low-level
interleaved assignment leads to a good load balance where
cach thread scans both “hot” and “cold” parts of the memory.
In yet another embodiment, scanning can be done “ecagerly”™
by an independent thread while the VM 1s still runming (1.e.,
before a checkpoint starts). Such eager scanning by the inde-
pendent thread 1dentifies memory pages that have been modi-
fied while simultaneously permitting a main executing thread
to begin other useful computations on already-identified
memory pages, such as “diff” computations on such 1denti-
fied memory pages (as further discussed in step 505 and
turther detailed 1n the context of FIG. 7). In such an eager
scanning embodiment, the dirty bit of a memory page may be
cleared when such computations begin on the memory page,
such that it 1s easier to determine whether the memory page
has been modified between the time the computation began
and the next checkpoint started.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 7 depicts a flow diagram for determining whether to
transmit an entire memory page of a primary VM or only
modifications made to the memory page since the last check-
point (1.e., step 505 of FIG. 5). An embodiment implementing
FIG. 7 evaluates whether 1t 1s more efficient to transmit an
entire memory page during a checkpoint or expend additional
computational resources to determine the actual modifica-
tions made 1n the memory page, transmitting only the difier-
ences made to the memory page since the prior checkpoint
(referred to herein as a “diff” transmission). Such an embodi-
ment utilizes backup computer system 315 as a heuristic
teedback mechanism that 1dentifies memory pages having a
higher probability of being a good diff transmission candi-
date. Incremental checkpoint module 3235 of backup com-
puter system 315 maintains a memory page recommendation
data structure that identifies potential candidate memory
pages for such difl transmissions.

In step 700, incremental checkpoint module 310 of primary
computer system 300 transmits modified memory pages to
backup computer system 315 as part of a checkpoint infor-
mation packet and, in step 705, incremental checkpoint mod-
ule 325 of backup computer system 313 recerves the modified
memory pages. Because the memory of backup VM 320
currently retlects the state of the previously completed check-
point, 1 step 710, incremental checkpoint module 325 1s able
to perform a difference analysis (1.e., referred to herein as a
“diff” or “diff analysis™) by comparing each received modi-
fied memory page against the previous state of such memory
page at the previously completed checkpoint. In step 715,
incremental checkpoint module 325 determines whether the
performed diff analysis for each modified memory page gen-
crates a resulting diff value that 1s less than a threshold diff
value. For example, 1n one embodiment, each memory page
for primary VM 305 (and backup VM 320) may comprise
4096 bytes (1.e., 4KB). In such an embodiment, incremental
checkpoint module 325 may perform a comparison for every
8 bytes 1n a memory page. The resulting diff value 1s the
number of the 512 (1.e., 4096 divided by 8) performed 8-byte
comparisons that indicate differences. Incremental check-
point module 325 then determines whether the resulting diff
value 1s less than a threshold diff value, for example, of 7. In
step 720, 1f the resulting diff value 1s less than the threshold
ditf value, incremental checkpoint module 325 increments a
count value maintained by the memory page recommenda-
tion data structure for the memory page. In step 725, if the
count 1s greater or equal to a threshold count value, then, 1n
step 730, incremental checkpoint module 325 marks the
memory page as a recommended memory page for possible
diff transmission. For example, a threshold count value of 10
indicates that minimal modifications (e.g., less than 7 8-byte
comparisons revealed differences) were made to the memory
page the last 10 times that the memory page was modified.
Returning to step 715, if the resulting diff value 1s not less than
the threshold diff value, 1n step 735, the count value of an
entry for the memory page in the memory page recommen-
dation data structure 1s reset to zero and, 11 the memory page
was marked as recommended, 1t 1s unmarked. Once all modi-
fied memory pages have been analyzed as indicated by step
740, incremental checkpoint module 325 transmits a list ot all
the newly recommended memory pages (and newly un-rec-
ommended pages from step 735, 1n certain embodiments) to
primary computer system 300 in step 745. In certain embodi-
ments, this transmission step typically occurs during a check-
point interval due to the time needed by backup computer
system 315 to perform the various diff analyses.

In step 750, incremental checkpoint module 310 of primary
computer system 300 recerves the transmitted list. Incremen-

US 8,549,241 B2

9

tal checkpoint module 310 also maintains its own master
recommended list of memory pages. For each memory page
listed 1n the master recommended list, incremental check-
point module 310 maintains a copy of the memory page
reflecting 1ts state at the last checkpoint (e.g., in order to
perform diff analysis on such memory pages). In step 755,
incremental checkpoint module 310 reconciles the recerved
recommended list with 1ts master recommended list by add-
ing newly recommended pages to the master recommended
list and removing pages that have been un-recommended.
Starting with the next checkpoint, incremental checkpoint
module 310 will begin maintaining a copy of memory pages
corresponding to such newly recommended pages. Similarly,
incremental checkpoint module 310 discards its maintained
copy of un-recommended memory pages. Upon the arrival of
the next checkpoint 1n step 760, incremental checkpoint mod-
ule 310 mmmediately initiates transmission all i1dentified
modified pages (e.g., from step 500 of FIG. 5) 1n their entirety
that are not in the master recommended list 1n step 765. In step
770, incremental checkpoint module 310 performs a diff
analysis for each memory page in the master recommended
list, similar to the diff analyses performed by incremental
checkpoint module 324 1n backup computer system 3135 (it
should be recognized, however, that newly added recom-
mended memory pages during reconciliation step 755 may
need to wait until the subsequent checkpoints for such diff
analysis since incremental checkpoint module 310 has not yet
begun maintaining a copy of the state of the memory page
from prior checkpoints). If, 1n step 775, the resulting diff
value for a memory page 1s less than a threshold diff value,
then 1n step 780, incremental checkpoint module 310 extracts
the differences between the modified memory page and the
stored copy of 1ts previous checkpoint state and transmits the
difference to backup computer system 315. If, in step 775, the
resulting diff value for a memory page 1s not less than the
threshold diff value, then 1n step 785, incremental checkpoint
module 310 transmits the entire memory page to backup
computer system 315 and 1n step 790, removes the page from
the master recommended list. In certain embodiments, the
transmission of the non-recommended pages proceeds 1n par-
allel with the foregoing diif analysis of the recommended
pages, depending on the capabilities of the networking hard-
ware (such as RDMA) and available CPU power. Such
embodiments efficiently use the available network bandwidth
and “hide” the time required for the difl analysis from the
perspective of the backup computer system 315. In addition,
the foregoing diff analysis process may be parallelized in
alternative embodiments. For example, 11 extra CPU power 1s
available, many parallel threads may be used to do the fore-
going diff analysis. It should be recognized that the diff analy-
s1s may be limited by the usable bandwidth to memory (e.g.,
for accessing 1n all the pages being diff’ed), and therefore,
implementing diff analysis using multiple threads may be
particularly usetul if significantly more memory bandwidth 1s
available by running the diff analysis on multiple cores or
sockets.

It should be recognized that the various aforementioned
threshold values (e.g., threshold diff values, threshold count
values, etc.) may be configurable by an administrator or other
user 1n certain embodiments and that primary computer sys-
tem 300 and backup computer system 315 may utilize differ-
ent threshold values. For example, on one embodiment, the
threshold diff value 1n step 715 for backup computer system
315 may be 7, while the threshold diff value in step 773 for
primary computer system 300 may be 11. It should further be
recognized that embodiments can additionally impose a cap
on the number of pages that are subject to difl analysis, for

10

15

20

25

30

35

40

45

50

55

60

65

10

example, based upon an evaluation of the computational
speed of diff analyses on primary computer system 300 com-
pared to the speed of the network. If the network speed 1s high
relative to the speed of diff analyses, incremental checkpoint
module 310 can impose a cap on the performance of diff
analyses so that fewer pages are analyzed than 1s recom-
mended by the master recommended list. One potentially
optimal arrangement would be to diff only enough memory
pages so that the time to diff those pages 1s about the same
time as 1s needed to send the remaiming non-diffed pages.
Conversely, 11 the network speed 1s slow relative to the speed
of diff analysis, incremental checkpoint module 310 may
perform diff analysis on all the memory pages 1n the master
recommended list in order to reduce the required network
bandwidth to a minimum. Furthermore, embodiments may
enable such caps, as well as threshold diff values, to be
dynamically modified upon an evaluation of network speed.
Still further embodiments may implement further optimiza-
tions, such as performing diff analyses on primary computer
system 300 with non-cached read operations such that the dift
analyses do not impact the data cache performance of primary
VM 305 (e.g., by inadvertently filling the data cache with data
that 1s only relevant to diff analyses rather than to the execu-
tion flow of primary VM 305, etc.). Similarly, other embodi-
ments may perform diff analyses on a different processor core
on primary computer system 300 so that such diil analyses do
not compete for resources with the transmission of entire
memory pages. It should further be recognized that any
known data structures such as linked lists, tables, collections,
and the like may be used to implement the master recoms-
mended list of primary computer system 300 and memory
page recommendation list data structure of backup computer
system 313.

FIG. 8 depicts a tlow diagram for determiming whether to
permit “lazy” transmission of a memory page ol a primary
VM after un-stunning the primary VM (i.e., step 510 of FIG.
5). An embodiment implementing FIG. 8 employs a heuristic
to predict the likelihood that a modified memory page (as
identified 1n step 500 of FIG. 5) may not be modified again
during execution of primary VM 305 1n the upcoming check-
point interval. Identifying such memory pages enables incre-
mental checkpoint module 310 to un-stun primary VM 3035
(c.g., step 485 of FIG. 4) earlier, before transmitting such
memory pages, thereby increasing elficiencies. If the heuris-
tic 1s accurate, then execution of primary VM 305 will not
alfect the state of such memory pages as they are transmaitted
simultaneously with the execution of primary VM 305. Incre-
mental checkpoint module 310 of such an embodiment main-
tains a data structure that records a history of modifications
made to each memory page over anumber of previous check-
point intervals (referred to herein as a “modification history
data structure™). For example, one such modification history
data structure may store a sequence of n bits for each memory
page, where each bit 1n the sequence represents one of the
previous n checkpoint intervals. In such a modification his-
tory data structure, a set bit indicates that the memory page
was modified 1in the corresponding checkpoint interval. Alter-
native embodiments may further supplement such a modifi-
cation history data structure with additional bits for each
memory page, for example, to indicate whether the memory
page was previously transmitted lazily and whether such lazy
transmission was successiul (e.g., resuming execution of pri-
mary VM 305 did not change the state of the memory page
during the checkpoint interval).

In step 800, incremental checkpoint module 310 i1dentifies
the memory pages of primary VM 305 that have been modi-
fied since the prior checkpoint (as 1n step 500 of FIG. 5). In

US 8,549,241 B2

11

step 805, for each such memory page, incremental checkpoint
module 310 references 1ts modification history data structure
to determine whether such memory page satisfies a heuristic
for assessing whether to lazily transmit the memory page. In
one embodiment, for example, such a heuristic 1s satisfied by
confirming that the memory page was not modified during the
prior two checkpoint intervals (e.g., by checking the corre-
sponding bits 1n the modification history data structure). Such
a heuristic 1s based upon the probability that a memory page
that 1s currently modified but was not modified during the
prior two checkpoint itervals would likely not be modified
again 1n the upcoming checkpoint interval. If, 1n step 810, the
modification history data structure indicates that the history
ol the memory page satisfies the heuristic, then 1n step 815,
incremental checkpoint module 310 marks the memory page
for lazy transmission. I, 1n step 810, the modification history
data structure indicates that the history of the memory does
not satisty the heuristic, then, 1n step 820, incremental check-
point module 310 marks the memory page for regular trans-
mission while primary VM 305 remains stunned. In step 825,
incremental checkpoint module 310 updates 1ts modification
history data structure, for example, by shifting each bit value
down for each memory page and setting a new bit for the
currently handled checkpoint interval if the memory page has
been modified as indicated 1n step 800. In step 830, incremen-
tal checkpoint module 310 transmits all memory pages
marked for regular transmission in step 820 while primary
VM 205 remains stunned. In step 835, incremental check-
point module 310 sets memory page protection on all
memory pages selected for lazy transmission 1n step 815, for
example, by marking each of the memory pages as read-only.
In this manner, 1f primary VM 305 tries to write to any of the
memory pages selected for lazy transmission, a page fault
will occur, causing a trap to the hypervisor, thereby enabling
incremental checkpoint module 310 to handle the situation. In
step 840, incremental checkpoint module 310 then resumes
execution of primary VM 305 by un-stunning 1t, as in step 485
of FIG. 4.

In step 8435, if, during execution, primary VM 305 attempts
to write to a currently page protected memory page, a page
fault occurs, ceding execution control to incremental check-
point module 310 by trapping to the hypervisor. In step 850,
incremental checkpoint module 310 copies the current state
of the page protected memory page, and 1n step 855, may set
a bit 1n the modification history data structure indicating that
lazy transmission for the memory page was unsuccessiul (i.e.,
as aresult of the primary VM’s write operation to the memory
page) before returning to step 840 to resume execution of
primary VM, permitting completion of the write operation on
the memory page. Simultaneously, during execution of pri-
mary VM 305, incremental checkpoint module 310 continu-
ally transmits the memory pages marked for lazy transmis-
s1on to backup computer system 313 in step 860, each time
removing page protection from a successiully transmitted
memory page 1n step 865, until all memory pages marked for
lazy transmission have been transmitted in step 870. Subse-
quently, 1n step 875, incremental checkpoint module 310
transmits all memory pages that 1t copied 1n step 850 to
backup computer system 3135. It should be recognized that
incremental checkpoint module 310 of alternative embodi-
ments may wait until all memory pages marked for lazy
transmission have been transmitted 1n step 860 before releas-
ing page protection for all such memory pages in step 865,
rather than incrementally releasing page protection as each
memory page 1s transmitted as depicted in FIG. 8. Alterna-
tively, the page protections for lazily transmitted memory
pages may be released 1n large groups, after the pages in those

10

15

20

25

30

35

40

45

50

55

60

65

12

groups have been transmitted. Such an alternative embodi-
ment may be useful when the cost for releasing page protec-
tion 1s smaller per page when done for a large group of pages
at a time (e.g., 1f all page mappings must be invalidated
because there 1s no operation to invalidate a single page
mapping). Alternative embodiments may also immediately
send the relevant memory page to backup computer system
315 upon encountering a page fault in step 845 rather than
copying the memory page for subsequent transmission 1n step
870. It should be turther recognized that diff transmissions as
depicted 1n step 780 of FIG. 7 may be similarly lazily trans-
mitted for memory pages satistying the lazy transmission
heuristic. In addition, diff analysis for such pages may or may
not be done lazily.

It should be recognized that various modifications and
changes may be made to the specific embodiments described
herein without departing from the broader spirit and scope of
the mvention as set forth i the appended claims. For
example, while the foregoing discussions have focused on
incremental and continuous checkpointing for fault toler-
ance, 1t should be recognized that such techmiques may also
be used to enable users to revert back 1 an application to
almost any previous point 1n time, to perform reverse debug-
ging, and to speed up applications by allowing speculative
calculations that can be reverted 1f necessary. Similarly, while
the foregoing embodiments have been generally described
using a backup VM, any collector process and any backup
computer system may be used consistent with the teachings
herein. Use of the term ““backup computer system”™ should not
be construed as necessarily providing any other types of
“backup” functions, other than the functions supporting con-
tinuous checkpointing as described herein. For example, a
backup computer system may support collector processes
other than backup virtual VMs for fault tolerance purposes
such as for use in reverting back to particular points of appli-
cations, reverse debugging, and speeding up applications.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored 1n computer systems. For example, these operations
may require physical manipulation of physical quantities usu-
ally, though not necessarily, these quantities may take the
form of electrical or magnetic signals where they, or repre-
sentations of them, are capable of being stored, transierred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to 1n terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the mnvention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-
ten 1n accordance with the teachings herein, or 1t may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainirame computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or
more computer program modules embodied in one or more
computer readable media. The term computer readable

US 8,549,241 B2

13

medium refers to any data storage device that can store data
which can thereafter be input to a computer system computer
readable media may be based on any existing or subsequently
developed technology for embodying computer programs 1n

a manner that enables them to be read by a computer. 5
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs) CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical 10
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code 1s stored and
executed 1n a distributed fashion.

Although one or more embodiments of the present inven- 15
tion have been described in some detail for clarity of under-
standing, 1t will be apparent that certain changes and modifi-
cations may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as 1llustrative and not restrictive, and the scope of the claims 20
1s not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

Plural mnstances may be provided for components, operations 25
or structures described herein as a single mstance. Finally,
boundaries between various components, operations and data
stores are somewhat arbitrary, and particular operations are
illustrated 1n the context of specific illustrative configura-
tions. Other allocations of functionality are envisioned and 30
may fall within the scope of the mvention(s). In general,
structures and functionality presented as separate compo-
nents 1 exemplary configurations may be implemented as a
combined structure or component. Similarly, structures and
functionality presented as a single component may be imple- 35
mented as separate components. These and other variations,
modifications, additions, and improvements may fall within
the scope of the appended claims(s).

We claim:

1. A method for transmitting modifications made to a 40
memory page of a virtual machine during a current time
interval, the method comprising:

maintaining a data structure comprising an entry corre-

sponding to the memory page that indicates a history of
modifications made to the memory page in previous 45
time intervals;

stunning the virtual machine at the end of the current time

interval;

detecting that the memory page has been modified during

the current time interval and confirming that the entry in 50
the data structure satisfies a heuristic indicating a level of
absence of modifications to the memory page 1n previ-
ous time i1ntervals;

resuming execution of the virtual machine; and

after said resuming, 1f a further modification of the memory 55

page 1s detected, copying the memory page prior to the
further modification and transmitting at least a portion of
the copied memory page to a backup computer system
while the virtual machine 1s executing.

2. The method of claim 1, further comprising the step of 60
updating the data structure to indicate that the memory page
was modified during the current time interval.

3. The method of claim 1, further comprising the steps of
setting page protection in a page table entry of a page table
that corresponds to the memory page prior to resuming €xecu- 65
tion of the virtual machine, copying a state of the memory
page upon an attempt by the virtual machine to write to the

14

memory page alter resuming execution of the virtual
machine, permitting the virtual machine to write to the
memory page after performing the copying, and transmitting
the copied state of the memory page to the backup computer
system.

4. The method of claim 2, further comprising the steps of
setting page protection 1n a page table entry of a page table
that corresponds to the memory page prior to resuming execu-
tion of the virtual machine and remove the page table protec-
tion after the transmitting step.

5. The method of claim 1, further comprising the step of
identifying differences between a state of the memory page at
the start of the current time interval and a state of the memory
page at the end of the current time interval, wherein the
transmitted portion of the memory page comprises the 1den-
tified differences.

6. The method of claim 1, wherein a page table entry
corresponding to the memory page 1n a nested page table that
maps guest physical addresses referenced by a guest operat-
ing system of the wvirtual machine to system physical
addresses 1n a system memory of a computer system running
the virtual machine has been marked by a processor of the
computer system to indicate a successtul write operation to
the memory page during the current time 1nterval.

7. The method of claim 6, wherein the heuristic measures
the absence of modifications for a pre-determined number of
consecutive previous time intervals.

8. A computer-readable storage medium including instruc-
tions that, when executed by a processor of a computer sys-
tem, causes the processor to transmit modifications made to a
memory page of a virtual machine running on the computer
system during a time interval by performing the steps of:

maintaining a data structure comprising an entry corre-

sponding to the memory page that indicates a history of
modifications made to the memory page in previous
time 1ntervals:

stunmng the virtual machine at the end of the current time

interval;

detecting that the memory page has been modified during

the current time 1nterval and confirming that the entry 1n
the data structure satisfies a heuristic indicating a level of
absence of modifications to the memory page in previ-
ous time 1ntervals;

resuming execution of the virtual machine; and

alter said resuming, 1f a further modification of the memory

page 1s detected, copying the memory page prior to the
further modification and transmitting at least a portion of
the copied memory page to a backup computer system
while the virtual machine 1s executing.

9. The computer-readable storage medium of claim 8, fur-
ther including instructions that, when executed by a proces-
sor, perform the step of updating the data structure to indicate
that the memory page was modified during the current time
interval.

10. The computer-readable storage medium of claim 8,
turther including instructions that, when executed by a pro-
cessor, perform the steps of setting page protection 1n a page
table entry of a page table that corresponds to the memory
page prior to resuming execution of the virtual machine,
copying a state of the memory page upon an attempt by the
virtual machine to write to the memory page aiter resuming,
execution of the virtual machine, permitting the wvirtual
machine to write to the memory page aiter performing the
copying, and transmitting the copied state of the memory
page to the backup computer system.

11. The computer-readable storage medium of claim 8,
turther including 1nstructions that, when executed by the pro-

US 8,549,241 B2

15

cessor, perform the steps of setting page protection 1n a page
table entry of a page table that corresponds to the memory
page prior to resuming execution of the virtual machine and
remove the page table protection after the transmitting step.

12. The computer-readable storage medium of claim 8,
turther including instructions that, when executed by a pro-
cessor, perform the step of identifying differences between a
state of the memory page at the start of the current time
interval and a state of the memory page at the end of the
current time 1nterval, wherein the transmaitted portion of the
memory page comprises the 1dentified differences.

13. The computer-readable storage medium of claim 8,
wherein a page table entry corresponding to the memory page
in a nested page table that maps guest physical addresses
referenced by a guest operating system of the virtual machine
to system physical addresses 1n a system memory of the
computer system running the virtual machine has been
marked by the processor of the computer system to indicate a
successiul write operation to the memory page during the
current time 1nterval.

14. The computer-readable storage medium of claim 8,
wherein the heuristic measures the absence of modifications
for a pre-determined number of consecutive previous time
intervals.

15. A computer system configured to periodically provide
updated state information of a primary virtual machine run-
ning on the computer system to a collector process running on
a backup computer system, the computer system comprising:

a system memory comprising a hypervisor component

configured to instantiate the primary virtual machine;
and

amulti-core processor having at least one processing unit s

configured to execute the hypervisor component to

transmit modifications made to a memory page of the

primary virtual machine during a time interval by per-

forming the steps of:

maintaining a data structure comprising an entry corre-
sponding to the memory page that indicates a history
of modifications made to the memory page 1n previ-
ous time i1ntervals;

stunning the virtual machine at the end of the current
time 1nterval;

detecting that the memory page has been modified dur-
ing the current time interval and confirming that the

10

15

20

25

30

35

40

16

entry in the data structure satisfies a heuristic indicat-
ing a level of absence of modifications to the memory
page in previous time intervals;

resuming execution of the virtual machine; and

after said resuming, 1f a further modification of the
memory page 1s detected, copying the memory page
prior to the further modification and transmitting at
least a portion of the copied memory page to a backup
computer system while the virtual machine 1s execut-
ng.

16. The computer system of claim 15, wherein the hyper-
visor component further comprises instructions to perform
the step of updating the data structure to indicate that the
memory page was modified during the current time 1nterval.

17. The computer system of claim 15 wherein the hyper-
visor component further comprises instructions to perform
the steps of setting page protection 1n a page table entry of a
page table that corresponds to the memory page prior to
resuming execution of the virtual machine, copying a state of
the memory page upon an attempt by the primary virtual
machine to write to the memory page after resuming execu-
tion of the virtual machine, permitting the primary virtual
machine to write to the memory page after performing the
copying, and transmitting the copied state of the memory
page to the backup computer system.

18. The computer system of claim 15, wherein the hyper-
visor component further comprises instructions to perform
the steps of setting page protection 1n a page table entry of a
page table that corresponds to the memory page prior to
resuming execution of the primary virtual machine and
remove the page table protection after the transmitting step.

19. The computer system of claim 15, wherein a page table
entry corresponding to the memory page 1n a nested page
table that maps guest physical addresses referenced by a guest
operating system of the primary virtual machine to system
physical addresses 1n a system memory of the computer sys-
tem running the primary virtual machine has been marked by
the processor of the computer system to indicate a successiul
write operation to the memory page during the current time
interval.

20. The computer system of claim 15, wherein the heuristic
measures the absence of modifications for a pre-determined
number of consecutive previous time intervals.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

