US008533401B2
12 United States Patent (10) Patent No.: US 8.533.401 B2
Edirisooriya et al. 45) Date of Patent: Sep. 10, 2013
(54) IMPLEMENTING DIRECT ACCESS CACHES gjgg’gg i : ?; éggg g/{ha[—i‘)re 6313&1* R ;(l)gl)ﬁg
,, ,, cbon etal. 1
IN COHERENT MULTIPROCESSORS 6,182,111 B1* 1/2001 Inoharaetal. 709/201
o _ 6,353,877 B1* 3/2002 Duncanetal. 711/155
(75) Inventors: Samantha J. Edirisooriva, Tempe, AZ 6,651,145 Bl 11/2003 Nguyen et al.
(US); Sujat Jamil, Chandler, AZ (US); 6,775,748 B2 8/2004 Jamil et al.
: : . 2002/0095554 Al1* 7/2002 McCroryetal. 711/144
FDa“i%};;[lmer’ ClTlandleerZ (USS_)’ R. 2002/0166031 Al* 11/2002 Chenetal .oovvev........ 711/141
ran eness, lempe, AZ (US); 2003/0105796 Al 6/2003 Sandri et al.
Steven J. Tu, Phoenix, AZ (US); Hang
T. Nguyen, Tempe, AZ (US) OTHER PUBLICATIONS
_ U.S. Appl. No. 10/039,060, filed Jan. 2, 2002, Jamul et al.
(73) Assignee: Intel Corporation, Santa Clara, CA U.S. Appl. No. 10/199,580, filed Jul. 19, 2002, Edirisooriya et al.
(US) U.S. Appl. No. 10/073,492, filed Feb. 11, 2002, Edirisooriya et al.
U.S. Appl. No. 10/303,931, filed Nov. 25, 2002, Edirisooriya et al.
(*) Notice: Subject to any disclaimer, the term of this 82 ipp §0* i (1)? ggg%g?a giec- }[‘)431'* é?ﬂ 388% Egiﬂsmriya et ai*
- : S. Appl. No. 131, filed Dec. 31, , Edirisooriya et al.
%atser(l:t lf’szxéerfei 5‘;1' dadJ“Sted under 35 (7'q Apnl No. 10/123.401. filed Apr. 16, 2002, Edirisooriya et al.
S.C. 154(b) by Ays. U.S. Appl. No. 10/316,276, filed Dec. 10, 2002, Edirisooriya et al.
U.S. Appl. No. 10/316,785, filed Dec. 10, 2002, Edirisooriya et al.
(21) Appl. No.: 10/331,688 U.S. Appl. No. 10/262,363, filed Sep. 30, 2002, Nguyen et al.
_ U.S. Appl. No. 10/338,207, filed Jan. 7, 2003, Nguyen et al.
(22) Filed: Dec. 30, 2002 U.S. Appl. No. 11/124,001, filed May 6, 2005, Nguyen et al.
U.S. Appl. No. 11/124,309, filed May 6, 2005, Nguyen et al.
(65) Prior Publication Data U.S. Appl. No. 11/123,503, filed May 6, 2005, Nguyen et al.
U.S. Appl. No. 10/357,780, filed Feb. 4, 2003, Nguyen et al.
US 2004/0128450 A1 Jul. 1, 2004 U.S. Appl. No. 10/331,688, filed Dec. 30, 2002, Nguyen et al.
U.S. Appl. No. 10/883,363, filed Jun. 30, 2004, Nguyen et al.
(51) Int.ClL
GO6F 12/00 (2006.01) (Continued)
52) U.S. CL
22 USPC oo, 711/141;711/113 ~ Primary Examiner — Hashem Farrokh
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Blakely, Sokoloif, Taylor &
USPC 711/122, 128-130, 141, 113; 709/201 ~ ZalmanLLP
See application file for complete search history.
(37) ABSTRACT
(56) References Cited Non-processor agents, such as bus agents, may directly

access processor caches. A coherency protocol ensures that

U.S. PATENT DOCUMENTS cache coherency 1s maintained.

5,537,574 A * 7/1996 Elkoetal. 711/141
5,797,026 A * &/1998 Rhodehamel etal. 712/1 4 Claims, 7 Drawing Sheets
12a 12h 12¢
/~ /— /* / .
PROCESSOR PROCESSOR PROCESSOR
|22 22 22
CACHE — L— 40 CACHE = |—40 CACHE — |— 40
A A
14a 4/ 14h 4/ 14¢ J
N
l S
INTERCONNECTION NETWORK
PUSH
MEMORY NON-PROCESSOR NON-PROCESSOR
CONTROLLER AGENT 1 AGENT

18 J 20a / 20b /

US 8,533,401 B2

Page 2

(56) References Cited U.S. Appl. No. 11/027,649, filed Dec. 29, 2004, Nguyen et al.

U.S. Appl. No. 11/017,183, filed Dec. 16, 2004, Murray et al.

OTHER PUBLICATIONS U.S. Appl. No. 10/620,629, filed Jul. 14, 2003, Nguyen et al.

U.S. Appl. No. 10/881,607, filed Jun. 29, 2004, Neuyen et al. U.S. App._.. No. 09/746,487, filed Dec. 22, 2000, Nguyen et al.
U.S. Appl. No. 10/877,587, filed Jun. 24, 2004, Murray et al. Tomasevic et al—1994—Hardware Approaches to Cache Coherence
U.S. Appl. No. 10/974,377, filed Oct. 27, 2004, Edirisooriya. 1 ShmeQ-Memory Multiprocessors, Part 1.
U.S. Appl. No. 10/977,830, filed Oct. 28, 2004, Edirisooriya. Tomasevic .et al.—Dec. 1994—Hz}rdware Approaches to Cache
U.S. Appl. No. 10/882,509, filed Jun. 30, 2004, Nguyen et al. Coherence 1n Shared-Memory Multiprocessors, Part 2.
U.S. Appl. No. 10/997,605, filed Nov. 23, 2004, Nguyen et al.
U.S. Appl. No. 11/027,639, filed Dec. 29, 2004, Nguyen et al. * cited by examiner

U.S. Patent Sep. 10, 2013 Sheet 1 of 7 US 8,533,401 B2
Vs 124 s 12b ya 12¢
10
PROCESSOR PROCESSOR PROCESSOR
. — 22 — 2
CACHE — |—40 CACHE ~ — |-—40 CACHE = t— 40

14a J

14D J

A

14c J

INTERCONNECTION NETWORK 16

|

MEMORY
CONTROLLER

6/

PUSH

A

[

NON-PROCESSOR
AGENT

20a /

FIG. 1

|

r\ h/v PROCESSOR

AGENT

20b

U.S. Patent Sep. 10, 2013 Sheet 2 of 7 US 8,533,401 B2

RECEIVE CACHE LINE 22
PUSH REQUEST

24

P 32

CACHE LINE
PRESENT

IN CACHE
s

TARGETED
PROCESSOR
7

NO NO

YES

26
REQUEST < VES

RETRIED
?

YES

INVALIDATE | ~— 94
CACHE LINE

NO

OVERWRITE | ~— 26
CACHE LINE

!

SETSTATETO | 90
MODIFIED

i

(END)

FIG. 2

U.S. Patent Sep. 10, 2013 Sheet 3 of 7 US 8,533,401 B2

RECEIVE PARIIAL
PUSH REQUEST 40

NO

CACHE LINE
IN MODIFIED

OR OWNED STATE
7

TARGETED
PROCESSOR

NO
42

NO YES
AETRY 0 _\ INVALIDATE
YE CACHE LINE
wACHE 60 y IN LOCAL
LINE PRESENT IN \{ RETRY CACHE
CACHE »
ISSUE READ AND | l
INVALIDATE YES WRITE
REQUEST TO THE | 54 CACHE LINE| .~ 62
CACHE LINE TO BACK TO
BRING THE CACHE REQUEST YES MEMORY
CACHE > 2 l
| NO INVALIDATE
- CACHE LINE| .~ b4
v LINE BY MERGING | .~ 49 CACHE
STORE THE CACHE / 56 | WITH PARTIAL
LINE IN CACHE IN PUSH DATA
MODIFIED STATE l
SETSTATETO |~ VU
MODIFIED
(END)

FIG. 3

U.S. Patent Sep. 10, 2013 Sheet 4 of 7 US 8,533,401 B2

PROCESSOR PROCESSOR PROCESSOR
P(O] P(1] 0 PIN-1]
o N 70e
PUSH PUSH 1. o o PUSH |70
i /| COUNTER COUNTER COUNTER iy
CACHE CACHE CACHE V
14d —/ I 19e — I ' - I

7
/o 21h

INTERCONNECTION NETWORK

| . | =]

MEMORY ON-PROCESSOR NON-PROCESSOR
CONTROLLER AGENT AGENT

k?S

FIG. 4

U.S. Patent Sep. 10, 2013 Sheet 5 of 7 US 8,533,401 B2

RECEIVE CACHE LINE 224
PUSH REQUEST

/4

PROCESSOR
ID = PUSH COUNTER
VALUE

NO

/6
REQUEST

RETRIED
?

YES

32

CACHE
LINE PRESENT IN

CACHE
?

NO

NO

OVERWRITE |~ 28
CACHE LINE

!

SETSTATETO |90
MODIFIED

YES

INVALIDATE |~ 34
CACHE LINE

(END)

FIG. 5

U.S. Patent

Sep. 10, 2013 She

et6o0f7

RECEIVE PARTIAL 40a
PUSH REQUEST

PROCESSOR

VALUE
?

ID=PUSH COUNTER

US 8,533,401 B2

78 80

NO

CACH
LINE 1S MODIFIED NO

OR OWNED ’
?

S, YES
82 L
% ACHE N RETRY REQUEST
N
TRy o< LINE PRESENT IN CACHE AND !
REQUEST NOT RETRIED —WEITE CACHE
| LINEBACKTO
v VES 84 MEMORY
ISSUE A READ l
AND INVALIDATE |~ 90 MODIFY CACHE |, 64
RECENT TO THAT LINE INVALIDATE CACHE
CACHE LINE | LINE IN THE LOGAL
I | 86 CACHE
STORE THE SET STATETO |~ 66
%Cgfcﬂ}g " MODIFIED 4
L i _
(END)
94
N
INVALIDATE CACHE
LINE IN THE LOCAL ~ |¢—
CACHE

FIG. 6

U.S. Patent Sep. 10, 2013 Sheet 7 of

7

100
(PUSH COUNTER >/

102

SET PUSH
COUNTER TO ZERO

Ve 104

s
REQUEST

/e

106

INCREMENT
PUSH COUNIER

L COUNTER=N-1

7

YES

110

SET PUSH
COUNTER TO
ZERO

/112

(END)

FIG. 7

US 8,533,401 B2

US 8,533,401 B2

1

IMPLEMENTING DIRECT ACCESS CACHES
IN COHERENT MULTIPROCESSORS

BACKGROUND

This 1invention relates generally to processor cache archi-
tectures. More particularly, the present invention relates to
multiprocessors that provide hardware cache coherency
using shared states.

In typical computer systems, non-processor agents, such as
input/output controllers and direct memory access devices, as
two examples, are not able to push data directly to the local
cache of a processor. However, some applications could ben-
efit i non-processor agents were permitted to push data
directly 1nto a processor cache.

For instance, in a network packet processing system,
allowing a non-processor agent to push a packet directly mnto
a processor cache, rather than 1nto main memory, enables the
processor to read the packet directly from the local cache
instead of from memory. This may be an important feature
since the performance of network processors 1s measured by
the number of packets they can process per second. In effect,
the processor may process more packets because 1t does not
need to access the information from memory, place it 1n a
cache and then read 1t from the cache.

Thus, 1t would be desirable to enable non-processor agents
to access caches 1n multiprocessor systems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic depiction of one embodiment of the
present invention;

FIG. 2 1s a flow chart for one embodiment of the present
invention;

FI1G. 3 1s a flow chart for another embodiment of he present
imnvention;

FIG. 4 1s a schematic depiction of another embodiment of
the present invention;

FI1G. 5 1s a tlow chart for the embodiment shown in FIG. 4
in accordance with one embodiment of the present invention;

FI1G. 6 1s a flow chart for the embodiment shown 1n FIG. 4
in accordance with one embodiment of the present invention;
and

FI1G. 7 1s a flow chart for the embodiment shown 1n FIG. 4
in accordance with one embodiment of the present invention.

DETAILED DESCRIPTION

Referring to FIG. 1, a processor-based system may include
a plurality of processors, including the processors 12a, 125,
and 12¢ 1n one embodiment. In some embodiments, only two
processors may be imncluded and 1n other embodiments, more
than two processors may be utilized. The processors 12 may
be general purpose processors, digital signal processors, or a
combination of a digital signal and general purpose processor
in one embodiment.

Each processor 12 may include a cache 14. The cache 14
may be integrated in the same integrated circuit with the
processor 12 1n one embodiment. Coupled to each processor
12 1s an interconnection network 16. The network 16 may 1n
turn be coupled to a memory controller 18 and one or more
non-processor agents 20, such as medium access control
(MAC) devices for a wireless network. A coherency protocol
22 and a protocol 40, discussed later, may be resident 1n the
caches 14 in one embodiment.

The embodiment of FIG. 1 1s a wireless network processor-
based system where the agents 20 are wireless interfaces

10

15

20

25

30

35

40

45

50

55

60

65

2

including antennas 21. However, the present invention 1s not
limited to any particular application, but instead may be appli-
cable to any situation where 1t 1s advantageous to allow a
non-processor agent to directly access a processor cache.

Traditionally, hardware-based cache coherency 1s enforced
by a caching agent that obtains the exclusive ownership of a
cache line before the cache line 1n the agent’s cache may be
modified. In one embodiment of the present invention, a
non-processor agent 20a, such as a MAC, may “push” data
directly to a processor cache, such as a cache 145, as shown 1n
FIG. 1. Since non-processor agents are not conventionally
able to push data directly into a processor cache 14, the
applicable caching agent performs additional steps to guar-
antee memory consistency.

In the discussion that follows, requests to push data directly
to a processor cache 14 are targeted to only one processor in
the coherency domain. However, 1n other embodiments, the
push requests may mnvolve more than one processor. More-
over, 1n the example provided below, the modified owned
exclusive shared invalid (MOESI) cache coherency protocol
1s used. However, those skilled 1n the art will appreciate that
the same principles can be applied to any cache coherency
protocol that uses a shared state, including modified exclusive
shared mvalid (MESI) and modified shared mmvalid (MSI)
cache coherency protocols.

In the MOESI protocol, the shared state 1s different than 1n
prior protocols and the owned state 1s new. In the MOESI
protocol the shared state cannot be consistent with memory.
However, the shared state still involves more than one pro-
cessor having the same cache line. A second processor can
access a line modified by a first processor. The line 1s 1n the
shared state for the second processor and the owned state for
the first processor. In the modified state there 1s only one
updated copy of the cache line and that copy 1s not consistent
with memory. In the exclusive state data 1s read and then you
g0 to the exclusive state. In the exclusive state one processor
has a copy and no other processor has the cache line and the
cache line 1s consistent with memory. The invalidate state
involves a cache line that got invalidated or 1s not present.

Retferring to FIG. 2, in one embodiment of the present
invention, the coherency protocol 22 may be implemented as
soltware that may be stored, for example, within a cache 14.
Alternatively, the protocol 22 may be stored 1in any memory
available on the processor-based system. In addition, the
cache coherency protocol 22 may be implemented 1n hard-
ware, for example 1n one or more of the caches 14.

Initially, upon recerving a cache line push request from an
agent 20, a check at diamond 24 determines whether the
subject processor 12 1s the processor targeted by the request,
as indicated in diamond 24, in FIG. 2. Thus, 1n the case of the
push request 1llustrated 1n FIG. 1, the processor 1256 1s the
targeted processor, while the processors 12a and 12¢ are the
non-targeted processors.

I1 the subject processor 1s the target of the push request, a
check at diamond 26 determines whether the request is
retried. I the request 1s not retried, the cache line 1s simply
overwritten and set to the modified state as indicated in blocks
28 and 30.

However, 11 the subject processor 12 1s not a targeted pro-
cessor, then a check at diamond 32 determines whether the
cache line 1s already present in the cache 14 in the modified,
exclusive, shared, or owned state. If so, the cache line 1s
invalidated as indicated in block 34.

In another embodiment, after 1t 1s determined that the pro-
cessor 1s not the targeted processor, a check can determine 1f
the request was retried as 1n diamond 26. I not, the tflow ends
but, otherwise, the flow continues to diamond 32.

US 8,533,401 B2

3

Referring to FIG. 3, a hardware or software solution 1s
illustrated for the situation where a processor 12 receives a
partial push request. A partial push request 1s a request to
access less than an entire cache line.

The protocol 40, 1llustrated 1n FIG. 3, begins by determin-
ing whether the subject processor 12 1s the targeted processor
as indicated in diamond 42. If so, a check at diamond 44
determines if the cache line 1s already present 1n the proces-
sor’s cache 1n the modified, owned, exclusive, or shared state.
If so, a check at diamond 46 determines whether the request
was retried. If not, the cache line 1s modified by merging 1t
with the partial push data and set to the modified state as
indicated 1n blocks 48 and 50.

If the cache line 1s not present in the cache 14 of the targeted
processor, as determined 1n diamond 44, the request 1s retried
at block 52. Then a read and 1nvalidate (read for ownership)
request to that cache 1s 1ssued to bring the cache line to the
relevant cache as indicated at block 54. The cache line 1s then
stored 1n the cache 1n the modified state as indicated 1n block
56.

In the case of a non-targeted processor, as determined in
diamond 42, a check at diamond 58 determines whether the
cache line 1s 1n the modified or owned state. If so, the request
1s retried as indicated in block 60. Then the cache line 1s
written back to system memory as indicated 1in block 62. The
cache line 1s then ivalidated 1n the local cache as indicated 1n
block 64.

Finally, 1f the cache line 1s not 1n the modified or owned
states, as determined 1n diamond 58, or 1n other words 1s 1n the
exclusive or shared state, then the cache line 1s invalidated 1n
the local cache as indicated in block 66.

In some embodiments of the present ivention, non-pro-
cessor devices coupled to a processor may directly move data
directly into a processor’s cache. This avoids the need for two
distinct memory operations, including a write generated by
the non-processor agent to memory, followed by a read gen-
erated by the processor to bring the data ito the processor
from memory. With embodiments of the present invention, a
non-processor agent can use just one write operation to move
data 1into a processor cache. This improves the latency (when
accessing full cache lines and, in some cases, partial cache
lines) compared to traditional architectures and reduces pro-
cessor bus traffic in some embodiments.

In another embodiment, if the processor 1s not the targeted
processor, a check may determine 11 the request was retried. IT
so, the flow ends but, otherwise, the flow continues with
diamond 38.

Referring to FIG. 4, a system, similar to the one shown in
FIG. 1, includes processors 124 through 12f, caches 144
through 14/, and push counters 70d through 70f. The proces-
sors 12 may be coupled to non-processor agents 20aq and 205
through an interconnection network 72 1n one embodiment.
The agents 20 may be wireless interfaces, in one embodiment
of the present invention, having antennas 21a and 2154. The
interconnection network 72 also couples a memory controller
18.

While a network processor-based system 1s 1llustrated,
those skilled 1n the art will appreciate that a variety of other
arrangements may also be utilized.

In the embodiment shown 1n FIG. 4, a push functionality 1s
implemented which enables a non-processor agent, such as
the agent 205, to push data directly to a cache, such as a cache
14a, while preserving the coherency of the multiprocessor
system. A mechanism dynamically 1dentifies a processor 12
that will accept the push operation. Assuming that there are N
processors, including the processors P(0), P(1), and P(N-1)
in the coherency domain, each processor 12 implements a

10

15

20

25

30

35

40

45

50

55

60

65

4

roll-over push counter 70 that counts from zero to N-1. Com-
ing out of a reset, all of the counters 70 may be reset to zero.

Whenever a push request 1s generated, the processors 12
increment their push counters 70 by one. The processor 12
whose 1dentifier matches the current push counter 20 value,
then claims the push operation and stores the associated data
in 1ts cache 14.

All other processors 12 invalidate the cache line 1n their
local caches 14. Since processor 1dentifiers within the multi-
processor system are unique, one and only one processor 12
accepts any push operation. In one embodiment of the present
invention, a selection mechanism may guaranty that only one
processor responds to a push operation.

Thus, while the non-processor agents 20 may be allowed to
push data directly 1nto a processor cache 14, the processors 12
in that coherency domain perform additional steps that guar-
antee memory consistency. Again, a set of rules, 1 accor-
dance with one embodiment, are described below assuming
the MOESI cache protocol. However, again, any cache coher-
ency protocol that includes a shared state may be utilized.

Referring to FIG. 5, the protocol 224 for recerving a cache
line push request may be implemented in software or hard-
ware as described previously. If the subject processor’s 1den-
tifier 1s equal to the push counter 70 value as determined in
diamond 74, a check at diamond 76 determines whether the
request was retried. If not, the cache line 1s simply overwritten
and the state 1s set to modity as indicated in blocks 28 and 30.

If the processor’s 1dentifier 1s not equal to the push counter
value or the request 1s not retried, a check at diamond 32
determines whether the cache line 1s already present 1n the
cache of the subject processor. 11 so, the cache line 1s invali-
dated as indicated 1n block 34.

In another embodiment, 1f the processor 1identifier does not
equal the push counter value, a check can determine 11 the
request was retried. It so, the tlow may end but, otherwise, the
flow may continue to diamond 32.

Referring to FIG. 6, upon recerving a partial push request,
the protocol 40a checks at diamond 78 to determine whether
the processor’s identifier 1s equal to the push counter value. I
s0, a check at diamond 94 determines whether the cache line
1s already present 1n the cache and the request 1s not retried. If
so, the cache line 1s modified and set to the modified state as
indicated 1n blocks 64 and 66.

I1 the cache line 1s not present 1n the cache, the request 1s
retried as indicated 1n block 88. A read and invalidate (read for
ownership) request 1s 1ssued to that cache line as indicated 1n
block 90 and the cache line 1s stored 1n the cache as indicated
in block 92.

I1 the processor’s 1dentifier 1s not equal to the push counter
value, then a check at diamond 80 determines whether the
cache line 1s 1n either the modified or own state. It so, the
request 1s retried as indicated 1 block 82 and the cache line 1s
written back to system memory as indicated i block 84 and
the cache line 1s invalidated 1n the local cache as indicated in
block 86.

I1 the cache line 1s 1n either the exclusive or shared state as
determined 1n diamond 80, then the cache line 1s invalidated
in the local cache as indicated 1n block 94.

Referring to FIG. 7, the operation of the push counters 70
1s Turther illustrated. The push counters 70 may be software or
hardware-based devices. Initially a check at diamond 102
determines whether there has been a system reset. If so, the
push counters 70 are set to zero as idicated 1 block 104.
When a push request i1s generated, as determined 1n diamond
106, the processors 12 increment their push counters 70 by
one as indicated i block 108. A check at diamond 110 deter-

US 8,533,401 B2
S

mines whether the push counter value equals N-1. If so, the
push counter 70 1s reset to zero as indicated 1n block 112.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations 3
therefrom. It 1s intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What 1s claimed 1s:

1. A system comprising: 10

a digital signal processor including a cache, said cache to

receive direct memory accesses from the non-processor
agents;

a non-processor agent coupled to said processor; and

a plurality of processors having caches which are directly 15

accessible by non-processor agents, said processors
having an identifier and said processors including a
counter to count the number of access requests from
non-processor agents.

2. The system of claim 1 wherein the one or more proces- 20
sors determine whether 1t 1s the target of the push requests by
non-processor agent using a comparison of the identifier and
the counter value.

3. The system of claim 1 including at least two processors
with caches, said processors to determine which cache 1s 25
targeted by the push request from a non-processor agent.

4. The system of claim 1 wherein a value of said counter 1s
compared to the 1dentifier assigned to the processor to deter-
mine whether the processor will handle a push request to
access a cache by the non-processor agent. 30

% x *H % o

	Front Page
	Drawings
	Specification
	Claims

