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METHOD AND SYSTEM FOR PROCESSING
AN IMAGE ACCORDING TO
DETERMINISTIC AND STOCHASTIC FIELDS

FIELD AND BACKGROUND OF THE
INVENTION

The present invention, in some embodiments thereof,
relates to an 1image processing and, more particularly, but not
exclusively, to method and system for processing stochastic
and deterministic fields 1n an 1mage.

One of the measurements that may be used for varying
among different visual and/or graphical objects 1s texture.
Texture may be defined as a structure that 1s made up of alarge
ensemble of elements that significantly resemble each other,
organized according to some kind of ‘order” in their locations.
The elements are organized such that there 1s not a specific
clement that attracts the viewer’s eyes, but the human viewer
gets an impression of uniformity when he looks at the texture,
see J. M. Francos, A. Z. Meir1 and B. Porat, “A Unified
Texture Model Based on a 2-D Wold-like Decomposition”,
IEEE Transactions on Signal Processing, Vol. 41, No. 8,
August 1993 which 1s incorporated herein by reference.

The variety of existing textures may be classified in
between two extreme categories:

Totally deterministic textures—textures of this type may
be described by their primitives (or: cells) together with
placement rules that define the exact location of each primi-
tive 1n the texture. Examples for such a texture are a chess-
board and a brick wall.

Purely stochastic textures—textures of this type are effi-
ciently parameterized by random field analysis methods, such
as Markov random fields or the auto-regressive model.

Most of the natural textures do not fall into any of the two
categories mentioned above. For example, the cellular tex-
tures may have primitive cells that are not 1identical, although
they are very similar. Furthermore, the placement rules of the
primitive cells need not be totally deterministic, but the
viewer will still define the texture as a cellular one. Examples
for such textures are a coin collection or scattered coflee
beans.

In correspondence with the above mentioned categoriza-
tion of textures mto ‘deterministic’ and ‘stochastic’ types,
there are two main approaches to the analysis and synthesis of
textures: structural and statistical.

In the structural methods, the texture 1s considered a cel-
lular and ordered phenomenon. The texture 1s characterized
accordingly by a description of 1ts primitives and their place-
ment rules. The placement rules may be deterministic for
periodic and well-structured textures, or stochastic for more
random textures, see . C. Cross and A. K. Jain, “Markov
Random Field Texture Models”, IEFE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. PAMI-5, 1983,
pp. 25-39, which 1s incorporated herein by reference. In W.
Matusik, M. Zwicker and F. Durand, “Texture Design Using
a Simplicial Complex of Morphable Textures”, International
Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH 2005, pp. 784-794, which 1s 1ncorpo-
rated herein by reference, Fourier analysis method 1s applied
in order to 1dentily the 2-D fundamental spatial frequency of
the texture by locating the spectral density function maxima.
This information 1s used to evaluate the texture placement
rule and to 1solate the texture primitives. The synthesis pro-
cedure places an “averaged” texture cell, according to the
tound placement rule. The basic disadvantage of this method
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2

1s 1ts preliminary assumption on the complete periodic struc-
ture of the texture field, which results 1n a synthetic look of the
generated textures.

In the statistical methods, the texture 1s described by a
collection of statistics of selected features. Many of these
methods rely on the findings in Chandra, M. Petron and R.
Piroddi, “Texture Interpolation Using Ordinary Kriging”,
Springer, 2005, which 1s incorporated herein by reference,
according to which the human vision system uses global first
and second order statistics for texture discrimination. On the
basis of this work, an algorithm for synthesizing a texture
field from 1ts estimated global second-order statistics 1s pre-
sented 1 J. Wu, Q. Ruan and G. An, “A Novel Image Inter-
polation Method Based on Both Local and Global Informa-
tion”, Springer Berin, Vol. 4681, 2007, which 1s incorporated
herein by reference. The texture 1s assumed to be a 2-D
random field that 1s described by co-occurrence probabilities,
the joint probability of occurrence of two gray levels, condi-
tioned on their relative positions. The co-occurrence prob-
abilities are estimated by the second-order sample mean. The
method gives good results for homogeneous purely random
texture fields, but 1s not suitable for more structural textures.

It 1s important to note that the use of spectral analysis for
texture characterization 1s a natural choice, since the spectral
content 1s strongly related to the spatial variation of the tex-
ture. Fine textures have a spectrum rich 1n high frequencies,
while coarse textures are rich 1n low spatial frequencies.

In L. Wang and K. Mueller, “Generating Sub-Spatial reso-
lution Detail 1n Images and Volumes Using Constrained Tex-
ture Synthesis”, Proceeding of IEEE Conference on Visual-
1ization, October 2004, pp. 75-82, which 1s incorporated
herein by reference, the use of a 2-D, auto-regressive, non-
causal model for synthesizing textures i1s suggested. This
model characterizes the gray level of a pixel as a linear com-
bination of the gray levels at neighboring pixels and an addi-
tive noise.

SUMMARY OF THE INVENTION

According to some embodiments of the present invention
there 1s provided a method of increasing a resolution of a
pattern. The method comprises recerving an image depicting
a pattern, identifying a stochastic field and a deterministic
field of the pattern, separately increasing resolution of each
the stochastic and deterministic fields, and assembling the
resolution increased stochastic and deterministic fields to
create an additional image of the pattern. The pattern 1n the
additional image having a higher spatial resolution than in the
image.

Optionally, the increasing comprises interpolating the sto-
chastic field according to an autoregressive (AR) model.

More optionally, the increasing comprises detecting an
invariance of a gray level distribution 1n the stochastic field,
the AR model being based on the invariance.

More optionally, the 1dentifying estimating a plurality of
AR model parameters for reducing error variance and the
interpolating comprises using the AR model parameters.

More optionally, the autoregressive model 1s a wide-sense
Markov field model.

Optionally, the increasing comprises estimating a white
noise distribution 1n the pattern and interpolating the stochas-
tic field according to the white noise distribution.

Optionally, the increasing comprises zero padding the
deterministic field according to an autoregressive (AR)
model.
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Optionally, the increasing detecting periodic features 1in the
pattern and increasing the resolution of the deterministic field
accordingly.

Optionally, the pattern 1s a textural pattern.

Optionally, the recerving further comprises segmenting the
pattern from the 1image.

More optionally, the 1image comprises a plurality of pat-
terns, further comprises performing the a)-d) in a plurality of
iterations, each the pattern being segmented and separately
processed according to the a)-d) in each the 1iteration.

According to some embodiments of the present invention
there 1s provided a computer program product that comprises
a computer usable medium having a computer readable pro-
gram code embodied therein, the computer readable program
code adapted to be executed to implement a method for
method of increasing a resolution of a pattern. The method
comprises recerving an image depicting a pattern, identifying
a stochastic field and a deterministic field of the pattern,
separately increasing resolution of each the stochastic and
deterministic fields, and assembling the resolution increased
stochastic and deterministic fields to create an additional
image of the pattern. The pattern 1n the additional image
having a higher spatial resolution than in the 1image.

According to some embodiments of the present invention
there 1s provided a method for estimating similarity of tex-
tural patterns. The method comprises providing first stochas-
tic and deterministic fields of a first textural pattern, providing,
second stochastic and deterministic fields of a second textural
pattern, separately scoring a first match between the first and
second stochastic fields and a second match between the first
and second deterministic fields, and outputting a similarity
score by combining the first and second matches.

Optionally, the first match 1s performed according a corre-
lation between autocorrelation matrices of the first and sec-
ond stochastic fields.

Optionally, the second match 1s performed by calculating a
fidelity criterion based on radial frequency of the first and
second deterministic fields.

Optionally, the first textural pattern 1s of a manufactured
product and the second textural pattern 1s a model of a
required pattern for the manufactured product, further com-
prises categorizing the manufactured product according to
the similarity score.

Optionally, the first textural pattern 1s of an 1mage provided
as a search query and the second textural pattern 1s of a
network available 1mage, further comprises retrieving the
second textural pattern if the similarity score being indicative
of similarity above a predefined threshold.

Optionally, the similarity score 1s converted to a reveal
value decrypted 1n the textural pattern.

According to some embodiments of the present invention
there 1s provided a system for estimating image similarity.
The system comprises an input unit configured for receiving
an 1mage depicting a textural pattern, a decomposition unit
configured for decomposing a received stochastic and deter-
ministic fields from the received textural pattern, a memory
configured for storing at least one stored textural pattern
having stochastic and deterministic fields, a matching module
configured for separately scoring a first match between the
received and stored stochastic fields and a second match
between the recetved and stored deterministic fields, and an
output module configured for outputting a similarity score by
using the first and second matches.

Optionally, each the at least one stored textural pattern 1s
prepossessed for extracting respective the stochastic and
deterministic fields, the memory being configured for storing
the extracted stochastic and deterministic fields.
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Unless otherwise defined, all technical and/or scientific
terms used herein have the same meaning as commonly

understood by one of ordinary skill in the art to which the
invention pertains. Although methods and materials similar
or equivalent to those described herein can be used in the
practice or testing of embodiments of the mvention, exem-
plary methods and/or materials are described below. In case
of contlict, the patent specification, including defimitions, will
control. In addition, the materials, methods, and examples are
illustrative only and are not intended to be necessarily limat-
ng.

Implementation of the method and/or system of embodi-
ments of the invention can involve performing or completing
selected tasks manually, automatically, or a combination
thereof. Moreover, according to actual mstrumentation and
equipment ol embodiments of the method and/or system of
the invention, several selected tasks could be implemented by
hardware, by software or by firmware or by a combination
thereol using an operating system.

For example, hardware for performing selected tasks
according to embodiments of the mvention could be 1mple-
mented as a chip or a circuit. As software, selected tasks
according to embodiments of the mvention could be 1mple-
mented as a plurality of software 1nstructions being executed
by a computer using any suitable operating system. In an
exemplary embodiment of the invention, one or more tasks
according to exemplary embodiments of method and/or sys-
tem as described herein are performed by a data processor,
such as a computing platform for executing a plurality of
instructions. Optionally, the data processor includes a volitile
memory for storing instructions and/or data and/or a non-
volatile storage, for example, a magnetic hard-disk and/or
removable media, for storing instructions and/or data.
Optionally, a network connection 1s provided as well. A dis-
play and/or a user mput device such as a keyboard or mouse
are optionally provided as well.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are herein described,
by way of example only, with reference to the accompanying
drawings. With specific reference now to the drawings 1n
detail, 1t 1s stressed that the particulars shown are by way of
example and for purposes of illustrative discussion of
embodiments of the invention. In this regard, the description
taken with the drawings makes apparent to those skilled 1n the
art how embodiments of the invention may be practiced.

In the drawings:

FIG. 1 1s a flowchart of a method of assembling an 1mage
with an increased spatial resolution by processing stochastic
and deterministic fields of an original image with lower spa-
tial resolution, according to some embodiments of the present
invention;

FIG. 2 1s a schematic illustration of a two-dimensional
support for the auto-regressive model;

FIG. 3 1s a schematic illustration of an L-shaped region
formed by the dashed lines of illustrating matrix indexing;

FIGS. 4 and 5 are schematic 1llustrations that demonstrate
the relation between 1mages of a pattern with different reso-
lutions;

FIG. 6 1s a flowchart of a method of assembling an 1mage
with an increased spatial resolution by interpolating stochas-
tic and deterministic fields of an original image with lower
spatial resolution according to an autoregressive model,
according to some embodiments of the present invention;

FI1G. 7 1s a schematic illustration of a 2-D 1mage skeleton of
(2N)x(2M) pixels and a pixel population process which 1s
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determined according to an autoregressive model, according
to some embodiments of the present invention;

FI1G. 8 1s a flowchart of a method for estimating a similarity
between two or more textural patterns, according to some
embodiments of the present invention; and

FI1G. 9 1s a schematic illustration of a system for estimating,
image similarity, according to some embodiments of the
present invention.

DESCRIPTION OF EMBODIMENTS OF THE
INVENTION

The present invention, in some embodiments thereof
relates to an 1mage processing and, more particularly, but not
exclusively, to method and system for processing stochastic
and deterministic fields 1n an 1image.

According to some embodiments of the present invention
there 1s provided a method and a system of increasing the
resolution of a pattern, such as a textural pattern, based on the
identification and separate processing of stochastic and deter-
mimstic fields that compose the pattern. Optionally, the sto-
chastic and deterministic fields are decomposed according to
an orthogonal decomposition texture model. Optionally, the
stochastic 1s interpolated according to an invariance of the
gray level distribution of the stochastic field of the pattern.
The invariance 1s used in a model for generating a high reso-
lution stochastic field. Optionally, the deterministic field 1s
interpolated according to periodic features which are detected
in the received pattern. The method may be used for increas-
ing the resolution of 1mages, 1image segments, 1mages of
video segments and the like.

According to some embodiments of the present invention
there 1s provided a method and a system for assessing the
similarity between images by determining the similarity
between stochastic and deterministic fields thereof. Option-
ally, the method and system are based on a decomposition of
an 1mage texture into 1ts deterministic and stochastic fields.
The similarity between deterministic fields 1s estimated
according to a Mannos and Sakrison criterion. The similarity
between stochastic fields component may be assessed accord-
ing to a correlation match property.

Before explaining at least one embodiment of the invention
in detail, 1t 1s to be understood that the invention 1s not nec-
essarily limited 1n 1ts application to the details of construction
and the arrangement of the components and/or methods set
forth 1n the following description and/or illustrated in the
drawings and/or the Examples. The mvention 1s capable of
other embodiments or of being practiced or carried out 1n
various ways.

Reference 1s now made to FIG. 1, which 1s a flowchart of a
method of assembling an 1mage with an increased spatial
resolution by processing stochastic and deterministic fields of
an original 1mage with lower spatial resolution, according to
some embodiments of the present invention.

First, as shown at 101, an image depicting one or more
patterns 1s received. As used herein an 1mage means a bitmap,
a sequence of vector graphic primitives, a compressed image,
such as joint photographic experts group (JPEG) image, and
an 1mage taken from a sequence of 1mages, such as a video
file. Optionally, the 1image 1s a textural image that depicts a
textural pattern. As used, herein a textural 1mage segment, a
textural 1image, texture field and/or a texture means an 1image
comprising a plurality of repeating continuous separable ele-
ment, such as texels, a region descriptor of the variation of
image components and the arrangement thereof 1n a surface,
quantifying properties such as smoothness, coarseness and
regularity above, and/or a structure which 1s made up of a

10

15

20

25

30

35

40

45

50

55

60

65

6

large ensemble of image elements that significantly resemble
cach other, organized in an separable order 1n their locations.
The elements are organized such that there 1s not a specific
image element that attracts a viewer’s eyes, providing a
human viewer with an impression of uniformity when look-
ing at the texture, see J. M. Francos, A. Z. Meir1 and B. Porat,
“A Unified Texture Model Based on a 2-D Wold-like Decom-
position”, IEEE Transactions on Signal Processing, Vol. 41,
No. 8, August 1993, which 1s incorporated herein by refer-
ence. An 1mage texture may be specified as a grayscale or a
color image of a natural textured surface and/or a simulated
pattern that approaches the natural image. It should be noted
that though most of the description below 1s on a grayscale
image, it also pertains to color images. As each color image
may be converted to one or more grayscale images, using the
methods and systems below for processing image color 1s

straight forward.

Now, as shown at 102, an 1n-deterministic field, which may
be referred to herein as a stochastic field, and a deterministic
field, which may be referred to herein as a determinstic field
of the recerved 1mage, are 1dentified and/or decomposed.

For example, i1 the image 1s a homogeneous 2-D texture
field, denoted herein as {y(m,n)}, an orthogonal decomposi-
tion 1s performed as follows:

vim,n)=w(m,n)-v(im,n),

where w(m,n) 1s the purely in-deterministic field and v(m,
n) 1s a deterministic field.

The deterministic field v(im,n) may be further decomposed
as

vim,n)=h(m,n)+g(m,n), Eq. 1

where h(m,n) denotes a deterministic field, which may be
referred to herein as a harmonaic field, and g(m,n) denotes a
generalized evanescent field. Generally speaking, the har-
monic field generates the periodic features of the texture field,
while the evanescent component generates global directional
teatures 1n the texture field. The spectral density function of
the harmonic field 1s a sum of 2-D delta functions, while the
spectral density function of the generalized evanescent field 1s
a sum ol 1-D delta functions that are supported on lines of
rational slope 1n the frequency domain; see J. M. Francos, A.
Z.. Meir1 and B. Porat, “A Unified Texture Model Based on a
2-D Wold-like Decomposition”, IEEE Transactions on Signal
Processing, Vol. 41, No. 8, August 1993, J. M. Francos and A.
7. Meiri, “A 2-D Autoregressive, Finite Support, Causal
Model for Texture Analysis and Synthesist”, 1989 Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, and J. M. Francos, A. Z. Meinn and B. Porat, “On a
Wold-Like Decomposition of 2-D Discrete Random Fields”,

1990 International Conterence on Acoustics, Speech and Sig-
nal Processing, which are incorporated herein by reference.

Optionally, the generalized evanescent field 1s 1ignored and
therefore g(m, 11)—0 In such a manner, the deterministic com-
ponent v(m,n) 1s composed of only the harmonic field and
therefore v(m,n)=h(m,n). It should be noted that by 1gnoring
the generalized evanescent field, the emphasis 1s on images of
textures that possess periodic features and not directional
ones, see A. Francos and M. Porat, “Non-Stationary Signal
Processing Using Time-Frequency Filter Banks with Appli-
cations”, Elsevier Signal Processing, Volume 86, 2006, pp.
3021-3030, which 1s incorporated herein by reference.
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For clarity, the harmonic field h(m,n) may be expressed as
a countable sum of weighted 2-D sinusoids, for example as
follows:

P Eq. 2
him, n) = Z {Ccos2minw, + mv,) + Dy sin2n(nw, + mvy )},
k=1

where (w,,v,) are the spatial frequencies of the k” har-
monic. Optionally, C,’s and D,’s are constant parameters.

As described above, the alorementioned decomposition of
the homogeneous 2-D texture field generates w(m,n), which
1s the purely mn-deterministic field. This component may be
expressed according to a two dimensional (2-D) auto-regres-
stve (AR) model, for example as follows:

wim, n) = — Z alk, Dwim —k, n -0+ uim, n),
(ke Xom n

where u(m,n) denotes a 2-D white noise field and {a(k,1)}
denotes the parameters of the auto-regressive model. In such

an expression, the field may be represented as X, which 1s
defined as follows:
X= kD I=nk<mU{(k,Dl<n, all k}. Eq. 4

where X 1s derived in relation to the X in a wide-
Sense Markov Random Fields, which 1s described below. For
clanty, reference 1s now made to FIG. 2, which 1s a schematic
illustration of a two-dimensional support for the auto-regres-
stve model. In FIG. 2, the pixel at location (m,n) 1s referred to
as the “present”, while the pixels that belong to X are
referred to as the “past”, and the remaining pixels as the
“future”. These terms allow defining a 2-D ordering relation
that 1s an extension to the one dimensional (1-D)natural time
ordering in a simple 1-D auto-regressive model. Since the
purely in-deterministic field w(m,n) in Eq. 3 1s auto-regres-
stve with relation to 1ts “past” samples, 1t may be viewed as
generated by a causal auto-regressive model.

In order to estimate the 2-D AR model parameters {a(k,1)},
according to the formulation in Eq. 3, a set of parameters that
minimizes the variance of the white noise, which 1s also the
prediction error variance, 1s calculated. Applying the
orthogonality principle for optimal linear estimation, the fol-

lowing set of normal equations 1s obtained:

{ o*, for (i, )y = (0, 0) Eq. 5

0, else

r(i, j)+ Z atk, Dr(i—k, j—1) =

(k,ﬂE X(I,j)

where {r(i,j)} is an autocorrelation sequence of the field
w(m,n), and o~ is the variance of a white noise or the predic-
tion error variance. Optionally, the white noise 1s a zero-mean
white noise with variance that 1s assumed to be uncorrelated
with the received image.

Now, as shown at 103 and 104, the spatial resolution of
cach one of the stochastic and deterministic fields 1is
increased, for example by 1nterpolation.

Reference 1s now made to exemplary operations for
increasing spatial resolution of the stochastic field 103.
Optionally, the stochastic field 1s interpolated according to an
autoregressive image model, such as wide-sense Markov ran-
dom fields, see R. Chellapa and A. Jain, “Markov Random

Fields—Theory and Application”, Academic Press, 1991, P.

10

15

20

25

30

35

40

45

50

55

60

65

8

A. Maragos, R. W. Schater and R. M. Mersereau, “Iwo-
Dimensional Linear Prediction and Its Application to Adap-
tive Predictive Coding of Images”, IEEE Transactions on

Acoustics, Speech and Signal Processing, Vol. 32, December
1984, pp. 1213-1229, and A. Rosenfeld and A. C. Kak, “Digi-

tal Picture Processing”’, Academic Press, second edition, Vol.
1, 1982, which are incorporated herein by reference.

In this document, it 1s assumed that the first-order wide-
sense Markov model 1s invariant under a sampling operation,
for example 1n a manner that a wide-sense Markov 1mage
retains 1ts model under the sampling operation and that an
image gray scale distribution, such as a histogram 1s invariant
under the sampling operation.

For clarty, X, . 1s defined as suggested in A. Rosenteld
and A. C. Kak, “Digital Picture Processing”, Academic Press,
second edition, Vol. 1, 1982, which 1s incorporated herein by
reference, where X, denotes all the pixels that belong to an
L-shaped region of an 1mage matrix as shown in FIG. 3,
wherein an L-shaped region formed by the dashed lines 1s
X, It should be noted that the pixel at the location (m,n) 1s
not included in X .

In addition, MxN denotes an array of points and 1{m,n)
denotes a discrete random field thereon. As the gray level 1(1,1)
at all points within X, ,, 1s known from the values of the
stochastic field, the gray level at (im,n) may be estimated
under the constraint that this estimate would be a linear tunc-
tion of the gray levels in X, . Brietly stated, {(m,n) denotes
the optimal estimator for 1(m,n) based on the gray levels at
X . and may be represented or calculated as follows:

e’

f(m,.ﬂ)=z Z cijfm—i, n— j),
L

8.1

(m—i,n— ) X p

where the coetficients C,; are chosen such that the mean-
square estimation error

& =E{ [flm,n)~fim,n)*} Eq. 7

is minimized. For clarity, f{m,n) may be referred to herein
as the linear least square estimation of 1{{m,n). In such a case,
where the least square estimation of f(m,n) in terms of X, ,
may be expressed as a linear combination, as 1n Eq. 6, the field
f denotes a wide-sense Markov field.

Optionally, the wide-sense Markov field 1s of {first order.
For brevity, unless stated otherwise, the term wide-sense
Markov will refer to first-order wide-sense Markov.

Optionally, as used herein, a first-order wide-sense Markov
1s a random field with coetficients ¢, ; in Eq. 6 which are
defined so that the linear least square estimation of {{(m,n)
may be constructed as follows:

fonmy= > ciifm—in— ). Eq. 8
(1, )eD
where D denotes the following pairs of (1,):
D_{(Oﬂl):(lal):(lpo)} Eq 9

In such a manner, the least squares estimate of {(m,n) 1n
terms of X, , 1s the same as the estimate 1n terms of the three
nearest neighbors on the left and above corner The normal
equations for the wide-sense Markov random field Eq. 8 are:

C1.0R £0,0)+¢1 1R A0 )+co (Ry(~1,1)=R 4~1,0) Eq. 10a

C1.oR £0,1)+¢1 1R A0,0)+co (RH~1,0)=R 4~1,1) Eq. 10b
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c1 oRA1,=1)+¢; (R H{1,0)+co R 0,0)=R 40,-1) Eq. 10c
where
R ,B)y=E{fm.n)fim—a,n+p)} Eq. 11

1s the autocorrelation matrix of the random field {(m,n), and
where the expectation value E{} is taken over all the pairs
t(m,n),f(m+c,n+3). The normal equations 10a-10c may be
solved for the coefficients ¢ ,,¢, ;,¢; ;.

Thus, the wide-sense Markov random field Eq. 8 may be
calculated by the following difference equation:

fim, n) — Z C‘j}jf(m —i,n— f)=&m, n), EC_[ 12

(1,5)=D

where E(m,n)=f(m,n)-f(m,n) is the difference at each
point.

For clarity, the difference &(m,n) may be characterized by
the following Theorem, referred to herein as Theorem A: A
discrete random field {(m,n) 1s wide-sense Markov 11 and only
if 1t satisfies the difference equation Eq. 12 for all points (m,n)
with m>1 and n>1 (where the ¢, ;’s are the solutions ot Egs.
10a-10c), and in addition the following equations for the
points on the topmost row and the leftmost columns:

ALL=E(,) Eq. 13a
fim, 1)-Afim-1,1)=8(m,1), m>1 Eq. 13b
A m)-Bln-1)-g(1n), n>1, Eqg. 13c
where

A=R 1,0)/R 40,0), Fq. 14

B=R40,1)/R 40,0),

and where £(m,n) is a discrete random field of orthogonal
random variables, for example:

E{§(mn)Z(p,q) }=0, m=p or

n=q. Eq. 15

where the autocorrelation function of the a wide-sense
Markov field 1s

R/a,B)=C-exp(—c,lal-c;|pl) Eq. 16

where C 1s a constant parameter.
Optionally, the autocorrelation function R 40,0)=1. In order

to allow R40.0)=1, the received image 1s normalized by
dividing it by y R (0,0. The normalization allows avoiding the

need to insert a multiplicative constant to R /(c.,[3). In such an
embodiment, the expression in Eq. 16 may be rewritten as

R o.p)=p;'“'p, "'

where p,=¢ ! and p,=e¢~“? are measures of the horizontal
and vertical correlation, respectively. Substituting Eq. 16 1n
Egs. 10a-10c, the following solution 1s obtained:

C1.07 P01 PwC1,17PrPy Eq. 18

Hence, the autocorrelation in Eq. 17 may be rewritten as

Rf(ﬂﬁ):cmlmﬂ'm P!

Then, by inserting Eq. 17 into
obtained:

Eg. 19

Eq. 14 the following 1s

A=c0,.b=Co Eq. 20

5

10

15

20

25

30

35

40

45

50

55

60

65

10

It should be noted that the autocorrelation in Eq. 16 has a
double Laplacian form, which 1s a multiple of two Laplacians,
in the vertical and horizontal directions a3, respectively. In
other words, the autocorrelation in Eq. 16 has a separable
form 1n the vertical and horizontal directions. This double
Laplacian and separable form 1s later applied to prove the
invariance of the wide-sense Markov model under sampling,
see Theorem A, and also (A.13), (A.14) in Appendix A of
Shira Nemirovsky el. Al., On Texture and Image Interpolation
using Markov Models, Signal Processing: Image Communi-
cation Elsevier B. V, In Press, Corrected Proof, Available
online 21 Nov. 2008, which 1s incorporated herein by refer-
ence, and 1s thus necessary for the subsequent texture inter-
polation analysis.

Optionally, the autocorrelation functions, resulting from
the first-order wide-sense Markov, comply with the normal
equations Eqgs. 10a-10c. In such an embodiment, the autocor-
relation may not be separable and therefore the solution of Eq.
18 may not hold. Such normal equations Eqgs. 10a-10c may be
solved for the coefficients {c¢,,,co;,C1 |-

As described above, the spatial resolution of the stochastic
field 1s increased using an interpolation which 1s based on
wide-sense random Markov model. In such an embodiment,
the stochastic field 1s represented and processed as a wide-
sense Markov random field.

In the following section the relation between the stochastic
field of the resolution increased 1image and the original sto-
chastic field of the received 1mage 1s clanfied by defining a
sampling operation between the increased spatial resolution
stochastic field and the original stochastic field.

Sampling

In this section we introduce the aforementioned sampling
operation. For brevity, we define the original stochastic field
as 1* a square 1mage whose dimensions are MxM and the
increased spatial resolution stochastic field as a square 1image,
whose dimensions are (2M)x(2M). We denote the interpo-
lated 1mage by 1.

Sampling T every other pixel yields a low-spatial resolution
version of this image, which we denote by 1. Specifically, 1T
k1 are the row and column 1ndices of 1* respectively, then

P D=A2k=1,21-1).

As, the dimensions of * 1s MxM, the dimensions of 1
consists of 3M* more pixels. FIGS. 4 and 5 demonstrate the
relation between 1,1*.

By examining statistical properties of 1 and *, which are
represented as Markov random field images, given that the
autocorrelation of the high spatial resolution 1image 1s as 1n
Eqg. 16 and Eq. 19, for example, has an exponential form. For
brevity, general indices 1,1, are avoided and instead numerical
indices are used as the ones that appear in F1GS. 4 and 5. This
indexing convention 1s valid due to the global nature of the
definition of a wide-sense Markov field (see Eq. 12), or the
fact that the coellicients c¢,,,c,,,C;, are constant and that the
white noise € is assumed to have the same variance through-
out the whole 1image.

For clarity, Theorem A 1s defined. I denotes a wide-sense
Markov random field with an autocorrelation of the form:

Rj(a:ﬁ):phlm pvlﬁ l:

Eg. 21

where

C1.0 PaCo.17PwC1.1=PuPy-

Then, the sampled version 1* 1s also wide-sense Markov and
its coellicients are given by

2 2

e N kK — K L
C"107C10 :€ 017 Co1 :C 11 ——C 01C " 10~ Eq. 22
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More details are provided i Appendix A of Shira
Nemirovsky el. Al., On Texture and Image Interpolation
using Markov Models, Signal Processing: Image Communi-
cation Elsevier B.V, In Press, Corrected Proof, and available
online 21 Nov. 2008, which 1s incorporated herein by refer-
ence.

Using Theorem A, 1t 1s possible to dertve relations between
the statistics of the images, and also between their generating,
white noise statistics.

Specifically, the first relation (or corollary) states that

GE*EZ(CGIECI02+6012+[?102+1)UEE. Eq_ 23

where I denotes a wide-sense Markov random field and 1*
denotes 1ts sampled version, 0;,0;, denotes the variances of
the generating white noise of f,* respectively, and € denotes
a white noise, for example where ¢(m,,n, ),&(m,,n,) are sta-
tistically independent for m;=m, or n,;=n,.

A above corollary may be shown by using a variance of the
sum of two independent random variables, for example as
described in equation A.15 of Appendix A of Shira
Nemirovsky el. Al., On Texture and Image Interpolation
using Markov Models, Signal Processing: Image Communi-
cation Elsevier B. V, In Press, Corrected Proof, Available
online 21 Nov. 2008, which 1s incorporated herein by refer-
ence:

Ot *=(C01C10) O +Co 1 "0 +C 15 O +0". Eq. 24

where a simple rearranging of Eq. 24 vields Eq. 23.

A second corollary may be shown by 1 that denotes a
wide-sense Markov 1mage with an exponential autocorrela-
tion Rﬁ(a,,ﬁ):fcl,:,"’3"''rc,:;I 'P!for example as described above in
relation to Eq. 19. Then, the autocorrelation of 1 that denotes
a sampled 1mage 1s given by sampling the autocorrelation of
f, for example as follows:

R* {0, B)=R 20L,2p).

This may be shown by the relation between the coeltlicients
of T and 1 which 1s shown at Eq. 22. This may be obtained by
Eq. 19 as follows:

R $f(ﬂ:ﬁ):(ﬁ$lﬂ)lﬂl (C$Dl)|B:(C102) IGI(CDIE) I& I:(glﬂ)2|ﬂ|
(co1)”P'=R420,2P),

According to this result, the autocorrelation of * 1s
obtained by sampling the autocorrelation of 1. If the autocor-
relation 1s calculated 1n an empirical manner, 1.€. as the aver-
age ol multiples of pixels with lags, such as,

Eg. 25

Eq. 26
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As the validity of the second corollary relies on the results
of Theorem A, then Eq. 25 holds for the true Laplacian dis-
tribution Eq. 16. As described above, the invariance of a
second-order wide-sense Model under the sampling opera-
tion 1s obtained for such a distribution.

In the light of the above, the second corollary may be
extended to an arbitrarily distributed image if the true auto-
correlation 1s approximated by an empirical autocorrelation.
If 1n addition the following 1s defined:

fA(mn)=f2m-1,2n-1) Eq. 28
then the following holds:
Rix(a, B) ~ R (@, B) Eq. 29

= Z f*m, ) f*(m+a, n+ B))
=Z fOm=1,2n-1DfQm+a)—1, 2n+ B) - 1)}

= Ry (2a, 23)
~ Ry (2a, 28)

where hat (*) operator denotes an empirical autocorrela-
tion. Eq. 29 yields R*[{a.,[3)=R (c,[3), where n Eq. 29 the
expression 1 Eq. 27 1s mserted, 1ignoring the normalization
constant, which 1s usually set to 1.

A third corollary may be defined where the second-order
moments of 1,I* are, for example, defined as follows:

EfP=E(f*)? Eq. 30
The validly of the third corollary may be shown as follows:
Ef"=R 40,0).

where a=p=0 are substituting in Eq. 26 to obtain

E(f*)"=R*40,0)=R 40,0)-Ef",

which 1s the desired result.

Optionally, if the white noise {& 1} is normally distrib-
uted, a moment, such as a gray level probability distribution,
of I* up to any order 1s equal to a respective moment of 1. The
equilibrium, referred to herein as theorem B, may be shown
by an example in which the gray level of 1 1s normally dis-

Eq. 27

Ry (e, Pe
r I M—la-1 N~
(M —|aD(N = 8D H; ; flm, m)f(m+ o], n+|p)), signa-p) >0
i M-ja]-1 N
REEEET] 2 Zﬂl fm, myfm +1al. n - 150,

M, N = image size

then Eq. 25 holds for any arbitrary distribution. However, 1t
should be noted that the second corollary does not relate to the
empirical autocorrelation, but rather to an actual autocorrela-
tion, or a statistical one. In other words, the second corollary
refers to an autocorrelation that corresponds to the true sta-
tistical distribution of the image field. It should be noted that
in the atorementioned Theorem A, the relation between the
coellicients of the wide-sense Markov 1images was obtained
without relying on an ergodicity assumption, according to
which a true autocorrelation that 1s approximated by an
empirical autocorrelation.

65

tributed. In such a field, each pixel in f may be expressed as a
linear combination of samples of the normally distributed
white noise &. For example,

fll — gll

fro=crofiz+corfor +er1fi1 + 622 =

= crolcor S + &2l + corlero fir + Ea ]l + e fin + 622 =
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-continued
= 2c10¢o1 f11 — C1oCo1 f11 + Croé12 + Co1é21 + 62 =

= C10C01&11 + Cro€12 + Co1621 +E22.

since & 1s a normally distributed white noise, the last result
implies that each pixel 1in 1 1s a linear combination of statis-
tically independent normally distributed random variables,
and thus 1s also a normally distributed random vanable, see A.
Papoulis, “Probability, Random Variables, and Stochastic
Processes”, Second Edition, McGraw-Hill, 1985, which 1s
incorporated herein by reference. Furthermore, using the
result of Theorem A and applying the same arguments for the
low-spatial resolution 1image 1*, one may obtain that it 1s also
normally distributed.

As described above, the variances of the low and high
spatial resolutions are equal according to the third corollary.
Thus, assuming that the expectation value of the noise 1s zero,
f and * have zero mean and the first two moments of {,I* are
equal. Since T and 1* are normally distributed and have equal
first and second moments, their gray level distributions are
also equal as stated by Theorem B, see A. Papoulis, “Prob-
ability, Random Varnables, and Stochastic Processes”, Sec-
ond Edition, McGraw-Hill, 1985, which 1s incorporated
herein by reference.

It should be noted that Theorem B relies on the assumption
that the white noise which generates the wide-sense Markov
field 1s normally distributed, and hence, due to i1ts invariance
under linear transform, 1t 1s obtained that each pixel 1n the
field 1s also normally distributed, for example as elements are
distributed 1n a textural field. In addition, the residuals of
regression equations, such as the above mentioned ¢, ,, may
be, 1n general, non-Gaussian. For example, in E. E. Kuruoglu

and J. Zerubia, “Skewed Alpha-Stable Distributions for Mod-
clling Textures”, Pattern Recognition Letters, Volume 24,

Number 1, January 2003, pp. 339-348(10) which 1s 1ncorpo-
rated herein by reference, the alpha-stable distribution family
1s proposed as a texture model. This distribution 1s a gener-
alization of the Gaussian distribution, and 1s shown to be
capable of representing both impulsive and un-symmetric
image data which cannot be obtained by the Gaussian model.

Furthermore, 1t should be noted that linear combinations of
independent alpha-stable random variables are also alpha-
stable, see E. E. Kuruoglu and J. Zerubia, “Skewed Alpha-
Stable Distributions for Modelling Textures”, which 1s incor-
porated herein by reference. Thus, Theorem B may be
extended to the case of wide-sense Markov fields 1n which a
white noise 1s alpha-stable distributed.

Reference 1s now made to the increasing of the spatial
resolution of the deterministic field 104. Optionally, spatial
resolution increase 1s performed by interpolating the deter-
mimstic field 104 by zero padding in the frequency domain.

Now, as shown at 105, the resolution increased determin-
1stic and stochastic fields may be used for reconstructing an
additional 1mage of the pattern 1n the recetved 1mage with a
higher spatial resolution. Optionally, the deterministic and
stochastic fields are combined by a matrix addition operation
which 1s normalized according to the relative contribution of
cach field.

Reference 1s now made to FIG. 6, which 1s a flowchart of a
method for interpolating an image of a textural pattern for
creating an additional image of the textural pattern with a
higher spatial resolution, according to some embodiments of
the present invention. Blocks 101-105 are as described in
FIG. 1, however the sub blocks pertain to a method that 1s
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adapted for increasing the spatial resolution of a textural
pattern and based on an interpolation.

First, as shown at 101 and described above, an 1image of
NxM pixels 1s received.

Optionally, as shown at 202, a discrete Fourier transform
(DFT) and a spectral density estimation, such as a peri-
odogram, 1s calculated for the recerved image.

Now, as shown at 102A and described above, a harmonic
field of the recerved image 1s i1dentified and optionally
extracted. Optionally, the DET of the harmonic field, referred
to herein as a harmonic DFT, 1s identified in the DFT of the
received 1image. First, as shown at 204, a frequency domain
filter 1s created. Optionally, the frequency domain filter 1s
created by identitying the peaks of the periodogram, for
example by 2-D delta functions, and generating a 2-D mask
whose value 1s 1 at the locations of those peaks and O else-
where. Then, as shown at 205, the frequency domain filter 1s
used for filtering the DFT of the recerved image, creating the
harmonic DFT.

Now, as shown at 104, the spatial resolution of the har-
monic DFT 1s increased to create an increased spatial resolu-
tion harmonic field, which may be referred to herein as h.
Optionally, as shown at 207, the filtered harmonic DFT 1s zero
padded to correspond to a target spatial resolution. Then, as
shown at 208, an 1nverse of the DFT of the recerved image 1s
applied on the zero padded filtered harmonic DFT according
to the pattern of the zero padding.

As shown at 209, the zero padded filtered harmonic DFT 1s
identified as the harmonic field.

In addition, as shown at 102B, the stochastic field 1s 1den-
tified and optionally extracted. Optionally, as shown at 210,
an mverse frequency domain filter 1s created, optionally by
calculating a mask that 1s negative the mask of the aforemen-
tioned frequency domain filter. Then, as shown at 211, the
inverse frequency domain filter 1s used for filtering the DET of
the recerved 1mage, creating the stochastic field, which 1s
purely in-deterministic field of the received image, and may
be referred to herein as a stochastic DFT.

Now, as shown at 103, the spatial resolution of the stochas-
tic field 1s increased.

Optionally, as shown at 212, an verse of the DFT of
received 1image, such as described, 1s applied on the stochastic
DFT. In such a manner, an estimation of the space domain of
the stochastic field in the received image, denoted herein as
w18 obtained.

Then, as shown at 213, a number of autoregressive (AR)
model parameters, which may be referred to as an AR order,
1s selected. The selected number reflects the number of linear
equations which are used 1n the AR model. Optionally, a
causal pixel neighborhood of 4x4 1s used.

Now, as shown at 214, optimal AR model parameters are
estimated by analyzing the received image to determine a
white noise with a minimum variance criterion, for example
using a least square solution. Optionally, the while noise 1s a
zero-mean white noise, denoted herein as u, with variance
denoted herein as o, *, that is assumed to be uncorrelated with
the values of the recerved 1image.

Now, as shown at 215, the pixels of the stochastic DFT w*
are rearranged 1n a 2D 1mage skeleton of (ZN)x(2M) pixels,
such that sampling of this matrix according to the aforemen-
tioned sampling operation yields again w*. For example, the
pixels may be arranged as depicted 1n the ledt panel of FI1G. 7.

Now, as shown at 216, the gray levels of pixels at the 2-D
image skeleton which have not been populated 1n 2135 are
estimated according to an AR module, for example the 2-D
AR model that 1s described at Eq. 3, and optionally using the
white noise that was determined 1n 214. Optionally, the gray
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levels of pixels of the stochastic DFT are interpolated to
provide the gray levels of pixels at the 2-D 1mage skeleton.
For example, as shown 1n the right panel of FIG. 7, the pixels
which have not been populated 1n 215 are denoted by bold
dots, and the generation of an 1image with increased spatial
resolution according to the AR module by the white noise
process 1s marked by the black arrows. Pixels whose support
neighborhood exceeds the boundaries of the image are 1ni-
tialized as zero-mean white noise samples with a variance that
1s 0.7-0.8 of the estimated white noise process variance of the
stochastic field of the recetved image. Such white noise
samples generate, according to the AR module, the rest of the
resolution increased stochastic field, as mentioned above.

Now, as shown at 217, the 2-D 1image skeleton 1s outputted
as the stochastic field, denoted herein as w.

Now, as shown at 105, the estimated harmonic and stochas-
tic fields are combined to estimate the image with a spatial
resolution of 2Nx2M, denoted herein as y. Optionally, the
combination 1s performed by a simple matrix addition, for
example as follows:

P+h+w

As shown at 220, this process may be repeated a plurality of
times where the image that 1s outputted after one iteration of
101-105 1s used as a recerved image of the following iteration
of 101-105. In such a manner, the method may be used for
increasing the spatial resolution of 1mages 1n any product of
2", where n1s a positive integer, for example 2, 4,8, 16,32, 64,
and 128.

For clarity, an example of an implementation of the method
depicted 1n FIG. 6 1s provided as Example A below.

Optionally, the method described 1n FIG. 1 and/or FIG. 6
may be used for increasing the spatial resolution of one or
more segments ol an 1mage. In such an embodiment one or
more segments that depict a textural pattern are 1dentified in
the 1mage. Then, the spatial resolution of each one of the
segments 1s mcreased using the method described in FIG. 1
and/or FIG. 6. The spatial resolution increased segments may
now be used for reconstructing the segmented 1mage 1n a
higher spatial resolution and/or intertwined back into the
image as a spatial resolution increased object in the seg-
mented 1mage. In use, a user may mark an object with a
textural pattern 1in an 1mage, for example an 1mage that 1s
presented thereto on a graphical user interface (GUI). The
selected object 1s segmented, using known methods for seg-
mentation and the spatial resolution thereof 1s increased using
the method described i FIG. 1 and/or FIG. 6. The spatial
resolution 1ncreased object may now be intertwined in the
segmented image and/or added to another media object, such
as another 1image or a video file.

Optionally, the method described 1n FIG. 1 and/or FIG. 6
may be used for compressing and/or decompressing images.
In such an embodiment, an 1mage that 1s compressed to a
spatial resolution MxN may be decompressed to a spatial
resolution of 2Mx2N, 4Mx4N, 8Mx8N, 16Mx16N, and
32Mx32N. The decompression may be performed according
to the method that 1s depicted 1n FIG. 1 and/or FIG. 6.

Optionally, the method depicted 1n FIG. 1 and/or FIG. 6 1s
used for decompression a sequence of images, such as a video
sequence and/or any other series of 1images, for example a
medical study, such as a computerized tomography (CT)
study, an magnetic resonance imaging (MRI) study, and/or a
positron emission tomography (PET)-CT. Optionally, each
image 1n the sequence 1s decompressed according to the
method depicted 1 FIG. 1 and/or FIG. 6.

Optionally, the compression 1s performed n a similar
operation to the atforementioned sampling operation. In such
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a manner, the AR model parameters which are used for com-
pression are known and used during the interpolation, for
example as described above.

Reference 1s now made to FI1G. 8, which 1s a flowchart of a
method 300 for estimating similarity between two or more
textural patterns, according to some embodiments of the
present 1nvention.

The method 1s based on separately matching among the
stochastic fields of the two or more textural patterns and
among the deterministic fields thereof. The matching results
in two components which may be described by a measured
distance which consists of the deterministic and the stochastic
field distances.

Herein below we describe a matching between two pat-
terns, optionally represented in 1images; however, this may be
used for estimating the similarity among any number of
images. For clarity we define the following:

f—a first image depicting a first textural pattern;

f—a second image depicting a second textural pattern;

d A f,)—deterministic field distance; and

doerAF.D)—stochastic field distance,

As shown at 301, first stochastic and deterministic fields of
a first textural pattern are provided. As shown at 302, second
stochastic and deterministic fields of a second textural pattern
are received. Optionally, the stochastic and deterministic
fields are 1dentified and decomposed from a recetved 1mage,
for example as described in relation to 102 of FIG. 1.

Now, as shown at 303 a first match between the first and
second deterministic fields 1s performed. The matching
allows evaluating the difference, which may be referred to
herein as distance, between the deterministic fields. Option-
ally, the difference 1s 1dentified as a deterministic field dis-
tance, denoted herein as d,,..(f,f). Optionally, the match is
performed by evaluating a fidelity criterion for the recon-
struction of monochrome still images, see J. L. Mannos and
D. J. Sakrison, ““The Effects of Visual Fidelity Criterion onthe
Encoding of Images”, IEEE Transactions on Information
Theory, Vol. I'T-20, No. 4, July 1974, which 1s incorporated
herein by reference.

Optionally, such a fidelity criterion 1s calculated according
to the following:

(1) Define: w(x,y)=[u(x,y)]. 3, W(x,y)=[U(x.y)]. 3,
where u(x,y) and 1(X,y) denotes a pair of 1images and the
operator [*]. 3 stands for point-wise power of 3 of the
1mages.
(2) Calculate a set of Fourier transforms (FFT's):

W, =FFT{w(x,y) VWS =FFTO(x, )},

where 1,1,

(3) Define the radial frequency: ff,,:\f (f.) +(fy)23 and calculate
the FFTs 1n terms of the following frequency:

denotes spatial frequencies.

()= W)V ()= W)
(4) For the previously obtained values of the radial frequency,
create the following matrix in the frequency domain:

A(£)=2.610.0192 +0.114f.]-exp[-(0.114£) 1]

é(fr) should be of the same dimensions as those of WR(fF),,
WA(E).
(5) Calculate:

VI =AG) X T (6), VIR =A () W (1),

where .* stands for point-wise multiplication of the pixels.

(6) Calculate the inverse Fournier transform (denoted as
IFFT):

v(x, )=IFFT{V(E) Y vx, =IFFT{V(f)}.
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(7) Define:

dw, 1) = ) [vix, y) = ¥x, YI*

ALY

where d(u,1) denotes the a distortion measure between the
images u,0 see J. L. Mannos and D. J. Sakrison, “The
Effects of Visual Fidelity Criterion on the Encoding of
Images™, IEEE Transactions on Information Theory,
Vol. IT-20, No. 4 July 1974, which 1s incorporated herein

by reference.

dDET(fE),, which 1s optionally equal to d(u,¢), may now be

used as an estimation of the similarity between the first
and second deterministic fields.

In addition, as shown at 304, a second match between the
first and second stochastic fields 1s performed for evaluating
the difference between them, for example as a stochastic
components distance. Optionally, the match 1s performed
according to a correlation match property (CMP), see J. M.
Francos, A. Z. Meir1 and B. Porat, “A Unified Texture Model
Based on a 2-D Wold-like Decomposition”, IEEE Transac-
tions on Signal Processing, Vol. 41, No. 8, August 1993,
which 1s incorporated herein by reference.

The higher the level of the correlation match property, the
higher 1s the similarity of the 2-D AR model parameters of the
compared pair of stochastic fields. In other words, the CMP
level implies the equality of a second-order statistics between
the purely in-deterministic fields of the images.

The CMP to may be implemented as follows:

An autocorrelation function 1s calculated on the matched

images. This calculation yields two matrices of spatial corre-
lation coeflicients. The stochastic field distance d,(f,1)is
then calculated by a point-wise L; norm on the two matrices,
normalized. For example, the Stochastic distance may be
computed as follows:

1,J ﬂ Eq. 31
Z ‘MJ j
Ly

dsrocu (f, f) = 5

where M(IxJ ),,M(Ix] ) denotes the autocorrelation matrices
of the first and second 1mages, respectively. Optionally, the
autocorrelation matrices are of dimension 7x7, 1in order to
capture pixel correlations up to a 3x3 pixels distance. Such
autocorrelation matrices correspond with a 4x4 pixel neigh-
borhood ofthe AR model that 1s described above 1n relation to
FIG. 6.

It should be noted that the second-order statistics represent
the textural information of homogeneous purely in-determin-
1stic random textures, see B. Julesz, “A Theory of Preattentive
Texture Discrimination Based on First-Order Statistics of
Textons™, Biological Cybernetics, no. 41, 1981, pp. 131-138,
which 1s incorporated herein by reference

According to the above, d (£, is used as an estima-
tion of the similarity between the first and second stochastic

fields.

Now, as shown at 305, the d.,(f,D) and d, . (£.,f), which
may be respectively considered as the similarity scores of the
stochastic and deterministic fields may now be combined. As
shown at 306, the combination thereof allows generating a
similarity score that evaluates the similarity between the two
1mages.
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The method depicted 1n FIG. 8 may be used for assessing,
the similarity between textural patterns and/or images. For
example, the method may be used for controlling the quality
ol products which are manufactured 1n various processes,
such as weaving, spinning, dyeing welding, paving, tiling,
flagging knotting, knitting, claying, and the like. In such an
embodiment, the textural pattern of the product may be cap-
tured by an image sensor, such as a complementary metal
oxide semiconductor (CMOS) and/or a charge coupled
device (CCD) based sensor, during and/or after the manufac-
turing process, for example on the product line. The captured
image may now be matched using the method described 1n
FIG. 8, with an 1mage or a model of a valid product for
generating a similarity score. If the similarity score 1s below
a threshold, optionally predefined, than the product 1s dis-
qualified and removed from the product line. Else, the product
1s tagged as valid.

Optionally, the method 1s used for in an image search
engine. In such an embodiment, a user may upload and/or
select an 1mage that depicts one or more textural pattern as a
search query. The method allows 1dentifying similar images
that have similar one or more textural patterns. The stochastic
and deterministic fields of the textural pattern are identified,
for example as described above, and respectively and sepa-
rately matched with stochastic and deterministic fields of
other 1mages. Optionally, each match 1s performed as
depicted 1in FIG. 8. Optionally, the stochastic and determin-
istic fields of the uploaded or selected image are matched with
preprocessed images. Each preprocessed image 1s associated
with respective stochastic and deterministic fields. In such a
manner the stochastic and determimstic fields may be
matched with lower computational complexity.

Optionally, 1 an 1mage, such as the uploaded and/or
selected image comprises a plurality of textural patterns, such
as a foreground and a background, a number of elements, a
number of layers, and the like, 1t 1s segmented to a plurality of
textural objects. The segmentation 1s optionally performed by
methods which are known 1n the art and therefore not elabo-
rated further herein. Each one of the textural objects 1s sepa-
rately matched with respective textural objects 1n a matched
image. Each match 1s optionally performed as depicted 1n
FIG. 8. In such a manner, images with non uniform texture
may be matched.

Optionally, the method 1s used for estimating the quality of
a resolution increased image which has been generated by
increasing the spatial resolution of an original 1image, for

example by image stretching and image skewing, and/or by
any other spatial resolution increasing operation, for example
as described 1n FI1G. 1 and FIG. 6. In such an embodiment, the
first and second 1mages are the original 1mage and the reso-
lution increased 1mage.

Optionally, the method 1s used for encrypting and decrypt-
ing. In such embodiment, each similarity score represents a
different value. In such an embodiment, a value that 1s asso-
ciated with a predefined similarity score may be encrypted
into a product by printing or otherwise associating a textural
pattern therewith. The textural pattern 1s optionally blurred or
otherwise amended to generate a blurred textural pattern that
corresponds to the predefined similarity score when matched
with the textural pattern.

In such an embodiment, the decrypting 1s performed by
matching between the textural pattern and the blurred textural
pattern, for example by using the method depicted 1n FIG. 8,
for estimating the similarity score and using the similarity
score for learning the value.
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Such blurred pattern may be used for tagging and/or mark-
ing products, bills, images, and/or printouts with a relatively
invisible tag.

Reference 1s now made to FI1G. 9, which 1s a system 450 for
estimating image similarity, according to some embodiments
of the present invention. The system 450 comprises an mput
unit 451 configured for recerving an 1mage depicting a tex-
tural pattern. The mput umt may be a network interface,
allowing the reception of the image from a remote client
terminal 461, for example over a network 460, such as the
internet The system 450 further comprises a decomposition
module 452 for decomposing received stochastic and deter-
ministic fields from the received textural pattern, for example
as described above. The system comprises a memory 453 for
storing one or more textural patterns having stochastic and
deterministic fields. Optionally, the memory 1s 453 a storage
device, such as a storage server. Optionally, the stochastic and
deterministic fields of the stored textural pattern are decom-
posed 1n advance, allowing the matching thereof without
additional decomposition processes. The system further com-
prises a matching module 454 configured for separately scor-
ing a first match between the recerved and stored stochastic
fields and a second match between the received and stored
deterministic fields. The matches are optionally performed as
described above. The system further comprises an output
module 455 for outputting a similarity score by using the first
and second matches. The outputted score may be forwarded
and presented to the system operator.

It 1s expected that during the life of a patent maturing from
this application many relevant systems and methods will be
developed and the scope of the term 1mage, video file and
processing 1s intended to include all such new technologies a
Priori.

As used herein the term “about” refers to £10%.

The terms “comprises”, “comprising’, “includes”,
“including”, “having™ and their conjugates mean “including
but not limited to”. This term encompasses the terms “con-
s1sting of” and “‘consisting essentially of™.

The phrase “consisting essentially of” means that the com-
position or method may include additional ingredients and/or
steps, but only 1f the additional ingredients and/or steps do not
matenally alter the basic and novel characteristics of the
claimed composition or method.

As used herein, the singular form “a”, “an” and “the”
include plural references unless the context clearly dictates
otherwise. For example, the term “a compound™ or “at least
one compound” may include a plurality of compounds,
including mixtures thereof.

The word “exemplary” 1s used herein to mean “serving as
an example, instance or illustration”. Any embodiment
described as “exemplary” 1snotnecessarily to be construed as
preferred or advantageous over other embodiments and/or to
exclude the incorporation of features from other embodi-
ments.

The word “optionally” 1s used herein to mean *“1s provided
in some embodiments and not provided 1n other embodi-
ments”. Any particular embodiment of the imnvention may
include a plurality of “optional” features unless such features
conflict.

Throughout this application, various embodiments of this
invention may be presented 1n a range format. It should be
understood that the description in range format 1s merely for
convenience and brevity and should not be construed as an
inflexible limitation on the scope of the mvention. Accord-
ingly, the description of a range should be considered to have
specifically disclosed all the possible subranges as well as
individual numerical values within that range. For example,
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description of a range such as from 1 to 6 should be consid-
ered to have specifically disclosed subranges such as from 1
to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3
to 6 etc., as well as individual numbers within that range, for
example, 1, 2, 3, 4, 5, and 6. This applies regardless of the
breadth of the range.

Whenever a numerical range 1s indicated herein, 1t 1s meant
to include any cited numeral ({ractional or integral) within the
indicated range. The phrases “ranging/ranges between” a first
indicate number and a second 1indicate number and “ranging/
ranges ifrom™ a first indicate number “to” a second indicate
number are used herein interchangeably and are meant to
include the first and second indicated numbers and all the
fractional and integral numerals therebetween.

It 1s appreciated that certain features of the invention,
which are, for clarity, described 1n the context of separate
embodiments, may also be provided 1in combination 1n a
single embodiment. Conversely, various features of the
invention, which are, for brevity, described 1n the context of a
single embodiment, may also be provided separately or in any
suitable subcombination or as suitable 1n any other described
embodiment of the invention. Certain features described 1n
the context of various embodiments are not to be considered
essential features of those embodiments, unless the embodi-
ment 1s 1noperative without those elements.

Although the invention has been described 1n conjunction
with specific embodiments thereof, i1t 1s evident that many
alternatives, modifications and variations will be apparent to
those skilled 1n the art. Accordingly, 1t 1s intended to embrace
all such alternatives, modifications and variations that fall
within the spirit and broad scope of the appended claims.

All publications, patents and patent applications men-
tioned 1n this specification are herein incorporated 1n their
entirety by reference into the specification, to the same extent
as 11 each 1individual publication, patent or patent application
was specifically and individually indicated to be incorporated
herein by reference. In addition, citation or identification of
any reference 1n this application shall not be construed as an
admission that such reference 1s available as prior art to the
present mvention. To the extent that section headings are
used, they should not be construed as necessarily limiting.

Various embodiments and aspects of the present imnvention
as delineated hereinabove and as claimed in the claims sec-
tion below find experimental support in the following
examples.

Example A

Reference 1s now made to the following example A, which
together with the above descriptions, 1llustrate some embodi-
ments of the invention 1n a non limiting fashion.

The following set of 220 Matlab code lines 1s an exemplary
implementation of the method described 1n FIG. 6 with an
exemplary image.

% Loading and arranging the texture image
ortg_img=imread (‘1.2.09°,“ti11"); % WOOD GRAIN tex-
ture;

orig_img=orig_img(1:500,1:500,:);orig_img=double
(orig_img);

orig_img=orig_img-mean(mean(orig_img)); % centering
around zero figure; colormap(‘gray’); imagesc(orig_img);
title(*Original texture’);

% SAMPLING+CENTERING AROUND ZERO
in_img=org_1mg(1:2:end, 1:2:end);% sampling—to obtain
the mput 1image figure; colormap(*gray’); imagesc(in_img);
title(—Input (downsampled) texture');
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% INTERP TEXTUR.
maxima=0.25%2*%10"5; % threshold value for detection of
2-D delta functions out_1mg=INTERP_TEXTURE (in_img,
maxima);

figure; colormap(‘gray’);
(interpolated) texture’);
N=7; p=100;d_fidelity=d_text (orig_img,out_img, maxima,
N, p); % novel fidelity criterion for texture reconstruction
tunction out_img=INTERP_TEXTURE (in_img, maxima);
% This function receives a texture image as an input and
interpolates 1t.

% Input: 1n_1mg-texture mput

% maxima-threshold for detecting 2-D delta functions.

% Output: out_img-high spatial resolution, interpolated tex-
ture.

in_img=1in_img-mean{mean(in_img)); % centering around
Zero

max_in_img=max(max(in_img)); % reserving max and min
values of the input image

min_in_img=min{min{in_img));

% extracting the harmonic component
dit_in_img=iitshaft(fft2(1n_1mg));
est_low_det_comp=extract_det_comp(in_img, maxima);

% Interpolating the determinmistic component

abs_dit in_img=abs(dit_in_img);
[ind1_vec,ind2_vec]=find (abs_dit_in_img>maxima);

[nrow ncol]=size(in_img);

mask_low=ones(size(in_img));% mask for filtering in the
frequency domain. the mask 1s 1n the LOW spatial resolution
mask_high=ones(2*s1ze(in_img)); % mask for filtering in the
frequency domain, the mask 1s in the HIGH spatial resolution.
est_dit_det_comp=zeros(2*size(in_img));% initialization of
estimated spectrum of harmonic component, in the HIGH
spatial resolution

% filtering out the harmonic component

for k=1:length(ind1_vec),
indl1=1mnd1_vec(k);ind2=1nd2_vec(k);
mask_low(ind1,ind2)=0;temp=dit_in_img(ind1,ind2);
ind1=1nd1-nrow/2+nrow;ind2 ind2-ncol/2+ncol;
mask_high(ind1,1nd2)=0;est_dit_det_comp(indl,ind2)=
temp;

end;

est_high_det_comp=4*real (iit2 atttshift(est_dit det_
comp))); % the 4 factor stems from the zero padding 1n the
frequency domain
est_high_det_comp=est_high_det_comp-mean(mean(est_
high_det_comp)); % centering around zero

% extracting the purely in-deterministic component
est_dit_markov_comp=dit_in_img.*mask_low;
est_markov_comp=real (1fit2(aiitshait(est_dit _markov_
comp))); % extracting the indeterministic component in the
low spatial resolution

est_markov_comp=est_markov_comp-mean(mean(est_
markov_comp)); % centering around zero

% LEAST SQUARES ESTIMATION SOLUTION-FOR
THE LOW SPATIAL RESOLUTION IMAGE
num_rows=100; % numbers of scanned rows and columns
num_cols=100;p_rows=4;p_cols=4;

T=] |; % pixels’ valued matrix
s=zeros(num_rows*num_cols,1); % pixels” valued vector
ind_s=1:

for n1=(p_rows+1):(p_rows+1+num_rows—1),

tor 11=(p_cols+1):(p_cols+1+num_cols-1),
s(ind_s)=est_markov_comp(i1,]1); % update s vector
ind_s=ind_s+1;

(L]

imagesc(out_img);title(“Output
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T_new=est_markov_comp((11-p_rows+1):11,(71—p_cols+1):

17);

T _new=(1T_new(:))’; T_new=1_new(l:end-1); % we omit
the last pixel, which obviously can’t participate in its own
estimation!

1=|T1; T _new|;

end;end;

a_opt_low=(nv(T"*T))*T"*s; % optimal AR coellicients—1for
the low spatial resolution 1mage

% estimating the innovation process variance—for the low
spatial resolution 1image
est_var_low=(1/(and_s-1))*(T*a_opt_low-s)"*
(T*a_opt_low-s);

est_std_low=sqrt(est_var_low);
max_markov_comp=max(max(est_markov_comp));
min_markov_comp=min{min(est_markov_comp));

% Interpolating the in-deterministic component
texture=kron(est_markov_comp,[1 O; 0 0]);

est_std mark=0.8*est_std_low;

[nrow,ncol]=s1ze(texture);

for 11=1:nrow,

tor 17=1:p_cols,

il (texture(11,11)==0),texture(11,7])—est_std_mark*randn(1);
end:end:;end;

for 1=1:p_rows,

for 13=1:ncol,

il (texture(11,17)==0),texture(11,7))=est_std_mark*randn(1 );
end:;end;end;

for 1=(p_rows ):nrow,

for 17=(p_cols):ncol,

il (texture(11,17)==0),
texture_sb=texture((11—p_rows+1):11,(j1—p_cols+1):11);
texture_sb=(texture_sb(:))'; texture_sb=texture sb(1:end-
1);

texture(i1,]] )=texture_sb*a_opt_low_est_std_mark*randn
(1); % taking the variance of the innovation process of the
sampled version

end:end:;end;

texture=stretch_hist (texture, min_markov_comp, max_
markov_comp);

out_img=texture+est_high_det comp;
out_img=remove_outliers(out_img, min_in_img, max_in_
Img):;

function out_img=remove_outliers (1n_img, clow, chigh);
% This function removes outliers from the image IN_IMG.
% CLOW and CHIGH are the edges for the outliers removal.
[big_row, big_col]=find(in_img>chigh);

[small_row, small_col]=lind(in_i1mg<clow);

for k 1:length(big_row),
ind1=big_row(k);1nd2=big_col(k);in_img(ind1,ind2)=
chigh:;

end;

for k=1:length(small_row),
ind1=small_row(k);mnd2=small_col(k);in_img(ind1,ind2 )=
clow;

end;

out_img in_1img;

function out_img=stretch_hist (in_img, clow, chigh);

% This function performs hist stretch of the mput image
IN_IMG to the range [clow, chigh].
min_in_img=min{min(in_img));max_1in_img=max(max
(In_img));
out_img=((in_img-min_in_img)/(max_in_img—min_1n_
img))*(chigh—clow )+clow;

function d=d_text (texturel texture2, maxima, N, p);

% This function receives two 1mage textures (texturel ,tex-
ture2) as an
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% 1nput, and returns their distance according to the proposed
fidelity

% criterion for texture inteprolation N-size of auto correla-
tionmatrix.

% maxima-threshold for 2-D delta function detection.

% p-size of patch on which the autocorrelation calculation 1s
applied.

det_compl=extract_det_comp(texturel ,maxima);
det_comp2=extract_det_comp(texture2,maxima);
in_det_compl=texturel-det_compl;
in_det_comp2=texture2—-det_comp?2;
d_det=Mannos_and_Sak(det_compl,det_comp?2);
[nrow,ncol|=size(texturel );d_det=d_det/(nrow*ncol);

Rif 1=calc_Ril mat(in_det_compl,N,p);

Rif 2=calc_Ril mat(in_det_comp2,N,p);
d_in_det=sum(sum(abs(Rff 1-Rff 2)))/N"2;

d=[d_det, d_1n_det];

function det_comp=extract_det_comp(texture,maxima);

% This function recerves a texture TEXTURE as an input and

extracts 1ts deterministic component according to the param-
eter threshold MAXIMA.

dit_texture=iitshait(fit2(texture));
abs_dft_texture=abs(dit_texture);

[1nd1_vec,imnd2vec|=find (abs_dft_texture>maxima);
|[nrow,ncol]=s1ze(texture);

est_dit_det comp=zeros(size(texture));% mitialization of
estimated spectrum of harmonic component

% filtering out the harmonic component

for k=1:length(ind1_vec),
indl1=1mnd1_vec(k);ind2=1nd2_vec(k);
temp=dit_texture(ind1,ind2);
est_dit_det_comp(indl,ind2)=temp;

end;

det_comp=real (11it2 atttshift(est_dit det_comp)));

tfunction RiI_mat=calc_R1iI_mat(img,N.p);

% This function calculates the autocorrelation matrix for a
gven 1mage

% IMG. The output autocorrelation function 1s of dimension
NxN.

% The calculation 1s held on a patch of size pxp from the
1mage.

% N should be odd!

Rif” mat=zeros(IN,N);

img=img(1:p,1:p);

img=1mg-mean{mean(img)); % centering around zero
for 11=1:N,

for 17=1:N,

alpha=—(N+1)/2+11;beta=—(N+1)/2+15;
Rif__mat(11,17)=R11_hat(img,alpha,beta);
end;end;

RiI” mat=Ril_mat/max(max(R1l_mat));

tfunction r_hat=R1i1_ hat (1; alpha, beta)

% This functionrecerves as an input an 1image 1, and returns 1ts
estimated

% UNBIASED auto-covariance at (alpha,beta).

[M, N]=s1ze(1);acum=0;

il sign(alpha*beta)>=0,

for m=1:(M-abs(alpha)),

for n=1:(N-abs(beta)),
acum=acum+i(m,n)*f(m+abs(alpha), n+abs(beta));
end;end;

clse

i beta<0, % one of the parameters 1s positive and the other 1s
negative

for m=1:(M-abs(alpha)),

for n=(abs(beta)+1):N,
acum=acum+i{m,n)*f(m+abs(alpha), n-abs(beta));
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end;end;

clse

for m=(abs(alpha)+1): M,

for n=1:(N-abs(beta)),
acum=acum+i(m,n)*1{m-abs(alpha), n+abs(beta));
end:;end:end:end;
r_hat=acum/((M-abs(alpha))*(N-abs(beta)));

function d=Mannos_and_Sak (1mgl, 1mg2);

% This function receives as an mput two black and white
images 1mgl,1mg2 and returns their

% relative distortion according to the Mannos and Sakrison
criterion for

% Black and White images.

% It 1s assumed that imgl,img2 are of the same dimension
and of class

% double.
imgl=double(img] );img2=double(img?2);
i min(min(img1 ))<0,
imgl=1mg]1 +abs(min(min(imgl )));
end;
1 min(min(img2))<0,
1img2=1mg2+abs(min{min(img?2)));
end;
imgl=1mgl/max(max(imgl ));% normalization of 1mages
img2=1mg2/max(max(img2));
wl=imgl. 3;% operation of function f(u)="73
w2=1mg2. 3;
IN.M]=s1ze(img]1);
Wl=tttshift(11t2(w1));% moving to the spatial frequency
domain.

W2=tttshift(11t2(w2)); % 1fitshiit 1s applied due to 1sotropy
assumption.

I x_vec=0.168*[-(M-1)/2:(M-1)/2];% frequency vectors 1n
cpd. (see Mannos and Sakrison paper, page 529 for refer-
ence).

I yv_vec=0.168*[-(N-1)/2:(N-1)/2];% Irequencies are cen-
tered 1 accordance with titshiit

[I_x_mat, 1 y_mat]=meshgnd(i_x_vec,I_
quency matrices

_vec);%  1Ire-
f r=sqrt(f_x_mat. 2+f_y_mat.” 2);% central frequency (ac-
cording to the 1sotropy assumption)

A_f r=2.6%0.0192 +0.114*f_r).*exp(-(0.114*f_r)."1.1);%
i1t of LSI (linear operator)

VI=A { r*WI1:V2=A_{ r*W2;

v1=2 (afftshaft(V 1)) v2=1it2 iitshait(V2));
d=sum(sum((abs(v1-v2))."2)); % the distortion measure is
obtained as the normalized MSE in raster scan

Although the invention has been described 1n conjunction
with specific embodiments thereof, 1t 1s evident that many
alternatives, modifications and variations will be apparent to
those skilled in the art. Accordingly, 1t 1s intended to embrace
all such alternatives, modifications and variations that fall
within the spint and broad scope of the appended claims.

All publications, patents and patent applications men-
tioned 1n this specification are herein incorporated 1n their
entirety by reference into the specification, to the same extent
as 11 each individual publication, patent or patent application
was specifically and individually indicated to be incorporated
herein by reference. In addition, citation or identification of
any reference 1n this application shall not be construed as an
admission that such reference 1s available as prior art to the
present mvention. To the extent that section headings are
used, they should not be construed as necessarily limiting.
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What 1s claimed 1s:
1. A method of increasing a resolution of a pattern, com-

prising:
receiving an image depicting a pattern;

identifying a stochastic field and a deterministic field of 4

said pattern;

separately increasing resolution of said stochastic field

using a first resolution increasing operation;
separately increasing resolution of said deterministic field
using a second resolution increasing function; and

assembling said resolution increased stochastic and deter-
ministic fields to create an additional 1image of said pat-
tern;

wherein said pattern 1n said additional 1image having a

higher spatial resolution than 1n said image;

wherein said first and second resolution increasing func-

tions are different resolution increasing functions.

2. The method of claim 1, wherein said separately increas-
ing resolution of said stochastic field comprising interpolat-
ing said stochastic field according to an autoregressive (AR)
model.

3. The method of claim 2, wherein said separately increas-
ing resolution of said stochastic field comprising detecting an
invariance of a gray level distribution in said stochastic field,
said AR model being based on said invariance.

4. The method of claim 2, wherein said 1dentifying esti-
mating a plurality of AR model parameters for reducing error
variance and said interpolating comprising using said AR
model parameters.

5. The method of claim 2, wherein said autoregressive
model 1s a wide-sense Markov field model.

6. The method of claim 1, wherein said separately increas-
ing resolution of said stochastic field comprising estimating a
white noise distribution in said pattern and interpolating said
stochastic field according to said white noise distribution.

7. The method of claim 1, wherein said separately increas-
ing resolution of said deterministic field comprising zero

padding said deterministic field according to an autoregres-
stve (AR) model.
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8. The method of claim 1, wherein said separately increas-
ing resolution of said deterministic field comprising detecting
periodic features 1n said pattern and increasing the resolution

ol said deterministic field accordingly.

9. The method of claim 1, wherein said pattern 1s a textural
pattern.

10. The method of claim 1, wherein said recerving further
comprises segmenting said pattern from said image.

11. The method of claim 10, wherein said image comprises
a plurality of patterns, further comprising performing said
receiving, said identifying, said separately increasing resolu-
tion of said stochastic field, said separately increasing reso-
lution of said deterministic field and said assembling 1n a
plurality of iterations, each said pattern being segmented and
separately processed according to a respective outcome of
cach said iteration.

12. A computer program product, comprising a non-tran-
sitory computer usable medium having a computer readable
program code stored therein, said computer readable program
code adapted to be executed to implement a method for
method of increasing a resolution of a pattern, comprising:

receving an image depicting a pattern;

identifying a stochastic field and a deterministic field of

said pattern;
separately increasing resolution of said stochastic field
according to a first resolution increasing function;

separately increasing resolution of each said deterministic
field according to a second resolution increasing func-
tion; and

assembling said resolution increased stochastic and deter-

ministic fields to create an additional 1mage of said pat-
tern;

wherein said pattern 1n said additional image having a

higher spatial resolution than 1n said image;

wherein said first resolution increasing function and said

second resolution increasing function are different reso-
lution increasing functions.
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