US008533664B2
12 United States Patent (10) Patent No.: US 8.533.664 B2
Wang et al. 45) Date of Patent: Sep. 10, 2013
(54) METHOD AND SYSTEM TO (56) References Cited
AUTOMATICALLY GENERATE GUI OBJECT
ADDRESSING QUERIES U.S. PATENT DOCUMENTS
8,117,533 B2* 2/2012 Adleretal. 715/234
(75) Inventors: Cheng Wang, Beijing (CN); Kevin R. 8,281,286 B2 * 10/2012 Nguyen 717/125
Walsh, Redwood City, CA (US); Pascal
P. Sero, Foster City, CA (US) OTHER PUBLICATIONS

A. Theobald et al., “The Index-Based XXL Search Engine for Que-
rying XML Data with Relevance Ranking,” 2002, EDBT 2000,
LNCS 2287, pp. 477-498.*

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1076 days.

* cited by examiner

Primary Examiner — Anna Deng

(21) Appl. No.: 12/512,810 (74) Attorney, Agent, or Firm — Shun Yao; Park, Vaughan,
_ Fleming & Dowler LLP
(22) Filed: Jul. 30, 2009
(65) Prior Publication Data (57) ABSTRACT
US 2010/0175050 Al Jul. 8, 2010 One embodiment of the present invention provides a system
that automatically generates addressing queries for objects
Related U.S. Application Data rendered on a graphical user interface (GUI). During opera-

tion, the system receives a request for GUI object-addressing,
query for an application to be tested. The system {first 1denti-
fies the application context, and retrieves a rule document
describing GUI object-addressing query rules according to
(51) Int.Cl. the identified application context. Next, the system parses the
GOGF 9/44 (2006.01) rule fiocyment to generate an applicable query rule set for the

(52) U.S. CL. application. Based on the applicable query rule set, the sys-
tem generates a set ol query candidates and determines a

(60) Provisional application No. 61/143,067, filed on Jan.
7, 2009, provisional application No. 61/143,070, filed
on Jan. 7, 20009.

USPC ..., 717/106; 717/109; 717/125 . p h GUT obi
(58) Field of Classification Search HIEEE qEELy Tot & object.
USPC ..., 717/124-135, 106, 108, 109
See application file for complete search history. 18 Claims, 12 Drawing Sheets

START

RECEIVE A REQUEST req TO GENERATE
ADDRESS QUERIES
702

RETRIEVE THE GENERATED RULE SET rs
704

NO
SELECT DEFAULT
RO "?5;('5” SET AS rs
708
YES

CHOOSE APPLICABLE RULE rBY
EXECUTING RULE ENTRY IN EACH RULE
AGAINST TARGET OBJECT
712

DO r EXIST?
714
YES

GENERATE AND VERIFY QUERY
CANDIDATES gs
716

RETURN

L Ol

US 8,533,664 B2

901 1401
ddAV Iddd d31dd00dd

Sheet 1 of 12

Sep. 10, 2013

U.S. Patent

¢Ol
d35dvd J1Nd

LO1

¢/— | tnannooa

d1Nd

US 8,533,664 B2

Sheet 2 of 12

Sep. 10, 2013

U.S. Patent

vece
NOILINId3d

¢CC
ALIH0Oldd

¢ Old

0¢c¢
U341V 1dINdL

8¢
} A1V IdNGL

91¢
Ad1N-

vie
dINVN

¢clLe
1X34LNOD

90¢
U3aind

14014
¢ d1Nd

¢0C
L 41N

00¢ S31Nd

U.S. Patent Sep. 10, 2013 Sheet 3 of 12 US 8,533,664 B2

START

IDENTIFY THE APPLICATION
CONTEXT ac
302

GENERATE AND VERIFY
QUERY CANDIDATES
304

RANK QUERY
CANDIDATES
300

END

FIG. 3

U.S. Patent Sep. 10, 2013

START

RETRIEVE A RULE SET rs
BELONGING TO ac
402

OBTAIN A RULE QUERY

rqg DEFINED IN RULE rIN rs
404

EXECUTE rq AGAINST ITS
TARGET GUIOBJECT es
406

IS QUERY
RESULT TRUE?
4038

ADD r TO AN APPLICABLE
RULE SET ars
410

RULES IN rs HAVE

BEEN EVALUATED? YES

PROCEED TO THE NEXT

RULE IN rs
414

Sheet 4 of 12

US 8,533,664 B2

RETRIEVE A TEMPLATE {
DEFINED IN EACH RULE r IN

ars
416

GENERATE QUERY g FOR
TARGET OBJECT BY
APPLYING f
418

EXECUTE g TO GENERATE A
RESULT GUI OBJECT res

420

NO

DOES res
MATCH es?
422

ADD q TO THE SET OF QUERY

CANDIDATES qcs
424

END

FIG. 4

U.S. Patent

Sep. 10, 2013 Sheet 5 of 12

START

RANK EACH QUERY IN THE QUERY
CANDIDATE SET qcs
502

CHOOSE THE QUERY WITH THE
HIGHEST RANK AS THE FINAL
QUERY
504

US 8,533,664 B2

U.S. Patent Sep. 10, 2013 Sheet 6 of 12 US 8,533,664 B2

START

1S
APPLICATION
CONTEXT ac
MANUALLY
SPECIFIED?
604

AUTOMATICALLY
IDENTIFY ac
008

RETRIEVE A RULE
DOCUMENT d ACCORDING
TO ac
6006

1S d NO

LEGAL?
008

CREATE A RULE SET rs
610

RETURN

FIG. 6

U.S. Patent Sep. 10, 2013 Sheet 7 of 12 US 8,533,664 B2

START

RECEIVE A REQUEST req TO GENERATE

ADDRESS QUERIES
702

RETRIEVE THE GENERATED RULE SET rs
704

NO

SELECT DEFAULT

5
DO rs EXIST™ SET AS rs

700

7038

YES

CHOOSE APPLICABLE RULE rBY
EXECUTING RULE ENTRY IN EACH RULE

AGAINST TARGET OBJECT
712

DO r EXIST? NG
714

GENERATE AND VERIFY QUERY
CANDIDATES gs

716

FIG. 7

U.S. Patent Sep. 10, 2013 Sheet 8 of 12 US 8,533,664 B2

START

RETRIEVE TEMPLATES fs IN r
302

IDENTIFY THE
CORRESPONDING

OBJECT
310

DOES
IDENTIFIED
GUI OBJECT
MATCH THE TARGET
GUI OBJECT?

NO DO ts EXIST?

304
NO

YES
EXECUTE RULE ENTRY YES
ASSOCIATED WITH ts
AGAINST OBJECT NODE DO gs NO
806 CONTAIN MORE THAN

ONE QUERY?
314

GENERATE QUERIES gs
ACCORDING TO ts YES
808

SELECT A RANKING METHQOD
rm FROM RANKING FACTORY

316

FILTER gs AND SELECT
HIGHEST RANKING QUERY q

318

END

FIG. 8

U.S. Patent Sep. 10, 2013 Sheet 9 of 12 US 8,533,664 B2

START

RECEIVE AN ADDRESSING QUERY
REQUEST req TO A GUI OBJECT

902

PARSE req
904

LOCATE THE GUI OBJECT oby
9006

NO

DO obj EXIST?
908

1S obj UNIQUE?
910

RETURN THE IDENTIFIED OBJECT
obJ
012

END

FIG. 9

US 8,533,664 B2

Sheet 10 of 12

Sep. 10, 2013

U.S. Patent

0001

0L Old

108UU0N) =[2qe|®|uonng//

¢00} Ad1IN4 J1Nd

U.S. Patent

Sep. 10, 2013

A QUERY RULE DOCUMENT

RECEIVING
MECHANISM
1102

IDENTIFICATION
MECHANISM
1104

RETRIEVING
MECHANISM
1106

PARSING
MECHANISM

1108

GENERATING
MECHANISM
1110

DETERMINATION
MECHANISM
1112

Sheet 11 of 12

US 8,533,664 B2

U.S. Patent Sep. 10, 2013 Sheet 12 of 12 US 8,533,664 B2

DISPLAY] |
1208 ||

GUI-OBJECT-

COMPUTER SYSTEM 1200 ADDRESSING
QUERY

<> APPLICATION

PROCESSOR 1990

1202
STORAGE

MEMORY 1206

1204
SOF TWARE

APPLICATION

. POINTING
/ DEVICE

KEYBOARD 1212
1210

FIG. 12

US 8,533,604 B2

1

METHOD AND SYSTEM TO
AUTOMATICALLY GENERATE GUI OBJECT
ADDRESSING QUERIES

RELATED APPLICATION

This application hereby claims priority under 35 U.S.C.
§119 to U.S. Provisional Patent Application No. 61/143,067,

filed on 7 Jan. 2009, entitled “METHOD AND MECHA-
NISM TO IDENTIFY GUI OBIECTS FOR NON-
MARKUP LANGUAGE PRESENTED APPLICATIONS,”
by inventors Cheng Wang, Kevin Walsh, and Pascal Sero, and
to U.S. Provisional Patent Application No. 61/143,070, filed
on 7 Jan. 2009, entitled “METHOD AND SYSTEM TO
AUTOMATICALLY GENERATE GUI OBIECT
ADDRESSING QUERIES,” by inventor Cheng Wang, Kevin
Walsh, and Pascal Sero.

This application 1s related to U.S. patent application Ser.
No. 12/501,106, filed on 10 Jul. 2009 entitled “METHOD
AND SYSTEM TO IDENTIFY GUI OBJECTS FOR NON:-
MARKUP-LANGUAGE-PRESENTED APPLICATIONS,”
by mventors Cheng Wang, Kevin Walsh, and Pascal Sero,
which 1s incorporated by reference herein.

BACKGROUND

1. Field

The present disclosure relates to GUI object queries. More
specifically, the present disclosure relates to automatically
generating GUI object-addressing queries.

2. Related Art

As the demand for high-quality soitware increases, soft-
ware testing plays an increasingly critical role 1n the software
industry. In order to test the graphical user intertface (GUI) of
a software application, a tester usually has to manually repeat
actions on the GUI. This process can be tedious and costly.
Ever since the automated GUI testing tool was introduced,
time and effort spent on software testing have been greatly
reduced. However, one of the key barriers for large-scale
deployment of automated GUI testing tools 1s how to identily
GUI objects quickly and correctly.

In order for a computer to automatically test GUIs of soft-
ware applications, a human tester’s actions are usually
recorded first and later replayed by the computer. The foun-
dation of automatic GUI testing lies 1n 1dentitying the GUI
objects on which the tester performs actions at the recording
time. The objects to be 1dentified are recorded so that at the
replay time, these objects can be identified and tester’s
actions are simulated.

Traditional testing tools usually define an embedded set of
rules for generating addressing queries to identifty GUI
objects 1n an application under test. However, a single rule
definition cannot deal with various applications. The embed-
ded rule set 1s also hard to modify since it 1s hard-coded 1n the
tools. Testers often have to manually construct queries spe-
cific to an application in order to identily different GUI
objects 1n different application contexts.

SUMMARY

One embodiment of the present invention provides a sys-
tem that automatically generates addressing queries for
objects rendered on a graphical user interface (GUI). During
operation, the system receives a request to generate an object-
addressing query for a target GUI object 1n an application
under tested. The system first identifies the application con-
text, and retrieves a rule document describing GUI object-

10

15

20

25

30

35

40

45

50

55

60

65

2

addressing query rules based at least on the 1dentified appli-
cation context. Next, the system parses the rule document to
obtain an applicable query rule set for the application. Based
on the applicable query rule set, the system generates a set of
query candidates and determines a unique object-addressing
query for the target GUI object.

In a variation of this embodiment, the rule document
includes independent rules A respective rule includes at least
one of an indication of an applicable application context, a
rule name, a rule entry, and one or more rule templates.

In a further variation, a respective rule template 1s defined
in the format of extensible stylesheet language transforma-
tions (XSLT). Generating a query candidate mvolves apply-
ing the XSLT-defined rule template and a markup language
clement corresponding to the target GUI object to an XSLT
processor to generate an XML Path (XPath) language query

In a variation of this embodiment, the system parses the
rule document by first retrieving a rule-identification query
defined 1n the rule entry of a respective rule. The system then
executes the rule-identification query against the target GUI
object in the context of a markup language document 1n which
the object 1s represented as a node. Next, the system verifies
whether the query result 1s true, and adds the rule to the
applicable rule set when the query result 1s true.

In a vanation of this embodiment, the system generates
query candidates from the applicable rule set by first retriev-
ing defined templates from each rule in the applicable rule set.
The system then generates an object-addressing query for the
target GUI object using a respective template. Next, the sys-
tem executes the object-addressing query to 1dentify a result
GUI object 1n the application under test, and adds the object-
addressing query to the set of query candidates 11 the result
GUI object matches the target GUI object.

In a further vanation, the system generates the object-
addressing queries using templates.

In a vanation of this embodiment, the system determines
the unique object-addressing query for a GUI object by first
ranking each query candidates using a predetermined ranking
methods. The system then chooses the highest ranked query
as the unique object-addressing query for the GUI object.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an exemplary model of GUI functional
testing tools 1n accordance with one embodiment of the
present 1nvention.

FIG. 2 presents a block diagram illustrating an exemplary
rule set for generating GUI object-addressing queries in
accordance with one embodiment of the present invention.

FIG. 3 presents a flow chart illustrating the process of
generating and veritying query candidates 1n accordance with
one embodiment of the present invention.

FIG. 4 presents a flow chart illustrating the process of
ranking query candidates in accordance with one embodi-
ment of the present invention.

FIG. 5 presents a flow chart illustrating the process of
ranking query candidates 1n accordance with one embodi-
ment of the present invention.

FIG. 6 presents a flow chart illustrating the process of
creating a query rule set from a rule document 1n accordance
with one embodiment of the present invention.

FIG. 7 presents a flow chart illustrating the process of
generating an applicable query rule set for the target GUI
object from the query rule set 1n accordance with one embodi-
ment of the present invention.

US 8,533,604 B2

3

FIG. 8 presents a flow chart illustrating the process of
generating query candidates from the applicable rule set 1in
accordance with one embodiment of the present invention.

FIG. 9 presents a tflow chart illustrating the process of
identifyving a GUI object using an addressing query 1n accor-
dance with one embodiment of the present invention.

FIG. 10 presents an exemplary rule entry with template and
generated query 1n accordance with one embodiment of the
present invention.

FIG. 11 presents a block diagram 1llustrating a system for
automatically generating GUI object-addressing queries 1n
accordance with one embodiment of the present invention.

FI1G. 12 1llustrates an exemplary computer system for auto-
matically generating GUI object-addressing queries in accor-
dance with one embodiment of the present invention.

DETAILED DESCRIPTION

The following description 1s presented to enable any per-
son skilled in the art to make and use the invention, and 1s
provided 1n the context of a particular application and 1its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled 1n the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention 1s not limited to the embodiments shown, but 1s to
be accorded the widest scope consistent with the claims.

In order to automatically test GUI of software applications
by a computer, a human tester’s actions are usually recorded
first and later played back by the computer. The major hurdle
in testing a application 1s that the computer needs to identily
which action the tester performs and, more importantly, on
which GUI objectthe tester performs an action. Hence, a GUI
object 1dentification method for automatic identification of
GUI objects 1n an application 1s introduced.

In traditional testing tools, the module that locates GUI
objects operates during the recording process when the user’s
operations are recorded, and the addressing query rules are
hard-coded 1n the testing tools, which users cannot easily
adjust or change. Embodiments of the present invention pro-
vide a method for automatically generating GUI object-ad-
dressing queries for GUI objects on which the user operates.
During the play-back phase, these GUI object-addressing
queries can be applied to the GUI objects so that the software
testing tool can accurate locate the same objects and repeat
the same user operations. Unlike traditional techniques, the
present invention allows users to specily application context
and modity query rules. This novel context and rule-based
query generation process ensures that the query generation 1s
suificiently generic so that 1t does not have to be hard-coded
into each testing tool, and at the same time produces accurate,
unique, and easy-to-read queries that can precisely 1dentify
the target GUI objects. As a result, embodiments of the
present invention provide a more flexible and re-usable
object-identifying technique.

In embodiments of the present invention, it 1s assumed that
the GUI objects of an application under test are represented as
nodes or elements 1n a markup language (e.g., XML) docu-
ment. When a user operates on a target object, the system can
apply a set of rules to generate an object-addressing query.
For example, the query generation can be based on the target
object’s attributes, 1ts hierarchy, or the attributes of 1ts related
objects (such as parent objects or sibling objects). Subse-
quently, during the play-back phase, the system can execute
these queries to 1dentily the same objects and repeat the user

5

10

15

20

25

30

35

40

45

50

55

60

65

4

operations. The rule-based query generation can be used to
test different applications without significant user modifica-
tion.

FIG. 1 1illustrates an exemplary model of GUI functional
testing tools 1 accordance with one embodiment of the
present invention. A predefined rule document 101 describes
rules for generating GUI object-addressing queries. I there 1s
no such predefined rule document, an embedded or default
rule set 1s used stead to generate queries. A rule parser 102
produces an applicable query rule set 103 based on rule docu-
ment 101. Rule set 103 1s passed to a recorder 104 which
records user operations and generates the corresponding
object-addressing queries. A query script 105 1s recorded by
recorder 104 for later playback by a replayer 106. If a user
finds that certain rules do not match the user’s application
test, the user can change and redefine the query rules with the
defined format. Then, rule parser 102 reloads the rule docu-
ment and the changed rules can take effective immediately.
Therule document used 1n embodiments of the present inven-
tion 1s much more flexible and efficient to maintain and
migrate than an application-specific object repository.

FIG. 2 1llustrates an exemplary rule set structure for gen-
erating GUI object-addressing queries in accordance with
one embodiment of the present invention. In an optional rule
document, a rule set 200 includes independent rules 202, 204,
and 206. Each rule includes an indication of application con-
text 212, a rule name 214, a rule entry 216, and a number of
templates 218 and 220. Template 218 includes a rule priority
222 and rule definition 224 for different testing applications.
Application context 212 specifies the context to which the
rule applies. An application context can include application
type (such as native application, Web application, or database
application), application name, application author, etc. Rule
name 214 1s a unique name which can be used to identify the
corresponding rule. Rule entry 216 1s a filter which deter-
mines whether the rule applies to a particular GUI object. In
one embodiment, rule entry 216 specifies a rule-selection
query. This query 1s applied to a target GUI object when the
user operates on that object. As aresult, rule entry 216 returns
a true or false Boolean value. If the value 1s true, the corre-
sponding rule 1s applicable to that target object. Otherwise,
the corresponding rule 1s not considered by the system.

Rule template 218’s priority 222 1s used by the system to
determine whether rule template 218 1s selected when more
than one template 1s applicable for a target object. Rule defi-
nition 224 for rule template 218 specifies how to generate a
query given a target object. For example, rule definition 224
can specily that a query can be generated based on an object’s
name. In one embodiment, a rule definition 1n the format of
extensible stylesheet language transformations (XSLT), so
that existing XSLT processors can be used to process rule
definitions and generate the object-addressing query as an
XPath statement, wherein the object 1s represented as an
XML node. In one embodiment, 1f more than one rule tem-
plate 1s defined, the system can test all the templates to deter-
mine one or more templates which can successiully 1dentify
the target object. The system can then select the query gen-
crated by one of the successiul templates.

FIG. 3 presents a flow chart illustrating the high-level pro-
cess of automatically generating GUI object-addressing que-
ries 1n accordance with one embodiment of the present inven-
tion. During operation, the system {irst identifies the
application context ac (operation 302). For a software appli-
cation, a GUI-object context 1s always present, which 1s the
environment 1 which all user actions are performed to the
application, such as the main workspace of a word processor
application. Next, the system generates and verifies address-

US 8,533,604 B2

S

ing query candidates for a target GUI object in the application
(operation 304), and then ranks the query candidates based on
their priority so that a top-ranking candidate 1s chosen for
cach object (operation 306).

FIG. 4 presents a flow chart illustrating the process of 5
generating and veritying query candidates (operation 304) 1n
more detail. During the process, the system retrieves arule set
rs matching the application context ac of the application
under test (operation 402). The system then obtains a rule
query rq defined 1n the rule entry (e.g. rule entry 216) m arule 10
rinrs (operation 404). Subsequently, rule query rq 1s executed
against the target GUI object es 1n the context of the markup
language document, wherein GUI object es 1s the object on
which the user operates (operation 406). If the query result 1s
determined to be true (operation 408), rq 1s appended to an 15
applicable rule set ars (operation 410). Otherwise, the system
proceeds to determine whether all the rules 1n rule set rs have
been evaluated (operation 412). If not, the system proceeds to
evaluate the next rule 1n rule set rs (operation 414). If all the
rules have been evaluated and the applicable rule set ars 1s 20
completed, the system retrieves a template t defined 1n each
rule r 1n ars (operation 416), and generates an object-address-
ing query q for the target GUI object es by applying t (opera-
tion 418). Next, object-addressing query q 1s executed to
locate a GUI object res (operation 420). If the located GUI 25
object res matches the target GUI object es (operation 422),
the query g 1s added to query candidate set qcs (operation
424). Otherwise, the process 1s terminated.

Note that the selection of a candidate object-address query
can be based on different criteria. In one embodiment, the 30
system only selects an object-addressing query when the
query 1dentifies one and only one GUI object which matches
the target GUI object.

The GUI-object 1dentification process represents each tar-
get GUI object as a markup-language node in the markup- 35
language document d. FIG. 5 presents a tlow chart 1llustrating
the process of ranking query candidates (operation 306) in
more detail. During operation, the system can rank each
query 1n the query candidate set qcs (operation 502). In one
embodiment, this ranking can be performed based on each 40
query’s corresponding template priority. The query with the
highest rank 1s then chosen as the selected query of the object
(operation 504).

FIG. 6 presents a tflow chart illustrating the process of
creating a query rule set from a predefined rule document 1n 45
accordance with one embodiment of the present invention.
During operation, the system {first determines whether the
application context ac 1s manually specified by a user (opera-
tion 604). For example, a user can specity the current appli-
cation type, such as web application or form application, so 50
the system can choose a suitable rule document based on the
type specified. If the user does not specily the application
context, the system can automatically identity an application
context once the application 1s started (operation 608). After
application context ac 1s identified, the system retrieves arule 55
document d according to ac (operation 606). Next, the system
loads d and determines whether 1ts format 1s legal (operation
608). If so, a query rule set rs for the application 1s success-
tully created for further operation (operation 610).

In order to generate GUI object queries for an application 60
to be tested, the system needs to choose applicable query rules
from the query rule set. FIG. 7 presents a flow chart illustrat-
ing the process of generating an applicable query rule set 1n
accordance with one embodiment of the present invention.
When the generation procedure begins, the system receives a 65
request req to generate an addressing query for a target GUI
object (operation 702). The system then attempts to retrieve a

6

query rule set rs (operation 704) created 1n the process 1llus-
trated in FI1G. 6. Next, the system determines whether rs exists
(operation 706). If not, the system will select a default rule set
as rs (operation 708) so the process can continue. The system
then choose the applicable rule r by executing the rule entry of
r executed against the object node in the context of the markup
language document, and r 1s chosen 11 the result of the execu-
tion 1s true. For example, 1n testing a web application, a rule
entry 1s defined 1n the format of XML Path language (XPath),
and the system compares the XPath entry against the
requested web object. If matched, the rule 1s applicable. The
system then determines whether an applicable rule exists
(operation 714) before generating the query candidates gs
(operation 716.

After all the applicable query rules are added to the appli-
cable rule set, GUI object-addressing query candidates can be
generated. FIG. 8 presents a flow chart illustrating the
detailed process of generating query candidates from the
applicable rule set. The system {irst tries to retrieve a template
ts defined 1n an applicable rule r (operation 802). The system
then determines 11 ts exists (operation 804). If no template 1s
defined in r, the process for the current rule 1s terminated.
Otherwise, the system executes the rule entry associated with
ts against the target object node 1n the context of the markup
language document (operation 806) and generates queries s
according to ts (operation 808). Once the system generates all
queries that conform to queries gs, the query identification
process begins. The system {first 1dentifies the corresponding
object for each query generated (operation 810), which 1s
illustrated 1n detail 1n FIG. 9. Next, the identified GUI object
1s compared against the target GUI object to determine
whether they match (operation 812). If not, the system
retrieves a template ts with the next highest priority in r and
restarts the process (operation 802). Otherwise, the system
turther determines whether query gs contains more than one
query (operation 814). I so, the system selects a ranking
method rm (operation 816) from a ranking factory, and filters
gs and chooses the highest ranking query q (operation 818).
Otherwise, the process terminates.

FIG. 9 presents a flow chart illustrating the process of
identifving a GUI object using an addressing query 1n accor-
dance with one embodiment of the present invention. The
system starts by receiving an addressing query request req to
locate a GUI object (operation 902). The system then parses
the addressing query (operation 904), and locates GUI object
oby (operation 906). Next, the system determines whether obj
exists (operation 908); 1f so, the system further determines
whether obj 1s unique (operation 910). Otherwise, the process
1s terminated. If oby 1s unique, the system returns the found
object (operation 912); otherwise system returns a null value,
and the process 1s terminated.

FIG. 10 presents an exemplary rule 1000 with template and
generated query in accordance with one embodiment of the
present invention. Rule 1000 contains three fields: arule entry
1002, an XSL'T template 1004, and a generated query 1006.
XSLT template 1004 further includes a parameter name of
“ATCK_ID”, an output method of “text” with “UTF-8”
encoding, and a template body 1008. Query 1006 1s generated
to simply match a GUI object with a label of ‘connect’.

FIG. 11 presents a block diagram illustrating a system for
automatically generating GUI object-addressing queries 1n
accordance with one embodiment of the present invention. As
shown 1 FIG. 11, object query generating system 1100
includes a recetving mechanism 1102, an 1dentification
mechanism 1104, a retrieving mechanism 1106, a parsing
mechanism 1108, a generating mechanism 1110, and a deter-
mination mechanism 1112. During operation, receiving

US 8,533,604 B2

7

mechanism 1102 receives a request for GUI object-address-
ing queries for an application to be tested. Identification
mechanism 1104 identifies the application context. Retriev-
ing mechanism 1106 then retrieves a rule document describ-
ing GUI object-addressing query rules according to the 1den-
tified application context. The rule document 1s parsed by
parsing mechanism 1108 to generate an applicable query rule
set for the application. Subsequently, generating mechanism
1110 generates a set of query candidates from the applicable
rule set, and determination mechanism 1112 determines a
unique query for each GUI object.

FI1G. 12 1llustrates an exemplary computer system for auto-
matically generating addressing queries for GUI objects. In
one embodiment, a computer system 1200 includes a proces-
sor 1202, a memory 1204, and a storage device 1206, and 1s
coupled to an optional display 1208, keyboard 1210, and
pointing device 1212. Storage device 1206 stores a GUI-
object-addressing query application 1220, as well as other
applications, such as a software application 1222 to be tested.
During operation, GUI-object-addressing query application
1220 1s loaded from storage device 1206 into memory 1204
and then executed by processor 1202. While executing the
program, processor 1202 performs the atorementioned meth-
ods.

The data structures and code described in this detailed
description are typically stored on a computer-readable stor-
age medium, which may be any device or medium that can
store code and/or data for use by a computer system. This
includes, but 1s not limited to, volatile memory, non-volatile
memory, application-specific integrated circuits (ASICs),
ficld-programmable gate arrays (FPGAs), magnetic and opti-
cal storage devices such as disk drives, magnetic tape, CDs
(compact discs), DV Ds (digital versatile discs or digital video
discs), or other media capable of storing computer-readable
media now known or later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored 1n a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-read-
able storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.

Furthermore, the methods and processes described below
can be included 1n hardware modules. For example, the hard-
ware modules can include, but are not limited to, ASICs,
FPGAs, and other programmable-logic devices now known
or later developed. When the hardware modules are activated,
the hardware modules perform the methods and processes
included within the hardware modules.

The foregoing descriptions of embodiments of the present
invention have been presented for purposes of illustration and
description only. They are not intended to be exhaustive or to
limit the present invention to the forms disclosed. Accord-
ingly, many modifications and vanations will be apparent to
practitioners skilled 1n the art. Additionally, the above disclo-
sure 1s not mtended to limit the present invention. The scope
ol the present invention 1s defined by the appended claims.

What 1s claimed 1s:

1. A computer-executed method for automatically gener-
ating addressing queries for objects rendered on a graphical
user mtertace (GUI), wherein the method comprises:

receiving a request to generate an object-addressing query

for a target GUI object 1n an application under test;
identifying an application context for the application
under test;

10

15

20

25

30

35

40

45

50

55

60

65

8

retrieving a rule document describing GUI object-addressing
query rules based at least on the identified application con-
text;

parsing the rule document to obtain an applicable query

rule set for the application, wherein parsing the rule

document comprises:

retrieving a rule-identification query defined in the rule
entry of a respective rule,

executing the rule-1dentification query against the target
GUI object 1in the context of a markup language docu-
ment 1n which the object 1s represented as a node,

veritying whether the query result 1s true, and

adding the rule to the applicable rule set when the query
result 1s true;

generating a set ol query candidates for the target GUI

object based at least on the applicable rule set; and
determining a unique object-addressing query for the tar-
get GUI object.

2. The method of claim 1, wherein the rule document
comprises independent rules, and wherein a respective rule
comprises at least one of:

an indication of an applicable application context;

a rule name;

a rule entry; and

one or more rule templates.

3. The method of claim 2, wherein a respective rule tem-
plate 1s defined 1n the format of extensible stylesheet language
transformations (XSLT), and wherein generating a query can-
didate comprises applying the XSLT-defined rule template
and a markup language element corresponding to the target
GUI object to an XSLT processor to generate an XML Path
(XPath) language query.

4. The method of claim 1, wherein generating query can-
didates based on the applicable rule set comprises:

retrieving defined templates from each rule in the appli-

cable rule set;

generating an object-addressing query for the target GUI

object using a respective template;
executing the object-addressing query to 1dentity a result
GUI object 1n the application under test; and

adding the object-addressing query to the set of query
candidates 1f the result GUI object matches the target
GUI object.

5. The method of claim 4, wherein within a respective rule
the object-addressing queries are generated using the tem-
plates.

6. The method of claim 1, wherein determining the unique
object-addressing query for a GUI object comprises:

ranking each query candidate using a predetermined rank-

ing method; and

choosing the highest ranked query as the unique object-

addressing query for the GUI object.

7. A non-transitory computer-readable storage medium
storing instructions which when executed by a particular
machine cause the machine to perform a method for auto-
matically generating addressing queries for objects rendered
on a GUI, the method comprising:

recerving a request to generate an object-addressing query

for a target GUI object 1n an application under test;
identilying an application context for the application under
test;

retrieving a rule document describing GUI object-address-

ing query rules based at least on the 1dentified applica-
tion context;

parsing the rule document to obtain an applicable query

rule set for the application, wherein parsing the rule
document comprises:

US 8,533,604 B2

9

retrieving a rule-identification query defined 1n the rule
entry of a respective rule,

executing the rule-1dentification query against the target
GUI object 1n the context of a markup language docu-
ment 1 which the object 1s represented as a node,

verilying whether the query result is true, and adding the
rule to the applicable rule set when the query result 1s
{rue;

generating a set of query candidates for the target GUI
object based at least on the applicable rule set; and

determining a unique object-addressing query for the tar-
get GUI object.

8. The non-transitory computer-readable storage medium
of claim 7, wherein the rule document comprises independent
rules, and wherein a respective rule comprises at least one of:

an 1ndication of an applicable application context;

a rule name;

a rule entry; and

one or more rule templates.

9. The non-transitory computer-readable storage medium
of claim 8, wherein a respective rule template 1s defined 1n the
format of extensible stylesheet language transformations
(XSLT), and wherein generating a query candidate comprises
applying the XSLT-defined rule template and a markup lan-
guage element corresponding to the target GUI object to an
XSLT processor to generate an XML Path (XPath) language
query.

10. The non-transitory computer-readable storage medium
of claim 7, wherein generating query candidates based on the
applicable rule set comprises: retrieving defined templates
from each rule in the applicable rule set; generating an object-
addressing query for the target GUI object using a respective
template; executing the object-addressing query to 1dentity a
result GUI object in the application under test; and adding the
object-addressing query to the set of query candidates 11 the
result GUI object matches the target GUI object.

11. The non-transitory computer-readable storage medium
of claim 10, wherein within a respective rule the object-
addressing queries are generated using templates.

12. The non-transitory computer-readable storage medium
of claim 7, wherein determining the unique object-addressing
query for a GUI object comprises: ranking each query candi-
date using a predetermined ranking method; and choosing the
highest ranked query as the unique object-addressing query
tor the GUI object.

13. A computer system for automatically generating
addressing queries for GUI objects, the system comprising;:

a Processor;

a memory;

a recerving mechanism configured to receive a request to
generate an object-addressing query for an application
to under test:;

an 1dentification mechanism configured to i1dentily an
application context for the application under test;

a retrieving mechanism configured to retrieve a rule docu-
ment describing GUI object-addressing query rules
based at least on the identified application context;

10

15

20

25

30

35

40

45

50

55

10

a parsing mechanism configured to parse the rule docu-
ment to obtain an applicable query rule set for the appli-
cation, wherein the parsing mechanism further com-
Prises:

a retrieving mechanism configured to retrieve a rule-
identification query defined in the rule entry of a
respective rule,

an execution mechanism configured to execute the rule-
identification query against the target GUI object 1n

the context of a markup language document 1n which

the object 1s represented as a node,
a verification mechanism configured to verily whether

the query result 1s true, and
an organizing mechanism configured to add the rule to
the applicable rule set 1f the query result 1s true;

a generating mechanism configured to generate a set of
query candidates for the target GUI object based at least
on the applicable rule set; and

a determination mechanism configured to determine a
unique object-addressing query for the target GUI

object.

14. The computer system of claim 13, wherein the rule
document comprises independent rules, and wherein a
respective rule comprises of at least one of:

an indication of an applicable application context;

a rule name;

a rule entry; and

one or more rule templates.

15. The computer system of claim 14, wherein a respective
rule template 1s defined 1n the format of extensible stylesheet
language transformations (XSL'T), and wherein generating a
query candidate comprises applying the XSLT-defined rule
template and a markup language element corresponding to
the target GUI object to an XSLT processor to generate an
XML Path (XPath) language query.

16. The computer system of claim 13, wherein the gener-
ating mechanism further comprises:

a retrieving mechanism configured to retrieve defined tem-

plates based on each rule in the applicable rule set;

a converting mechanism configured to generate an object-
addressing query for the target GUI object using a
respective template;

an execution mechanism configured to execute the object-
addressing query to 1dentity a result GUI object 1n the
application under test; and

an organizing mechanism configured to add the object-
addressing query to the set of query candidates if the
result GUI object matches the target GUI object.

17. The computer system of claim 16, wherein within a
respective rule the object-addressing queries are generated
using templates.

18. The computer system of claim 13, wherein the deter-
mination mechanism further comprises:

a ranking mechanism configured to rank each query can-

didate using a predetermined ranking method; and

a choice making mechanism configured to choose the high-
est ranked query as the unique object-addressing query

for the GUI object.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

