US008539450B2
a2y United States Patent (10) Patent No.: US 8.539.450 B2
Kahlon et al. 45) Date of Patent: Sep. 17, 2013
(54) FAST AND ACCURATE DATA RACE 2005/0235273 Al1* 10/2005 Travisonetal. .............. 717/136
DETECTION FOR CONCURRENT 2006/0112377 Al1* 5/2006 Naculetal. ................... 717/140
2008/0282221 Al* 11/2008 Kahlonetal. ................ 717/105
PROGRAMS WITH ASYNCHRONOUS CALLS 2009/0125887 Al* 5/2009 Kahlonetal. ............... 717/126
_ _ 2009/0144707 Al* 6/2009 Goffetal. ..................... 717/136
(75) Inventors: Vineet Kahlon, Princeton, NJ (US); 2009/0259972 Al* 10/2009 Kodosky et al. .............. 715/810
Nishant Sinha, Plainsboro, NJ (US); 2009/0288025 Al* 11/2009 Kingetal. .....c.ccoeene. 715/763
Yun Zhang, Somerset, NJ (US); Eric J.
Kruus, Hillsborough, NJ (US) OTHER PUBLICATIONS
(73) Assignee: NEC Laboratories America, Inc., Sterling, N. “Warlock: A Static Data Race Analysis Tool” USENIX
Princeton, NJ (US) Winter Technical Conference, Jan. 1993. pp. 97-106.

Detlefs, D., et al. “Extended Static Checking” In TR SRC-159
( *) Notice: Subject to any disclaimer, the term of this Compaq SRC, Dec. 1998. (50 Pages).
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 282 days. (Continued)

(21) Appl. No.: 12/702,023 Primary Examiner — Idrniss N Alrobaye

(22) Filed: Feb. 8, 2010 Assistant Examiner — Getente A Yimer

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Joseph Kolodka

US 2010/0235817 A1 Sep. 16, 2010
(57) ABSTRACT

Related U.S. Application Data _
A system and method for analyzing a concurrent program

(60)  Provisional application No. 61/159,372, filed on Mar. employ asynchronous function calls for communication and
11,2009 recursion. A control flow graph 1s constructed based on a
context-sensitive pointer analysis, whereupon encountering a

51) Int. CI. . . . . . .
(51) In function pointer, a points-to set ot the tunction pointer 1s

GO6F 9/44 (2006.01) . . . .
GO6F 9/45 (2006.01) compqted 1n a f:ontext-sensmve fashion th fletern‘.nne a set of
(52) U.S.CL potential function calls. The context-sensitive pointer analy-
USPC 717126 717/100: 717/110: 717/124- s1s 1s terminated when no new potential function calls are
| | 717/14 f; 717/1 433 encountered and where the potential function calls may con-
(58) Field of Classification Search tribute new data races other than those that exist in the con-
useC 717/126. 100, 110, 124, 141, 143 texts traversed thus far. To decide this, a characterization of

pointer aliasing based upon complete update sequences 1s

See application file for complete search history. ‘ _
employed. A set of contexts that may contribute to different

(56) References Cited data races are enumerated by tracking update sequences for
function and lock pointers and pointers that are shared or
U.S. PATENT DOCUMENTS point to shared memory locations. Data race detection 1s
5,896,537 A * 4/1999 Landietal. ......c.c........ 717/132 carried out on the control tlow graph.
7,089,537 B2* 82006 Dasetal. ...................... 717/132
7,487,502 B2* 2/2009 Wangetal. ................... 718/102
7694276 B2* 4/2010 Larusetal. ......coooc....... 717/116 12 Claims, 4 Drawing Sheets
Construct control flow gragh (CFG) -
10
Context-sensiively unroll
CFG&
14
Terminata pointer analysis
when no new locksets are
; discoverable.
5 16

[iate race detection - 18

Identify shared variables and
lock pointers - 20

Compute initiel database of
race wamings - 22

Prune spurious wamings
{a.g., MHP analysis}
24




US 8,539,450 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Dwyer, M., et al. “Tool-Supported Program Abstraction for Finite-
State Verification” In Proceedings of the 23rd International Confer-
ence on Software Engineering (ICSE *01). IEEE Computer Society

Press. May 2001. pp. 1-10.
Engler, D., et al. “RACERX.: Effective, Static Detection of Race
Conditions and Deadlocks” In SOSP 03, Oct. 2003. (16 Pages).

Kahlon, V. “Bootstrapping: A Technique for Scalable Flow and Con-
text-Sensitive Pointer ALIA Analysis” In PLDI. Proceedings of the

ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation. Jun. 2008. (10 Pages).

Kahlon, V., et al. “Fast and Accurate Static Data-Race Detection for
Concurrent Programs™ In Computer Aided Verification (CAV). 19th
International Conference. Jul. 2007. pp. 1-14.

Kahlon, V., et al. “Semantic Reduction of Thread Interleavings for
Concurrent Programs” In Fifteenth International Conference on
Tools and Algornthms for Construction and Analysis of Systems
(TACAS), Mar. 2009. pp. 124-138.

Lee, C., et al. “Efficient and Precise Datarace Detection for
Multithreaded Object-Oriented Programs™ In PLDI *02. Jun. 2002.
(12 Pages).

L1, P, et al. “Combining Events and Threads for Scalable Network
Services Implementation and Evaluation of Monadic, Application-

Level Concurrency Primitives” In PLDI *07: Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and

implementation, vol. 42, Issue 6. Jun. 2007. pp. 189-199.
Mellor-Crummey, J. “On-the-Fly Detection of Data Races for Pro-
grams With Nest Fork-Join Parallelism™ In Proceedings of the 1991
Supercomputer Debugging Workshop. Nov. 1991. (12 Pages).
Naik, M., et al. “Conditional Must Not Aliasing for Static Race
Detection”. Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL’07). Jan. 2007. (12 Pages).

Naik, M., et al. “Effective Static Race Detection for Java” In PLDI
"06. Proceedings of the 2006 ACM SIGPLAN conference on Pro-
gramming language design and implementation. Jun. 2006. (12
Pages).

Pratikakis, P., et al. “Locksmith: Context-Sensitive Correlation
Analysis for Race Detection” In PLDI. Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and imple-
mentation. Jun. 2006. pp. 1-57.

Savage, S., et al. “Eraser: A Dynamic Data Race Detector for
Multithreaded Programming” In ACM Transaction on Computer
Systems, vol. 15, No. 4. Nov. 1997. pp. 391-411.

Steensgaard, B. “Points-To Analysis in Almost Linear Time” In
POPL. Proceedings of the 23rd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages. Jan. 1996. pp. 1-10.

* cited by examiner



U.S. Patent Sep. 17, 2013 Sheet 1 of 4

Construct control flow graph (CFG) -
10

Context-sensitively unroll
CFG

14

Terminate pointer analysis
when no new locksets are

discoverable.
16

Date race detection - 18

ldentify shared variables and
lock pointers - 20

Compute initial database of
race warnings - 22

Prune spurious warnings
(e.g., MHP analysis)
24

US 8,539,450 B2

FIG. 1



U.S. Patent Sep. 17, 2013 Sheet 2 of 4 US 8.539.450 B2

{1.h1

\
/

13
13
14

{2.f

(oo™

t0.main

JOIN

FORK
(1. f
10
14

FIG. 2




U.S. Patent

Sep. 17, 2013 Sheet 3 of 4

US 8,539,450 B2

Construct control flow graph (CFG) - 102

Employ thread pool and
iteratively process tasks in
work queue

104

Terminate context-sensitive
pointer analysis when no
new potential function calls
are encountered.

106

Date race detection - 108

FiG. 3



U.S. Patent Sep. 17, 2013 Sheet 4 of 4

US 8,539,450 B2

F1G. 4

200
Processor J
210
Memory - 204
Thread pool
212
Program Application for
CFG constructing control flow graphs
206
202
A
Concurrent
program

2095




US 8,539,450 B2

1

FAST AND ACCURATE DATA RACE
DETECTION FOR CONCURRENT
PROGRAMS WITH ASYNCHRONOUS CALLS

RELATED APPLICATION INFORMATION

This application claims priority to provisional application
Ser. No. 61/159,372 filed on Mar. 11, 2009, incorporated
herein by reference.

BACKGROUND

1. Technical Field
The present invention relates to computer program verifi-
cation and more particularly to systems and methods for

detecting data races in concurrent programs using asynchro-
nous calls.

2. Description of the Related Art

Real-life concurrent programs often are based on an event-
driven model where threads create tasks and dispatch these
tasks to other threads, to be executed asynchronously. The
tasks are queued on to a work queue of the other threads and
are processed by the corresponding schedulers 1n an 1terative
fashion. This model combines the expressiveness of both
thread and event-based models of computation, and has the
advantage that the thread that creates the task may not wait for
the task to finish.

Threads can delegate computationally intensive tasks to
other threads while continuing with more immediate tasks.
Several large industrial concurrent systems including Ajax-
based scripts, routers, and web servers use this paradigm of
concurrent computation.

Although providing much flexibility to a system designer
and superior run-time performance, multi-threaded programs
with asynchronous events are extremely hard to debug and
verily. First, there 1s a loose correlation between the asyn-
chronous call and the value returned making 1t difficult to
track the flow of data across threads. More significantly, these
calls are oiten made using function pointers, and arguments to
these calls, 1n turn, contain function pointers to callback func-
tions, which are executed, for example, upon completion of
the call. Such indirect mechanisms for communication
among threads make analysis of these programs extremely
tricky. For example, the values of the function pointers passed
into indirect calls depend on the particular calling context and
therefore must be tracked context-sensitively.

SUMMARY

A system and method for analyzing a concurrent program
stored 1n memory employs asynchronous function calls for
communication. A control flow graph 1s constructed, using a
processor, based on a context-sensitive pointer analysis,
wherein upon encountering a function pointer, a points-to set
of the function pointer 1s computed 1n a context-sensitive
fashion to accurately determine a set of potential function
calls. The context-sensitive pointer analysis 1s terminated
when no new potential function calls are encountered such
that no new potential function calls are determined using a
characterization of pointer aliasing encountered based upon
complete update sequences to decide whether new aliases are
discoverable. Data races are detected 1n the concurrent pro-
gram using the control flow graph which includes resolved
context sensitive pointers.

A system and method for analyzing a concurrent program
stored in memory and employing asynchronous function calls
for communication 1s context-sensitive and works for pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

grams with recursion. A control flow graph 1s constructed,
using a processor, based on a context-sensitive pointer analy-
s1s, wherein upon encountering a function pointer, a points-to
set of the function pointer 1s computed 1n a context-sensitive
fashion to accurately determine a set of potential function
calls. The context-sensitive pointer analysis 1s terminated
when no new potential function calls are encountered and
where the potential function calls may contribute new data
races other than those that exist in the contexts traversed thus
far. To decide this, a characterization of pointer aliasing based
upon complete update sequences 1s employed. A small set of
contexts that may contribute to different data races are enu-
merated 1n an efficient manner by tracking update sequences
for function and lock pointers as well as pointers that are
shared or point to shared memory location. Data race detec-
tion 1s then carried out on this finite context-sensitively com-
puted control flow graph.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which 1s to be read 1n connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 15 a block/tflow diagram showing a system/method
for constructing a control flow graph and performing a static
data race detection analysis 1 accordance with the present
principles;

FI1G. 2 1s an 1llustrative control flow graph for an illustrative
concurrent program of Table 1;

FIG. 3 1s a block/tlow diagram showing a method for
constructing a control tlow graph in accordance with another
embodiment; and

FIG. 4 1s a block diagram showing a system for construct-
ing a control flow graph and performing a static data race
detection analysis 1n accordance with the present principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

In accordance with the present principles, systems and
methods perform static data race detection for concurrent
programs which use asynchronous indirect function calls for
communication and recursion. Given a multi-threaded pro-
gram with asynchronous calls, the present method first builds
a precise context-sensitive concurrent control tlow graph
(CCFG) based on a layered and context-sensitive pointer
analysis. Using this CCFG, a staged data race detection 1s
performed, that involves (1) identifying the shared variables
and lock pointers, (1) computing an initial database of race
warnings, and (111) pruning away the spurious warnings using
a may-happen-in-parallel (MHP) analysis based on comput-
ing lock sets and performing program order analysis.

The present computation model comprises a thread pool,
where each thread iteratively processes tasks from 1ts work
queue. To send a task request to another thread t,, thread t,
1ssues an asynchronous function call (fork) with the task (e.g.,
a Tunction to be executed) as an argument. An asynchronous
function call may or may not be followed by an asynchronous
function return (Join). Note that a fork join model for concur-
rent programs can be viewed as a particular case of the thread
pool model (with unbounded number of threads, each having
a zero-length queue), where fork corresponds to an asynchro-
nous function call (AFC) to an unnamed thread while the join




US 8,539,450 B2

3

corresponds to the corresponding asynchronous return. When
the thread pool 1s of finite size, each thread has a non-zero
length queue to store multiple incoming job requests. Besides
making asynchronous calls to other threads, each thread can
also perform synchronous calls to function inside the same
thread.

Embodiments described herein may be entirely hardware,
entirely software or including both hardware and software
clements. In a preferred embodiment, the present invention 1s
implemented 1n software, which includes but 1s not limited to
firmware, resident software, microcode, etc.

Embodiments may include a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or 1n connection
with a computer or any instruction execution system. A com-
puter-usable or computer readable medium may include any
apparatus that stores, communicates, propagates, or trans-
ports the program for use by or 1n connection with the mnstruc-
tion execution system, apparatus, or device. The medium can
be magnetic, optical, electronic, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propaga-
tion medium. The medium may include a computer-readable
medium such as a semiconductor or solid state memory, mag-
netic tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk and an optical disk, etc.

Referring now 1n detail to the figures 1n which like numer-
als represent the same or similar elements and imitially to FIG.
1, a system/method 1s illustratively described to pertform
static data race detection for concurrent programs which use
asynchronous indirect function calls for communication. In
block 10, given a multi-threaded program with asynchronous
calls, the present method first builds a precise context-sensi-
tive concurrent control tlow graph (CCFG) based on a layered
and context-sensitive pointer analysis. The control flow graph
of the program 1s constructed for the purpose of static data
race detection 1n the presence of asynchronous calls, function
pointers, thread pointers and recursion.

For analyzing the concurrent program for static data race
detection, a precise control tlow graph (CFG) of the given

program 1s built. The existing state-of-the-art builds a CFG of

a given program with function pointers by carrying out a
context-insensitive points-to analysis for the function point-
ers and corporating a call to each function that belongs to
the points-to set of a function pointer. This results 1n extrane-
ous Tunction calls in the CFG which do not correspond to any
concrete execution of the given program thereby leading to
false data race warnings. Moreover, existing techniques do
not handle context sensitive data race detection 1n the pres-
ence of recursion.

In block 14, the control tlow graph of the concurrent pro-
gram 1s unrolled in a context sensitive fashion. This includes,
upon encountering a function pointer, a points-to set of the
function pointer 1s computed 1n a context-sensitive fashion to
accurately determine the set of potential function calls.

Context sensitivity may include employing a computation
model for constructing the control flow graph that employs a
thread pool, where each thread iteratively processes tasks
from its work queue. E.g., to send a task request to another
thread t,, thread t, 1ssues an asynchronous function call (fork)
with the task (e.g., a function to be executed) as an argument.
An asynchronous function call may or may not be followed
by an asynchronous function return (join). Note that a fork
join model for concurrent programs can be viewed as a par-
ticular case of the thread pool model (with unbounded num-
ber of threads, each having a zero-length queue), where fork
corresponds to an asynchronous function call (AFC) to an

10

15

20

25

30

35

40

45

50

55

60

65

4

unnamed thread while the join corresponds to the correspond-
ing asynchronous return. When the thread pool 1s of finite
s1ze, each thread has a non-zero length queue to store multiple
incoming job requests. Besides making asynchronous calls to
other threads, each thread can also perform synchronous calls
to Tunction inside the same thread.

In block 16, recursion 1s handled by terminating the explo-
ration of the given program as soon as 1t 1s determined that no
new locksets can be discovered at locations where shared
variables are accessed due to which no new data race warning
can be discovered via further exploration. A fixpoint compu-
tation 1s carried out via traversal of the control tlow graph of
the program by tracking aliases of lock pointers, aliases of
shared variables and aliases of function pointers to decide
whether new shared variable accesses with different locksets
than those already encountered are discoverable.

The termination condition during the context-sensitive
unrolling of the CFG determines whether any new race warn-
ing can be generated via further unrolling. This termination
condition uses a characterization of pointer aliasing based on
complete update sequences to decide whether new aliases can
be discovered for lock pointers.

Using the CCFG, a staged data race detection 1s performed
in block 18, that involves (1) identifying the shared variables
and lock pointers 1n block 20, (11) computing an imtial data-
base of race warnings in block 22, and (111) pruning away the
spurious warnings using a may-happen-in-parallel (MHP)
analysis based on computing lock sets and performing pro-
gram order analysis in block 24.

By employing the present principles context-sensitive data
race detection 1s extended to programs with asynchronous
calls, function pointers, thread pointers and recursion thereby
increasing the precision of data race detection for such pro-
grams.

A more detailed explanation of the present principles will
be described hereinafter using examples, exemplary pseudo-
code and 1llustrative explanations.

Table 1 shows a slice of a concurrent C program which
illustrates the complexity due to combining indirect function
calls with thread creation 1n accordance with one 1llustrative
embodiment. C-like syntax 1s employed together with a spe-
cial thread construct to denote thread identifiers and named
fork and jo1n calls to denote thread creation and termination.
More particularly, a call fork(tl, 1, argl1, arg2, . . . ) denotes the
creation of the thread with 1dentifier t1 which executes the
function 1 with the actual arguments arg 1, arg 2, etc. Simi-
larly the call joint(tl) blocks the caller until the thread tl
finishes execution.

TABL.

L1l

1

Example Concurrent Program:

int hl (int x) {
return X * x;

;

int h2 (int y) {
return y + v;

;

struct funcType {
int (*func) (int);
h

void f (int x, funcType *g, int*z) {
12: if (x>0) {*z=*(g—func)(x); }
13: else { *z=*g—func)(-x); }
}
int main () [

struct funcType 1t;

inta, b, pl, p2, z;

struct thread t1, t2;



US 8,539,450 B2

S
TABLE 1-continued

Example Concurrent Program:

if (p1) {
ft.func = &hl;
10: fork (t1, f, a, ft, &z);
join (t1);
f
if (p2) {
ft.func = &h2;
11. fork (t2, £, b, ft, &z);
join (t2);
|
t

The example program 1n Table 1 starts from a main func-
tion, which creates thread t1 or 12 (lines 10, 11 respectively).
Both the threads execute the function f; however, depending
on the arguments passed to 1, the callback function hl orh2 is
invoked. The function { obtains the return value from the
callback function and then writes to a shared variable *z.
Since the shared variable may be written 1n etther thread t1 or
t2, there 1s a potential race condition at the locations 12 and 13
in function f. However, as will be shown later, 11 we build the
concurrent call graph 1n a context-sensitive manner and take
into account the program order imposed by thread creation
and join, we can prove the absence of the race condition. Also,
note that since the functions hl and h2 are called using func-
tion pointers, we may not be able to capture the asynchronous
behavior of the program 11 a precise function pointer analysis
1s not available.

Real-life concurrent C programs are illustratively
described 1 the examples, although the techniques can be
extended to programs in other languages also. These pro-
grams 1nclude a main thread which forks one or more new
threads and provides the new threads with a function pointer
argument corresponding to the function that a new thread

needs to execute. A join mstruction 1s executed by the main
thread to wait for the termination of the new thread. For this
simple thread creation model, the thread creation overlaps
with start of thread execution, 1n general. Large industrial
applications go beyond the simple thread creation model by

adopting a thread pool model, where a large number of

threads are created at initialization and each thread 1s named,
1.€., 1t has an unique identifier.

Since the threads exist already, a caller thread creates an
execution job and then dispatches the job to a callee thread. A
10b may be viewed as a generalization of the thread arguments
when creating a thread for the simple model. On dispatch, the
10b 1s enqueued to the work queue of the callee thread, to be
executed at a later point. Note that the job creation or dispatch
may not correspond to 1ts immediate execution in the callee
thread.

The different concurrency models are treated 1n a unified
way. First, asynchronous and synchronous function calls are
distinguished. In a case of a synchronous call, the caller
thread must block computations until the call returns. In
contrast, the caller thread 1s free to carry on computations
alter making an asynchronous call. All the calls 1n sequential
programs are synchronous. In concurrent programs, thread
creation calls 1n the simple model as well as dispatching jobs
to other threads in the thread pool model correspond to an
asynchronous function call (AFC).

We model both cases of an AFC by using a named fork
construct: fork(thread 1d,J) which takes a thread identifier

(number or a pointer variable) as the first parameter and

10

15

20

25

30

35

40

45

50

55

60

65

6

dispatches the second parameter, job J to 1t. The job J contains
both the pointer to the function { that must be executed by
thread thread i1d as well as the arguments to 1. Note again that
the actual execution of J may not occur immediately after the
dispatch step. For sake of convenience, we refer to asynchro-
nous call edges as fork edges also.

Function pointers and Bindings: AFCs that execute on
another thread are implemented using function pointers. A
common mechanism 1s to use bound function objects, €.g., 1n
the Boost library. The following example describes how a
bound function object is created.

struct boundFunc*bi=bind (thread_t, &g, args); The bf
object contains the thread pointer thread t, the function
pointer &g for a function g and the arguments args to g. On
executing enqueue(bl) in the caller thread, the bi object 1s
dispatched to the working queue of the thread thread_t, which
1s then executed 1n the first-in-first-out manner from the
queue.

Concurrent Call Graphs. A call graph CG consists ol nodes
labeled by function names and has an edge from node 1 to g 1f
i calls g. Multiple calls are recorded by labeling edges with
the call locationin 1. A concurrent call graph consists of nodes
labeled by a tuple { tid, ) , where tid denotes the thread name
in which function f will execute. In case of unnamed forks, we
assign a new thread identifier to the created thread. A CCG
has two kinds of directed edges: call and return, and each edge
1s labeled to be either synchronous or asynchronous. A thread
fork(join) instruction gives rise to an asynchronous call/re-
turn edge.

CCFGs. A concurrent control flow graph (CCFG) 1s
obtained from a concurrent call graph (CCG) by concertizing
the function nodes by a function description, while maintain-
ing the call and return edges.

Call context strings. A sequence of Tunction calls 1s repre-
sented by a string including concatenation of individual func-
tion names. In case a function g 1s called multiple times from
f, we use unique names which record the call locations of g 1n
. We also refer to a call string as a calling context. A call string
of length two 1s referred to as local calling context. Otherwise,
it 1s said to be a global calling context.

Summary maps. Given a function 1 and a location 1 inside
the function, we define the summary map at location 1 over a
data flow domain D to be the meet of the data flow facts
computed along each of the paths starting from the aitial
basic block of 1 and terminating at 1. We also refer to the
summary map for/as the local summary map. A global sum-
mary for a call string can be obtained by composing the local
summary maps for each constituent local call context. We are
concerned with summary maps which track the values of
function and thread pointer variables and shared variables:
the summary map includes a mapping from the above pointer
variables to the set of initial/global variables that the pointer
variables may point-to. A method for computing local sum-
mary maps 1s described below.

Bootstrapping based Pointer Analysis: Steensgaard’s
Analysis. In Steensgaard’s analysis, which 1s an analysis
known 1n the art, aliasing information 1s maintained as a
relation over abstract memory locations. Every location 1 1s
associated with a label or set of symbols ¢ and holds some
content o, which 1s an abstract pointer value. Points-to infor-
mation between abstract pointers 1s stored as a points-to
graph which 1s a directed graph whose nodes represent sets of
objects and edges encode the points-to relation between them.
An edge e: v,—v, from nodes v, to v, represents the fact that
a symbol 1 v, may point to some symbol 1n the set repre-
sented by v,. v to X 15 to equate the contents of the location
associated with y to x. This 1s carried out via unification of the




US 8,539,450 B2

7

locations pointed-to by y and x 1nto one unique location and
if necessary propagating the unification to their successors 1n
the points-to graph. Assignments involving referencing or
dereferencing of pointers are handled similarly. Since Steens-
gaard’s analysis does not take the directionality of assign-
ments 1nto account, it 1s bidirectional. This makes it less
precise but highly scalable. Table 2 shows the Steensgaard
points-to graph for a small example.

TABLE 2

Steensgaard vs. Andersen Points-to Graphs

main( ){
la: p = &a;
2a: q = &b;
3a:r = &c;

da: q =p;
Sarq=r;

Steensgaard Points-to Hierarchy. A key feature of Steens-
gaard’s analysis that we are interested in 1s the well known
fact that the points-to sets so generated are equivalence
classes. Hence, these sets define a partitionming of the set of all
pointers in the program into disjoint subsets that respect the
aliasing relation, 1.e., a pointer can only be aliased to pointers
within 1ts own partition. We shall henceforth refer to each
equivalence class of pointers generated by Steensgaard’s
analysis as a Steensgaard Partition. For pointer p, letn,, denote
the node 1n the Steensgaard points-to graph representing the
Steensgaard partition containing p. A Steensgaard points-to
graph defines an ordering on the pointers in P which we refer
to as the Steensgaard points-to hierarchy. For pointers p, qeQ,
we say that p 1s higher than g 1n the Steensgaard points-to
hierarchy, denoted by p>q, or equivalently by q<p,1fn andn_
are distinct nodes and there 1s a path from n, to n_ in the
Steensgaard points-to graph. Also, we write p~q to mean that
p and q both belong to the same Steensgaard partition. The
points-to sets generated by Steensgaard’s Analysis are
equivalence classes.

Divide and Conquer via Bootstrapping. Whole program
flow sensitive and context sensitive (FSCS) alias analysis 1s
expensive. However, for many applications we provide FSCS
aliases of only a small set of pointers of interest. For example,
for static data race detection, we need to compute FSCS
aliases for only the lock pointers. Thus, 1f we are interested 1n
computing the aliases of pointers in a given set S, we want to
leverage divide and conquer by restricting our analysis only to
those statements of the given program that may affect aliases
of pointers 1n S. Towards that end, we leverage bootstrapping
which exploits the fact that while, 1n general, aliasing 1s not an
equivalence relation, many widely used pointer analyses like
Steensgaard’s generate equivalence relations that are over-
approximations of aliasing. Indeed, if we define two pointers
as aliasing each other if they occur 1n the same Steensgaard
computed points-to set (the same node 1n the Steensgaard
points-to graph) then the resulting relation 1s 1n fact an equiva-
lence relation.

The equivalence classes generated by this relation are
referred to as Steensgaard Partitions. These partitions have
the property that they respect aliasing, 1.e., each pointer can
only be aliased to a pointer 1n its partition. A standard, but
important, observation 1s that aliases of a pointer 1n partition
P can be affected only by assignments to either a pointer in P
or a pointer q higher in the Steensgaard points-to hierarchy
than some pointer 1n P. Assume now that our goal 1s to com-
pute Andersen aliases of a pointer peP. Then, 1t suifices to

10

15

20

25

30

35

40

45

50

55

60

65

8

restrict our analysis only to statements that directly modify
values of pointers 1n the set P comprised ot all pointers q
such that either g>p or g~p.

More generally, 1t follows from the above observation that
if we are 1nterested in the FSCS aliases of pointers 1n a set S,
then 1t suill

ices to restrict the analysis to pointers in Steens-
gaard-closure of S defined as follows: Definition (Steens-

gaard Closure). The Steensgaard closure of a set S of pointers,
denoted by CI(S), 1n the mimimal set with the property that S
< CI(S) and for each peCI(S) 11 erther g~p or g>p then qeCl

S).

Coming back to the application at hand, suppose that S 1s
the set of lock pointers. It 1s usually the case that lock pointers
only alias other lock pointers. Thus, 1f a Steensgaard partition
P has at least one lock pointer then, 1n fact, all pointers in P are
likely to be lock pointers. In that case, CI(S) would simply be
the set of lock pointers, pointers to lock pointers, pointers to
pointers to lock pointers, etc. Thus, when computing FSCS
aliases of the set S of lock pointers, we can slice away all
statements of the given program that do not affect the aliases
of lock pointers, 1.¢., those that are not assignments to any
pointer in CI(S). Since the number of statements afl

ecting
lock pointers 1s typically small bootstrapping results in a
highly precise as well as scalable FSCS analysis for lock
pointers. Similarly, i one 1s interested in the FSCS summaries
of only function pointers, then bootstrapping enables us to
restrict the analysis to those statements that can affect func-
tion pointer aliases which are extremely few 1n number.
Complete Update Sequences. In resolving points-to sets of
function pointers during construction of a control flow graph
(CFG), a notion of complete update sequences plays a role.
We start with some definitions. A pointer p 1s said to be
semantically equivalent to q at location 1 if p and gq have the
same value at 1 (even 11 they are syntactically different).
Definition (Complete Update Sequence). Let A:l,, ..., 1
be a sequence of successive program locations and let t be the
sequence 1, : p,=ag, 1, p,=a;, . .., 1,: p;=a,, of pointer
assignments occurring along A. Then, m 1s called a complete
update sequence from p to q leading from locations 1, to1_ 11t
a, and p, are semantically equivalent to p and g at locations
l, and 1 respectively

for each J, @, 18 semarltleally equivalent to p; at |,

foreachy, there does not exist any (semantic) as 81gnrne11t to
pointer a, between locations 1, and I; to a, between I
and 1; and to p, between 1. and 1 aleng M.

A related concept 1s that ef max1mally complete update
sequences.

Definition (Maximally Complete Update Sequence).
G1ven a sequence A:l,, ..., 1 of successive control locations
starting at the entry control location 1, of the given program,
the maximally complete update sequence for pointer q lead-
ing from locations 1, to 1 along A 1s the complete update
sequence m of maximum length, over all pointers p, from p to
q (leading from locations 1, to 1 )occurring alongA. If ;T 1s an
update sequence from p to q leading from locations 1, to 1,
we also call it a maximally complete update sequence from p
to q leading from locations 1, to 1. Maximally complete
update sequences can be used to characterize aliasing.

Theorem. Pointers p and g are aliased at control location 1,
there exists a sequence A of successive control locations start-
ing at the entry location 1, of the given program and ending at
1 such that there exists a pointer a with the property that there
ex1st maximally complete update sequences from a to both p
and q (leading from 1, to 1) along A.

Advantages of using Update Sequences. A key advantage
of using update sequences to characterize aliasing 1s that

update sequences can be summarized 1 a compact manner.




US 8,539,450 B2

9

Additionally, bootstrapping allows us to exploit locality of
reference. Indeed, since Steensgaard partitions are typically
small, by restricting summary computation to each individual
partition ensures that the resulting summaries will also be
small. Secondly, the number of statements modifying values
of pointers 1n a given partition also tend to be few and highly
localized to a few functions. This 1n turn, obviates the need for
computing summaries for functions that do not modily any
pointers 1n the given partition which accounts for a majority
of the functions.

Note that without partitioning it would be difficult to
ensure viability of the summarization approach. Thus, the
synergy between divide and conquer and summarization that
assists 1in providing the scalability of the FSCS alias analysis.

Concurrent Control Flow Graph Computation. Once a con-
current call graph (CCGQG) 1s obtained, the concurrent control
flow graph (CCFG) can be obtained directly by refinement.
As a result, 1t 1s not possible to compute the call graph from
the syntactic program description. To resolve these function
pointers one needs to carry out a function pointer alias analy-
s1s Tor which, we need to compute the control flow graph. This
creates a cyclic dependency wherein to compute the CFG we
need to first resolve points-to sets of function pointers for
which we need to already have computed the CFG.

Function Pointers. Realistic programs often make use of
indirect function calls via function pointers. As a result, it 1s
not possible to compute the call graph from the syntactic
program description. To resolve these function pointers, one
needs to carry out a function pointer alias analysis for which,
we 1n turn, need to compute the control flow graph. This
creates a cyclic dependency wherein to compute the CFG we
need to first resolve points-to sets of function pointers for
which we need to already have computed the CFG.

Callback Functions. Callback functions are often passed as
arguments to function calls for exception handling. These
callback functions, which are usually passed via function
pointers, may be mnitialized before the function call to which
these pointers are passed as parameters. Therefore, the values
of function pointer arguments are tracked for each function
call to build the control flow graph (CFG). An additional
challenge exists in that the values of function pointers, 1n
many cases, depend on the actual calling context of the called
function. For example, suppose a function 1 calls other tunc-
tions using indirect function calls. Depending on the particu-
lar call context of 1 (and the corresponding call arguments), T
may call different functions for each context.

Recursion. To resolve function pointers, a context-sensi-
tive alias analysis 1s carried out for the function pointers.
Because of the cyclic dependency between CFG construction
and resolution of points-to sets, we need to construct the CFG
context-sensitively. Towards that end, we start from the entry
function and start enumerating the contexts of the given pro-
gram. As soon as a function pointer 1s encountered in given
context, 1ts points-to set 1s computed which allows us to
continue constructing the call graph. Note that since we
resolve the points-to set of the given program 1n a given
context, we can usually resolve the function being called 1n a
unique. If we had merely computed context-insensitive

10

15

20

25

30

35

40

45

50

55

10

points-to sets of function pointers, then the resulting CFG
could have redundant function calls thereby making our
analysis less accurate. A direct consequence of this mnaccu-
racy would be an increase in the number of bogus data race
warnings. A context-sensitive CFG construction presents no
problems in the absence of recursion. In the presence of
recursion, however, the number of calling contexts forf can in
principle be infinite. This may result in the size of the context
sensitive CFG being infinite.

Resolving Points-to Sets of Lock Painters. To keep the
number of bogus warnings low, resolving the points-to sets of
lock pointers for lockset computation has to be carried out 1n
a context-sensitive fashion. This 1s because lock pointers
point to different lock pointers in different contexts. Thus, 1T
the lock sets are not computed context-sensitively, we may
end up with empty must-lock sets thereby increasing the
bogus warnings rate. In the presence of recursion, however,
the number of contexts could potentially be infinite.

CCFG Construction. We start by presenting a method set
forth 1n Table 3 for constructing the concurrent control flow

graph (CCFG) that handles the 1ssues discussed above while
ensuring both scalability as well as accuracy of the overall
static data race detection framework. For ease of exposition,
we show how to address the above challenges 1s a step-wise
manner. We start with CCFG construction in the presence of
function pointers.

TABL

L1

3

Method 1

1: Imitialize Processed to the empty set and worklist W to
{(estartentry,,,,.) |, where entry,,.., is the entry location
of the entry function start of the given concurrent
program and € denotes the empty-call string.

2:  while W 1s not empty do
3: Delete tuple tup = (con,func,loc) from W and add it to Processed
4: if loc 1s the site of a function call fcall to function g, say, then
5: the set of successors Succ of tup 1s
Succ = { (con.feall,g,entry_)lentry, is the entry location
of g}
6: else
7 Succ = {(con,func,loc’)loc’ is the successor location of loc
in func}
8 endif

9:  for each tup' in Succ do

10: Add tup’ as a successor of tup

11: if tup' & Processed U W then add tup’ to W
12: end for

13: end while

Function Pointer Resolution. As noted, the presence of
function pointers creates a cyclic dependency with respect to
CCFG construction. To construct the CCFG, we need to
resolve the points-to sets of the function pointers. However
computation Method 1 Context-Sensitive Call Graph Con-
struction of the (flow and context-sensitive) points-to sets of
the function pointers in turn needs to first compute the CCFG.
To resolve this cyclic dependency, we carry out a context-
sensitive construction of the CCFG. The procedure 1s a
worklist-based method shown as Method 2 1n Table 4.

TABLE 4

Method 2

1: Input: A Steensgaard closed set P

2: Initialize Processed to the empty set and worklist W to {(e,start,entry

Ay)}, where

Slari?

entry, ... 1s the entry location of the entry function start of the given concurrent
program and € denotes the empty-call string; and A, 1s the mitial aliasing relating
that assigns to each pointer p € P the set {p}.



US 8,539,450 B2

TABLE 4-continued
Method 2
3:  while W is not empty do
4: Delete tuple tup = (con,func,loc) from W and add it to Processed
5: Succ = ¢
6: if loc 1s the site of a function call fcall to function g, say, then
7 if for some con'’ a tuple of the form (con'.fcall,g,entry,,A) does not

belong to Processed then

R: Succ = {(con.feall,g,entry,, A)lentry, is the entry location of g}
9: end if
10: else

if the program statement at loc modifies a pointer in P then

12

compute a new aliasing relation A' by composing summaries for
complete update sequences as formulated 1n [9]
3 else

14: A'=A

15: end 1f

16: Succ = {(con,func,loc’,A")llo¢’ is the successor location of loc in func}

17: end 1f

18: for each tup’ 1n Succ do

19: Add tup’ as a successor of tup

20: if tup’ & Processed U W then add tup’ to W

21: end for

22: end while

Starting with the entry location of the given concurrent
program, we build a (potentially infinite) graph over tuples of
the form (con,func.loc), where loc 1s the current program
location of function func 1n context con. Here, con 1s defined
by means of a call string, 1.e., a sequence of function calls
leading to func.

To start with, the worklist W is initialized to {(e,start,
entry . )}, where € denotes the empty call string, start the
entry function of the given program and entry_, . the entry
location of start. In each iteration, we remove a tuple tup=
(con,func,loc) from W. Each successor of tup 1s of the form
(con',func',loc"), where (1) 1f loc 1s not a function call site then
con'=con, func'=func and location' 1s a successor location of
loc 1n func, and (11) it location 1s the site of a function call fcall
to function g then con'=con.fcall, func'=g and loc™=entry,,
where g 1s the entry location of g.

In the second case, if the function call 1s via a function
pointer func,,, then to resolve the (potential ) function calls at
loc, we compute the flow and context-sensitive points-to set
of func_,, at locution loc in context con.

Two points are worth noting:

1. Breaking the Cyclic Dependency: Note that in the case
where the function call at loc 1s via the function pointer
tunc ., all function pointers in con have already been
resolved in the construction of the CCFG. This breaks the
cyclic dependency discussed above so that the flow and con-
text-sensitive points-to set ot tunc,,, can now be computed
and the construction of the CCFG carried forth.

2. Leveraging Bootstrapping for FSCS analysis of function
pointers: The second point 1s that if we carried out a whole
program flow and context sensitive alias analysis to determine
the points-to set ot func ., the resulting CCFG construction
would be prohibitively expensive. Thus, to ensure scalability
we leverage bootstrapping, which permits restriction of the
analysis only to function pointers and those higher 1n the
points-to hierarchy than function pointers. This effectively
permits slicing all statements 1n the given program except
those that could affect points-to set of function pointers which
are extremely few 1n number. This ensures scalability of the
FSCS function pointer analysis.

Finitization of the CCFG. In the presence of recursion, the
above (pseudo-method 1) will not terminate and will generate
an infinite CCFG. This 1s because, 1n this case, the number of

25

30

35

40

45

50

55

60

65

contexts 1s 1nfinite. Indeed, 1 we consider even the simple
case of a self recursive entry function {, we can generate the
infinitely many contexts call’ ; where call.1sacallto finf. For
some applications, like model checking, which involve
exhaustive state space searches of the program at hand, we
have to consider all possible contexts. However for many
static analyses, we can restrict the set of contexts that need to
be considered without losing precision of the analysis at hand.
Specifically, for the present application, e.g., lockset-based
static data race detection, by exploiting the fact that not all
these contexts may generate different data race warnings, we
show that 1t sullices to explore only a finite number of con-
texts. Broadly speaking, the strategy 1s to consider only those
contexts that may generate different locksets at locations
where shared variables are accessed. This, 1n turn, boils down
to considering only those contexts which may generate dii-
ferent points-to sets for lock pointers at these locations.

Fimtization via Lock Alias Preservation: One strategy for
fimtizing the CCFG 1s to explore only those contexts 1n which
the points-to sets of lock pointers are different. In general,
tracking points-to sets of all pointers 1n the given program in
different contexts would be 1ntractable. For the present appli-
cation, however, we need to track points-to sets of only lock
pointers. Towards that end, we leverage bootstrapping. For
the present application, we are interested only 1n the FSCS
aliases of the set S of lock pointers of the given program. In
this case, the Steensgaard closure CI(S) of S would simply be
the set of lock pointers, pointers to lock pointers, pointers to
pointers to lock pointers, etc. Thus, when computing FSCS
aliases of the set S of lock pointers, we can slice away all
statements of the given program that do not atfect the aliases
of lock pointers, 1.e., those that are not assignments to any
pointer 1n CI(S). Since the number of statements affecting
lock pointers 1s usually small bootstrapping results in a highly
precise as well as scalable FSCS analysis for lock pointers.
This not only ensures scalability of the overall analysis but
helps keep the size of CCFG small.

In computing the CCFG 1n a context sensitive fashion, 1f
we encounter a function call again in a given context, we need
to decide whether to continue exploring 1t or not. Let
con=con, .Icall,.con,.fcall, be a context, 1.¢., a sequence of
function calls, such that fcall,, and fcall, are imnstances of the
same function call. If 1n constructing the CCFG, we have




US 8,539,450 B2

13

already explored the context con'=con,.icall,.con, and
encounter the tunction call fcall,, then our criterion for con-
tinung to explore fcall, 1s whether doing so could lead to the
discovery ol new aliases for lock pointers at locations where
shared variables are accessed. To that end, we show that if 1n
the two contexts con' and con, the aliases of all pointers in
CI(LP), the Steensgaard closure of LP, are the same then
exploring fcall, further cannot lead to the discovery of new
locksets at locations where shared variable are accessed. This

follows as a corollary of the following result.

Theorem (Small Model). Let S be a set of pointers and let
Con,=con,.Ic, and Con,=con,.Ic, be contexts such that ic,
and 1c, are mstances of the same function call {c to function g.
Suppose that for each peCI(S), the aliases ol p are the same at
any location of g in Con,; and Con,. Then, for any sequence
seq of function calls leading to function h, 1f Con',=Con,.seq
and Con',=Con,.seq are valid contexts then the aliases of
cach pointer 1n CI(S) are the same at each location of 1t 1n
Con', and Con',,.

Let P be a Steensgaard closed set. The above result implies
that 1f during the construction of the CCFG, a function call
tcall 1s encountered again in a context con, then 1t suifices to
explore fcall only 11 the set of aliases for some pointer peP 1s
different from each instance of fcall occurring along con. To
track alias sets, we augment the tuples of Method 2 with the
aliasing relation A — Px2’ that assigns to each pointer peP its
set of aliases. Thus, each tuple is now of the form (loc,func,
con,A), where A(p) 1s the set of aliases of p at location loc of
function func 1n context con. To start, the alias set for each
pointer p is set to {p}.

In each iteration, we delete a tuple (loc,func,con,A) from
worklist W. IT loc 1s the site of a function call fcall to function
p then 1n order to decide whether to explore fcall in context
con, we check whether loc has been visited with the aliasing
relation A, 1.e., whether there exists con' such that the tuple
(loc,func,con',A) has already been encountered. If that 1s the
case, then from the theorem, we see that exploring fcall in con
will not head to the exploration of new aliases. Next, we
consider the case when loc 1s not a function call site. In that
case, 1f the statement at loc modifies a pointer in P, the aliasing
relation needs to be updated. Based on the context-sensitive
concurrent call graph, we can directly obtain a concurrent
control flow graph (CCFG) by instantiating the function body
corresponding to each call graph node.

Example. The concurrent call graph for the example pro-
gram 1n Table 1 1s shown 1n FIG. 2. With reference to FIG. 2,
cach node 1n labeled by both a thread identifier (t) and func-
tion name (e.g., main, 1, h, etc.). Multiple calls to other func-
tions from a single function are labeled by the corresponding,
calling locations (e.g., 10, 13, etc.), which correspond to the
line number 1in Table 1, to distinguish the contexts. The “fork™
and “j01n” edges are also explicitly marked.

Data race analysis. A data race 1s possible for a shared
variable being accessed by two threads concurrently, 11 one of
the accesses 1s a write. To detect possible data races, we first
detect all the shared variables, and then check 1f kinds of
concurrent access are possible for any of the shared variables.
Program synchronization constructs, ¢.g., locks, may disal-
low a concurrent access of a shared vaniable. Similarly, the
order of instructions in the concurrent control flow graph
(CCFG) as well as the order of asynchronous function calls
(AFCs) may prevent two accesses from happening together.
In this 1llustrative description, we present a general May-
Happen-in-Parallel (MHP) Method 3 for computing which
concurrent accesses can happen 1n the presence of lock syn-
chronization and program order constraints.

5

10

15

20

25

30

35

40

45

50

55

60

65

14
TABL

(Ll

D

Method 3: Program order analysis

MHPlocs : =1{ }

tor all Fork-join call pair 1 = (14,1;,,) in CCFG do
LOC, gpene =l = IAT =1, |
Loc 14 := {lIchild.start =, 1A | — child.end}
MHPlocs := MHPlocs U (Lo x Loc_.17)

end for

Remove all locations in MHPIlocs that correspond to the same thread

Cparenr

Large concurrent C programs have shared variables mostly
accessed via pointers. Similarly, lock variables (e.g., those
accessed via spinlock) are also pointers. To detect MHP 1nfor-
mation precisely, we need to compute both shared variables
and lock access variables 1n a precise context-sensitive man-
ner. We first discuss detection of shared and lock variables in
a concurrent CFG.

Shared Variable Detection. The set of shared variables
consists of all variables that are either global variables of
threads or their aliases. Note that local pointer variables may
also alias global variables and result in a data race violation.
However, 1f we label all local pointer aliases as shared access,
we will end up with a large number of spurious warnings.
Theretfore, we are only interested 1n the set of alias variables
that used to actually update the values of global variables.
Using the CCFG computed above, we use a data tlow analysis
on pointer variables to compute the set of shared variables.
The analysis essentially propagates assignments 1n complete
update sequences from variables p to q (where p 1s global). IT
the sequence 1s followed a modification of some scalar vari-
able via q, then q 1s marked as shared. Data flow analyses are
known 1n the art.

Initial Data-race warmings. After we have computed the set
of shared varniables, we can compute a conservative estimate
of the data races by considering all syntactic accesses of the
shared variables 1n the program CCFG of which at least one
access 1s a write to the shared variable. For industrial sized
programs, this conservative estimate leads to thousands of
warnings, many of which are spurious. A staged MHP analy-
s1s may be employed, which prunes away the spurious warn-
ings by first taking into account acquire patterns of locks and
then using program order constraints imposed by fork and
jo1n 1nstructions 1n the CCFG. We first initialize a warning
database consisting of a conservative estimate of all possible
pairs of locations that may access some shared variable and
then perform MHP analysis to prune oif redundant warnings
from the database.

MHP analysis. Lockset analysis: Two accesses to shared
variables 1n different threads may not happen simultaneously
il they require each thread to hold a common lock. To detect
such exclusive shared variable accesses, we compute a con-
servative estimate of the set of locks that need to be acquired
(locksets) at each shared variable access. Ditterent call con-
texts can also lead to different sets of locks being acquired at
a particular shared variable access location. The locksets are
computed 1n a context-sensitive fashion. Since, the CCFG
construction 1tsell was done 1n a context-sensitive manner,
the lock-set computation can be combined with it. Therefore,
at the end of CCFG computation, we obtain the context-
sensitive locksets at each shared variable access location. We
can then check 11 a given pair of shared accesses always has a
common lock 1n the corresponding locksets for all possible
contexts. In that case, the pair of locations 1s removed from
the warning database.

Program order analysis: The order of program statements
in the CCFG prohibits some concurrent accesses. For




US 8,539,450 B2

15

example, consider a system of two threads: t, and t,, where t,
creates t, and later waits for t, to join. An access to a shared
variable x 1n thread t, cannot happen concurrently with an
access to x 1n t, 1f the access 1n t, follows the join 1nstruction
corresponding to t,. The program order analysis 1s designed
to reveal the hidden sequential behavior (of above form) 1n a
program that arises due to the thread creation model and the
sequence ol program statements.

Fork-join model. We first note that the thread creation
model based on fork and join events has the following char-
acteristics: 1. All the statements 1n the parent thread between
fork and jo1n point may happen 1n parallel with all statements
in the child thread (and threads created by the child thread);
and 2. No other statements can happen in parallel. The pro-
gram order analysis exploits the above characteristics of fork
j01n model to compute a more precise MHP set.

Threadpool model. In the threadpool model, function tasks
are dispatched for execution to previously created threads by
asynchronous function calls. These calls correspond to a fork
instruction, implicitly. However, these instructions do not
have a corresponding join 1nstruction. To conservatively esti-
mate the effect of these calls, a matching join 1nstruction 1s
introduced at the last location of the parent thread, 1.e., the
thread that 1ssues the asynchronous function call. This allows
any instruction of the parent thread to happen in parallel with
the locations 1n the function executed on another thread.

Given a thread t, let children(t) denote the set of threads
created by t. For each thread t, we denote the first and last
program locations 1n t by t.start and t.end respectively. In
general, t.start and t.end are not unique since multiple fork
calls can be dispatched to the same thread in the threadpool
model. However, given a fork call instruction to thread t,
t.start and t.end are umquely defined. Also, let —, and —
denote the program transition relation i CCFG with and
without the fork and join edges, respectively.

Method 3 shows the details of the analysis. Loc,,,,.,,, con-
sists of all the locations in the parent thread that are forward
reachable from the fork call and backward reachable from the
jo1n instruction without following any fork or join edges. The
set Loc_, ., , consists of all the locations 1n the child thread as
well as threads created by child threads recursively. The
analysis produces the set of MHPlocs of the set of location
pairs that may happen in parallel.

Based on the program order analysis, we can now prune the
warning database by removing any warning location pairs
that do not occur in the MHPlocs set. We can further optimize
the computation of MHPlocs by only keeping locations that
perform shared variable accesses.

Example. Recall the example program 1n Table 1. As men-
tioned, the program has two potential data race conditions in
the function 1 on the shared variable pointed to by the argu-
ment z. More precisely, the races involve location pairs
(t1.1 11.12.1 12) and (t1.1 13.12.1 .13) since function 1 1s
executed by both threads t1 and t2. However, if we perform
program order analysis on the context-sensitive CCFG
obtained from the program, we find that the above location
pairs are not 1n the set MHPlocs, since the thread t2 can only
execute after the thread t1 finishes executing.

Data race detection being a problem of fundamental inter-
est has been the subject of extensive research. Many tech-
niques have been leveraged in order to attack the problem
including dynamic run-time detection, static analysis and
model checking. In this disclosure, we have presented meth-
ods to perform static data race detection for concurrent pro-
grams that use asynchronous indirect function calls for com-
munication. A new technique for context-sensitive CFG
construction 1s provided that guarantees termination even 1n

10

15

20

25

30

35

40

45

50

55

60

65

16

the presence of recursion and without losing precision of the
analysis at hand. This enables us to build a framework for fast
and accurate data race detection that can handle concurrent
programs with complex programming constructs thereby
making such an analysis practical for a larger class of realistic
programs.

Referring to FIG. 3, a block/flow diagram for a system/
method for anmalyzing a concurrent program stored in
memory, which employs asynchronous function calls for
communication and/or recursion 1s illustratively shown 1n
accordance with one embodiment. In block 102, a control
flow graph 1s constructed ¢.g., using a processor and a pro-
gram application (e.g., Method 2), based on a context-sensi-
tive pointer analysis. Upon encountering a function pointer, a
points-to set of the function pointer 1s computed 1n a context-
sensitive fashion to accurately determine a set of potential
function calls.

In block 104, constructing the control flow graph may
include employing a thread pool where each thread iteratively
processes tasks from 1ts work queue. A thread 1n the thread
pool sends a task request to another thread to 1ssue an asyn-
chronous function call with the task as an argument. The
asynchronous function calls may include fork and jo1n events.
Synchronous function calls may be performed within a same
thread.

In block 106, the context-sensitive pointer analysis 1s ter-
minated when no new potential function calls are encountered
such that no new potential function calls are determined using,
a characterization of pointer aliasing encountered based upon
complete update sequences to decide whether new aliases are
discoverable. In block 108, data races in the concurrent pro-
gram are determined using the control flow graph which
includes resolved context sensitive pointers. The resolved
context sensitive pointers of the control flow graph preferably
include one or more of asynchronous calls, function pointers,
thread pointers and recursion. Detecting data races includes
context sensitive data race detection 1n the presence of recur-
S101.

The data race detection in the concurrent program may
include 1dentitying shared variables and lock pointers, com-
puting an initial database of race warnings, and pruning away
spurious warnings using a may-happen-in-parallel (MHP)
analysis based on computing lock sets and performing pro-
gram order analysis.

Referring to FIG. 4, a system 200 1s provided for analyzing
a concurrent program 205, which employs asynchronous
function calls for communication. A program application 202
1s stored on program storage media or memory 204 and is
configured to construct a control flow graph 206 for a con-
current program 205 being analyzed. The control tflow graph
206 1s constructed based on a context-sensitive pointer analy-
s1s executed by the program application 202, wherein upon
encountering a function pointer in the concurrent program, a
points-to set of the function pointer 1s computed 1n a context-
sensitive fashion to accurately determine a set of potential
function calls.

The context-sensitive pointer analysis 1s terminated when
no new potential function calls are encountered such that no
new potential function calls are determined using a charac-
terization ol pointer aliasing encountered based upon com-
plete update sequences to decide whether new aliases are
discoverable. A processor 210 1s configured to detect data
races 1n the concurrent program using the control flow graph
which includes resolved context sensitive pointers.

The resolved context sensitive pointers of the control tlow
graph 204 1include one or more of asynchronous calls, func-
tion pointers, thread pointers and recursion. The control tlow




US 8,539,450 B2

17

graph 204 includes a thread pool 212 where each thread
iteratively processes tasks from 1ts work queue, wherein the
thread pool 204 sends task requests to other threads to 1ssue an
asynchronous function call with the task as an argument. The
asynchronous function calls may include fork and join events.
The processor 210 performs data race detection based on the
CFG 206.
Having described preferred embodiments for fast and
accurate data race detection for concurrent programs with
asynchronous calls (which are intended to be 1llustrative and
not limiting), 1t 1s noted that modifications and variations can
be made by persons skilled in the art in light of the above
teachings. It 1s therefore to be understood that changes may be
made 1n the particular embodiments disclosed which are
within the scope of the invention as outlined by the appended
claims. Having thus described aspects of the mnvention, with
the details and particularity required by the patent laws, what
1s claimed and desired protected by Letters Patent 1s set forth
in the appended claims.
What 1s claimed 1s:
1. A context-sensitive method for analyzing a concurrent
program stored 1 memory, which employs asynchronous
function calls for communication and/or recursion, compris-
ng:
constructing a control flow graph, using a processor, based
on a context-sensitive pointer analysis, wherein upon
encountering a function pointer, a points-to set of the
function pointer 1s resolved dynamically on-the-fly 1in a
context-sensitive fashion to accurately determine a set of
potential function calls;
terminating the context-sensitive control flow graph con-
struction when no new potential function calls are
encountered that potentially contribute new data races
that are not already discovered 1n existing contexts; and

detecting data races in the concurrent program using the
context-sensitive control flow graph which 1s con-
structed to not miss any potential data race by determin-
ing concurrent accesses under lock synchronization and
program order constraints by obtaining context-sensi-
tive locksets at each shared variable access location and
checking 11 a predetermined pair of shared accesses has
a common lock 1n corresponding locksets for all pos-
sible contexts and removing the predetermined pair of
locations from a warning database.

2. The method as recited in claam 1, wherein function
pointers encountered are resolved on-the-fly using a charac-
terization of pointer aliasing based upon complete update
sequences to decide whether new aliases are discoverable.

3. The method as recited in claim 1, wherein the context-
sensitive construction of the control flow graph 1s terminated
based on whether new shared variables accesses with differ-
ent locksets other than those encountered 1n existing contexts
can be discovered.

4. The method as recited 1n claim 3, wherein a fix-point
computation 1s carried out via traversal of the control flow
graph of the program by tracking aliases of lock pointers,
aliases of shared variables and aliases of function pointers to
decide whether new shared variable accesses with different
locksets than those already encountered are discoverable.

5. A non-transitory computer readable storage device com-
prising a computer readable program for analyzing a concur-
rent program stored in memory, which employs asynchro-
nous function calls for communication and/or recursion,
wherein the computer readable program when executed on a
computer causes the computer to perform the steps of:

constructing a control flow graph, using a processor, based

on a context-sensitive pointer analysis, wherein upon

5

10

15

20

25

30

35

40

45

50

55

60

65

18

encountering a function pointer, a points-to set of the
function pointer 1s resolved dynamically on-the-fly 1n a
context-sensitive fashion to accurately determine a set of
potential function calls;

terminating the context-sensitive control flow graph con-
struction when no new potential function calls are
encountered that potentially contribute new data races
that are not already discovered 1n existing contexts; and

detecting data races in the concurrent program using the
context-sensitive control flow graph which 1s con-
structed to not miss any potential data race by determin-
ing concurrent accesses under lock synchronization and
program order constraints by obtaining context-sensi-
tive locksets at each shared variable access location and
checking i1 a predetermined pair of shared accesses has
a common lock 1n corresponding locksets for all pos-
sible contexts and removing the predetermined pair of
locations from a warning database.

6. The computer readable storage device as recited 1n claim

5, wherein function pointers encountered are resolved on-the-
fly using a characterization of pointer aliasing based upon
complete update sequences to decide whether new aliases are
discoverable.

7. The computer readable storage device as recited 1n claim
5, wherein the context-sensitive construction of the control
flow graph 1s terminated based on whether new shared vari-
ables accesses with different locksets other than those
encountered 1n existing contexts can be discovered.

8. The computer readable storage device as recited 1n claim
7, wherein a fix-point computation 1s carried out via traversal
of the control flow graph of the program by tracking aliases of
lock pointers, aliases of shared variables and aliases of func-
tion pointers to decide whether new shared variable accesses
with different locksets than those already encountered are
discoverable.

9. A system for analyzing a concurrent program stored in
memory, which employs asynchronous function calls for
communication and/or recursion, comprising:

a program application stored on program storage media
and configured to construct a control tlow graph for a
concurrent program being analyzed, the control tlow
graph being constructed based on a context-sensitive
pointer analysis executed by the program application,
wherein upon encountering a function pointer in the
concurrent program, a points-to set of the function
pointer 1s computed 1n a context-sensitive fashion to
accurately determine a set of potential function calls, the
context-sensitive pointer analysis being terminated
when no new potential function calls are encountered
such that no new potential function calls are determined
using a characterization of pointer aliasing encountered
based upon complete update sequences to decide
whether new aliases are discoverable; and

a processor configured to detect data races 1n the concur-
rent program using the control flow graph which
includes resolved context sensitive pointers by deter-
mining concurrent accesses under lock synchronization
and program order constraints by obtaining context-
sensitive locksets at each shared variable access location
and checking 11 a predetermined pair of shared accesses
has a common lock 1 corresponding locksets for all
possible contexts and removing the predetermined pair
of locations from a warning database.

10. The system as recited in claim 9, wherein the resolved
context sensitive pointers of the control flow graph include
one or more of asynchronous calls, function pointers, thread
pointers and recursion.



US 8,539,450 B2
19

11. The system as recited in claim 9, wherein the control
flow graph includes a thread pool where each thread itera-
tively processes tasks from its work queue, wherein the thread
pool sends task requests to other threads to 1ssue an asynchro-
nous function call with the task as an argument. 5

12. The system as recited 1n claim 11, wherein asynchro-
nous function calls include fork and join events.

¥ ¥ e ¥ ¥

20



	Front Page
	Drawings
	Specification
	Claims

