US008543992B2
a2 United States Patent (10) Patent No.: US 8,543,992 B2
Jiang et al. 45) Date of Patent: Sep. 24, 2013
(54) METHOD AND APPARATUS FOR 5,768,594 A * 6/1998 Blellochetal. 717/149
5,872,972 A * 2/1999 Boland et al. 718/102
PARTITIONING PROGRAMS TO BALANCE 6,374,403 B1* 4/2002 Darteetal. .cooooovnn..... 717/161
MEMORY LATENCY 6,587,866 B1* 7/2003 Modietal.cccoovvvr.... 718/105
6,601,084 B1* 7/2003 Bhaskaranetal. 718/105
(75) Inventors: Xiaodan Jiang, Shanghai (CN); 6,681,388 B1* 1/2004 Satoetal. 717/159
: : - 6,691,306 B1* 2/2004 Cohenetal. 717/139
Jinquan Dai, Shanghai (CN) 6.728.748 B1* 4/2004 Mangipudi et al. 718/105
. 6,952,816 B2* 10/2005 Guptaetal.cccoo..... 716/18
(73) Assignee: Intel Corporation, Santa Clara, CA 6.970,.929 B2* 11/2005 B:E ;;& ““““““““““““ 700/276
(US) 7,103,879 B2* 9/2006 Ruellanetal. 717/130
7,162,579 B2* 1/2007 Hornetal. ... 711/114
(*) Notice: Subject to any disclaimer, the term of this gaiggagg; g% : ?; 3882 Eajlapeyal?jt al. %éﬁ % (1)‘53
: : 400, alpern et al.
patent 1s extended or adjusted under 33 7.908.355 B2* 3/2011 Chauffouretal. 709/224
U.S.C. 154(b) by 1495 days. 8,176,479 B2* 5/2012 Morrow et al. 717/155
(21) Appl.No.. 10/585,680 (Continued)
_ FOREIGN PATENT DOCUMENTS
(22) PCT Filed: Dec. 17, 2003 Ep 0363887 A2 4/1990
JP 04-070439 3/1992
(86) PCT No.: PCT/CN2005/002232 OTHER PURT ICATIONS
§ 371 (o)(1), S. Ho, S. Han, H. Kim “Partitioning a lenient parallel language into

(2), (4) Date: Jul. 10, 2006 sequential threads™, 1995, Proceedings of the Twent-Eight Hawan

International Conference on System Sciences, vol. 2, pp. 83-92.*

(87) PCT Pub. No.: ' WQO2007/068148 Au, E.K.S; Wai Ho Mow A modified state reduction algorithm for
_ computing Weight Enumerators for Convolution Codes, 2005, ISIT
PCT Pub. Date: Jun. 21, 2007 20035 Proceedings, International Symposium.™
_ o Meng Wang, Chungu L1 and Xiaorong Wang, “Chinese Automatic
(65) Prior Publication Data Summarization Based on Thematic Sentence Discovery”, 2007,
US 2009/0193405 A1 Tul. 30. 2000 Fuzzy Systems and Knowledge discovery.™

Liyang Lai Patel, J.H. Rinderknecht and T. Wu-Teng Cheng “Hard-
ware Efficient LBIST with Complementary Weights™, 2005, VLSI in

(51) Imt. CL Computers and Processors.™
GO6lF 9/45 (2006.01) Krishnamurthy, “A Brief Survey of Papers on Scheduling for
(52) U.S. CL Pipelined Processors™, 1990, SIGPLAN Notices, V25 #7, pp.
USPC 717/149; 717/151; 717/161; 718/102; 27-1067
718/105 Primary Examiner — Jason Mitchell
(58) Field of Classification Search (74) Attorney, Agent, or Firm — L. Cho
None (57) ABSTRACT

See application file for complete search history. A method of compiling code that includes partitioning

(56) References Cited instructions in the code among a plurality of processors based
on memory access latency associated with the instructions 1s
U.S. PATENT DOCUMENTS disclosed. According to one aspect of the invention, partition-

ing instructions icludes partitioning memory access depen-

5,179,699 A * 1/1993 Iyeretal. ..., I/1 dence chains. Other embodiments are described and claimed.
5,524,264 A 6/1996 Shirota et al.
5,642,512 A 6/1997 Tanaka et al. 15 Claims, 11 Drawing Sheets
R DESIREDLENGTHOFUPSTREAM = N/d
a1 |
| ASSIGN FIRST NUMBER OF
DESIREDLENGTHOFUPSTREAM

NODES TO THE UPSTREAM STAGE
602

CLOSE UP THE INSTRUCTIONS IN THE
UPSTREAM STAGE

a0

COMPUT
GHT OF THE UPSTREAM STAGE
TOO LARGE

04

DETERMINE A NEW NUMBER OF
— DESIREDLENGTHOFUPSTREAM
805

— -

UTILIZE ASSIGNMENTS MADE
g0g ‘

US 8,543,992 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2002/0124240 Al
2003/0037319 Al
2003/0126408 Al

2004/0158694 Al

* % % *

9/2002 Ruellanetal. 7
2/2003 Narangcccoeeeeen, 7
7/2003 Vajapeyamet al. 7
8/2004 Tomazmetal. 7

17/140
17/144
12/214

12/225

2005/0149940 Al
2006/0026599 Al
2006/0037024 Al
2006/0112377 Al
2009/0089765 Al
2011/0067017 Al

A R

* cited by examiner

7/2005
2/2006
2/2006
5/2006
4/2009
3/2011

Calinescu et al. 718/104
Herington et al. 718/105
Bodascocovviiiininin, 718/105
Naculetal. 717/140
Guoetal.ooovvveinninl, 717/144
Ghosh-Roy et al. 717/155

U.S. Patent Sep. 24, 2013 Sheet 1 of 11 US 8,543,992 B2

PROCESSOR PROCESSOR 100
1L 7T ’
CPU BUS
110

BRIDGE/MEMORY
CONTROLLER - MEMORY
111 —
120

NETWORK DISPLAY DEVICE BUS
CONTROLLER CONTROLLER BRIDGE
121 122 123

10 BUS
130

INPU AUDIO
STO INTERFACE CONTROLLER
132 133

10 BUS

FIG. 1

US 8,543,992 B2

Sheet 2 of 11

Sep. 24, 2013

U.S. Patent

¢ 'Old

(1[4
1INN HOLVHIANIO
10092

oz [evz) [z]

1INN
SISATVYNY 3000

ON3 ANOJ3

T4
HIOVYNVIN
d37dNOO

00c¢

US 8,543,992 B2

Sheet 3 0f 11

Sep. 24, 2013

U.S. Patent

€ Olid

1IN

H1ON31

OLE
HIOVNVYIN

NOLLILYYd 3d00

00t

US 8,543,992 B2

Sheet 4 of 11

Sep. 24, 2013

U.S. Patent

¥ "Old

Sov
SNOLLONYLSNI
ONINIVNIY NOISSY

4
NIVHO 3ON3aN3d3d
SS300V AHOWIN NOLLILNEVd

€ob
NIYHO JON3AN3d30
SS3VVV AHOWAN J1VI3INIO

2ov
HdVdO 3JON3ANId30
SSIAVOV AHOWIN JLVHINIO

1oy
JON3AN343a

NOILONYLSNI A4ILLNSdI

U.S. Patent Sep. 24, 2013 Sheet 5 of 11 US 8,543,992 B2

IS THERE
A MEMORY ACCESS M
NOT PREVIOUSLY
EXAMINED?

NO END
202

EMPTY THE WORK QUEUE
203

PUT ALL NODES WHICH ARE
DEPENDENT ON M INTO

THE WORK QUEUE
304

IS THERE
A NODE N IN THE WORK
QUEUE
505

NO

YES

REMOVE NODE N FROM
THE WORK QUEUE
906

ISN A
MEMORY ACCESS?
207

YES NO

_ PUT ALL NODES WHICH ARE DEPEN-
ADD-MEMORY ACCESS DENT ON N AND NOT VISITED

DEPENDENCE M -> N BEFORE INTO THE WORK QUEUE
508 509

FIG. 5

US 8,543,992 B2

Sheet 6 of 11

Sep. 24, 2013

U.S. Patent

9 ld

O

N

909

JAVIN SININNOISSY JZIMLN

S09
WY3d1SdN4OHLONIIA3WISAA
40 YIAGNNN M3IN V INING3L3A

S3dA

$09
39UV1 O0L
JOVIS WVIAH1SdN 3HL 40 1HOI3
31NdNOD

€09
JOV1S NV3ULSdN
JHL NI SNOLLONYLISNI FHL dN ISOTO

¢09
JOVIS NVIH1SdN dH1 OL S3AON
WV 1SdN4A0HLONIT1A3HISIA
40 J38NNN LSdid NOISSY

109

P/N = NV3Y1SdN40H1ONINA3FHISIA

L "Old

904
JAYIN SINIWNOISSY 3ZINILN

US 8,543,992 B2

GOL
NWVZHISNMOQJOHLONI1A3HIS3A
40 Y3A9ANNN M3N V ININY3 130
— S3A
- 02
” ¢A98V1 O0L ADVIS
5 ON WVIALSNMNMOQ 3HL 40 1HODISM
= 31NdNOD
€0/
e AOVILS NY3H1SNNMOQ
< JH1 NI SNOILLON¥ALSNI 3HL 4N 3SOT10
M.,,
< 207
72 J9OV1S WYAHISNMOQA 3HL Ol S3AON

WVINLSNMOGJOH1LONI1G3HIS30
40 Y38NNN 1SVY'1 NOISSV

102
P/(1-P).N = NVYIHLSNMOQIOHIONIIAIVISIO

U.S. Patent

U.S. Patent Sep. 24, 2013 Sheet 8 of 11 US 8,543,992 B2

FIG. 8

U.S. Patent Sep. 24, 2013 Sheet 9 of 11 US 8,543,992 B2

FIG. 9

U.S. Patent Sep. 24, 2013 Sheet 10 of 11 US 8,543,992 B2

FIG. 10

2->6->10->12
3->10->12
3->12

US 8,543,992 B2

Sheet 11 of 11

Sep. 24, 2013

U.S. Patent

b1 "Old

ebejs weansumop ay)

(91’ 21)9um (Z1)
B+ =001)
(Gi)peal = 9 (01)
(G (6)

(D == jo53uoo)}

(s (2)

abejs weasjsdn ay)

}l = TOH.LNOD _ 0 = 10¥1INOD

(0 <€ (8)

(¥))peaa=g} (9)
o+a=1n (G

(eNb (¥)

(L + 1)peai=¢} (g)
(LWpeas=7z1 (2)
=13 ()

US 8,543,992 B2

1

METHOD AND APPARATUS FOR
PARTITIONING PROGRAMS TO BALANCE
MEMORY LATENCY

FIELD

An embodiment of the present invention relates to compil-
ers. More specifically, an embodiment of the present imnven-
tion relates to a method and apparatus for partitioning pro-
grams to balance memory latency.

BACKGROUND

Processor designs are moving towards multiple core archi-
tectures where more than one core (processor) 1s 1mple-
mented on a single chip. Multiple core architectures provide
increased computing power while requiring less space and a
lower amount of power. Multiple core architectures are par-

ticularly useful for pipelining imstructions 1n applications that
require high processing speeds, such as packet processing in
networks which may require processing speeds of up to 10
(igabits per second. The 1nstructions may be pipelined, for
example, into stages where each stage 1s supported by a
different processor or processor core.

The performance of pipelined computations as a whole can
be no faster than the slowest of the pipeline stages. For this
reason, when pipelining instructions, compilers attempt to
balance instructions among stages as evenly as possible. It 1s
common for compilers to partition instructions between
stages based upon the compute cycles required for executing
instructions. This technique may be elflective 1n some
instances. However, when the instructions include a large
number ol memory accesses, the latency required for com-
pleting some memory accesses may produce additional
undesired delay that 1s not accounted for by the compilers.
For example, while the latency of two independent memory
accesses may be overlapped with each other, instructions that
depend on the completion of a particular memory access
operation cannot be executed until the memory access 1s
completed. Hence, instructions with dependencies on
memory access operations cannot be overlapped with the
latency of the memory access.

Thus, what 1s needed 1s a method and apparatus for parti-
tioming programming to balance memory latency.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of embodiments of the present
invention are illustrated by way of example and are not
intended to limit the scope of the embodiments of the present
invention to the particular embodiments shown.

FI1G. 11s ablock diagram of an exemplary computer system
in which an example embodiment of the present invention
may be implemented.

FI1G. 2 1s a block diagram that illustrates a compiler accord-
ing to an example embodiment of the present invention.

FIG. 3 1s ablock diagram of a code partitioning unit accord-
ing to an example embodiment of the present invention.

FIG. 4 1s a flow chart illustrating a method for partitioning,
memory access latency according to an example embodiment
of the present invention.

FI1G. 5 15 a flow chart 1llustrating a method for generating a
memory access dependence graph according to an example
embodiment of the present invention.

FI1G. 6 1s a flow chart illustrating a method for partitioning,
a memory access dependence chain into an upstream stage
according to an example embodiment of the present mven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 1s a flow chart illustrating a method for partitioning
a memory access dependence chain into a downstream stage

according to an example embodiment of the present mnven-
tion.

FIG. 8 illustrates an exemplary dependence graph accord-
ing to an example embodiment of the present invention.

FIG. 9 illustrates an exemplary memory access depen-
dence graph according to an example embodiment of the
present invention.

FIG. 10 illustrates exemplary memory access dependence
chains according to an example embodiment of the present
invention.

FIG. 11 illustrates an exemplary pipelined program with
balanced memory latency according to an example embodi-
ment of the present invention.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
specific nomenclature 1s set forth to provide a thorough
understanding of embodiments of the present invention.
However, 1t will be apparent to one skilled in the art that
specific details in the description may not be required to
practice the embodiments of the present invention. In other
instances, well-known components, programs, and proce-
dures are shown 1n block diagram form to avoid obscuring
embodiments of the present invention unnecessarily.

FIG. 11s a block diagram of an exemplary computer system
100 according to an embodiment of the present invention. The
computer system 100 includes a plurality of processors and a
memory 113. Block 101 represents a first processor 101 and
block 102 represents a jth processor, where 1 may be any
number. The processors 101 and 102 process data signals.
The processors 101 and 102 may be complex instruction set
computer microprocessors, reduced instruction set comput-
Ing microprocessors, very long instruction word micropro-
cessors, processors implementing a combination of nstruc-
tion sets, or other processor devices. Fach processor may
include one or more processor cores that may support one or
more hardware threads. The computer system 100 1s 1llus-
trated with processors represented as separate blocks. It
should be appreciated, however, that the processors may
reside on a single chip and may be represented as a single
block. The processors 101 and 102 are coupled to a CPU bus
110 that transmits data signals between processor 101 and
other components in the computer system 100.

The memory 113 may be a dynamic random access
memory device, a static random access memory device, read-
only memory, and/or other memory device. The memory 113
may store mstructions and code represented by data signals
that may be executed by the processor 101. According to an
example embodiment of the computer system 100, a compiler
may reside 1n a different computer system and generate des-
tination 1nstruction codes which are downloaded and
executed on the computer system 100. Alternatively the com-
piler may be stored 1n the memory 113 and implemented by
the processors 101 and 102 1n the computer system 100. The
compiler may partition programs to balance memory latency.
According to one embodiment, the compiler partitions
instructions 1n the code of a program among the processors
101 and 102 based on memory access latency associated with
the 1nstructions.

A cache memory may reside inside each of the processors
101 and 102 to store data signals stored in memory 113. The
cache speeds access to memory by the processor 101 by
taking advantage of its locality of access. In an alternate
embodiment of the computer system 100, the cache resides

US 8,543,992 B2

3

external to the processor 101. A bridge/memory controller
111 1s coupled to the CPU bus 110 and the memory 113. The

bridge/memory controller 111 directs data signals between
the processor 101, the memory 113, and other components in
the computer system 100 and bridges the data signals
between the CPU bus 110, the memory 113, and a first input
output (10) bus 120.

The first IO bus 120 may be a single bus or a combination
of multiple buses. The first 10 bus 120 provides communica-
tion links between components 1in the computer system 100. A
network controller 121 1s coupled to the first IO bus 120. The
network controller 121 may link the computer system 100 to
a network of computers (not shown) and supports communi-
cation among the machines. A display device controller 122 1s
coupled to the first 10 bus 120. The display device controller
122 allows coupling of a display device (not shown) to the
computer system 100 and acts as an interface between the
display device and the computer system 100.

A second 10 bus 130 may be a single bus or a combination
of multiple buses. The second 10 bus 130 provides commu-

nication links between components 1n the computer system
100. A data storage 131 1s coupled to the second 10 bus 130.
The data storage 131 may be a hard disk drive, a floppy disk
drive, a CD-ROM device, a tflash memory device or other
mass storage device. An input intertace 132 1s coupled to the
second IO bus 130. The mput interface 132 may be, for
example, a keyboard and/or mouse controller or other 1input
interface. The input interface 132 may be a dedicated device
or can reside i another device such as a bus controller or
other controller. The input interface 132 allows coupling of an
input device to the computer system 100 and transmits data
signals from an mnput device to the computer system 100. An
audio controller 133 1s coupled to the second 10 bus 130. The
audio controller 133 operates to coordinate the recording and
playing of sounds and 1s also coupled to the 10 bus 130. A bus
bridge 123 couples the first 10 bus 120 to the second 10 bus
130. The bus bridge 123 operates to bufler and bridge data
signals between the first 10 bus 120 and the second 10 bus
130.

FIG. 2 1s a block diagram that illustrates a compiler 200
according to an example embodiment of the present mven-
tion. The compiler 200 includes a compiler manager 210. The
compiler manager 210 receives source code to compile. The
compiler manager 210 interfaces with and transmits informa-
tion between other components 1n the compiler 200.

The compiler 200 1includes a front end unit 220. According,
to an embodiment of the compiler 200, the front end unit 220
operates to parse source code and convert it to an abstract
syntax tree.

The compiler 200 includes an intermediate language (IL)
unit 230. The intermediate language unit 230 transforms the
abstract syntax tree into a common intermediate form such as
an intermediate representation. It should be appreciated that
the intermediate language unit 230 may transform the
abstract syntax tree into one or more common intermediate
forms.

The compiler 200 includes a code analysis unit 240. The
code analysis unit 240 includes a dependence information
unit 241. According to an embodiment of the code analysis
unit 240, the dependence information unit 241 identifies
instruction dependence information such as tlow dependence
and control dependence between instructions 1n the code. The
dependence information unit 241 may generate a memory
access dependence graph and memory access dependence
chains from the instruction dependence information. The
code analysis unit 240 includes a code partitioning unit 242

10

15

20

25

30

35

40

45

50

55

60

65

4

that partitions instructions in the code among a plurality of
processors based on memory access latency associated with
the 1nstructions.

The compiler 200 includes a code generator unit 250. The
code generator unit 250 converts the intermediate represen-
tation into machine or assembly code.

FIG. 3 1s a block diagram of a code partitioning unit 300
according to an example embodiment of the present mnven-
tion. The code partitioning unit 300 may be used to 1mple-
ment the code partitioning unit 242 illustrated in FIG. 2. The
code partitioning unit 300 partitions instructions 1n code to
one or more pipeline stages. Each pipeline stage may be
executed by a separate processor. The code partitioning unit
300 includes a code partition manager 310. The code partition
manager 310 recerves code mstruction dependence informa-
tion and memory access dependence chains. The code parti-
tion manager 310 mterfaces with and transmits information
between other components 1n the code partitioning unit 300.

The code partitioning unit 300 includes a length unit 320.
The length unit determines a number of nodes from amemory
access dependence chain to allocate to an upstream stage and
a downstream stage. The nodes from the memory access
dependence chain represent memory access nstructions. The
upstream stage may be designated as a pipeline stage. The
downstream stage may be designated as one or more pipeline
stages after the upstream stage. According to an embodiment
of the present invention, the number desired upstream nodes
to allocate to the upstream stage 1s N/d and the number of
desired downstream nodes to allocate to the downstream
stage 15 N*(d-1)/d, where N 1s the length of the memory
access dependence chain, and d 1s the pipelining degree. It
should be appreciated that this relationship may be adjusted
according to the actual compute environment.

The code partitioning umt 300 includes an assignment unit
330. The assignment umt 330 assigns a first number of
desired upstream nodes 1n a memory access dependence
chain to the upstream stage. The assignment umt 330 may
also assign a last number of desired downstream nodes 1n a
memory access dependence chain to the downstream stage.

The code partitioning unit 300 includes a close up unit 340.
The close up unit 340 assigns instructions 1n the code which
may include memory access or non-memory access 1nstruc-
tions for which the first number of desired upstream nodes 1s
dependent on to the upstream stage. After the memory access
dependence chain has been processed for downstream stage
assignment, the close up unit 340 may also assign instructions
in the code which may include memory access or non-
memory access instructions for which depends on the last
number of desired downstream nodes to the downstream
stage. The close up unit 340 assigns an 1nstruction only once.
Only remaining unassigned instructions are available for
assignment to other stages.

The code partitioning unit 300 includes an evaluation unit
350. The evaluation unit 350 determines whether a computed
weight for executing the instructions assigned to the upstage
stream or the downstream stage exceeds a predetermined
value. If the computed weight required for executing the
instructions 1n the upstream stage or the downstream stage
exceeds a predetermined value, a new number of desired
upstream nodes or a new number of desired downstream
nodes 1s determined. According to an embodiment of the code
partitioning unit 300, the new number may include one less
number of desired upstream nodes or number of desired
downstream nodes.

The code partitioning unit 300 1ncludes a balancing unit
360. According to an embodiment of the present invention,
the components of the code partitioning unit 300 process each

US 8,543,992 B2

S

memory access dependence chain to assign instructions to
either an upstream stage or a downstream stage. After all the
memory access dependence chains have been processed, the
balancing unit 360 assigns the remaining unassigned 1nstruc-
tions 1n the code to either the upstream stage or downstream
stage. The code partitioning unit 300 partitions instructions to
two stages at a time. The mstructions assigned to an upstream
stage represent instructions that may be assigned to a single
pipelined stage. The instructions assigned to the downstream
stage may require further partitioning by the code partitioning
unit 300 1n order to 1dentily instructions for additional pipe-
lined stages 1f the pipelining degree (number of pipelined
stages) 1s greater than 2.

FI1G. 4 1s a flow chart illustrating a method for partitioning,
memory access latency according to an example embodiment
ol the present invention. Some of the techniques 1n the flow
chart may be performed by a compiler such as the compiler
shown 1n FIG. 3. At 401, instruction independence informa-
tion for instructions 1n code 1s identified. The 1nstruction
independence mformation may include the flow dependence
information and control dependence information of every
istruction 1n the program.

At 402, a memory access dependence graph 1s generated.
The memory access dependence graph may be generated
from the mstruction independence information determined at

401.

At 403, memory access dependence chains are generated
from the memory access dependence graph generated at 402.
According to an embodiment of the present invention, a
memory access dependence chain 1s a path (n,, n,, ...n,) in
the memory access dependence graph where n, has no pre-
decessors and n, has no successor, and can be computed by
traversing the memory access dependence graph.

At 404, the memory access dependence chains are parti-
tioned. The memory access dependence chains are parti-
tioned using a set of procedures where the instructions in the
code are partitioned into two stages each time the set of
procedures 1s performed. For d-way pipelining transforma-
tion, where d 1s the pipelining degree, the set of procedures 1s
performed d-1 times. The set of procedures partitions the

instructions in the code to an upstream stage and a down-
stream stage. The set of procedures may be subsequently
performed on the instructions assigned to the downstream
stage when necessary. According to an embodiment of the
present invention, the memory access dependence chains are
partitioned 1n a decreasing order of length.

At 4035, the remaining instructions are assigned. According
to an embodiment of the present invention, the remaining,
instructions may be assigned while trying to balance a com-
puted weight among the pipelined stages, or using other tech-
niques.

FIG. 5 1s a flow chart 1llustrating a method for generating a
memory access dependence graph according to an example
embodiment of the present invention. This procedure may be
implemented by 402 shown 1in FIG. 4. At501, 1t 1s determined
whether there 1s a memory access instruction, M, not previ-
ously examined. If no memory access instruction, M, that has
not been previously examined exists, control proceeds to 502.
If a memory access instruction, M, that has not previously
been examined exists, control proceeds to 503.

At 502, control terminates the procedure.

At 503, a work queue 1s emptied.

At 504, all instructions that are dependent on memory
access mstruction M are represented as nodes and are placed
in the work queue.

10

15

20

25

30

35

40

45

50

55

60

65

6

At 505, 1t 1s determined whether there 1s a node, N, 1n the
work queue. If there 1s not a node 1n the work queue, control
returns to 501. If there 1s a node 1n the work queue, control
proceeds to 506.

At 506, node N 1s removed from the work queue.

At507,1t1s determined whether node N 1s a memory access
instruction. IT 1t 1s determined that node N 1s a memory access
instruction, control proceeds to 508. If 1t 1s determined that

node N 1s not a memory access mstruction, control proceeds
to 509.

At 508, memory access dependence M 1s connected to N 1n
the memory access dependence graph.

At 509, all instructions that are dependent on the nstruc-
tion represented by node N and have not been visited before
are placed into the work queue. Control returns to 505.

FIG. 6 1s a tlow chart 1llustrating a method for partitioning
a memory access dependence chain into an upstream stage
according to an example embodiment of the present mnven-
tion. FIG. 7 1s a flow chart illustrating a method for partition-
ing a memory access dependence chain mto a downstream
stage according to an example embodiment of the present
invention. The techniques in FIGS. 6 and 7 may be applied
together to each memory access dependence chain identified
in code. Together, the technique 1llustrated in FIGS. 6 and 7
may be used to implement 404 shown 1n FIG. 4. At 601, a
number of nodes from a memory access dependence chain to
allocate to an upstream stage (DesiredLengthofUpstream) are
determined. According to an embodiment of the present
invention, the number of desired upstream nodes to allocate to
the upstream stage 1s N/d.

At 602, a first number of desired upstream nodes 1n a
memory access dependence chain are assigned to the
upstream stage.

At 603, the instructions 1n the upstream stage are closed up.
According to an embodiment of the present invention, closing
up includes assigning instructions in the code, which may
include non-memory access instructions, for which the first
number of desired upstream nodes are dependent on to the
upstream stage.

At 604, 1t 1s determined whether a computed weight for
executing the instructions assigned to the upstage stream
exceeds a predetermined value. If the computed weight
required for executing the instructions in the upstream stage
exceeds a predetermined value, control proceeds to 605. If the
computed weight required for executing the istructions 1n
the upstream stage does not exceed the predetermined value,
control proceeds to 606.

At 6035, anew number of desired upstream nodes to allocate
to the upstream stage 1s determined. According to an embodi-
ment of the present invention, the new number may be the
previous number subtracted by one.

At 606, the assignments made to the upstream stage are
utilized.

Retferring to FIG. 7, at 701, a number of nodes from a
memory access dependence chain to allocate to adownstream
stage (DesiredLengthotDownstream) 1s determined. Accord-
ing to an embodiment of the present invention, the number of
desired downstream nodes to allocate to the downstream
stage 1s N*(d-1)/d.

At 702, a last number of desired downstream nodes 1n a
memory access dependence chain are assigned to the down-
stream stage.

At 703, the instructions 1n the downstream stage are closed
up. According to an embodiment of the present invention,
closing up may include assigning instructions in the code,
which may include memory and non-memory access mstruc-

US 8,543,992 B2

7

tions, which depend on the last number of desired down-
stream nodes to the downstream stage.

At 704, it 1s determined whether a computed weight for
executing the instructions assigned to the downstage stream
exceeds a predetermined value. If the computed weight
required for executing the instructions in the downstream
stage exceeds a predetermined value, control proceeds to 705.
I1 the computed weight required for executing the instructions
in the downstream stage does not exceed the predetermined
value, control proceeds to 706.

At 705, a new number of desired downstream nodes to
allocate to the downstream stage 1s determined. According to
an embodiment of the present invention, the new number may
be the previous number subtracted by one.

At 706, the assignments made to the downstream stage are
utilized.

FIGS. 4-7 are flow charts 1llustrating methods according to
embodiments of the present invention. The techniques 1llus-
trated 1n these figures may be performed sequentially, in
parallel or in an order other than that which 1s described. It
should be appreciated that not all of the techniques described
are required to be performed, that additional techmiques may
be added, and that some of the 1llustrated techniques may be
substituted with other techniques.

According to an embodiment of the present imvention,
memory access instructions are allocated among program
partitions 1n the pipelining transformation of applications.
The memory access latency 1n each pipeline stage 1s eflec-
tively hidden by overlapping the latency of memory accesses
and other operations. This 1s achieved by summarnzing the
dependence between the memory access instructions in the
program, constructing dependence chains of the memory

access 1nstructions, and partitioning the memory access
dependence chains evenly among the pipeline stages.

A group of exemplary instructions which may be parti-
tioned across two pipelined stages according to an embodi-
ment of the present invention 1s shown below.

(1) t1 =1();
(2) t2 =read(tl)
(3) t3 =read (t1 + 1)
(4) g(t3)
(5) t4 =12 +cl
(6) t5 =read (t4)
(7) h(t5)
(8) if (t3>0)

{
(9) k(t5)
(10) t6 =read (t5)
(11) t7 =t4 +1
(12) write (t7, t6)

h

Referring to FI1G. 4, at 401, instruction independence infor-
mation for instructions in code 1s i1dentified. The 1nstruction
independence imformation may include the flow dependence
information and control dependence imformation of every
instruction 1n the program. FIG. 8 i1llustrates an exemplary
dependence graph generated for instructions (1)-(12) accord-
ing to an example embodiment of the present invention.
Instructions (1)-(12) are represented as nodes 1-12.

At 402, a memory access dependence graph 1s generated.
The memory access dependence graph may be generated
from the 1nstruction independence information. The memory
access dependence graph shown 1n FIG. 9 may be generated
by using the technique shown 1n FIG. 5.

10

15

20

25

30

35

40

45

50

55

60

65

8

At 403, memory access dependence chains are generated
from the memory access dependence graph. The memory
access dependence chains shown 1n FIG. 10 may be generated

by traversing the memory access dependence graph shown in
FIG. 9.

At 404, the memory access dependence chains are parti-
tioned. The set of procedures shown 1n FIGS. 6 and 7 may be
applied to the first memory access dependence chain
2—6—10—12.

Referring, to FIG. 6,
DesiredLengthotUpstream=N/d=4/2=2.

At 602, the first 2 nodes, nodes 2 and 6 that correspond to
instructions (2) and (6) are assigned to the upstream stage.

At 603, instructions (2) and (6) are dependent on 1nstruc-
tions (1) and (§8), thus nodes 1 and S are also assigned to the
upstream stage.

Assuming that the computed weight of instructions (1), (2),
(5), and (6) does not exceed a predetermined value, the

assignments made at 602 and 603 are utilized.

Referring to FIG. 7, at 701,
DesiredLengthofDownstream=N*(d-1)/d=4*(2-1)/2=2.

At 702, the last 2 nodes, nodes 10 and 12 that correspond to
istructions (10) and (12) are assigned to the downstream
stage.

At 703, since no nodes are dependent on 1nstructions (10)
and (12) which have not already been considered, no addi-
tional nodes are assigned to the downstream stage.

Reterring back to FIG. 6, the second memory access chain
2—6—12 1s now partitioned to the upstream stage. At 601,
the DesiredLengthotUpstream=N/d=3/2=1.35, which rounds
to 2. It should be appreciated that other embodiments of the
invention may round difierently.

At 602, the first 2 nodes, nodes 2 and 6 have already been
assigned to the upstream stage. Thus, no further assignment
of nodes 1n the memory access dependence chain or other
nodes are assigned to the upstream stage. Control proceeds to
FIG. 7 for partitioning to the downstream stage.

At 701, the DesiredLengthotDownstream=N*(d-1)/d=3*
(2-1)/2=1.5, which rounds to 2.

At 702, the last 2 nodes, nodes 6 and 12 have already been
assigned to the downstream stage. Thus, no further assign-
ment of nodes 1n the memory access dependence chain or
other nodes are assigned to the downstream stage.

Referring back to FIG. 6, the second memory access chain
3—10—12 1s now partitioned to the upstream stage. At 601,
the DesiredLengthotUpstream=N/d=3/2=1.35, which rounds
to 2.

At 602, of the first 2 nodes, nodes 3 and 10, node 3, which
corresponds to instruction (3) 1s assigned to the upstream
stage. Node 10 has already been assigned to the downstream
stage.

At 603, mstruction (3) 1s dependent on instruction (1)
which has already been assigned to the upstream stage.

Assuming that the computed weight of instructions (1), (2),
(3), (8), and (6) does not exceed a predetermined value, the
new assignments made at 602 1s utilized.

Referring to FIG. 7, at 701, the
DesiredLengthotDownstream=N*(d-1)/d=3*(2-1)/2=1.3,
which rounds to 2.

At 702, the last 2 nodes, nodes 10 and 12 have already been
assigned to the downstream stage. Thus, no further assign-
ment of nodes 1 the memory access dependence chain or
other nodes are assigned to the downstream stage.

Referring back to FIG. 6, the third memory access chain
3—12 1s now partitioned to the upstream stage. At 601, the

DesiredLengthotUpstream=N/d=2/2=1.

at 601, the

the

US 8,543,992 B2

9

At 602, the first nodes, node 3, has already been assigned to
the upstream stage. Thus, no further assignment of nodes in
the memory access dependence chain or other nodes are
assigned to the upstream stage. Control proceeds to FIG. 7 for
partitioning to the downstream stage.

At 701, the DesiredLengthofDownstream=N*(d-1)/d=2%*
(2-1)/2=1.

At702, the last node, nodes 12 has already been assigned to
the downstream stage. Thus, no further assignment of nodes
in the memory access dependence chain or other nodes are
assigned to the downstream stage.

Thus, nodes (1), (2), (3), (5), and (6) are assigned to the
upstream stage, and nodes (10) and (12) are assigned to the
downstream stage.

Referring back to FI1G. 4, at 403, the remaining instructions
are assigned. According to an embodiment of the present
invention, the remaining 1nstructions may be assigned while
trying to balance a computed weight among the pipelined
stages, or using other techniques. In this example, instruc-
tions (4) and (8) are assigned to the upstream stage, and
istructions (7), (9), and (11) are assigned to the downstream
stage to generate the exemplary pipelined program with bal-
anced memory latency as shown 1n FIG. 11.

Embodiments of the present invention may be provided as
a computer program product, or software, that may include a
machine-readable medium having stored thereon instruc-
tions. The machine-readable medium may be used to program
a computer system or other electronic device. The machine-
readable medium may include, but i1s not limited to, floppy
diskettes, optical disks, CD-ROMs, and magneto-optical
disks or other type of media/machine-readable medium suit-
able for storing electronic instructions. The techniques
described herein are not limited to any particular software
configuration. They may find applicability in any computing
or processing environment. The term “machine readable
medium” used herein shall include any medium that 1s
capable of storing or encoding a sequence of instructions for
execution by the machine and that cause the machine to
perform any one of the methods described herein. Further-
more, 1t 1s common 1n the art to speak of soitware, 1n one form
or another (e.g., program, procedure, process, application,
module, unit, logic, and so on) as taking an action or causing,
a result. Such expressions are merely a shorthand way of
stating that the execution of the software by a processing
system causes the processor to perform an action to produce
a result.

In the foregoing specification embodiments of the imven-
tion has been described with reference to specific exemplary
embodiments thereot. It will, however, be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of the embodi-
ments of the invention. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than
restrictive sense.

What 1s claimed 1s:
1. A method of compiling code, comprising;:
partitioning instructions in the code among a plurality of
processors based on memory access latency associated
with the instructions by:
partitioning memory access dependence chains into an
upstream stage by assigning a first number of desired
upstream nodes to the upstream stage, and also
assigning instructions in the code on which the first
number of desired upstream nodes are dependent to
the upstream stage, wherein the first number of

10

15

20

25

30

35

40

45

50

55

60

65

10

desired upstream nodes 1s N/d where N 1s a length of
the memory access dependence chain and d 1s a pipe-
lining degree; and

partitioning the memory access dependence chains 1nto a
downstream stage by assigning a last number of desired
downstream nodes to the downstream stage, and assign-
ing instructions in the code which are dependent on the
last number of desired downstream nodes to the down-
stream stage, wherein the last number of desired down-
stream nodes 1s N*(d-1)/d;

performing the partitioning a plurality of times with sub-
sequent partitioning being performed on the instructions
assigned to the downstream stage.

2. The method of claim 1, wherein the length of the
memory access dependence chain N 1s a number reflecting all
available tasks 1n a sequence of memory read and write
instructions.

3. The method of claim 1, further comprising:

11 a weight required for execution of the upstream stage
exceeds a predetermined value, re-computing the num-
ber of desired upstream nodes;

assigning the re-computed number of desired upstream
nodes to the upstream stage; and

assigning instructions in the code on which the re-com-
puted number of desired upstream nodes are dependent
to the upstream stage.

4. The method of claim 1, wherein generating the memory
access dependence chains comprises 1dentifying instruction
dependence mformation.

5. The method of claim 1, wherein generating the memory
access dependence chains comprises constructing a memory
access dependence graph.

6. The method of claim 1, wherein generating the memory
access dependence chains comprises:

constructing a memory access dependence graph; and

identifying a memory access dependence chain from the
memory access dependence graph.

7. An article of manufacture comprising a non-transitory
machine accessible medium 1ncluding sequences of mnstruc-
tions, the sequences of instructions including instructions
which when executed cause the machine to perform:

partitioning instructions in code among a plurality of pro-
cessors based on memory access latency associated with
the instructions by:
partitioning memory access dependence chains into an

upstream stage by assigning a first number of desired
upstream nodes to the upstream stage, and also
assigning instructions in the code on which the first
number of desired upstream nodes are dependent on
to the upstream stage, wherein the first number of
desired upstream nodes 1s N/d where N 1s a length of
the memory access dependence chain and d 1s a pipe-
lining degree; and

partitioning the memory access dependence chains 1nto a
downstream stage by assigning a last number of desired
downstream nodes to the downstream stage, and assign-
ing istructions in the code which are dependent on the
last number of desired downstream nodes to the down-
stream stage, wherein the last number of desired down-
stream nodes 1s N*(d-1)/d;

performing the partitioning a plurality of times with sub-
sequent partitioning being performed on the instructions
assigned to the downstream stage.

8. The article of manufacture of claim 7, further comprising,
instructions which when executed cause the machine to fur-
ther perform constructing a memory access dependence
graph.

US 8,543,992 B2

11

9. A code analysis unit implemented on a processor, com-
prising:

a dependence information unit to identify dependencies
between 1nstructions 1n code; and

a code partitioning unit to partition instructions in the code
into a plurality of pipeline stages to be executed by a
plurality of processors based on memory access latency
associated with the instructions by

partitioning memory access dependence chains into an
upstream stage by assigning a first number of desired
upstream nodes to the upstream stage, and also
assigning instructions 1n the code on which the first
number of desired upstream nodes are dependent to
the upstream stage, wherein the first number of
desired upstream nodes 1s N/d where N 1s a length of
the memory access dependence chain and d 1s a pipe-
lining degree; and

partitioning the memory access dependence chains nto
a downstream stage by assigning a last number o
desired downstream nodes to the downstream stage,
and assigning instructions in the code which are
dependent on the last number of desired downstream

nodes to the downstream stage, wherein the last num-
ber of desired downstream nodes 1s N*(d-1)/d;

5

10

15

f20

12

performing the partitioning a plurality of times with sub-
sequent partitioning being performed on the instructions
assigned to the downstream stage.

10. The apparatus of claim 9, wherein the code partition
unit comprises:

an evaluation unit to determine whether a weight of the

upstream stage exceeds a predetermined value.

11. The apparatus of claim 10, wherein the length unit
determines a new number of desired length of upstream nodes
in response to the evaluation unit determining that the weight
of the upstream stage exceeds the predetermined value.

12. The apparatus of claim 10, wherein an evaluation unit
to determine whether a weight of the downstream stage
exceeds the predetermined value.

13. The apparatus of claim 12, further comprising a bal-
ancing unit to assign remaining instructions to the upstream
stage and the downstream stage 1n a manner that substantially
balances weight.

14. The apparatus of claim 10, further comprising a code
partition manager that recetves instruction dependence infor-
mation and the memory access dependence chains.

15. The apparatus of claim 9, wherein the dependence
information unit generates a memory access dependence
graph and memory access dependence chains from instruc-

tion dependence information.

¥ ¥ # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,543,992 B2 Page 1 of 1
APPLICATION NO. . 10/585680

DATED . September 24, 2013

INVENTORC(S) : Xiaodan Jiang et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In column 11, line 9, in claim 9, delete “by” and insert -- by: --, therefor.

Signed and Sealed this
Fourth Day of March, 2014

TDecbatle X oo

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

