US008538719B2
a2 United States Patent (10) Patent No.: US 8.538.719 B2
Vetter et al. 45) Date of Patent: Sep. 17, 2013
(54) METHOD FOR TESTING DEVICE (52) U.S.CL
DESCRIPTIONS FOR FIELD DEVICES OF USPC oo, 702/119; 702/120; 702/123
AUTOMATION TECHNOLOGY (58) Field of Classification Search
USPC oo 702/35, 36, 38, 108, 119, 120, 122,

(75) Inventors: Immanuel Vetter, Sinzheim (DE);

Michael Gunzert, Herxheim (DE) 702/123, 182-185

See application file for complete search history.
(73) Assignee: CodeWrights GmbH, Karlsruhe (DE)

(56) References Cited
*) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35 U.s. PATENT DOCUMENTS
U.S.C. 134(b) by 654 days. 5,920,830 A * 7/1999 Hatfieldetal. 702/119
2004/0199351 A1 10/2004 Ott
'Y Avonl No. - 12/087.127 2007/0088518 ALl* 4/2007 Braun ..o, 702/108
(21) App ;
(22) PCT Filed: Dec. 28. 2006 FOREIGN PATENT DOCUMENTS
’ WO WO 2004/046837 6/2004
(86) PCT No.: PCT/EP2006/070240 * cited by examiner
§ 371 (c)(1),
(2), (4) Date: May 26, 2009 Primary Examiner — Manuel L Barbee

(74) Attorney, Agent, or Firm — Bacon & Thomas, PLLC
(87) PCT Pub. No.: WQ2007/077189

PCT Pub. Date: Jul. 12, 2007 (57) ABSTRACT
In a method for testing device descriptions for field devices of
(65) Prior Publication Data automation technology, a finite state machine 1s produced
US 2009/0326852 A1 Dec. 31, 2009 from a device description to serve as a basis for a test script.
For testing the device description, the test script 1s executed,
(30) Foreign Application Priority Data with data being sent to and received from the device descrip-
tion. In such case, 1t 1s tested whether desired values set 1n the
Dec. 30,2005 (DE) oooiiiiieiinnn, 10 2005 063 162 test script agree with actual values delivered e.g. from the
field device.
(51) Int.CL
Gool’ 19/00 (2011.01) 7 Claims, 9 Drawing Sheets

DDL
Specifications

Test F1

C2 - Parameter

| bo/AsM |
_Compiler |

o1

FSM- |
Generator

| DD/DTM

DD-F1
Compiler :

ASM_

Test '
Script F1

TS

U.S. Patent Sep. 17, 2013 Sheet 1 of 9 US 8,538,719 B2

W31 WS2

SU

F1 F2 F3 r4 Fig. 1

U.S. Patent Sep. 17, 2013 Sheet 2 of 9 US 8,538,719 B2

DTM-F1 - il
" ..I
DTM-F2 H - BA D1
Comm: DTM ...

] 4 N
FDT-Frame 3

NENEN &

1 F2 F3 F4

U.S. Patent

Compiler

DTM-F1

| DD/ASM |

| DD/DTM |

Sep. 17,2013 Sheet 3 of 9 US 8.538.,719 B2

_ DDL
Specifications

- TestF1 |
- Parameter |

C2

Compiler {

FSM- |
Generator}

DD-F1
ASM

Test '
Script F1

TS

Fig. 3

U.S. Patent Sep. 17, 2013 Sheet 4 of 9 US 8,538,719 B2

FDT-Frame

U.S. Patent Sep. 17, 2013 Sheet 5 of 9 US 8,538,719 B2

Gl demih. . gl dpbely dbeahd el SR bbbl ekl EREE RIS,

| DS-F1 N DD- F1
FSM | FSM

Fig. 5

DTM-F1
Test-Comm Communication DD-F1
DTM Interpreter
F1 .
- Fig. 6

U.S. Patent

Sep. 17, 2013 Sheet 6 of 9

[/ DD Code Fragment of l_/ii_c_robilot M FMR2xx

| #define HL 33999 /* Hard lock/Local lock
#define WHG 33998 /* WHG lock

#define VS 200 /* view service

#define CUL 100 /* customer unlock
f#define SUL 300 /* service unlock
fidefine DUL 123 /" debug unlock

|
VARIABLE parOperationCode

{
LABEL "Operation Code”
HANDLING IF (parOperationMode == 1)

| READ;

ELSE

READ & WRITE;

TYPE UNSIGNED_INTEGER (2)

| { EDIT_FORMAT 9. 1U"
DISPLAY_FORMAT "5.1u",

MIN_VALUE 0;
MAX_VALUE

)
{
)

}

VARIABLE parOperationMode

LABEL "Operation Mode"

HANDLING READ & WRITE;

)

VARIABLE parTankShape

{

LABEL "Tank Shape’
| HANDLING IF (parOperationCode == CUL | |
= narOperationCode == SUL | |

US 8,538,719 B2

ait;
alt;
alt;
alt;
ait:
alt;

IF (parOperationMode == 1) {3398;} ELSE {3397;)

9999 */
9998 */
334 7/
111/
333"/
2101 %/

TYPE ENUMERATED { {0, "Standard"}, { 1,"WHG"} }

Fig. 7

U.S. Patent Sep. 17, 2013 Sheet 7 of 9

US 8,538,719 B2

il Rl

allpﬁblic namespage Model
{ | general type definitions (device independent)

[ProfilerHint (FieldReadProfileable=true)]

NONE

INPUT

OUTPUT
CONTAINED
DYNAMIC
LOCAL

[/ to be continued

enum enumi YPE
ENUMERATED
UNSIGNED INTEGER

FLOAT
/] to be continued

[ProfilerHint (FieldReadProfileabie=true)]
enum enUmHANDLING

READ

WRITE

READ WRITE

[ProfilerHint (FieldReadProfileable=true)
structure RANGE of T

MIN VALUE as T

MAX VALUE as T

iProfilerHint (FieldReadProfileable=true) |
structure ENUM_VALUE
VALUE as integer - 0

DESCRIPTION as String= " ©
/! HELP as String=""

[| device specific definitions (generated automatically later on)

const HL = 33999 { { Hard lock
const WHG = 33998 // WHG lock
const VS = 200 [| view service
const CUL = 100 / | customer unlock

const SUL = 300 { | service unlock
const DUL =123 / | debug unlock

FHHEELTEEEEE RN EE b ni b

/] VARIABLE parOperationCode

FHOPHETEET TR b i ni o

[ProfilerHint (FieldReadProfileable=true)]

class parOperationCode VAR
var VALUE as Integer=0

enum enumCLASS // Class should be a set as a variable may belong to muiltiple classes

e I - e —— S I

U.S. Patent Sep. 17, 2013 Sheet 8 of 9 US 8,538,719 B2

Generated Test Sequences Flg 9
Qole Tronsitions B - - - -
] Satype - [Grouplr | Linklr | 1Required | ActionCro
it | parDislancelnt_VARE6206.SetValuei) [| & 2
I porlonkShape_VAR6288 SelValue) [1] & [
] narperationlode_VARF6289.SelValue ? | ! YK
2 oarDisloncelni_VARF6266 SelValue(0)] ~ i
i porlankShape _VARF6288 Setlolue(0 0 ¥
| porlperationiode_VAR6780 SelVa uell} | 0 M
{0 | pulperationtlode_VARF6Z89 SelValuel |k (%
10 [pordperalionCode_VARF6290 SelVaue(3398 Tw ol 1] ™
5| polistonceUnil VARF6286Seoluel0) | Tl | S3 5 018 | & %
| poroShope VRJGTERSeael0) | (Wl [S | W[0 | 9 | & | 19
5 porCperotioniode_VARG289 SelVoluel10] | [Mll] | A kT ol = | B |
li porlistoncelJnt_VAR] 6236 SelfaluelD) | (N | § | 0 I M | B
i porlonkShape_VARBGZ88 Setvaluel0) | TNl | S4 2B L O O W O
M| porOperationiode_VARJ6289SelVaue(10) | [Nl | 4 | M | A M T 4 18
i | porOperationtlode_VARFE289.SelVoluel) | [Nl | 3 | I3 0 | U | & g
1 [purperctionCode_VARF90 SelVolue[33098)] [Nl] | 4 TR]
4 | arOperationCode_VAR#6290 SetValue(300) | [Ny 5 18 0| 16 | M 5
5| porisoncelnl VARFE235 SelVlue BT T I 26
U1] porlankShope VIREEIBESeluelD] | | S5 1 0] 18 E
%5 | W | podperolionode VARF6289 SelVoue{1D S5 H 101181 & 18
9 | K5 | poCperalionbode VARJG80SeliokeT} [Nl | S5 | B | 0 [W | B 9
5 | B | podistonceln VRS8R Setlohel] | [Nall | 6 6 | 0[N | & %
% | H5 | porfonkShape VARFG208SelValueD) | [Nl | 6 (0 12| & | W
% | HG- | pordperationbode_VARFG2. SeWulue(%%) Ml s [W [0] 8] {1’
| t6 | podpeolonkode VRIGP9SeNahe) TNl | S5 | W [0 | U | & 0
6 i6 | parlperationCode_VAR#6290 SetValue(33998) | (M 3 B || 23 ¥]
5 | H6 | porGperolionCode_VARFEZS0Selohe(300] | [Nl |6 Hg). [% | & 5
3 16| parGperalionCode_VARG290SetVaue(00) | [Wll] | &7 il) (0 [& | 2
S [W 1 porDitoncelUnil VRIGZ0Seaheld] [l | 7 T W [0 [B | & %
S| W narforkShope_VARFSZ68 SetValue(0] [(Nall | 7 {7 0 | 8 | & [
y 1| porOperationblode_VARF6280 SelValue10) | [Nul] T S8 Ha 0 | 0 | & 13
‘] % i8] purDtstunceUml VAR}6260.SelVoluel0) | Nl N i (| M % |
% 18 norTankShope_VARY 6288 SelVolue[0 Ny N g | 0 L 1 | g
% 8| parGperalionliode VARFG209Selvahe(10) [Nl [S5 [W [0 | 3 [¥ 18
R 8| parlperationlode_VARFG289 SetVolueld) [[Nul} | &7 16 ¥ | & g

S5 | 18 |porCperalionCode VARFE0SeNole[SS008)| W] | 8 | W [0 1 % | ©]]
TS5 | 1| poperoonCode VARGEY0Seone00) | [t | S | 5 | 0 B l 7 5

8 | 1 | porOperobionCode VREEX0SeNake[100) [W] | 8 | B T 0 [7 | &]

57 17 | porperatoniiode_VARF62B9.SetVahel1) | INull | S H7 0 | B 18

y orlperationCode_ VAH GZBOSEIVulue S8 TS] W 0 W | T

ST | HT | pordperationCode VARE2905etVolue(300) | [N} | S5 | W6 | 0 | 40 13

g oarperclonCode. VAR szgosewu el] Nl T 7 T W] 0 [4 | 2

g H? per{perationCode_VARF6290.SetValuelD) ﬂ el mlTolal=al

56 | M6 | porlperationCode VARG90.SelVohef(9 1w 0] 81 = 1

U.S. Patent Sep. 17, 2013 Sheet 9 of 9

=

ge

US 8,538,719 B2

juence #0-(.1 steps) fromintfial state: -
parOperatlonMode VAR#5289. SetValue(1): void (from S1 to S2)

. sequence #1 (2 steps) from initial state

..parOperationMode_VAR#6289.SetValue(1): void (from S1 to S2)
. parOperationMode_VAR#6289.SetValue(0): void (from S2 to §1)

~ $equence #2 (2 steps) from initial state

. parOperationMode_VAR#6289.SetValue(1): void (from S1 to S2)
L. parOperationCode_VAR#6290.SetValue(33998): void (from S2 to S3)

. sequence #3 (3 steps) from initial state

.. parOperationMode_VAR#6289.SetValue(1): void (from S1 to S2)

.. parQperationCode_VAR#6290.SetValue(33998): void (from S2 to S3)
+. parOperationMode_VAR#6289.SetValue(10): void (from S3 to S4)

- sequence #4 (4 steps) from initial state

. parQOperationMode_VAR#6289.SetValue(1): void (from S1 to S2)

. parOperationCode_VAR#6290.SetValue(33998). void (from S2 to S3)
. parOperationMode_VAR#6289. SetVaIue§10) void (from S3 to S4)

.. parOperationMode_VAR#6289.SetValue(1): void (from S4 to S3)

.- parOperationMode_VAR#6289.SetValue(1): void (from S1 to §2)
.. parOperationCode_VAR#6290.SetValue(33998): void (from S2 to S3)

t..parOperationMode_VAR#62809. SetValue(10& void {from S3 to S4g
..parOperationCode_VAR#6290.SetValue(300): void (from S4 to S5)

.. parOperationMode_VAR#6289.SetValue(1): void (from S1 to S2)

- parOperationCode_VAR#6290.SetValue(300): void {from S2 to S6)
. parQperationMode_VAR#6289. SetVaIuegm) void (from S6 to S5)
L.parOperationMode_VAR#6289.SetValue(1): void (from S5 to S6)

- parQperationMode_VAR#6289.SetValue { vo:d (from S1 to S2
3

|

.- sequence #5 (4 steps) from initial state

. sequence #6 (4 steps) from initial state

. sequence #7 (3 steps) from initial state

.. parOperationCode_VAR#6290.SetValue(3 vmd (from S2 to 6
L. parOperationCode_VAR#6290.SetValue 3998 vond (from S6 to

.. parOperationMode_VAR#6289.SetValue {1 vcld (from S1 to S2

. sequence #8 (3 steps) from initial state

L..parOperationCode_VAR#6290.SetVaiue(3 VOId frcrn S2 to 6;
i..parOperationCode_VAR#6290.SetValue(100): void from S6 to §7

. sequence #9 (3 steps) from initial state

.. parOperationMode_VAR#6289.SetValue
..parOperationCode_VAR#6290.SetValue

i..parOperationMode_VAR#6289.SetValue(

1): voud (from S1 to S2
100 veld frcm S2 10 S7)
10) VOId rcm S7 to S8)

. parOperationMode_VAR#6289.SetValue 1& void (from S1 to S2
.. parOperationCode_VAR#6230.SetValue(100): void {from S2 to S7)

..parOperationMode_VAR#6289.SetValue(10): void {from S7 to S8)
... parOperationMode_VAR#6289.SetValue(1): void (from S8 to S7)

. sequence #10 (4 steps) from initial state

sequence ¥11 (4 steps) from initial state

- parOperationMode_VAR#6289.SetValue 18’ void (from S1 to 82%
+..parOperationCode_VAR#6290.SetValue(100): vord (from S2 to S7)
i..parOperationMode_VAR#6289.SetValue 10& void (from S7 o S8)

.. parOperationCode_VAR#6290.SetValue(33998): void (from S8 to S4)

sequence #12(4 steps) from initial state

. parOperationMode_VAR#6289.SetValue(1): void (from S1 to S2) |

Fig. 10

US 8,538,719 B2

1

METHOD FOR TESTING DEVICE
DESCRIPTIONS FOR FIELD DEVICES OF
AUTOMATION TECHNOLOGY

TECHNICAL FIELD

The invention relates to a method for testing device
descriptions for field devices of automation technology,
wherein device descriptions are integrated 1into an operating,
program for servicing field devices.

BACKGROUND DISCUSSION

Field devices are commonly employed in automation tech-
nology (process automation/manufacturing automation).
They serve for registering and/or influencing process vari-
ables. Examples of such field devices for process automation
technology are fill level measuring devices, mass flow mea-
suring devices, pressure- and temperature-measuring
devices, pH- and redox-potential-measuring devices, con-
ductivity measuring devices, etc., which, as sensors, register
the corresponding process variables, fill level, flow, e.g. tlow
rate, pressure, temperature, pH-value and conductivity value,
respectively.

Serving as field devices for influencing process variables
are actuators, e.g. valves, which control flow of a liquid 1n a
section of pipeline, or pumps, which change fill level 1 a
container.

A large number of such field devices are manufactured and
sold by the firm, Endress+Hauser®.

Frequently, field devices are connected with superordi-
nated units via communication systems (Profibus®, Founda-
tion®-fieldbus, HARI®, etc.). The superordinated units
serve for process control, process visualization, device-man-
agement (configuration and servicing) and for plant manage-
ment (asset management), using corresponding application
programs.

The integration of field devices into such applications
occurs via device descriptions. Device descriptions are pro-
vided by device manufacturers, 1n order that superordinated
units can recognize and mterpret the meaning of data supplied
by the field devices.

Various device descriptions are known for the different
fieldbus systems (HART-device-descriptions, Fieldbus Foun-
dation device descriptions, Profibus device descriptions).

On the basis of cooperation of Fieldbus Foundation (FF),
HART Communication Foundation (HCF) and Profibus
Nutzerorganisation (Profibus User Organization, known
under the acronym, PNO), an electronic device description
(Electronic Device Description EDD) was created, which 1s
defined 1n the standard, IEC 61804-2.

With a large number of EDD-based fieldbus systems (FF,
HART, Profibus) installed worldwide, EDD 1s an important
and very widely used description language for device descrip-
tions 1n automation technology.

For servicing field devices, corresponding servicing pro-
grams (operating tools) are necessary, which, 1n superordi-
nated units, run either on their own (Endress+Hauser Field-
Care, Pactware, AMS Fisher-Rosemount, PDM Siemens) or
clse are integrated 1nto control system applications (Siemens
PCS’7, ABB Symphony, Emerson Delta V).

For a comprehensive servicing of field devices, newly,
special device descriptions, so-called DTMs (Device Type
Manager), are available, which correspond to the FD'T (Field
Device Tool) specifications. The FD'T-specifications, serving
as an industry standard, were developed by the PNO 1n coop-
eration with ZVEI (Zentralverband Elektrotechnik-und FEle-

10

15

20

25

30

35

40

45

50

55

60

65

2

ktroindustrie (The German Electrical and Electronics Indus-
try, a registered association)). The current FD'T-Specification
1.2.1, mcluding the Addendum for “Foundation Fieldbus”
Communication, 1s available from ZVEI, PNO or the FDI-
Group.

Many field device manufacturers already deliver corre-
sponding DTMs for their field devices. The DTMs encapsu-
late all variables and functions of the pertinent field device
and offer, most often, a graphical user interface for servicing
the devices. Device-specific device descriptions can already
be downloaded via Internet-connections from the servers of
corresponding device manufacturers.

With the help of DTMs, a device- and manufacturer-span-
ning servicing of field devices i1s possible with appropnate
operating programs.

As run-time environment, the D'TMSs require a {frame appli-
cation (FD'T-Frame). The frame application and the corre-
sponding D'TMs permit, thus, a very comiortable access to
various variables of the field devices (e.g. to device param-
cters, measured values, diagnostic mnformation, status infor-
mation, etc.), as well as serving for mvoking special func-
tions, which individual DTMs make available.

Frame applications and DTMs work according to the cli-
ent-server-principle.

Since the field devices are serviced via DTMs, extensive
function testing 1s necessary, 1n order to assure that the DTMs
work faultlessly.

This function testing has also, especially, an aspect, which
1s critical for safety, since safety-critical settings on field
devices are effected with DTMs.

One possibility for testing DTMs 1s offered by the test tool
dtmINSPECTOR (M&M Software GmbH, St. Georgen). For
this, comprehensive test scripts are written, which are
executed together with the DTM to be tested. Essentially, 1n
these tests, it 1s reviewed, whether the DTM meets the FD'T-
specifications, thus the FD'T interface definitions. The correct
functioning of the DTMs as regards the device functionality
1S, however, not checked 1n such case.

The test scripts for the dtmINSPECTOR are produced
individually by hand. Typical test cases based on the FDT-
specifications are assembled and transformed into test scripts.

CodeWrights GmbH (Karlsruhe) produces from conven-
tional device description files (HART, FF or Profibus), with
the help of a tool (DTMstudio®) for such purpose, device-
specific D'TMs 1n large numbers. For each separate D'TM, a
special test script 1s manually produced, which, besides the
interface testing, also includes testing of the device function-
ality. This 1s extremely time consuming and cost-intensive.

The more parameters a field device includes, the higher the

test effort becomes. Complex field devices can, today, already
have up to 1000 parameters, and more.

SUMMARY OF THE INVENTION

An object of the invention 1s, therefore, to provide a method
for testing device descriptions for field devices of automation
technology, not having the above-described disadvantages,
while permitting, especially, the simple production of test
scripts, with the test scripts covering, as much as possible, all
concelvable test cases for the relevant field device.

This object1s achieved by a method which produces a finite
state machine from a device description based on states and
state transitions, produces a test script with help of the finite
state machine, executes the test script, wherein data are sent to
and received from the device description for generating actual

US 8,538,719 B2

3

values, and then compares desired values predetermined by
the test script with the actual values.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention will now be explained 1n greater detail on the
basis of several examples of embodiments presented in the
drawing, the figures of which show as follows:

FIG. 1 1s a schematic drawing of a network of automation
technology with a plurality of field devices;

FIG. 2 1s a schematic drawing of a communication connec-
tion between an operating program and a plurality of field
devices;

FIG. 3 1s a schematic drawing of the production of a test
script;

FIG. 4 shows a test DTM on-line;

FIG. 5§ shows a test with a model-checker:

FIG. 6 shows a test communications interpreter;

FI1G. 7 shows a device description file of Micropilot M (an
extract thereof);

FIG. 8 shows a abstract state machine (an extract thereot);

FIG. 9 shows a finite state automat (an extract thereot); and

FIG. 10 shows a test sequence (an extract thereot).

DETAILED DISCUSSION

FIG. 1 shows a communication network of process auto-
mation technology. Connected to a data bus D1 are a plurality
of computer units (work stations, host-computer) WS1, WS2.
These computer units can serve as superordinated units (con-
trol system, control unit, servicing station) for process visu-
alizing, process monitoring and for engineering, as well as
also for servicing and monitoring field devices. Data bus D1
works e.g. according to the Profibus® DP-Standard or the
HSE (High Speed Ethernet)-Standard of Foundation® Field-
bus. Via a gateway (1, which 1s also referred to as a linking,
device or a segment coupler, the data bus D1 1s connected
with a fieldbus segment SM1. Field bus segment SM1 1s
composed of a plurality of field devices F1, F2, F3, F4 con-
nected together via a fieldbus FB. Field devices F1, F2, F3, F4
can be both sensors or actuators. Fieldbus FB works accord-
ing to one of the known communication standards Profibus,
Foundation Fieldbus or HART. Also connectable temporarily
with fieldbus FB 1s a portable computer unit SU.

FI1G. 2 shows, schematically, an operating program, which
can run on one of the computer units WS1, WS2 or on the
servicing umt SU. The operating program can be e.g. the
operating soltware PAC Tware (PACTware Consortium ¢.V.)
or FieldCare® (of the firm, Endress+Hauser®)). Both require
Microsoit Windows®, 98N'T, 2000, as the operating system
and serve as FDT-Frame. The frame application FDT-Frame
1s responsible, especially, for managing the D' TMs 1n a project
database, for communication with the bus system and for
managing the device catalog.

Integrated into the frame application FDT-Frame are
device drivers for, among other things, a plurality of field
devices. For purposes of 1llustration, only two device DTMs,
DTM-F1 and DTM-F2, as well as a communications-DTM,
Comm DTM, are shown. By way of example, the device-
DTM, DTM-F1, encapsulates the parameters and functions
of the field device F1.

With the help of the DTMs, a device- and manufacturer-
spannming servicing of the field devices, as well as establish-
ment of a communication connection between the computer
unit WS1 and the field devices F1, F2, F3, F4, are possible.
Thus, the DTM-F1 permits specific access to various infor-
mation in the field device F1, such as device parameters,

10

15

20

25

30

35

40

45

50

55

60

65

4

device configuration, diagnostic data and status data. Most
often, access to this information 1s facilitated for the user by
a manufacturer-specific, graphical user interface.

The FDT-concept 1s based on the fact that different field
devices ol the most varied of manufacturers can be integrated,
in simple manner, into a FD'T frame application via the cor-
responding device-DTMs. These correspond, 1n principle, to
drivers for peripheral devices, such as e.g. printers for stan-
dard PCs.

From a hardware point of view, connection to ficldbus F1 1s
accomplished via a bus adapter BA, the data bus D1, the
gateway (1, and the fieldbus FB.

FIG. 3 shows, schematically, how a test script TS 1s pro-
duced from a device description file DD. DD stands, 1n gen-
eral, for device description and refers to the text description of
the device, or the corresponding file.

A device description can be thought of as a system, which
describes states and state transitions of the field device. A
state 1s, 1n such case, defined by the values of all variables and,
on occasion, active transactions, as well as the available func-
tions, including the operating menu. State transitions are
defined as the allowed changes of the values of the variables.
These changes occur, normally, by the editing of the values
via the user interface of the operating program (operating
tool). Furthermore, functions (methods) can effect changes of
values of the variables. Changing of values of the variables or
the execution of functions 1s mnitiated via the external com-
munication connection of the field device.

An extract of a device description file 1s shown 1n FIG. 7
based on the product, Micropilot M FMR2xx of the firm,
Endress+Hauser.

From the device description file DD-F1 for the field device
F1, with the help of a compiler C2, an abstract state machine
DD-F1 ASM 1s produced. Abstract state machines are desig-
nated as such 1n the English-language literature, and are, on
occasion, also referred to with the acronym ASM.

An abstract state machine 1s an abstract machine model,
with which algorithms, programming languages, protocols
and other systems can be described and simulated. Available
for describing an abstract state machine are e.g. the Abstract
State Machine Language of Microsoit, and XASM (www.X-
asm.org) as an open-source implementation, such as 1s 1llus-
trated by way of extract 1n FIG. 8. Such languages are suit-
able, above all, for creating executable specifications.

The abstract state machine DD-F1 ASM 1s expanded by an
additional, general, abstract state machine DDL-ASM, which
1s won from the specifications of the device description lan-
guate DDL (Device Description Language). DD-F1 ASM and
DDL-ASM are combined together and form, together, a state
machine X-DD-F1 ASM. This expanded, abstract state
machine X-DD-F1 ASM 1s converted, with the help of an
FSM-Generator (finite state machine Generator), and taking
into consideration special test parameters (e.g. predetermined
value ranges for particular data types) for the field device F1,
into a finite state machine DD-F1 FSM (Fimte State
Machine).

An extract of such a finite state machine 1s shown 1n FI1G. 9.

With the help of a test generator TG, a test script TS-F1 1s
then produced for the field device F1 from the finite state
machine DD-F1 FSM. An extract of such a test script is shown

in FI1G. 10.

The compilers C1 and C2, and the generators FSM and TG
are programs that can run on any computer units, e.g. standard
PCs using Windows®, Unix® or Linux.

US 8,538,719 B2

S

Such programs have to be created once and then can be
used for device descriptions of various field devices. The
general, abstract state machine DDL-ASM, likewise, needs to

be created once.
Also, with help of a compiler C1 (e.g. DTM Studio), a

DTM-F1 can be won for the field device F1 from the device
description file DD-F1 for the field device F1.

FIG. 4 shows, schematically, the on-line test of the field
device F1.

For this, field device F1 1s, as shown in FIG. 1, connected
with a computer unit, which 1s indicated with the label WS-
Test. Computer unit WS-Test 1s, essentially, similar to the
computer unit WS1. Besides a DTM-frame, also another
application is installed, a test tool, “Testtool”.

The test tool “Testtool” can access the DTMs, 1.e. it can
both transmit to, and receive data from, the DTMs. Commu-
nication can be done either via the FDT-frame, or, 1n case an
appropriate test-interface 1s provided at the DTM, also
directly via the DTM. These communication paths are shown
by arrows.

For testing the DTM, DTM-F1, the test script TS-F1 1s
executed by the test tool Testtool.

In such case, specific parameter values are sent to, and
recetved from, the DTM-F1. The DTM-F1 communicates
on-line, via the Comm DTM, with the field device F1 con-
nected with the field bus FB. Via the Comm DTM, device
parameters can also be read from and/or written to the field
device F1 directly by the test tool Testtool.

If the test script TS-F1 contains the statement Write (A,
10), this means that the variable A 1n the field device F1 1s to
be written, with the help of the DTM-F1, with the value 10
(desired value). By direct query of the actual value of the
variable A from the field device F1 via the Comm DTM, 1t can
then be checked, whether such statement has actually been
carried out in proper manner. In similar fashion, all state
transitions possible according to the device description can be
carried out and checked. The various actions are retained 1n a
test report, which 1s produced by the test tool, “Testtool”. If
deviations occur, 1.e. desired values do not agree with actual
values, then this 1s specially noted 1n the test report. These
errors must then be analyzed, 1n order to determine whether
the cause was a malfunction of the DTM, or the device, or
whether an error 1s present in the device description.

Besides the on-line test with an attached field device, also
an oithne test 1s possible, without communication with the
field device F1. Furthermore, instead of an on-line test, the
test can also be done with a simulated field device.

FIG. 5 1llustrates an alternative test schematically. From
the device specification for the field device F1, which serves,
in principle, as basis for the device description file DD-F1, a
finite state machine DD-F1 FSM 1s produced directly. With
the help of a model-checker MC, the finite state machine
DD-F1 FSM can be tested against the finite state machine
DS-F1 FSM, 1n order to check whether the device description
file DD-F1 meets the specifications for the field device F1.

FIG. 6 shows the test automation for a communication
interpreter KI. The communication interpreter KI communi-
cates with a Test-Comm D'TM and the finite state machine
DD-F1 FSM. When the field device F1 1s connected, the
Test-Comm DTM knows the parameter values of the device.
Alternatively, simply rules can be defined, so that the Test-
Comm DTM represents a virtual field device.

FIG. 10 shows an extract of a test sequence.

10

15

20

25

30

35

40

45

50

55

60

6

Essential steps of the method of the invention include:

Producing a finite state machine from a device description,
wherein the device description can exist 1n any form, €.g. as a
Device Description.

From the finite state machine, a test script 1s generated. For
testing the device description, the test script 1s executed, with
data being sent to, and received from, the device description.
In such case, 1t 1s tested, whether desired values set-down 1n
the test script agree with actual values delivered e.g. from the
field device.

The mvention permits automatic tests of device descrip-
tions, or field devices, in any regard, such as functional behav-
10r, communication behavior, interface definitions, etc., with-
out requiring that the test script must be created by hand. In
this way, device descriptions can be reviewed rapidly and
simply. Likewise 1n this way, process-safety increases, since
errors 1n the servicing of field devices due to faulty device
descriptions can be excluded to a widest possible extent.

The mvention claimed 1s:

1. A method for testing device descriptions for field devices
of automation technology, wherein the device descriptions
are integrated into an operating program for servicing field
devices, whereby the operating program 1s executed by a
computer, and comprising the steps of:

producing an abstract state machine made from the device

description of a field device with the help of a first
compiler program executed by the computer;
expanding the abstract state machine by an additional

abstract state machine produced from the specifications
of a device description language;

converting the expanded abstract state machine with the
help of a finite state machine generator program 1nto a
finite state machine;

producing a test script for the field device from the finite
state machine with the help of the finite state machine;

executing the test script, wherein specific parameter values
are sent to and recerved from the device description, for
generating actual parameter values; and

comparing desired parameter values predetermined by the
test script with the actual parameter values.

2. The method as claimed in claim 1, wherein:

the fimite state machine 1s won via an abstract state
machine.

3. The method as claimed 1n claim 1, wherein:

the device description 1s a device driver for the field device.

4. The method as claimed 1n claim 3, wherein:

for executing the test script, a test tool 1s provided, which
compares desired values and actual values.

5. The method as claimed in claim 4, wherein:

the test tool recerves the actual values from a communica-
tion driver (Comm D'TM), via which the device driver
(DTM-F1) communicates with the field device (F1).

6. The method as claimed 1n claim 3, wherein:

the device driver (DTM-F1) and the abstract state machine
(DTM-F1 ASM) can be won from the device description
file (DD) with the help of a compiler.

7. The method as claimed 1n claim 1, wherein:

the operating program communicates on-line with the field
device.

	Front Page
	Drawings
	Specification
	Claims

