US008527944B2
12 United States Patent (10) Patent No.: US 8.527.,944 B2
Teng et al. 45) Date of Patent: Sep. 3, 2013
(54) METHOD AND APPARATUS FOR NATIVE 6,754,890 B1* 6/2004 Berryetal. 717/128
METHOD CALILS 6,886,157 B2 4/2005 Long et al.
7,039,911 B2 5/2006 Chase et al.
. _ 7,260,810 B2 9/2007 Karkare et al.
(75) Inventors: Qiming Teng, Beijing (CN): Feng 7.403.948 B2* 7/2008 Ghoneimy et al. 707/792
Wang, Beijing (CN); Haichuan Wang, 2002/0144241 Al* 10/2002 Luehoccoooovrirvrirrennen. 717/136
Beijing (CN); Xiao Zhong, Beijing (CN) 2004/0259118 AL* 12/2004 Maceviczcceovvvvvnrenn. 435/6
2008/0163265 Al 7/2008 Flora
(73) Assignee: International Business Machines FOREIGN PATENT DOCUMENTS
Corporation, Armonk, NY (US)
CN 1770148 5/2006
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PURILICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 845 days. JIVM™ Tool Interface version 1.2; “http://docs.oracle.com/javase/7/
docs/platform/jvmti/jvmti.html™, Sep. 5, 2007 .*
21 Anpl. No.: 12/689.300 Franz, “A Comprehensive Context for Mobile-Code Deployment”,
(21) App ; p ploym
Sep. 30, 2004, Unmiversity of California.*
(22) Filed: Jan. 19, 2010 | |
* cited by examiner
(65) Prior Publication Data
US 2010/0186001 A1 Jul. 22, 2010 Primary Lxaminer — Anna Deng
Assistant Examiner — Junchun Wu
(30) Foreign Application Priority Data (74) Attorney, Agent, or Firm — Ido Tuchman; E. Dwayne
Nelson
Jan. 21,2009 (CN) .o, 2009 1 0003244
(37) ABSTRACT
(51) Int.CL _
GO6F 9/44 (2006.01) A method and apparatus for a native method call. The method
(52) U.S.CL comprises: generating, 1in response to a native method call-
USPC e e, 717/110 associated event, a template copy from a generic template for
(58) Field of Classification Search processing the native method call; filling information
USPC 717/110 required for processing the native method call in correspond-
See application file for complete search history. ing locations in the template copy; and changing a code
execution flow to execute the template copy. When a native
(56) References Cited method 1s called, the native method 1s processed by dynami-

U.S. PATENT DOCUMENTS

0,006,181 A 5/2000 DeMaster
6,549,959 B1* 4/2003 Yatesetal.coevvnnnnn, 710/22

cally inserting the template copy 1n the execution path at the
assembly level.

18 Claims, 6 Drawing Sheets

=

Saving the register state

Tha profiling
switch |s on'?
Yo

Saving the retumn address of the native methed, and replace the
return acddress

l

"

Recording the start time and times of the native mathod call

I

Calling the salf-definad prolog proflling parametars

n|

Restoring the register state

1

Calling the native method

U.S. Patent Sep. 3, 2013 Sheet 1 of 6 US 8,527,944 B2

java.io.FileOQutputStream
native void writeBytes(bvtel|] b, int off, int len, FileDescriptor fd);

new address ptr [~

void myWriteBytes(byte[] b, \nt off, int len, FileDescriptor fd) {
// record something here ...

writeBvtes(b, off, len, fd);

// record something here ...

Prior Art

Fig. 1

U.S. Patent Sep. 3, 2013 Sheet 2 of 6 US 8,527,944 B2

201
Generating, in response to the native method call-associated event,
a profiling template copy from a generic profiling template for
profiling the native method call
202
Filling the information required for profiling the native method call in
corresponding locations of the profiling template copy
203

Changing the code execution flow, so as to execute the profiling
template copy

Fig. 2

U.S. Patent Sep. 3, 2013 Sheet 3 of 6 US 8,527,944 B2

301
Saving the register state
302
No The profiling
switch is on?
Yes 303

Saving the return address of the native method, and replace the

return address
/ 304

Recording the start time and times of the native method call

305
Calling the self-defined prolog profiling parameters
306
Restoring the register state
307

Calling the native method

Fig. 3

U.S. Patent Sep. 3, 2013 Sheet 4 of 6 US 8,527,944 B2

401
Reserving the stack space
402
Saving the register state
403

Recording the end time of the native method call

/ 404

Calling the self-defined epilog profiling parameter

405

Restoring the register state

406

Returning to the call method of the native method

Fig. 4

U.S. Patent Sep. 3, 2013 Sheet 5 of 6 US 8,527,944 B2

500

501
Copy Generation Means

502
Information Filling Means

503

Flow Changing Means

Fig. 5

U.S. Patent Sep. 3, 2013 Sheet 6 of 6 US 8,527,944 B2

Hard Disk _
controller Hard disk
605 610
CPU o
yboard
u controller Ke;ét::ard

606

Serial external
device
612

System Serial interface
bus controller

604 607

RAM
602

Parallel external
device
613

Parallel interface
controller
608

ROM
603

Display
controller
609

Display
614

Fig. 6

US 8,527,944 B2

1

METHOD AND APPARATUS FOR NATIVE
METHOD CALLS

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority under 35 U.S.C. 119 from
Chinese Patent Application 200910003244 4, filed Jan. 21,

2009, the entire contents of which are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a profiling technology for
soltware, and 1n particular, relates to a method and apparatus
for profiling native method calls.

2. Description of Relevant Art

By tracing executive processes of an application program,
various performance parameters in the execution process can
be obtained, so as to locate program performance bottlenecks
and then optimize the application program accordingly. The
technology on which such techniques are based 1s referred to
as profiling technology.

Native method 1s one directly running on a local hardware
platform without interpretation by a Virtual Machine (VM).
Typically, the native method can be used to directly manipu-
late computer hardware, improve program execution pertor-
mance, reuse legacy code, etc. In an application such as Java
application, native method calls are quite popular, mainly
because many functions have to be implemented by native
methods. For example, I/O implementation of object serial-
ization for distributed computing, communication on high
speed networks (critical links 1 multi-tiered applications),
Java Machine (JVM) framework, mathematical calculation
and etc, their implementations all rely on use of native meth-
ods.

It has been practically proved that in the case of using
native methods, 1t 1s highly likely that application bottlenecks
reside either in native codes or at native layer. Thus, profiling,
native method calls are indispensable 1n profiling application
programes.

In the prior art, there have already been several technolo-
gies for profiling native functions, one being bytecode-level
instrumentation based technology, and the other being JVM
Tool Interface (JVMTI) method level event tracing technol-
0gy.

The bytecode-level mstrumentation based technology can
be further divided into a static instrumentation and a dynamic
instrumentation. In the static instrumentation, all JDK classes
and application classes are bytecode instrumented before the
application 1s executed. Since the static bytecode instrumen-
tation requires performing a class search, the instrumentation
process takes a rather long time, especially for a large appli-
cation program, which takes a much longer time. For the
static 1instrumentation, the bytecode 1s instrumented before
the application program 1s executed, and 1s unable to profile
dynamically loaded libraries during the process of executing
the application program. Further, there 1s another drawback,
namely, when using the static instrumentation, 1t requires
maintaining two collections of classes, one being an instru-
mented collection of classes, and the other being an original
collection of classes.

Different from the static mstrumentation, 1 the dynamic
instrumentation, the class 1s bytecode instrumented when
being loaded. However, there are still some technology con-
straints to the dynamic instrumentation approach. For

10

15

20

25

30

35

40

45

50

55

60

65

2

example, some caller codes are not allowed to be changed,
and some calling method codes are already loaded before the

bytecode gets instrumented, which will cause it to be unable
to profile these calling method codes. Further, modifying
these classes dynamically will have great impact on the
behavior and performance of class loaders and Just-In-Time
(JIT) compilers, such as notably increasing system overhead,
which 1s not desired.

On the other hand, the JVMTI method level event tracing,
technology provides callbacks to methodEntry and metho-
dExit events, thus the function “IsMethodNative()” defined
in the JVMTI specification can be used to check whether a
method 1s a native one. Compared with the bytecode instru-
mentation, this approach 1s simple and easy to implement.
However, since the JVMTI method level event tracing tech-
nology needs capturing all methods during the running pro-
cess of an application program and needs performing deter-
mination on the methods, the system overhead becomes
significant and the system may even slow down 100-1000
times, thereby notably aflecting the system performance.

Besides the above-mentioned technologies, there 1s
another known technology to profile the native method calls.
For example, the current JVMTI provides a native method
call-associated event, namely a NativeMethodBind event as
shown below:

The NativeMethodBind event 1s an event where the defi-
nition of native method 1n the Java program 1s bound together
with the address of a specific native method code, which 1s
typically fired when the native method 1s called at the first
time. Each time the NativeMethodBind event 1s started, some
important information can be returned through parameters
defined 1n the event. For example, “thread” can return the
thread requesting for binding, “method” can return the bound
method, and “address” can return the address of the bound
native method. Besides, if “new_adress_ptr” 1s set, the VM
will bind the native method call to the code address assigned
by the new_address_ptr.

In this way, the address “address” of the bound native
method can be obtained from this event. Further, as shown 1n
FIG. 1, by setting the new address parameter new_ad-
dress_ptr as the address of for example the profiling code, the
address of the native method 1n the Java input/output file
stream 1s replaced with the address of the profiling code,
thereby executing the profiling code and profiling the native
method call.

If this mechanism 1s used, 1t 1s necessary to provide an
associated proxy or a wrapper to each native method, so as to
perform profiling task and call the native method. I1 the asso-
ciated proxy 1s executable in a proper way, a better result can
be achieved, with trivial influence on the performance of the
system when the application 1s running. However, 1n practice,
parameter type and return type of each native method are
different, thus 1t 1s necessary to implement the above replace-
ment, and each associated proxy should have the exactly same
signature as the method to be profiled. But based on the
current technology, 1t 1s unable to predict the signature of a
dynamically loaded method, thus 1t 1s impractical 1n real-life
applications.

SUMMARY OF THE INVENTION

According to one aspect of the present invention, a method
for profiling a native method call 1s provided. The method
includes the steps of: generating, in response to a native
method call-associated event, a profiling template copy from
a generic profiling template for the native method call; filling
information required for profiling the native method call 1n

US 8,527,944 B2

3

corresponding locations 1n the profiling template copy; and
changing a code execution flow to execute the profiling tem-
plate copy.

According to another aspect of the present imnvention, an
apparatus 1s provided for profiling a native method call. The
apparatus 1includes: copy generating means for generating, 1n
response to a native method call-associated event, a profiling
template copy from a generic profiling template for the native
method call; information filling means for filling information
required for profiling the native method call 1n corresponding,
locations 1n the profiling template copy; and flow changing
means for changing a code execution flow to execute the
profiling template copy.

According to the present invention, when a native method
1s called, the native method 1s profiled by dynamically insert-
ing the profiling template copy in the execution path at the
assembly level. As compared to the prior art, 1t 1s unnecessary
for the present invention to provide an associated proxy for
cach native method, thus 1t has a high feasibility and Iittle
negative ifluence on the system performance.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features of the present invention will
become more apparent from the following detailed descrip-
tion of embodiments of the present invention, which 1s taken
in conjunction with the accompanying drawings. Like refer-
ence numerals are used to indicate like or stmilar components
throughout the accompanying drawings, in which:

FIG. 1 1s a diagram showing replacing a native method
address with a new address parameter in a NattveMethodBind
event provided by JVMTI;

FIG. 2 1s a flow chart of the method for profiling a native
method call according to an embodiment of the present inven-
tion;

FIG. 3 1s a flow chart of operations performed 1n a prolog
template copy according to an embodiment of the present
imnvention;

FIG. 4 1s a flow chart of operations performed 1n an epilog
template copy according to an embodiment of the present
invention;

FIG. 5 shows an apparatus for profiling a native method
call according to an embodiment of the present invention; and

FIG. 6 1s an exemplary structural block diagram showing a
computer system capable of implementing an embodiment
according to the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Hereinafter, a method and system for profiling a native
method call according to the present invention 1s described in
detail with reference to the accompanying drawings.

First, an embodiment according to the method of the
present invention 1s described with reference to FIG. 2. FIG.
2 1s a tlow chart of the method for profiling a native method
call according to an embodiment of the present invention.

As shown 1n FIG. 2, at step 201, a profiling template copy
1s generated from a generic profiling template for profiling the
native method call in response to a native method call-asso-
ciated event.

In a Java virtual machine, after the calling method calls the
native method, the address of the native method will be
bound, and at this time a native method call-associated event,
such as the above NativeMethodBind event, will be started.

It should be noted that in the context of the present mnven-
tion, the NativeMethodBind event will be taken as an example

10

15

20

25

30

35

40

45

50

55

60

65

4

to describe an embodiment of the present invention. However,
besides the above NativeMethodBind event, any other native
method call-associated event which 1s capable of providing
the address of the native method can also achieve the objec-
tives of the present invention. Further, besides the Java virtual
machine, in other environments 1in which native method call
exists, the event fired when calling the native method can be
an event similar to the NativeMethodBind event, or other
native method call-associated event which 1s capable of pro-
viding the address of the native method.

After the native method call-associated event 1s fired, a
profiling template copy can be generated from a generic pro-
filing template for profiling the native method call.

According to the method of the present invention, a generic
profiling template for profiling a native method call 1s pro-
vided for all native methods. When the native method call-
associated event 1s started, a profiling template copy for the
native method call 1s duplicated from the generic profiling
template. The profiling template copy 1s a copy of the generic
profiling template, thus they are completely identical 1n form.
What’s different 1s that the generic profiling template will be
continuously stored, whereas the profiling template copy 1s
dedicated to a particular native method, and after the profiling
1s completed, the space for storing the profiling template copy
will be released.

For the sake of explanation, an example for a generic
profiling template 1s provided as below. It should be noted that
the example provided here 1s only for exemplary purpose, and
the present invention 1s not limited thereto and can have many
variations.

The example of a generic profiling template:

Prolog Template:

static unsigned char prologTemplate[] = {

/0% 0x50, 0x52, 0x53, 0x8b, Ox1d, 0x00, 0x00, 0x00,

7 8 % 0x00, 0x85, Oxdb, 0x74, 0x34, 0x&8b, 0x44, 0x24,

/® 10 */ 0x0c¢, Oxa3, 0x00, 0x00, 0x00, 0x00, Oxb&, 0x00,

/18 */ 0x00, 0x00, 0x00, 0x89, 0x44, 0x24, 0x0¢, 0x0{,

/20 %/ 0x31, 0xa3, 0x00, 0x00, 0x00, 0x00, 0x89, 0xdO,

/% 28 */ 0xa3, 0x00, 0x00, 0x00, 0x00, 0x68, 0x00, 0x00,

/* 30 */ 0x00, 0x00, Oxbb, 0x00, 0x00, 0x00, 0x00, Ox1t,

/38 %/ 0x13, 0x&83, Oxcd, 0x04, 0x5b, Ox5a, 0x58, 0xe9,

/* 40 */ Oxtec, Ox{t, Ox{t, Ox{t

13

Epilog Template:

static unsigned char epilogTemplate[] = {
/0 */ 0x6a, 0x00, 0x50, 0x52, 0x53, Ox01, 0x31, 0xa3,
/% 8 %/ 0x00, 0x00, 0x00, 0x00, 0x89, 0xd0, 0xa3, 0x00,
/10 */ 0x00, 0x00, 0x00, Oxal, Ox00, 0x00, 0x00, 0x00,
/18 ¥/ 0x&89, 0x44, 0x24, 0x0c¢, 0x68, 0x00, 0x00, 0x00,
/% 20 */ 0x00, Oxbb, 0x00, 0x00, 0x00, 0x00, Ox{f, 0x13,
/% 28 ¥ 0x&3, 0xc4, 0x04, 0x5b, Ox5a, 0x58, 0xc3

The example provided above shows a machine code-level
generic prolog template and epilog template. To make the
example of the generic profiling template easier to under-
stand, the assembly level codes corresponding thereto and
their corresponding explanations are specified in the follow-
ing table 1 and table 2.

US 8,527,944 B2

D
TABLE 1

assembly codes of the prolog template and the corresponding explanations

Saving registers

/*

*0 50 push %eax Saving eax
register

*1 52 push %edx Saving edx
register

*2 53 push %ebx Saving ebx
register

Checking whether the profiling switch 1s on or not

*3 8b 1d 00 00 0000 mov active,%ebx Placing the
value of the variant
“active’ 1n the ebx
register

*9 85 db test %ebx,%ebx Checking if the
ebx register 1s O

*b 74 34 e 3¢ If the ebx
register 1s O, jump
to 3¢

Saving return address of the native method
*d 8b 44 24 Oc MoV Oxc(%esp),%eax Placing the

return address of
the native method
in the eax register
*11 a3 00 00 00 00 mMov % eax,caller 1p Saving the
value of the eax
register into the
variant caller__ip
Replacing the return address

*16 bg 00 00 00 00 MoV epilog,%eax Placing the
address of the
epilog template
into eax register

*1b 89 44 24 Oc MoV %eax,0xc(%esp) Seting the

value of the eax

register as the

return address
Recording TimeStamp

*1f 0f 31 rdtsc Reading the
value of the
TimeStamp
counter into the
eax register and
the edx register

*21 a3 00 00 00 00 MoV %eax,timestamp_ low Placing the
value of the eax
register to the
variant
timestamp__ low

*26 89 dO MOV %edx,%eax Placing the
value of the edx
register to eax
register

*28 a3 00 00 00 00 MoV %eax,timestamp__high Placing the
value of the eax
register to the
variant
timestamp__high

executing self-defined prolog profiling method

*2d 68 00 00 00 00 pushl index Stacking
index of the
native method

*32 bb 00 00 00 00 MoV callback,%ebx Placing the
address of the
self-defined
prolog profiling
method to the ebx
register

*37 T 13 call *(%ebx) executing

self-defined
prolog profiling

method
*39 83 ¢4 04 add $0x4,%esp Popping out

7

TABLE 1-continued

US 8,527,944 B2

assembly codes of the prolog template and the corresponding explanations

the previously

stacked
parameter
Restoring registers
*3c 5b pop %ebx Restoring the
ebx register
*3d Sa pop %edx Restoring the
edx register
*3e 58 pop %eax Restoring the
eax register
Calling native function
*3f eO fec it i1 jmp target_ ip Jumping to
*/ the address of the
native method
TABLE 2 0 TABLE 2-continued
Assembly codes of the epilog template Assembly codes of the epilog template
and their corresponding explanations and their corresponding explanations
/% 6a 00 push $0x0 Reserving *26 {113 call *(%ebx) executing
*0: stack space self-defined
Saving registers 23 epilog profiling
method

*2: 50 push %eax Saving eax *28 83 ¢4 04 add $0x4,%esp Popping out
register the previously

*3: 52 push %edx Saving edx stacked
register parameter

*4: 53 push %ebx Saving ebx 30 Restore the register
register

Record TimeStamp *2b 5b pop %ebx Restoring the
ebx register

*5: 0f 31 rdtsc Reading the *2¢ Sa pop %oedx Restoring the
value of the edx register
timestamp 35 *2d 38 pop %oeax Restoring the
counter into the eax register
eax and edx Returning to the call method calling the native method
register

*7 a3 00 00 00 00 mov %eax,timestamp_ low Placing the *2¢ 3 ret Returning to
value of the eax */ the call method
reg%ster to the A0
variant
timestamp__low From the above example of generic profiling template and

o " . s . .

¢ 89.d0 mov. Yoedx,Yoeax Pl?‘:mg ftfhe] Table 1 and Table 2, it can be seen that, in the generic profiling
valuc O c COX . . .
register to eax template, there are multiple codes (as underlined) required to
register 44 be determined when calling the native method, these codes

*e 2300000000 mov %eax,timestamp_high Placing the corresponding to the parameters (shown in bold fonts) in the
value of the eax hi d Th d q he d
register to the assembly codes. lhese codes an parameters o be deter-
variant mined and operation of the generic profiling template copy

T - timestamp__high are described in more detail in the following context.
tu tu
- e so lhen, atstep 202, the information required for profiling the

*13 a1 00000000 mov caller ip,%eax Placing the native method call 1s filled into the corresponding location in
saved return the profiling template copy.
address in the

. The profiling copy, obtained from a generic profiling tem-
eax register) ‘ i

*18 89 44 24 Oc mov %eax,0xc(%esp) Replacing the plate at step 201, 1s a copy of the generic profiling template,
return address 55 which includes several codes to be determined. Relevant
with the value of information for determining these codes is just the informa-

| | | the eax register tion desired for profiling the native method call, the informa-
calling self-defined epilog profiling method . . :
tion including;:

*1c 6800000000 pushl index Stacking address of the native method, corresponding to the variant
index of the 60 “target_1p”° of the assembly codes 1n table 1, which shall
native method be set as a value of a parameter “address”™ returned by for

21 bb0ODOOO0O0 mov callback,%ebx Péijmg ﬂlfeth example the NativeMethodBind event. It is necessary to
:el f_i%ie) y call native method in the profiling template copy, thus it
epilog profiling 1s essential to obtain the native method address. The
method to the 65 native method address 1s provided by a native method

ebx register

call-associated event, for example a NativeMethodBind
event.

addresses storing various profiling information (such as the

US 8,527,944 B2

9

address of a profiling switch, corresponding to “active” of

the assembly codes of Table 1. The profiling switch 1s a
parameter for determining whether to execute the pro-
filing. A user interface may be provided to the developer
or the user so as to input the native method 1n his/her
concern (or not in his/her concern), and then value 1s
assigned to the switch at this step by determining
whether the called native method 1s 1n the user’s concern
or not. In this way, 1t 1s feasible to determine whether to
profile based on the value of the profiling switch 1n the
profiling template, such that the developer or the user
can profile merely the concerned native methods, or
does not profile the methods not concerned, thereby
providing the developer more convenience and flexibil-
ity for profiling. The address of the profiling switch 1s
optional, which 1s not necessary 1f the profiling 1s not
executed 1n a selective way.

address for storing the native method return address, cor-

responding to the variant “caller_1p” of the assembly
codes 1n table 1. If 1t 1s required to perform epilog pro-
filing for the native method call, 1t 1s necessary to
execute an epilog template copy after completing the
natrve method call, thus a space for storing the native
method return address 1s required to replace the return
address with the address of the epilog template. The
address for storing the native method return address 1s
optional, which 1s not necessary 11 the epilog profiling 1s
not performed.

address of the profiling template copy, 1n particular the

address of the epilog template copy which 1s needed to
be filled 1n the prolog template copy 1f an epilog profiling
1s required, corresponding to the variant “epilog” of the
assembly codes 1n table 1, so as to be capable of execut-
ing the epilog profiling after the native method call 1s
completed. The address of the profiling template copy 1s
optional, which 1s not necessary 11 the epilog profiling 1s
not performed.

start time and end time of the native method call, and the
call times of the native method), for example the variants
“timestamp_low” and “timestamp_high” of the assem-
bly codes as shown 1n table 1 and table 2. This address
designates the mitial address for a space storing various
information obtained during the profiling process, and
the stored information can be exported from the space at
an appropriate time. The address for storing various
information about profiling can be varied as required by
profiling, and the address for storing corresponding
information can be not included 1n the case of not requir-
ing performing corresponding profiling.

address of seli-defined prolog profiling method, corre-

sponding to the variant “callback™ in the assembly codes
of table 1, the address designating the nitial address of
the space for storing seli-defined prolog profiling
method. The address for self-defined prolog profiling
method 1s optional, which may not be included 1n case of
not performing selt-defined prolog profiling.

address for seli-defined epilog profiling method, corre-

sponding to the variant “callback™ in the assembly codes
of table 2, the address designating the mitial address of
the space for storing seli-defined epilog profiling
method. The address for seli-defined epilog profiling
method 1s optional, which may not be included in case of
not performing self-defined epilog profiling.

index of native method for identifying different native

methods, corresponding to the variant “index™ in the
assembly codes of table 1 and table 2, which may act as

10

15

20

25

30

35

40

45

50

55

60

65

10

the parameter for seli-defined prolog profiling and/or
self-defined epilog profiling, such that different profil-
ing can be performed to different native methods. The
index 1s not necessary 1n case of not requiring perform-
ing different profiling to different native methods.

In this step, the above mformation 1s written into the cor-
responding positions in the profiling template copy, for
example, the underlined locations of the above profiling tem-
plates.

It should be noted that not all of the above information 1s
essential, one or more of which can be selected according to
the application.

Then, at step 203, the code execution flow 1s changed so as
to perform the profiling template copy.

IT 1t 1s required to profile a native method call, 1t needs
performing some work relevant to profiling before and/or
after calling the native method. Thus, the original code execu-
tion flow needs to be changed, 1.e. inserting profiling associ-
ated codes 1n the execution path, so as to execute profiling
template copy before and/or after executing the native method
call.

In the case of for example JVM, as the above described, the
NativeMethodBind event provided by JVMTI has a function
of replacing the address of the native method with the new
address parameter (new_address_ptr). Thus, change of code
execution tlow can be realized by designating the new address
parameter as the address of the profiling template copy of the
present invention, in particular the address of the prolog pro-
filing template copy.

Besides, the code execution tlow can be changed by modi-
tying the initial bytes of the native method code as codes
jumping to the profiling template copy before executing the
native method call and restoring the nitial bytes of the native
method code belore starting the native method call.

In an exemplary embodiment according to the present
invention, firstly, the initial bytes of the native method code
are copied and stored at an appropriate location. The number
of 1mitial bytes at least equals to the number of bytes of the
code necessary for implementing jumping to the profiling
template copy, 1.e. the number of bytes necessary for jumping
instruction plus the number of bytes of the initial address of
the profiling template copy. For example, for a 32-bit X86
CPU, the jumping instruction needs 1 byte, and the address
needs 4 bytes (32 bit), thus at least the mitial 5 bytes are
copied.

It should be noted that since the number of bytes and the
address bytes necessary for implementing the jumping
instruction are different for different instruction systems and
CPUs with different address bytes, the number of the bytes to
be copied 1s also different. And then, for example, the known
mprotect() system call provided by the operating system can
be used to remove the write protection of the page where the
native method 1s located. Next, the initial bytes are modified
as the codes jumping to the profiling template copy. Thereat-
ter, in the prolog template copy, the 1nitial bytes of the native
method code can be restored from the pre-stored 1nitial bytes
before calling the native method. In this way, change of code
execution flow 1s enabled. In the case that the native method
address 1s not allowed to be changed, this manner 1s particu-
larly advantageous. Further, 11 the native method call-associ-
ated event can not provide the function of changing the native
address method, this method can be used to change the code
execution tlow.

Operations of the above steps 202 and 203 can be imple-
mented by a wrapper realized in C/C++ programming lan-
guage as shown below.

US 8,527,944 B2

11

Example of Wrapper
int
INIWrapper_ Do (jvmtiEnv *jvmti, ymethodID method, void™
address, vo1d** newAddress)
1
unsigned char *p;
TINIRecord™® pjc;
int 1;

unsigned char str; // for the user to designate the concemed

method name
1 = idxJniFunc;
pjc = &JNIRecords|i];
pjc—>addrIniFunc = (unsigned long)address:;
//Obtaining the native method name according to the MethodID
err = (JvmtiError)jvimti—->GetMethodName(methodID,
(char**)&pMethodName, (char®*)&pSignature, (char®**)&pGeneric);

if (err == JVMTI_ERROR__ NONE) {
if (pMethodName !=NULL) {
// switching on the profiling switch if the method name includes
characters in the variant “str’,
1f(strstr(pMethodName, str)==NULL) return O;
else{
sprintf(JNIRecords[idxIniFunc].name, “%s”,

pMethodName);

h

{/releasing the memory occupied by the native method
jvmti—>Deallocate((unsigned char®)pMethodName);
h
h
p = &pjc—>prolog[0];
// copying prolog template
memcpy(p, prologTemplate, SIZE__ OF_ PROLOG);
// filling 1n the prolog template copy information
// filling 1n the address storing profiling switch
(unsigned int)(p + 5) += (unsigned int){&pjc—>active);
// filling 1n the address for saving the return address
(unsigned int)(p + 18) += (unsigned int)(&pjc—>addrCaller);
// filling 1n epilog template copy address
(unsigned int)(p + 23) += (unsigned nt)(&pjc—>epilog[0]);
// filling 1n address for saving the timestamp__low 32 bit
(unsigned int)(p + 34) += (unsigned int)(&pjc—>timeLknter);
// filling 1n address for saving the timestamp__high 32 bit
(unsigned mt)(p + 41) += (unsigned int)(&pjc—>timeEnter) + 4;
// filling in index for the native method
(unsigned mt)(p + 46) +=1;
// filling 1n the address of the self-defined prolog profiling method
(unsigned mt)(p + 51) += (int)(&piCallbackEnterNative);
// filling 1n the native method address
(unsigned mmt)(p + 64) += (int)address — (int)(p + 64);
p = &pje—>epilog[0];
/f copying epilog template
memcpy(p, epilogTemplate, SIZE OF_ EPILOG);
// filling 1n the epilog template copy information
// filling 1n address for saving the timestamp_ low 32 bit
(unsigned mmt)(p + 8) += (unsigned int)(&pjc—>timelLeave);
// filling 1n address for saving the timestamp__high 32 bit
(unsigned mt)(p + 15) += (unsigned int)(&pjc—>timelLeave) + 4;
// filling 1n address for saving the return address
(unsigned int)(p + 20) += (int)(&pjc—>addrCaller);
// filling 1n index for the native method
(unsigned int)(p + 29) +=1;
// filling 1n the address of the self-defined epilog profiling method
(unsigned int)(p + 34) += (int){&piCallbackl.eaveNative);
// changing the code execution flow
// setting the value of the newAddress as the address of the epilog
template copy

*newAddress = &pjc—>prolog[0];
return O;

h

pjc—>active = 1;

It should be noted that the wrapper as described above 1s
only an example, and the present invention 1s not limited
thereto and can have many variations. For example, the epilog
template copy can be firstly copied and filled in, and then the
prolog template copy 1s copied and filled 1n; or the prolog
template and the epilog template can be copied firstly, and
then the prolog template copy and the epilog template copy

are filled in. Besides, as required by the application, the

10

15

20

25

30

35

40

45

50

55

60

65

12

information required to be filled 1n may not be limited to the
above information, which can be more or less. These varia-
tions are all withun the scope of the present invention.

FIG. 3 and FIG. 4 describe 1n detail an example of opera-
tions executed 1n the profiling template copy according to an
embodiment of the present invention.

FIG. 3 1s a flow chart of an operation executed 1n a prolog
template copy according to an embodiment of the present
ivention.

As shown 1n FI1G. 3, after entering 1n the profiling template
copy which has been filled 1n at step 301, the current register
states, such as the accumulator state, data register state, and
basic address register state, etc, are saved to prepare for sub-
sequent profiling related operations, such that the profiling
does not atlect calling the native method.

Next, at step 302, the value of profiling switch 1s read out
from the address storing the profiling switch, to determine,
based on the switch value, whether the profiling switch 1s on
or not. In an embodiment according to the present invention,
the title of the native function 1n (or not 1) a developer’s
concern may be mput by the developer via the user interface,
and then when filling 1n information, whether the called
natrve function 1s the one input by user 1s determined, based
on which the switch value 1s set.

If 1t 1s determined that the profiling switch 1s on, the tlow
proceeds to step 303; otherwise the flow proceeds to step 306.

Then, at step 303, the return address of the native method 1s
saved and replaced.

In an embodiment of the present invention, first the return
address of the native method 1s obtained by getting the con-
tent of the position at which the stack pointer 1s located, 1.¢.,
the address of the calling method which calls the native
method. And then, 1t 15 stored at the address for storing the
native method return address, which has been filled 1n at the
above step 202. Next, the address of epilog template copy
filled 1n at the above step 202 1s used to replace the content at
the position at which the stack pointer 1s located, such that the
epilog template copy 1s executed after the native function call
execution 1s completed.

Then, at step 304, the time and times of calling the native
method 1s recorded. For example, the value of the internal
timer of the current CPU can be obtained to get the start time
of calling the native method. And the times of calling the
native method can also be recorded.

Next, at step 305, the address of the self-defined prolog
profiling method, which 1s filled 1n at step 202, 1s obtained,
and the seli-defined prolog profiling method 1s called. The
seli-defined prolog profiling method can be written 1n for
example C/C++ language, for example for recording the
times or time ol accessing the memory, times, flow rate or
time of accessing the network, or the hit rate of CPU cache,
etc. Besides, the index of the native method can also act as the
parameter of the self-defined profiling method, so as to
execute different prolog profiling for different native meth-
ods.

Next, at step 306, the register state 1s restored to the state
upon entering the profiling template copy, so as to prepare for
executing the calling of the native method.

Then, at step 307, calling the native method 1s executed.

Next, reference 1s made to FIG. 4 which shows a flow chart
of operations executed 1n a prolog template copy according to
an embodiment of the present invention. Since 1n the prolog
proiiling template copy, the return address of the native
method 1s replaced with the address of the epilog template
copy, thus after the native method call ends, the epilog tem-
plate copy will be automatically executed.

US 8,527,944 B2

13

As shown 1n FIG. 4, upon entering in the epilog template
copy, firstly at step 401, stack space 1s reserved 1n the stack for
restoring the return address of the native method (1.e. the
address of the calling method for calling the native method).

Then, at step 402, the register state 1s saved for preparing
tor profiling-associated operations.

Then, at step 403, the value of the mnternal timer of the
current CPU 1s obtained so as to get the end time of calling the
method.

Next, the position at which the current stack pointer 1s
located, 1.e. the reserved stack space, 1s set as the address of
the calling method which calls the native method, 1.e. the
original return address of the native method.

Then, at step 404, the selt-defined epilog profiling method
1s executed. Similar to the prolog profiling method, the epilog
profiling method can be written 1n for example C/C++ lan-
guage, for example for recording the times or time of access-
ing the memory, times, flow rate or time of accessing the
network, or the hit rate of CPU cache, etc. Besides, the index
of the native method can also act as the parameter of the
seli-defined profiling method, so as to execute different epi-
log profiling for different native methods.

Next, at step 405, the register state 1s restored to the state
upon the end of the native method call, and then at step 406,
return 1s executed to return to the calling method of the native
method.

Based on the method of the present imnvention as above
described, profiling a native method call can be easily imple-
mented by dynamically inserting assembly-level profiling
template copy code 1n the execution path. Besides, the num-
ber of machine instructions added in the execution path 1s not
more than 40, thus profiling a native method call will not
notably affect execution of the native method call. Addition-
ally, compared with the prior art, 1t will not affect JVM
components such as the class loader, JI'T compiler, etc. Fur-
ther, during the profiling process, 1t will not trigger interrup-
tion process and system call, and has little influence on the
system performance.

In order to examine the influence of the method of the
present imvention on the system performance, the mventor
performs profiling on the application Complier.compiler with
the most intensive I/0 operations 1n the Java virtual machine
benchmark program SPECivm2008 1ssued by Standard Per-
formance Evaluation Corporation (SPEC), which turns out
that without the profiling, the operation numbers per second 1s
515.45 1n average, whereas in the case of executing profiling,
the operation number per second 1s 504.68 per second. It 1s
seen that, compared with the prior art, the method of the
present mvention has rather trivial influence on the system
performance operation.

Hereinabove, the method provided by the present invention
has been described 1n detail with reference to FIGS. 2 to 4, the
example of profiling templates, and the example of wrapper.
It should be noted that the above description i1s only for
illustrative purpose and the present invention 1s not limited
thereto. Based on the application requirement, the method of
the present mnvention may have many embodiments.

In the embodiments described above, the profiling tem-
plate includes a prolog profiling template and an epilog pro-
filing template, but the present invention 1s not limited
thereto. The profiling template can be designed as required by
profiling. In another embodiment of the present invention, the
native method call 1s only subject to prolog profiling, thus it
would be unnecessary to copy the epilog profiling template.
In this situation, the step of executing saving the return
address of the native method and the step of replacing the
return address of the native method with the epilog template

10

15

20

25

30

35

40

45

50

55

60

65

14

copy may be omitted. While 1n other embodiments, the native
method call 1s only subject to epilog profiling, which only
needs the step of saving the return address of the native
method and the step of replacing it with the epilog template
copy belore calling the native method.

Further, 1n a further embodiment of the present invention,
there 1s no self-defined prolog profiling method and/or seli-
defined epilog profiling method. It 1s also allowed to only
implement recording the times of the native method call and/
or recording the start time and end time of calling the native
method call. Moreover, recording the times of the native
method call can be executed either 1n the prolog template
copy or 1n the epilog template copy. Besides, when execution
of profiling does not change the register state, the steps of
executing and restoring the register state can be omitted.

Further, in the above described embodiment of the present
invention, 1t 1s 1n the prolog template copy that the value of the
profiling switch i1s determined and then whether to execute
profiling 1s determined. However, the skilled 1n the art should
appreciate that, after the native method-associated time for
example the NativeMethodBind event is started, the value of
the profiling switch may be determined first. The subsequent
steps ol copying the profiling copy and filling 1n information
can not be executed unless 1t 1s determined that the profiling
switch 1s on. Further, 1n the step of filling 1n information, the
value of the profiling switch may be determined first, and the
subsequent steps of filling 1n and changing the code execution
flow can not be executed unless 1t 1s determined that the
profiling switch 1s on.

It should be noted that all of the above described varnations
and other variations conceivable to the skilled 1n the art fall
within the scope of the present mnvention.

Heremaiter, the embodiment of the apparatus of the
present invention 1s described with reference to FIG. 5. FIG.
5 shows an apparatus 500 for profiling a native method call
according to an embodiment of the present invention.

As shown in FIG. 5, the apparatus 500 includes: copy
generation means 501, for generating, in response to a native
method call-associated event, a profiling template copy from
a generic profiling template for profiling a native method call;
information filling means 502 for filling the information
required for profiling the native method call 1n corresponding
positions 1n the profiling template copy; and flow changing
means 303, for changing the code execution tlow, so as to
execute the profiling template copy.

According to an embodiment of the present invention, the
proiiling template copy may include the prolog template copy
for profiling before starting the native method call. The prolog
template copy 1s for executing prolog profiling for the native
method call, and calling the native method.

According to another embodiment of the present invention,
the prolog template copy may be further implemented for:
saving the register state; one or more of determining the
profiling switch, recording the times of the native method
call, and executing the seli-defined epilog profiling method;
and restoring the register state.

According to further embodiment of the present invention,
the profiling template copy may further include the epilog
template copy for profiling after the native method call 1s
completed. In the embodiment, the return address of the
native method call 1s replaced with the address of the epilog
template copy before executing the native method call, such
that the epilog template copy 1s executed after calling the
native method 1s completed. In the embodiment, the epilog
template copy may be used to execute epilog profiling for the
natrve method call and restoring the return address of the

US 8,527,944 B2

15

native method call, so as to return to the calling method which
calls the native method after the epilog template copy 1is
executed.

According to still further embodiment of the present inven-
tion, the prolog template copy may be further used to record
the start time of the native method call, and the epilog tem-
plate copy may be further used to record the end time of
calling the native method.

According to another embodiment of the present invention,
the epilog template copy may be further used to save the
register state; execute seli-defined epilog profiling method;
and restore the register state.

According to further embodiment of the present invention,
the information required to profile the native method call may
include one or more of: the address of the native method; the
address storing the return address of the native method; the
address of the profiling template copy; the address of the
profiling switch value; the address storing various informa-
tion on profiling; the index for native method; the address of
a seli-defined prolog profiling method; and the address of a
seli-defined epilog profiling method.

According to still further embodiment of the present inven-
tion, the native method call associated event may be
NativeMethodBind event provided by Java virtual machine
tool interface. In the case of this embodiment, the flow chang-
ing means 303 can change the code execution tlow by setting
the new address parameter of the NativeMethodBind event as
the address of the profiling template copy.

According to yet further embodiment of the present inven-
tion, the flow changing means 503 may be used to change the
code execution flow by modifying the mnitial bytes of the code
of the native method as jumping to the profiling template copy
and restoring the nitial bytes of the code of the native method
belore starting the native method call.

As to the specific operations of copy generation means 301,
information filling means 502 and tlow changing means 503
in the above embodiments, reference may be taken to the
above description on the method of the present invention 1n
conjunction with FIGS. 2 to 4.

The apparatus according to the present invention, when the
native method 1s called, profiles the native method by
dynamically inserting the profiling template copy in the
execution path at the assembly level. Thus, with respect to the
prior art, 1t 1s unnecessary for the apparatus according to the
present mvention to provide an associated proxy for each
native method, thus it has a high feasibility and barely affects
the system performance.

Hereinatter, reference will be made to FIG. 6 to describe a
computer device in which the present invention can be imple-
mented. FIG. 6 schematically shows a structural block dia-
gram of a computing device configured to implement the
embodiments according to the present invention.

The computer system as shown in FIG. 6 includes a CPU
(Central Processing Unit) 601, a RAM (Random Access

Memory) 602, a ROM (Read Only Memory) 603, a system
bus 604, a hard disk controller 605, a keyboard controller 606,
a serial interface controller 607, a parallel interface controller
608, a monitor controller 609, a hard disk 610, a keyboard
611, a senial peripheral device 612, a parallel peripheral

device 613 and a display 614. Among these components,
connected to the system bus 604 are the CPU 601, the RAM

602, the ROM 603, the hard disk controller 605, the keyboard
controller 606, the serial interface controller 607, the parallel
interface controller 608 and the display controller 609. The
hard disk 610 1s connected to the hard disk controller 605; the
keyboard 611 1s connected to the keyboard controller 606; the
serial peripheral device 612 1s connected to the serial inter-

10

15

20

25

30

35

40

45

50

55

60

65

16

tace controller 607; the parallel peripheral device 613 1s con-
nected to the parallel interface controller 608; and the display
614 1s connected to the display controller 609.

The structural block diagram 1n FIG. 6 1s shown only for
illustration purpose, and 1s not intended to limait the scope of
the present invention. In some cases, some devices can be
added or reduced as required.

Further, the embodiments of the present invention can be
implemented in software, hardware, or the combination
thereof. The hardware part can be implemented by a special
logic; the software part can be stored in a memory and
executed by a proper 1struction execution system such as a
microprocessor or a dedicated designed hardware.

While the embodiments of the present invention consid-
ered by far have been referred to describe this invention, 1t
should be understood that this invention should not be limited
to the embodiments disclosed heremn. On the contrary, all
modifications and equivalent arrangements that come within
the spirit and range of the appended claims are intended to be
embraced theremn. The scope of the appended claims 1is
accorded with the broadest interpretation to encompass all
such modifications and equivalent structures and functions.

What 1s claimed 1s:

1. A method, implemented 1n an electronic data processing
system, for profiling a native method call, comprising the
steps of:

generating a profiling template copy from a generic profil-

ing template for profiling the native method call, 1n
response to a native method call-associated event, the
profiling template copy comprises an epilog template
copy for profiling after the native method call 1s com-
pleted;

filling information required for profiling the native method

call 1n corresponding locations 1n the profiling template
copy; and

changing a code execution tlow to execute the profiling

template copy
replacing a return address of the native method call with an
address of the epilog template copy before executing the
native method call, so that the epilog template copy 1s
executed after the native method call 1s completed; and

using the epilog template copy for performing the steps of
(1) executing an epilog profiling for the native method
call and (11) restoring the return address of the native
method call to return to the calling method which calls
the native method after executing the epilog template
copy.

2. A method according to claim 1 wherein:

the profiling template copy comprises a prolog template

copy lor profiling before the native method call is
started, the prolog template copy being used for per-
forming the steps of (1) executing a prolog profiling for
the native method call and (11) calling the native method.

3. A method according to claim 2, wherein the step of
executing the prolog profiling for the native method call com-
Prises:

saving a register state;

performing at least one of the steps of (1) determining

profiling switch, (11) recording times of the native
method call, and (111) executing a self-defined prolog
profiling method; and

restoring the register state.

4. A method according to claim 1, wherein:

the step of executing the prolog profiling for the native

method call further comprises recording start time of the
native method call; and

US 8,527,944 B2

17

the step of executing the epilog profiling for the native

method call further comprises recording end time of the

natrve method call.

5. A method according to claim 1, wherein the step of
executing the epilog profiling for the native method call tur-
ther comprises:

saving a register state;

executing a seli-defined epilog profiling method; and

restoring the register state.

6. A method according to claim 1, wherein the information
used for profiling the native method call comprises at least
one of:
address of native method;
address storing the return address of the native method;
address of the profiling template copy;
address of a profiling switch;
address storing various information about profiling;

index for the native method:

address of self-defined prolog profiling method; and

address of self-defined epilog profiling method.

7. A method according to claim 1, wherein the native
method call-associated event 1s a NativeMethodBind event
provided by the Java virtual machine tool interface.

8. A method according to claim 7, wherein a code execu-
tion flow 1s changed by setting the new address parameter of
the NativeMethodBind event as the address of the profiling
template copy.

9. A method according to claim 1, wherein the code execu-
tion tflow 1s changed by moditying the initial bytes of the code
of the native method as a code jumping to the profiling tem-
plate copy and restoring the initial bytes of the code of the
native method before starting the native method call.

10. A computer program product embodied 1n a non-tran-
sitory computer readable storage medium comprising:

computer readable program codes coupled to the non-tran-

sitory computer readable storage medium for profiling a

nattve method call, the computer readable program

codes configured to cause the program to:

generate a profiling template copy from a generic pro-
filing template for profiling the native method call, 1n
response to a native method call-associated event, the
profiling template copy including an epilog template
copy for profiling after the native method call 1s com-
pleted;

{11l information required for profiling the native method
call in corresponding locations 1n the profiling tem-
plate copy; and

change a code execution flow to execute the profiling
template copy

replace a return address of the native method call with an
address of the epilog template copy before executing
the native method call, so that the epilog template
copy 1s executed after the native method call 1s com-
pleted; and

use the epilog template copy for performing the steps of
(1) executing an epilog profiling for the native method
call and (11) restoring the return address of the native
method call to return to the calling method which calls
the native method after executing the epilog template

copy.

5

10

15

20

25

30

35

40

45

50

55

18

11. A computer program product according to claim 10
wherein:

the profiling template copy comprises a prolog template

copy lor profiling before the native method call is
started, the prolog template copy being used for per-
forming the steps of (1) executing a prolog profiling for
the native method call and (11) calling the native method.

12. A computer program product according to claim 10,
computer readable program codes to execute the prolog pro-
filing for the native method call comprises computer readable
program codes configured to:

save a register state;

perform atleast one of the steps of (1) determining profiling

switch, (11) recording times of the native method call,
and (111) executing a self-defined prolog profiling
method; and

restore the register state.

13. A computer program product according to claim 10,
wherein:

the computer readable program codes to execute the prolog

profiling for the native method call turther comprises
computer readable program codes to record start time of
the native method call; and

the computer readable program codes to execute the epilog

profiling for the native method call further comprises
computer readable program codes to record end time of
the native method call.

14. A computer program product according to claim 10,
wherein the computer readable program codes to execute the
epilog profiling for the native method call further comprises
computer readable program codes to:

save a register state;

execute a self-defined epilog profiling method; and

restore the register state.

15. A computer program product according to claim 10,
wherein the information used for profiling the native method
call comprises at least one of:

address of native method;
address storing the return address of the native method;
address of the profiling template copy;
address of a profiling switch;
address storing various information about profiling;

index for the native method;

address of self-defined prolog profiling method; and

address of seli-defined epilog profiling method.

16. A computer program product according to claim 10,
wherein the native method call-associated event i1s a
NativeMethodBind event provided by the Java wvirtual
machine tool interface.

17. A computer program product according to claim 16,
wherein a code execution tlow 1s changed by setting the new
address parameter of the NativeMethodBind event as the
address of the profiling template copy.

18. A computer program product according to claim 10,
wherein the code execution flow 1s changed by modifying the
initial bytes of the code of the native method as a code jump-
ing to the profiling template copy and restoring the initial
bytes of the code of the native method before starting the
native method call.

	Front Page
	Drawings
	Specification
	Claims

