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METHOD FOR BENCHMARKING
COMBINATORIAL PROBLEMS AND THEIR
SOLUTIONS

FIELD 5

The present disclosure 1s directed to methods for bench-
marking systems solving complex combinatorial problems
and, most particularly, to methods for comparatively bench-
marking computerized sequencing and scheduling systems. 10

BACKGROUND

Industry regularly employs information systems to solve
complex combinatorial problems, e.g., computerized sched- 15
uling programs to manage the allocation of manufacturing
equipment, manpower, and other resources amongst various
projects. In computational complexity theory, combinatorial
optimization problems are frequently classified as “INP-
hard,” and 1n real world applications 1t 1s impossible to cal- 20
culate a truly optimal solution to an NP-hard combinatorial
problem using practical quantities of computational
resources for practical periods of time. Mathematicians and
computer scientists have developed various approaches for
finding good solutions (as opposed to singularly optimal solu- 25
tions) for combinatorial problems such as Resource Con-
strained Project Scheduling (“RCPS”) and the Traveling
Salesman Problem (““I'SP”), and such approaches may ire-
quently be applied to more than one form of combinatorial
problem. Software developers and vendors have naturally 30
developed differing implementations of such known solution
approaches for various types of industries, types ol users,
types of computer hardware, etc. Consequently, the market-
place for such information systems, or “combinatorial solv-
ers,” includes a range of competing options which have vary- 35
ing features, capabilities, and/or underlying solution
approaches, and prospective purchasers face a need to evalu-
ate at least a subset of those competing options prior to mak-
ing a purchase decision.

Only 1n rare instances can any solution approach be math- 40
ematically proven to reliably find a singularly optimal solu-
tion to a combinatorial problem, so that by and large prospec-
tive purchasers seeking to compare the performance of
combinatorial solvers must benchmark candidate solvers
against one or more trial scenarios. However, benchmarking 45
combinatorial solvers presents some unique challenges.
Because a combinatorial solver cannot practically assess the
entire population of solutions for a particular problem (a
“problem solution space”), combinatorial solvers cannot
properly be compared based upon whether the solver finds the 50
optimal solution for a benchmark problem (f it 1s even
known), nor based upon the raw computational effort
required to find a good solution meeting some measurable
criterion of quality, such as a cycle time for an RCPS scenario
or a distance to be traveled for a TSP scenario. Instead, each 55
combinatorial solver will tend to develop solutions that are
influenced by a combination of the trial scenario and the
solver’s implementation of a solution approach (a “solver
solution space”), and, unless the solution approach 1s entirely
deterministic or exhaustive, a significant element of chance. 60
Thus, 1n a benchmark trial, a strong solution approach with an
ineflicient implementation may only find average quality
solutions, while a weak solution approach with a highly opti-
mized implementation may find a superior quality solution.
Yet, during longer operational uses, or when applied to more 65
complex combinatorial scenarios, or 1f simply run in different
testing circumstances (different trial scenario, different com-

2

puting hardware, or merely a different number of permissible
trials) the strong solution approach may prove to more reli-
ably find better solutions. Although benchmark trials should
seek to replicate a prospective purchaser’s operating environ-
ment, time and resource constraints typically prevent all but
the largest prospective purchasers from testing competing
combinatorial solvers against representative real world sce-
narios on fully-scaled-up computer systems. Moreover, while
academic research has gone to great lengths to develop
benchmark methods which reduce the confounding effects of
scenario-dependence, resource availability, and chance, no
reliable method has been found to eliminate such efifects.
Consequently, current benchmarking methods tend to pro-
duce ambiguous, misleading, or unreliable results that, 1n
general, are poor predictors of the performance of a combi-
natorial solver during otherwise routine applications of the
solver 1n real world operations.

Finally, some existing benchmark methods can be influ-
enced by ‘off-line engineering,” in which the combinatorial
solver’s 1mplementation of a solution approach 1s subtly
influenced by, for stance, varying the order of the mput
conditions or fixing the value of a randomization seed 1n order
to direct the combinatorial solver toward a previously deter-
mined solution for the benchmark problem. By applying a
combinatorial solver to a known benchmark problem prior to
a benchmark trial, varying the starting conditions, and then
replicating the starting conditions under which the solver
rapidly finds a particularly good solution to the problem, a
solver can be subtly directed to ‘find’ the same good solution
without altering the executable code of the solver. Because
cach combinatorial solver tends to have umique mnput and/or
data storage formats, 1t may be possible to mampulate the
ordering of the mput conditions 1 order to influence the
progress of the combinatorial solver through a problem solu-
tion space 1n ways which are not readily detectable as overt
mampulation. Similarly, 1 a combinatorial solver uses a ran-
domization seed (e.g., the content of a memory address) and
pseudo-random number generator, 1t may be possible to
mampulate the state of the computer to create a particular
seed value and, 1n so doing influence the progress of the
combinatorial solver. A combinatorial solver could thereby
benefit from extensive pre-benchmark testing of the solver
and solution space despite appearing to comply with the more
limited constraints of the benchmark trial. Vendors may resist
participating 1n benchmark trials because they suspect that
other competitors will engage in such ofi-line engineering 1n
order to 1ntluence the outcome of a benchmark comparison.
Moreover, even if such concerns are addressed, vendors may
challenge the results of competitive benchmarks, or even
forbid the publication of benchmark results, out of fear of an
unfavorable result attributable (realistically or not) to chance.
Essentially any vendor can honestly say that they could have
found a solution equal to or better than that found by another
vendor 11 given a bit more time or a few more trials. However,
using current benchmarking methods, there 1s no way to
predict how much more time or how many more trials would
likely be required.

Thus there 1s a need for a method of benchmarking a
combinatorial problem, 1.e., providing an approximate
description of the population of potential solutions for a given
combinatorial problem, as well for as an improved method of
benchmarking the performance of a combinatorial solver
given limited computational resources and limited amounts
of time. Such methods may be used to describe the perfor-
mance of a combinatorial solver relative to chance. Such
methods may also be used 1n place of benchmark approaches
which rank the output of combinatorial solvers for a single
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trial scenario, or even a suite of trial scenarios, to enhance the
representativeness of the benchmark result with respect to
different, non-benchmarked combinatorial problems of simi-
lar complexity. As will be discussed below, the results of the
method may be employed to estimate the computational
elfort to be ivested 1n order to obtain good solutions exceed-
ing a measurable criterion of quality, allowing for more
detailed evaluations of computational solvers which tend to
develop solutions of similar quality.

SUMMARY

According to one aspect, a method of benchmarking the
problem solution space of a trial scenario for a combinatorial
solver. The trial scenario includes predetermined trial sce-
nario data, and the method includes the steps of: (a) obtaining,
a random sequence; (b) reordering the predetermined trial
scenar1o data into a randomized input form according to the
random sequence; (¢) mputting the randomized mput form
into an unbiased combinatorial solver; (d) solving the ran-
domized input form with the unbiased combinatorial solver to
produce a solution; (e) evaluating the solution to measure the
value of a criterion of solution quality; and (1) recording the
measured value of the criterion of solution quality 1n a data
storage structure. The steps are repeated for a predetermined
number of trials, whereupon the statistical distribution of the
measured values 1n the data storage structure 1s analyzed in
order to determine at least one parameter of a statistical dis-
tribution function. Example parameters include the mean (or
first central moment) and variance (or second central
moment) of a Gaussian distribution function.

According to another aspect, a method of benchmarking
the characteristic performance of a combinatorial solver oper-
ating upon such predetermined trial scenario data. The
method 1includes the steps of: (a) obtaimng a random
sequence; (b) reordering the predetermined trial scenario data
into a randomized mmput form according to the random
sequence; (¢) mputting the randomized input form into the
combinatorial solver; (d) solving the randomized input form
with the combinatorial solver to produce a solution; (¢) evalu-
ating the solution to measure the value of a criterion of solu-
tion quality; and (1) recording the measured value of the
criterion of solution quality 1n a data storage structure. The
steps are repeated for a predetermined number of trials,
whereupon the statistical distribution of the measured values
in the data storage structure 1s analyzed in order to determine
at least one parameter of a statistical distribution function.
The parameter or parameters may be compared to the param-
cter or parameters determined from a benchmark of the prob-
lem solution space, or to the parameter or parameters deter-
mined from benchmarks of other combinatorial solvers, to
compare the performance of one combinatorial solver to
another and/or to chance.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a graph of the probability density function of a
standard normal distribution.

FIG. 1B 1s a graph of the cumulative probability density
function of a standard normal distribution.

FIG. 2 1s a plot of 1000 randomly selected samples taken
from a population having a standard normal distribution, and
scaled 1n terms of standard deviation from the mean, versus
sample number.

FIG. 3A 1s a graph of the empirical probability density
function of the sampled population shown 1n FIG. 2 versus
standard deviation from the mean. A histogram of the number

10

15

20

25

30

35

40

45

50

55

60

65

4

of samples falling within evenly spaced quantile bins 1s super-
imposed for illustrative purposes.

FIG. 3B 1s a graph of the empirical cumulative probability
density function of the sampled population shown 1n FIG. 2
versus standard deviation from the mean. The graph of FIG.
1B has been superimposed for 1llustrative purposes.

FIG. 4 1s a plot of the problem solution space of a 10 city
Traveling Salesman Problem 1n terms of round trip distance.

FIG. 5A 1s a histogram of the solutions plotted 1n FI1G. 4 1n
terms of round trip distance.

FIG. 5B 1s a graph of the empirical cumulative probability
density fTunction of the solutions plotted in FIG. 4 1n terms of
round trip distance. A cumulative probability density function
for a Gaussian distribution has been superimposed for 1llus-
trative purposes.

FIG. 6 1s aplot ol 1000 randomly selected samples from the
problem solution space for a 100 city Traveling Salesman
Problem 1n terms of round trip distance (indicated with ret-
erence numeral 10) and 1000 randomly selected samples
from the solver solution space for the same problem found by
a combinatorial solver commonly known as “2-opt” (1ndi-
cated with reference numeral 20).

FIG. 7A 1s a graph of the empirical cumulative probability
density function of the respective samples shown 1n FIG. 6
versus the measured round trip distance. The location of the
mean within the empirical cumulative probability density
function for the problem solution space (indicated with ret-
erence numeral 10) 1s illustrated as line “u”. The location of
the mean within the empirical cumulative probability density
function for the opt-2 solver solution space (indicated with
reference numeral 20) 1s 1llustrated as line “02”.

FIG. 7B 1s a graph of the empirical probability density
function of the respective samples shown in FIGS. 6 and 7A.

FIG. 8 1s a tlow chart 1llustrating the steps of one aspect of
the disclosed method.

FIG. 9 1s a flow chartillustrating the steps of another aspect
of the disclosed method.

FIG. 10 1s an 1llustration of an exemplary Traveling Sales-
man Problem.

FIG. 11 1s an 1illustration of an optimal solution to the
exemplary Traveling Salesman Problem shown 1n FIG. 10.

FIG. 12 1s a graph of the empirical probability density
function of solutions to the exemplary Traveling Salesman
Problem shown in FIG. 10 for 5 combinatorial solvers in
terms of probability density versus round trip distance (indi-

cated, respectively, with reference numerals 10, 20, 30, 40,
and 50).

DETAILED DESCRIPTION

To 1llustrate the operational and financial impact of com-
binatorial optimization soitware, and of purchasing decisions
involving combinatorial optimization software, consider the
economics of the manufacturing enterprise. Modern industry
typically combines capital intensive equipment, the labor of
large groups of people, and various third party supplies to
produce a finished product. Each business’s competitive posi-
tion 1s determined 1n part by how much work can be accom-
plished each day, making efficient use of the resources avail-
able to the business. However, people and equipment cannot
be kept continuously busy. For example, during a manufac-
turing shift, a milling machine may spend the majority of its
time operating and visibly performing value-added work, yet
there will be other times when operations must be suspended
for necessary reconfiguration or maintenance (like during the
installation of a fixture), and still other times when the
machine 1s simply i1dle, waiting for an operator to become
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available or for material to arrive. The ratio between value-
added operating hours and total possible operating hours 1s a
standard measure of resource utilization. If the milling
machine 1s available 8 hours per shift, but performs only 6
hours of valued-added work per shift, then 1ts resource utili-
zation 1s 75%. If rescheduling permits 7 hours of valued-
added work per shift with only 1 hour of reconfiguration
and/or 1dle time, then 1ts resource utilization 1s improved to
87.5%. Improvements to resource utilization have two ben-
efits. First, they generally decrease the business cost of a
finished product, allowing for improved product pricing and/
or profit. Second, they generally decrease manufacturing
cycle time, enabling more product to be produced per unit
time with existing levels of equipment and labor.

In order to maximize the efficiency of their operations,
businesses will typically schedule work 1n advance 1n order to
keep their most valuable resources continuously engaged in
value-added work. While scheduling cannot, by 1tself, maxi-
mize resource utilization, scheduling combined with well
defined management practices and disciplined execution has
a substantial effect on overall resource utilization. Although
the present disclosure focuses on RCPS scenarios and TSP
scenari1os as general and detailed examples of applications of
the disclosed method, respectively, those of skill in the art will
recognize that the methods are not limited to those cases, and
may be applied to any combinatorial problem and solution
approach where a measurable criterion for solution quality
(but not necessarily the sole criterion of solution quality) 1n
the problem solution space can be approximated as a Gauss-
1an or normal distribution. Moreover, the methods are not
strictly limited to Gaussian or normal distributions, although
these will likely be the most commonly encountered distri-
butions. Without loss of generality, these methods may also
be applied to problems having criteria which may be approxi-
mated by classical statistical distributions that may them-
selves be approximated by Gaussian or normal distributions,
such as the Binomial or Poisson distributions. Most generally,
the methods presented herein may be applied to problems
where a measureable criterion for solution quality in the
problem solution space can be approximated by any classical
statistical distribution having defined moments and a defined
cumulative density function. See NIST/SEMATECH
e¢-Handbook of Statistical Methods, http://www.1tl.nist.gov/
div898/handbook/, rev. Jun. 32, 2010.

As shown 1n FIG. 1A, a Gaussian or normal distribution 1s
the well known, symmetric, two-tailed distribution arising
out of the Central Limit Theorem. As shown 1n FIG. 1B, the
distribution may also be expressed as a cumulative probabil-
ity density function, providing the probability of a randomly
collected sample having a value that 1s less than a selected
threshold value. For any measurement that i1s the sum or
average ol a large number of independent random variates,
the measurement will tend to take the form of a Gaussian
distribution. For example, if a measurement 1s based upon
1000 samples of the cycle time of randomly created project
schedules, the measurement will tend to cluster about a mean
value 1, with a variance o~ and standard deviation 0. A plot of
the sampled values, scaled 1n terms of standard deviation
from the mean and plotted against their order 1n the sampling
sequence, might have the appearance of the plot shown 1n
FIG. 2. An empirical probability density function derived
from the samples, shown 1n FIG. 3A, approximates the stan-
dard normal probability density function shown 1n FIG. 1A,
although a histogram dividing the sample population 1nto a
quantity of bins of approximately equal values (1n the 1llus-
trated case, bins of approximately equal standard deviation
from the mean) could also be constructed 1n order to assess
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whether the distribution 1s approximately Gaussian. Alter-
nately, an empirical cumulative probability density function
derived from the samples, shown in FIG. 3B, may be visually
and/or analytically correlated to a Gaussian cumulative prob-
ability density function, like the one shown 1n FIG. 1B and
superimposed within FIG. 3B, 1n order assess whether the
distribution 1s approximately Gaussian.

The applicants have found that RCPS scenarios of suili-
cient complexity, e.g., 25 or more activities involving 3 or
more resources, and TSP scenarios of sullicient complexity,
e.g., 10 or more locations, have problem solution spaces 1n
which typical criteria of quality, 1.e., measurements of cycle
time or round trip distance, respectively, are approximately
Gaussian distributed. For example, FIG. 4 plots the round trip
distance of all 362,880 potential solutions to a 10 city TSP
scenario. The empirical probability density function,
approximated by the histogram shown in FIG. SA, displays a
Gaussian-like, generally symmetric, two-tailed shape. The
empirical cumulative probability density function, shown 1n
FIG. 5B, may be visually correlated to a Gaussian cumulative
probability density function, such as the function superim-
posed within the figure, or analytically tested by mathemati-
cal analyses such as the Anderson-Darling Test. However, 1t 1s
not necessary to calculate all potential solutions to a complex
combinatorial problem 1n order to determine whether a mea-
surement 1n the problem solution space 1s normally distrib-
uted. Rather, as demonstrated in the example of the prior
paragraph, it 1s possible to evaluate solutions randomly dis-
tributed within the problem solution space, obtained via an
unbiased combinatonial solver, and to subsequently assume
that the unbiased solver solution space and the problem solu-
tion space are statistically equivalent. Such a sample 10 1s
shown 1 FIG. 6, with the samples plotted versus Gaussian
distribution functions 1n FIGS. 7A and 7B about mean “u.” In
using the term “unbiased solver,” the applicants mean any
algorithm that will construct a solution without imposing a
fixed process that constrains the generated solutions and
without applying any heuristic or other technique intended to
construct a good solution. Those practiced 1n the art of opti-
mization algorithms will recognize that the following are
examples of unbiased solvers:

(1) 1n a TSP-type problem, an algorithm that ‘visits’ the

problem cities 1n exactly the order of the mnput data; and

(2)1n an RCPS-type problem, an algorithm that attempts to

schedule the problem activities 1n exactly the order of
the mput data, without violating precedence constraints
(repeatedly processing the data 1n the same order until
all activities have been scheduled).
In both cases, a population of solutions can be produced by
randomly varying the order of the input data for the algorithm,
and the problem solution space can be effectively sampled by
repeating the process for the number of trials necessary to
provide the desired statistical power. A similar sampling 1s
used to evaluate solutions randomly distributed within a
solver solution space, obtained via a candidate combinatorial
solver. Such a sample 20 1s shown 1n FIG. 6, with the samples
plotted versus Gaussian distribution functions in FIGS. 7A
and 7B about mean “02.” For sake of clarity, a computer
program including a combinatorial solver could accept an
externally randomized input form or, alternately, internally
vary the order of input data acted upon by the combinatorial
solver, such that the randomized mput form 1s not literally
input 1to the computer program 1itself, but rather generated
by the computer program and used by the internal algorithm.
Similarly, other steps described in the aspects set forth below
may be performed by multiple program-agents, acting in
concert, or by a single computer program executing each step
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of that aspect. Those skilled 1n the art will recognize that some
existing programs may require modification i order to
expose solutions constituting ‘intermediate’ results before
proceeding with further iterations of a randomized search, or
to otherwise report criterion values, parameter values, and the
like as further described below.

In one aspect of the disclosed method 100, shown 1n FIG.
8, predetermined trial scenario data 200 i1s repeatedly pre-
sented to an unbiased combinatorial solver 210 1n a random-
1zed form 1n order to develop the parameters of a statistical
distribution, such as the mean and standard deviation of a
(Gaussian distribution, which ‘benchmarks’ or approximately
describes the problem solution space. A first step 110 requires
obtaining a random sequence 202. Means for obtaining a
random sequence, such as the use of a pseudo-random num-
ber generator, will be well known to those of skill 1n the art. In
a second step 120, the predetermined trial scenario data 200 1s
reordered into a randomized input form 204 according to the
random sequence 202. Means for reordering the predeter-
mined trial scenario data 200, such as a bubble sort routine,
will also be well known to those of skill 1in the art. In a third
step 130, the randomized mnput form 204 1s mput into an
unbiased combinatorial solver 210. In a fourth step 140, the
unbiased combinatorial solver 210 solves the randomized
input form 204 to produce a solution 212. In a fifth step 150,
the solution 212 1s evaluated to measure the value of a crite-
rion of solution quality 214. Various criterion of solution
quality, such as cycle time for a RCPS scenario or round trip
distance for a TSP scenario, will be familiar to those of skill
in the art. In a sixth step 160, the measured value of the
criterion of solution quality 214 1s recorded 1n a data storage
structure 220 such as a table or array. In a seventh step 170, the
first through sixth steps are repeated for a predetermined
number of trials. In an eighth step 180, the statistical distri-
bution of the measured values 214 in the data storage structure
220 15 analyzed and the parameters 222 for a statistical dis-
tribution function 224 are determined. For Gaussian distribu-
tions, such parameters include but are not limited to the mean
1, variance o-, and standard deviation o of the distribution.
Other distribution functions and distribution function param-
cters are available 1n standard reference texts in the field of
statistics.

As a recommended additional step 190, the population of
measured values 214 1n the data storage structure 220 may be
evaluated to verify that it may be reasonably approximated by
a particular statistical distribution function. For example, the
population may be plotted as a histogram for comparison with
a distribution function which may optionally be superim-
posed upon the plot. For turther example, the population may
be subjected to a mathematical analysis, such as the Ander-
son-Darling test, to check whether there 1s evidence of a
significant deviation from an assumed probability distribu-
tion function. In an alternative approach, the analysis of the
cighth step 180 may include an automatic classification step
182 which determines the statistical distribution function 224
to be used, and thus the nature of the parameters 222 to be
determined.

In a final step of this first aspect of the disclosed method,
the parameters 222 for the statistical distribution function 224
and, either explicitly or implicitly, the statistical distribution
function 224 itself may be communicated to a third party,
such as vendor or prospective purchaser. The first aspect of
the disclosed method 100 may be performed by entities such
as benchmarking orgamizations, a prospective purchaser, or
even a vendor seeking to market 1ts solution. The communi-
cated statistical parameters may then allow third parties to
determine, without need to purchase or operate any particular
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combinatorial solver, the likelihood that a reported solution to
a trial scenario, most typically the best solution developed by
an externally or internally iterated combinatorial solver,
would have been developed as a result of mere chance.

In another aspect of the disclosed method 300, shown 1n
FIG. 9, predetermined trial scenario data 200 1s repeatedly
presented to a candidate combinatorial solver 230 1n random-
1zed form 1n order to develop the parameters of a statistical
distribution, such as the mean and standard deviation of a
Gaussian distribution, which ‘benchmarks’ or approximately
describes the solver solution space (as opposed to the problem
solution space). The steps mirror those employed 1n the first
aspect, so that a first step 310 requires obtaining a random
sequence 202. Then 1n a second step 320, the predetermined
trial scenario data 200 1s reordered into a randomized input
form 204 according to the random sequence 202. In a third
step 330, the randomized input form 204 1s mput nto the
candidate combinatorial solver 230. In a fourth step 340, the
candidate solver 230 solves the randomized input form 204 to
produce a solution 232. In a fifth step 350, the solution 232 1s
evaluated to measure the value of the criterion of solution
quality 234. In a sixth step 360, the measured value of the
criterion of solution quality 234 1s recorded 1n a data storage
structure 240. In a seventh step 370, the first through sixth
steps are repeated for a predetermined number of trials. In an
cighth step 380, the statistical distribution of the measured
values 234 1n the data storage structure 240 1s analyzed and
the parameters 242 for a statistical distribution function 244
are determined. Persons skilled 1n statistics will note that the
statistical distribution function 244 and the statistical distri-
bution function 224, or the statistical distribution function
244 of another candidate combinatorial solver 230 operating
upon the same predetermined trial scenario data 200, need not
be the same. If the solution data can reasonably be approxi-
mated by a Gaussian distribution, Binomial distribution,
Poisson distribution, or others having defined moments and a
defined cumulative density function, then the defined
moments may be dertved from the reported parameters and
used, 1n conjunction with a reported statistical distribution
function, as a basis for comparison. More sophisticated
analyses of the reported parameters, such as comparisons of
synthetic cumulative distribution functions plotted with
respect to selected criterion of solution quality (similar to the
standard normal distribution plotted 1n FIG. 1B) may also be
used to compare combinatorial solver solution spaces best
described by different statistical distribution functions.

In a final step of this second aspect of the disclosed method,
the parameters 242 for the statistical distribution function 244
and, either explicitly or implicitly, the statistical distribution
function 244 itself may be communicated to a third party. The
second aspect of the disclosed method 300 may be performed
by entities such as benchmarking organizations or a vendor
secking to market 1ts solution. The communicated statistical
parameters allow prospective purchasers to compare, without
need to purchase or operate any particular combinatorial
solver, the combinatornial solver solution space with the prob-
lem solution space, and so determine the typical improvement
that the combinatorial solver provides over solutions arrived
at by chance. Even more advantageously, the communicated
statistical parameters allow prospective purchasers to evalu-
ate the likelihood that a combinatorial solver will find a solu-
tion that 1s superior to a predetermined threshold of the cri-
terion of solution quality, and thus estimate the number of
times that a combinatorial solver will likely need to be run in

order to find a solution exceeding that threshold.

Example 1

The applicants have performed a benchmark analysis of a
manufacturing scheduling problem contained within a pub-
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licly available data set, “RCPS data_set version 1 [dated]
Mar. 13, 19935, available at http://cs.jhu.edu/~jason/325/
hw2/benchmrx/default.html. Many possible schedules are
possible for the selected benchmark schedule—575! or
approximately 10'°*'? different schedules Using cycle time, in
minutes, as the criterion of solution quality, the problem
solution space was sampled and analyzed to according the
first aspect of the method to determine that a collection of
randomly generated schedules have a normal distribution
with a mean cycle time of 50012 minutes and standard devia-
tion of 1167 minutes (or variance of 1361889 minutes®).
There are two conclusions that can be reached from this
information. First, 1t 1s easy to produce a schedule with acycle
time less than or equal to the mean (50% probability). Second,
assuming that the combinatorial solver does not take too long
to produce an individual schedule, applying the combinato-
rial solver to a randomized form of the benchmark scenario
could reasonably be expected to yield a schedule with a cycle
time that 1s about 3 standard deviations (or more) below the
mean, with a cycle-time of about 46510 minutes (a decrease
of about 7%). Such a schedule would likely be found by
applying the combinatorial solver to arandomized form of the
benchmark scenario over 1000 trials, 1.e., in 1 instance 1n
1000 trials, but of course could 1n fact require a greater or
lesser number of trials. For example, the applicants were able
to produce a solution having a cycle time o1 46908 minutes (a
decrease of 6.2% from the mean) in one 1nstance of running
1000 trials using an unbiased solver. Because the statistical
parameters have been determined using an unbiased combi-
natorial solver, the parameter values can be assumed to
approximately describe not only the unbiased solver solution
space but also the problem solution space, and any optimized
combinatorial solver, like those marketed by a vendor, would
be expected to typically produce solutions which equal or
exceed the solution quality of these solutions, which repre-
sent those that could be developed as a mere matter of chance.

The applicants have subsequently benchmarked a straight-
torward implementation of the schedule optimization method
discussed 1n U.S. Pat. No. 5,890,134, the entirety of which 1s
hereby incorporated by reference. The solver solution space
for the manufacturing scheduling problem was sampled and
analyzed according to the second aspect of the method to
determine that a collection of randomly generated good
schedules has a normal distribution with a mean cycle time of
392377 minutes and a standard deviation of 567 minutes (vari-
ance of 321883 minutes”). Comparing the mean of the solver
solution space with the mean and standard deviation of the
problem solution space, 1t 1s easy to see that the solutions
developed by the optimizing combinatorial solver are typi-
cally significantly better than those that would be expected to
be developed by mere chance, and that 1t 1s easy to develop a
schedule with a cycle-time less than or equal to the mean
(50% probability). For example, a ‘mean’ solution with a
cycle time of 39237 minutes would be 9.32 standard devia-
tions below the mean of the problem solution space, and the
probability of finding such a solution (or better) using an
unbiased solveris less than 1 in 10", Likewise, assuming that
the optimizing combinatorial solver does not take too long to
produce an individual schedule, repeatedly applying 1t to a
randomized form of the benchmark scenario could reason-
ably be expected to yield a schedule with a cycle time that 1s
about 3 standard deviations (or more) below the mean, with a
cycle time of about 37534 minutes (a decrease from the mean
ol the problem solution space of about 25.2%). For example,
the applicants were able to produce a solution having a cycle
time ol 37310 minutes in one 1nstance of running 1000 trials
of the referenced solver. Consequently, a prospective cus-
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tomer, given the statistical parameters of the problem solution
space and the statistical parameters developed by a combina-

torial solver working on the benchmark problem, can asses
(1) the degree to which the combinatonial solver improves
upon solutions that may developed using simple chance and,
more significantly, (2) the likely computational effort
required to obtain a solution of a particular quality in view of
the capabilities of the combinatorial solver. It 1s thus possible
to determine whether any particular solution 1s representative
or atypical of the combinatorial solver’s characteristic per-
formance, as well as whether practical amounts of additional
computational effort are likely to improve upon a particular
solution.

Example 2

To further 1llustrate the method, a specially constructed
TSP having 100 cities arranged in a rectangular grid with
spacing ol 1 umt 1s shown 1n FIG. 10. The cities are arranged
in that grid to permit easy determination and visualization of
an optimal solution, without need to rely upon an optimiza-
tion algorithm. A diagram of one (among many possible)
optimal tours 1s shown in FIG. 11.

Five combinatorial solvers were compared: an unbiased
combinatorial solver (solutions plotted and labeled 10), a
combinatorial solver implementing a method known as 2-Opt
(solutions plotted and labeled 20), a combinatorial solver
implementing a method known as 3-Opt (solutions plotted
and labeled 30), a combinatorial solver implementing a
method known as Exchange-2 (or X2, solutions plotted and
labeled 40), and a combinatorial solver implementing a com-
bination of the Exchange-2 and 2-Opt methods (solutions
plotted and labeled 50). The unbiased combinatorial solver
simply generates a random sequence for the 100 cities and
evaluates the round trip distance. The combinatorial solver
implementing Exchange-2 begins with a random sequence
and then exhaustively considers whether the round trip dis-
tance might be improved by exchanging the position of two
cities within the sequence, repeating over and over again until
no further improvements can be made. The combinatorial
solver implementing 2-Opt begins with a random sequence
and then exhaustively considers whether the round trip dis-
tance might be improved by dividing the sequence into 2
sub-sequences and then mverting the order of one sub-se-
quence, repeating over and over again until no further
improvements can be made. The combinatorial solver imple-
menting 3-Opt begins with a random sequence and then
exhaustively considers whether the round trip distance might
be improved by dividing the sequence into 3 sub-sequences
and 1inverting the order of one or two of those sub-sequences,
repeating over and over again until no further improvements
can be made. The combinatorial solver implementing
Exchange-2/2-Opt first 1mplements Exchange-2, as
described above, and then implements 2-Opt, as described
above, and evaluates the results.

Benchmark data was collected using the aspects of the
method described above for 100 trials per combinatorial
solver. The results are summarized in Table 1A and 1n FIG.
12. In FIG. 10, the means of the unbiased, Exchange-2, 2-Onpt,
and 3-Opt solution populations are labeled to as U, X2, O2,
and O3 respectively. The mean of the combination Exchange-
2/2-Opt solution population is labeled as C2. With this data, 1t
1s possible to both compare the combinatorial solvers and
make certain predictions. For example, it 1s possible to esti-
mate the best solution likely to be found after conducting
additional trials using each combinatorial solver. Table 1B list
the estimated mimimum round trip distance to be found after
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conducting 1000 trials, as well as the actual minimum found
in a particular instance of 1000 trials.

TABLE 1A

Benchmark Data for 100 trials based upon the TSP of FIG. 10

X2 +
Method Unbiased X2 2-Opt 2-Opt 3-Opt
Elapsed Time (mS) 15 140 63 140 6555
mS per Solution 0.15 1.40 0.63 1.40 65.55
Number of Trials 100 100 100 100 100
Maximum 577.60 178.69 14882 133.39 11744
Mean 523.29 156.92 13554 125.17 110.32
Minimum 474.01 136.37 119.33 113.86  101.66
Standard Deviation 20.48 8.55 5.89 3.92 3.06
TABLE 1B
Estimates and Actual Benchmark Data for 1000
trials based upon the TSP of FI(G. 10
X2 +
Method Unbiased X2 2-Opt  2-Opt  3-Opt
Estimated Minimum 461.85 131.27 117.88 113.39 101.15
Actual Minimum 462 .80 130.74 11645 113.10 101.66

The reader should appreciate that the combinatorial solvers
implementing the combination Exchange-2/2-Opt solution
approach and the 3-Opt solution approach found solutions
with values of ~113 and ~101, respectively, after only 100
trials. This 1llustrates an important fact: statistical predictions
can never be exact. Sometimes a target solution with a value
less than a predetermined threshold will be found 1n fewer
trials than predicted by an estimate, and sometimes achieving,
a target solution with a value less than a predetermined thresh-
old will require more trials than predicted by an estimate.

While 1t 1s not surprising that good solutions can found after
conducting only 100 trials, 1t remains true that the best solu-
tions likely to be found after conducting a predetermined
number of trials will have values which approximate, or are
“about,” the estimated mimimum. Similarly, the estimated
number of trials to be conducted to find a solution that 1s
superior to a predetermined threshold of the criterion of solu-
tion quality, once conducted, will likely result 1n a solution
having a minimum value that approximates, or 1s “about,” the
predetermined threshold value—the actual best solution
value may be superior or inferior to the predetermined thresh-
old value selected for the statistical estimate.

The estimates extrapolated from the parameters reported in
Table 1A show good correlation with the actual minimums
found after conducting 1000 trials. At 100 trials, the bench-
marks sample approximately 2 standard deviations of a solver
solution space, while at 1000 trials the benchmarks sample
approximately 3 standard deviations of that same solution
space. However, there are limits to the range of extrapolation.
All problems of interest have a finite range of solutions, with
the best possible solution or solutions being known as an
optimal solution. All solution approaches for solving a given
problem will also produce a finite range of solutions within
that problem range. In some cases a solution approach may
generate solutions that draw near an optimal solution, and
may be expected to find an optimal solution (for small prob-
lems) within a reasonable period of time. In other cases a
solution approach will tend to generate solutions that are
farther from an optimal solution, and there will be practical
limits on the range of solutions that can generated within a
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reasonable period of time. In the applicants’ experience, the
parameters developed in benchmarks based upon 100 trials (2
standard deviations) can often be used to extrapolate esti-
mates of values to be found when conducting to up to 1000
trials (3 standard deviations), but extrapolation beyond 3 stan-
dard deviations becomes less reliable as a matter of degree.
Still other predictions can be made using parameters like
those reported in Table 1 A. For example, consider the follow-
ing questions: (1) Would repeated use of the combinatorial
solver implementing Exchange-2 be likely to find a solution
with a value superior to the value of the average solution
generated by the combinatorial solver implementing 2-Opt?

(less than 125) (2) Would repeated use of the combinatorial
solver implementing 2-Opt, or the combinatorial solver
implementing Exchange-2/2-Opt, be likely to find a solution
with a value superior to the value of the average solution
generated by the combinatorial solver implementing 3-Opt?
(less than 110). The estimated and actual number of trials
required 1n each case 1s shown 1n Table 2.

TABLE 2

Benchmark Data for 100 trials based upon the TSP of FIG. 10

X2 +
Method Unbiased X2 2-Opt 2-Opt  3-Opt
Threshold N/A 125.17 110.32  110.13 N/A
Estimated Trials N/A 9808 109044 15643 N/A
Actual Minimum N/A 124.98 111.01 109.95 N/A
Actual Trials N/A {998 206862 15572 N/A

The results have good correlation for the Exchange-2 and
Exchange-2/2-Opt solution approaches, but are less satisfac-
tory for the 2-Opt solution approach. This suggests that the
2-Opt algorithm has a range of solutions that has intrinsic
bounds. The 2-Opt and 3-Opt solution approaches operate by
correcting errors in a given sequences (by inverting subse-
quences to produce better sequences). After exhaustive con-
sideration of all possible corrections, the 2-Opt solution
approach will leave certain errors uncorrected that would be
corrected by a 3-Opt solution approach. Also, 1n the case of
the 2-Opt solution approach, the target solution value of 110
1s more than 4 standard deviations below the solution mean
(4.24 standard deviations from 135.54), and an extrapolation
from parameters gathered at 2 standard deviations below the
mean 1s simply far less reliable. Nevertheless, the extrapola-
tion from the determined parameters correctly predicted that
many more trials would be needed for the combinatorial
solver implementing 2-Opt than the combinatorial solvers
implementing X2 and Exchange-2/2-Onpt.

The reader should appreciate that the ability to predict the
number of trials likely needed to find a target solution with a
value less than a predetermined threshold may be combined
with measurements of the speed of a combinatorial solver and
solution approach to estimate the time required to find that
target solution. Although the examples shown in Table 1A do
not explicitly illustrate this point, there can be cases where a
faster implementation generates solutions with a larger mean,
but a wider standard deviation, such that 1t may find a target
solution 1n repeated trials 1n less time than a slower algorithm
generating solutions with a smaller mean and a narrower
standard deviation. The method disclosed herein enables a
wide range of possible analyses such as these.

The various embodiments described above are intended to
be illustrative 1n nature and are not intended to limit the scope
of the invention. Any limitations to the invention will appear
in the claims as allowed.
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What 1s claimed 1s:

1. A method of benchmarking the problem solution space
of a trial scenario for a combinatorial solver, the trial scenario
including predetermined trial scenario data, and the method
including the steps of:

a. obtaining a random sequence;

b. reordering the predetermined trial scenario data mto a
randomized 1nput form according to the random
sequence;

c. mputting the randomized mmput form 1nto an unbiased
combinatorial solver:;

d. solving the randomized mmput form with the unbiased
combinatorial solver to produce a solution;

¢. evaluating the solution to measure the value of a criterion
of solution quality;

f. recording the measured value of the criterion of solution
quality in a data storage structure;

g. repeating the obtaining, reordering, inputting, solving,
evaluating, and recording steps for a predetermined
number of trials representing a subset of the problem
solution space having statistical power; and

h. analyzing a statistical distribution of the measured val-
ues 1n the data storage structure and determining at least
one parameter of a statistical distribution function.

2. The method of claim 1, wherein the statistical distribu-

tion function i1s a Gaussian distribution.

3. The method of claim 2, wherein the at least one param-
cter includes the mean u and standard deviation o of the
(Gaussian distribution.

4. The method of claim 1, wherein the measured values 1n
the data storage structure are evaluated to verify that a prob-
lem solution space of the trial scenario may be approximately
described by a selected statistical distribution function.

5. The method of claim 1, wherein the measured values 1n
the data storage structure are plotted as a histogram for com-
parison with the selected statistical distribution function.

6. The method of claim 1, wherein the measured values 1n
the data storage structure are subjected to a mathematical
analysis to check whether there 1s a significant deviation from
a selected statistical distribution function.

7. The method of claim 6, wherein the measured values 1n
the data storage structure are subjected to an Anderson-Dar-
ling test versus the selected statistical distribution function.

8. The method of claim 7 wherein the selected statistical
distribution function 1s the Gaussian cumulative probability
distribution function.

9. The method of claim 1, further comprising the step of
communicating at least the at least one parameter of the
statistical distribution function to a third party.

10. A method of benchmarking the characteristic perfor-
mance of a combinatorial solver operating upon predeter-
mined trial scenario data, the method including the steps of:

a. obtaiming a random sequence;

b. reordering the predetermined trial scenario data into a
randomized input form according to the random
sequence;
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c. inputting the randomized nput form 1nto the combina-
torial solver:;

d. solving the randomized input form with the combinato-
rial solver to produce a solution;

¢. evaluating the solution to measure the value of a criterion

of solution quality;

f. recording the measured value of the criterion of solution
quality 1n a data storage structure;

g. repeating the obtaining, reordering, inputting, solving,
evaluating, and recording steps for a predetermined
number of trials representing a subset of the problem
solution space having statistical power; and

h. analyzing a statistical distribution of the measured val-
ues 1n the table and determining at least one parameter of
a statistical distribution function.

11. The method of claim 10, wherein the statistical distri-

bution function 1s a Gaussian distribution.

12. The method of claim 11, wherein the at least one
parameter includes the mean p and standard deviation o of the
Gaussian distribution.

13. The method of claim 10, wherein the measured values
in the data storage structure are evaluated to verily that a
problem solution space of the trial scenario may be approxi-
mately described by a selected statistical distribution func-
tion.

14. The method of claim 10, wherein the measured values
in the data storage structure are plotted as a histogram for
comparison with the selected statistical distribution function.

15. The method of claim 10 wherein the measured values in
the data storage structure are subjected to a mathematical
analysis to check whether there 1s a significant deviation from
a selected statistical distribution function.

16. The method of claim 15, wherein the measured values
in the data storage structure are subjected to an Anderson-
Darling test versus the selected statistical distribution func-
tion.

17. The method of claim 16 wherein the selected statistical
distribution function 1s the Gaussian cumulative probability
distribution function.

18. The method of claim 10, further comprising the step of
communicating at least the at least one parameter of a statis-
tical distribution function to a third party.

19. The method of claim 10, further comprising the step of
applying the at least one parameter of the statistical distribu-
tion function to estimate the minimum value of the criterion
of solution quality to be found by solving the randomized
input form with the combinatorial solver for a second prede-
termined number of trials.

20. The method of claim 10, further comprising the step of
applying the at least one parameter of the statistical distribu-
tion function to estimate a second predetermined number of
trials over which to solve the randomized input form with the
combinatorial solver 1 order to find a solution having a
minimum value of the criterion of solution quality of about a
predetermined threshold value.
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