US008527745B2
a2y United States Patent (10) Patent No.: US 8.527.,745 B2
Watkins et al. 45) Date of Patent: Sep. 3, 2013
(54) INPUT/OUTPUT DEVICE INCLUDING A 2004/0167996 Al 8/2004 Takamura
HOST INTERFACE FOR PROCESSING 2004/0221036 Al1™* 112004 Smuth ..., 709/225
1 =
FUNCTION LEVEL RESET REQUESTS AND 3005 0)%0015 Al 102007 Nalawads etal. oo, 7142
UPDATING A TIMER VALUL 2008/0005297 Al* 1/2008 Kjosetal.ccccoomn...... 709/223
CORRESPONDING TO A TIME UNTIL 2011/0029710 Al* 2/2011 Matthews et al. 710/311
APPLICATION HARDWARE REGISTERS
ASSOCIATED WITH THE FUNCTION LEVEL OTHER PUBLICALIONS
RESET REQUESTS ARE AVAILABLE “PCI Express Base Specification Revision 2.0”; PCI-SIG; Dec. 20,
| 2006, pp. 381-384.
(75) Inventors: JOIln E. W?tklnsﬂ Su‘mlyv.‘i-llej CA (US): U.S. Appl. No. 12/256,250, entitled “Mechanism for Performing
Elisa Rodrigues, Union City, CA (US) Function Level Reset in an I/O Device”, filed Oct. 22, 2008.
(73) Assignee: Oracle America, Inc., Redwood City, * cited by examiner
CA (US)
. _ _ o _ Primary Examiner — Thomas Lee
(*) Notice: Subject‘ to any dlsclalmer,i the term of this Assistant Fxaminer — Terrell Tohnson
patent 1s extended or adjusted under 35 _ .
U.S.C. 154(b) by 661 days. (74) Attorney, Agent, or Firm — Meyertons, Hood, Kivlin,
Kowert & Goetzel, P.C.; Stephen J. Curran
(21) Appl. No.: 12/632,415
(57) ABSTRACT
(22) Filed: Dec. 7, 2009 An I/0 device includes a host interface configured to process
_ L function level reset (FLR) requests 1n a specified amount of
(65) Prior Publication Data time. The host interface includes a control unit and groups of
US 2011/0138161 Al Jun. 9, 2011 confliguration space registers, each group corresponding to a
function. The host interface also includes application avail-
(51) Imt. Cl. ability registers, each associated with a respective function,
GoOol 15/177 (2006-05-) and which may indicate whether application hardware within
Goot 9/00 (2006.01) the respective function 1s available for access by a corre-
Goor 11/00 (2006.01) sponding application device driver. The I/O device also
(52) U.S. CL includes application hardware resources associated with a
USPC e 713/2;7714/23; 714/24 respective function. In response to recerving an FLR request
(58) Field of Classification Search of a particular function, the control unit may cause the asso-
USPC 714/23, 24; 713/2 ciated application availability register to indicate that the
See application file for complete search history. application hardware within the particular function is not
available to the driver. The control unit may reset the corre-
(56) References Cited sponding configuration space registers within a predeter-

mined amount of time and reset the associated application

U.S. PATENT DOCUMENTS hardware resources.

6,073,253 A * 6/2000 Nordstrometal. 714/25

6,252,872 B1* 6/2001 Tzengcoeovvvvvvvennn, 370/360 18 Claims, 3 Drawing Sheets

300

Systam manager allocates resources 31—
among funciions After predetermined time, 05
M. + reconfigures funcllen by & —

D8 anumeratas 10 devices, a3 _EWEEE'HH host interface HW
allocates address space for an 1D mapping of . v

PIES space, assigns functions (o processss, and 0% notiles drivar thal funcllen
inskalls & driver for aach function I5 ready

303 —. -

I

I

|

I

|

I

Device driver for gach process » :
accessas function availability ragistar |
I

I

I

I

I

I

I

I

I

— 5
H_~Application
W Raacky
307 —., Y

Oriver initializes application HY
rasoLrces a5s0 with I'ﬂE-PEI:II"l'E functian
308 N I
Mormal operalion of device application HW 4—‘

M — RNy

Necessary?

313 —, Y

Hest 03 notifies appropriate driver,
whits for driver to complete Lasks,
and l2sues FLR

N5 —, ¥ 313 —,

Device host interface contrel unit chenges A Device hostinterface control unit
ragister for that function to not avallabls, —| begins diant! application H¥ clean
up end re-inilislization

nofifies TLP processer to stop accepling
transactions for that function, and checks for
addifional FLR requasts

17— l

Davica host interfacs cantrol unit claans up
host interface associabed registers and host
inleface HW for thal functlion wilhin
predetermined time window, and notifies TLP contrel unit changes AA
processor b begin accepting tangactions for register i avallabla

that function v

T 303

Davice host intarface

U.S. Patent

Sep. 3, 2013 Sheet 1 of 3

System
Image
(OS,
Driver)
41A

System
Image

System
Image

(OS, (03,
Driver)

Driver)
42A 43A

. - .

i

Processor

TLP Processing 60

AA Register(s) 70

Host Interface 22

/O
Device 20

TxDP 26

Network Port 25

RxDP 27

US 8,527,745 B2

System | | System
Image Image
(OS, (OS,
Driver) Driver)
40n 41n

Processor
30n

Control Unit
65

PIO

Registers
24

FIG. 1

U.S. Patent Sep. 3, 2013 Sheet 2 of 3 US 8,527,745 B2

22—

P10 Registers 24
Packets
TLP Processing 60
~——10C Control Unit 63

| 708

— e
—“m

- 70A

Application Application Application
Execution HW Execution HW Execution HW

240A 240B 240G

FIG. 2

U.S. Patent Sep. 3, 2013 Sheet 3 of 3 US 8,527,745 B2

300 —

System manager allocates resources 321
among functions After predetermined time, OS

301 — reconfigures function by —
: ing host interface HW
OS enumerates /O devices, 193 AL
allocates address space for an /O mapping of
PIO space, assigns functions to processes, and OS notifies driver that function
installs a driver for each function IS ready
303 —.
Device driver for each process
accesses function availability register

N_~Application

Driver initializes application AW
resources assoc with respective function

Necessary?

313 —. Y

Host OS notifies appropriate driver,
waits for driver to complete tasks,
and 1ssues FLR

315 — 319 —.

Device host interface control unit
begins client/ application HW clean
up and re-initialization

Device host interface control unit changes AA
reqister for that function to not available,
notifies TLP processor to stop accepting

transactions for that function, and checks for -
additional FLR requests — 325
Application

37— W Ready?

Device host interface control unit cleans up
host interface associated registers and host
interface HW for that function within

Y327
Device host interface

control unit changes AA
register to available

bredetermined time window, and notifies TLP
processor to begin accepting transactions for
that function

To 303
FIG. 3

US 8,527,745 B2

1

INPUT/OUTPUT DEVICE INCLUDING A
HOST INTERFACE FOR PROCESSING

FUNCTION LEVEL RESET REQUESTS AND
UPDATING A TIMER VALUE
CORRESPONDING TO A TIME UNTIL
APPLICATION HARDWARE REGISTERS
ASSOCIATED WITH THE FUNCTION LEVEL
RESET REQUESTS ARE AVAILABLE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mnvention relates to computer systems and, more par-
ticularly, to shared iput/output (I/O) resources.

2. Description of the Related Art

There have been significant increases in the effective
throughput of a variety of I/O devices used 1n computing,
systems. In the recent past, a number of new communication
standards have been introduced. For example, 10 Gigabait
Ethernet may allow up to ten gigabits of information to be
conveyed and Peripheral Component Interconnect Express
(PCIe™) Generation 1 may allow up to 2.5 Gbits per lane. In
many computer systems, a single processor or processing
module typically does not use that much I/O bandwidth.
Accordingly, 1n an effort to increase hardware resource utili-
zation, sharing of I/O hardware resources may be desirable.

One mechanism for sharing resources that use PCle inter-
faces 1s to virtualize the resources across multiple processing
elements. Thus, I/O virtualization standards have been 1ntro-
duced, such as for example, the single root and multi-root
PCle specifications. However, there are 1ssues with virtualiz-
ing and sharing of some hardware resources. For example, an
I/0 device that implements a PCle interface uses the notion of
a function. Functions may be used to access respective hard-
ware resources. However, for a variety of reasons, a function
and 1ts resources may need to be reset or reclaimed by the
system soltware without perturbing the operation of any other
function or process. The tunction level reset process can be
quite complex, particularly as the number of functions
increases, and/or the application hardware within the device
increases in both complexity and numbers. Accordingly,
meeting the function level reset timing constraints 1mposed
by the various communication standards can be difficult.

SUMMARY

Various embodiments of an I/O device including a host
interface configured to process function level reset requests 1n
a speciiied amount of time are disclosed. The I/O device also
includes a plurality of application hardware resources that are
coupled to the host imnterface. The host interface may provide
one or more 1/0 connections to one or more processing units
via respective corresponding communication links. The host
interface includes a control unit and a plurality of groups of
configuration space registers. Each group of configuration
space registers may correspond to one of several functions.
Each function may include one or more application hardware
registers, and at least one of the application hardware registers
may be associated with a respective application hardware
resource. The host interface also includes a plurality of appli-
cation availability registers. Each application availability reg-
1ster may be associated with a respective function and may be
configured to indicate whether the application hardware reg-
isters within a respective function are available for general
access by a corresponding soitware driver such as an appli-
cation device driver, for example. In response to receving a
request for a function level reset (FLR) of a particular func-

15

20

25

30

35

40

45

50

55

60

65

2

tion, the control unit may be configured to cause the associ-
ated application availability register to indicate that the appli-
cation hardware registers within the particular function are
not available to the driver. In addition, the control unit may
reset the corresponding group of configuration space registers
within a predetermined amount of time. Further, the control
unmt may reset the associated application hardware resources
alter resetting the configuration space registers, for example.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11s ablock diagram of one embodiment of a computer
system 1ncluding a shared I/O device.

FI1G. 2 1s a block diagram illustrating more detailed aspects
ol an embodiment of the host interface unit shown 1n FIG. 1.

FIG. 3 15 a flow diagram describing operational aspects of
an embodiment of the host interface unit of the I/O device
shown 1n FIG. 1 and FIG. 2.

While the invention 1s susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example 1n the drawings and will herein be
described 1in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention 1s to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims. It 1s
noted that the word “may” 1s used throughout this application
1in a permissive sense (1.., having the potential to, being able
to), not a mandatory sense (1.e., must).

DETAILED DESCRIPTION

As mentioned above, sharing of I/O hardware resources
may be desirable in some systems. Thus, I/O standards have
been introduced. However, there are 1ssues with virtualizing,
and sharing of hardware resources. More particularly, one
issue 1s the data and resources of each process must be pro-
tected from access by any other process. Another 1ssue 1s that
cach process should have the perception that 1t 1s the sole user
of the hardware resource. In addition, the OS and/or each
process running on a given host processor may 1ssue a func-
tion level reset (FLR) to one or more functions at any time to
the I/O device. Thus, multiple functions may be reset concur-
rently and 1n a non-blocking fashion. However, from the
perspective of the 1ssuing entity each FLR must be completed
within a specified amount of time. Thus, as described below,
a shared I/O device may 1include a mechanmism to partition the
FLR logic such that the FLR 1ssuing entity may attempt
another access to the device through the corresponding driver
alter the specified time has elapsed even 1f the hardware
resources defined by the function may not be completely
reset.

Turning now to FIG. 1, a block diagram of one embodiment
of a computer system 10 including an I/O device 20 con-
nected to a network 12 1s shown. Computer system 10
includes a plurality of processors designated 30A and 30z,
where n may be representative of any whole number. As
shown, the processors 30A and 30# are coupled to the I/O
device 20 via respective commumnication links 50A and 507.
The I/O device 20 1s coupled to a network 12. As shown,
processor 30A 1s also coupled to a memory management unit,
designated MMU 31A, which 1s in turn coupled to a system
memory 35A. Similarly, processor 30% 1s coupled to MMU
312 and system memory 35#. It 1s noted that components
having reference designators with a number and letter may be
referenced by just the number where appropnate.

US 8,527,745 B2

3

In one embodiment, each of the processors 30 may be
representative ol any type of processing unit including a
single processor, a chip multiprocessor that includes multiple
central processing units (CPUs) on a single substrate, or a
processing node such as a blade processing unit or blade
server, for example, which may include one or more CPUs 1n
a single housing.

In the 1llustrated embodiment, the MMU 31 may be con-
figured to control accesses to system memory 35A, as well as
manage memory and policy for caching of a particular data
type. Further, in one embodiment, MMU 31 may be config-
ured to grant or deny accesses to certain addresses within a
programmed I/O (P1O) configuration space by device drivers,
dependent upon whether the requesting device driver has
been allocated the requested address space.

System memory 35 may be representative of any type of
memory medium. For example, 1n various embodiments, sys-
tem memory 35 may be implemented using memory devices
in the dynamic random access memory (DRAM) family of
devices. However, system memory 35 may also be imple-
mented using static RAM (SRAM) or other types of storage
devices as desired. System memory 35 may be used to store
program instructions, which may be fetched and executed by
the processors 30A and 30z.

More particularly, as shown in FIG. 1, a number of system
images designated 40A-43A may be stored within system
memory 35A, as denoted by the dotted lines. Each of the
system 1mages may be representative of an instance of system
soltware that 1s running on a given CPU within processor
30A. For example, the system 1image may include a system
manager instance, an operating system instance, a device
driver 1nstance, as well as any other system level software
executing on a processing unit. In addition, there may be
several instances of an application device driver executing on
a given CPU. For example, as described in greater detail
below, a CPU may be running several processes, each requir-
ing 1/0O hardware resources within the I/O device 20. In one
embodiment, each of those processes may have its own appli-
cation device driver instance that may be used to discover and
access the respective hardware resources that have been
assigned to each respective process.

In addition, as shown the I/O device 20 includes a transmait
data path designated TxDP 26 and a receirve datapath desig-
nated RxDP 27. In various embodiments, the RxDP 27 may
include filtering and classification, and scheduling function-
ality, among others for transactions received from the net-
work 12, while the TXDP 26 circuits may include arbitration
and scheduling functionality for transactions going out to the
network 12. It 1s noted that I/O device 20 may also include a
variety of other circuits that have been omitted here for sim-
plicity. For example, 1n various embodiments, I/O device 20
may include, a bus interface for connection to a service pro-
cessor (not shown).

In the 1llustrated embodiment, the I/O device 20 includes a
network port 25 that 1s coupled to the network 12 via a
network link. 13. The network port 25 may provide a connec-
tion to the network 12 using a network protocol. In various
embodiments, the network 12 may use any of a variety of
frame-based protocols such as the Ethernet protocol. As such,
in one embodiment the network connection may be a 10-Gi-
gabit Ethernet (10GE) connection. Accordingly, network port
25 may be configured to provide a cable or optical interface,
as well as other network functions such as medium access
control (MAC) functions, physical (PHY) layer functions,
and physical coding sublayer (PCS) functionality (all not
shown). It 1s noted that 1n other embodiments, other network
protocols may be supported.

10

15

20

25

30

35

40

45

50

55

60

65

4

The I/0 device 20 also includes a host interface 22 that 1s
coupled to PIO registers 24. As shown, the host interface 22
includes a transaction layer packet (TLP) processing unit 60,
a host interface control unit 65 and application availability
(AA) register 70. In one embodiment, the host interface 22
may also include a plurality of I/O 1nterfaces (not shown) that
may be representative ol Peripheral Component Interconnect
(PCI) Express (PCle™) compliant physical layer interfaces,
cach representing a PCle endpoint. Accordingly, each of the
links (e.g., 50A and 507) may be PCle links that include a
number of lanes. In addition, each such I/O interface may be
independently configurable by the system manager instance
running on a given processor, or a service processor (not
shown). As such, 1n one embodiment, each of the processors
30 may also include a host bridge, root ports, root complex
event collectors, and root complex endpoints (all not shown)
and which may correspond to a PCle root complex.

It 1s noted that 1n various embodiments, the control unit 65
may be implemented 1n hardware, or firmware, or a combi-
nation. In one embodiment, the control unit 65 may be imple-
mented as an embedded processing unit such as a micropro-
cessor, microcontroller, or the like. Similarly, in various
embodiments the AA registers 70 may be implemented as
sequential logic elements such as tlip-tlop circuits, memory
such as RAM, or any other type of suitable storage.

In one embodiment, I/O device 20 may be a virtualized
device. As such, the host imnterface 22 may provide a shared set
of resources (e.g., MAC, statistics and control, DMA chan-
nels, PIO configuration space) that allow each processor 30 to
substantially transparently share the network port 25. The
PIO registers unit 24 includes a number of configuration and
status registers, and supports memory mapped I/O posted and
non-posted transactions. Each separate link 50 goes through
an 1mdependent negotiation between each processor 30 and
the Host Interface 22 to determine the link width, link speed,
and the specific parameters pertaining to the lanes which
comprise each link.

Accordingly, 1n a virtualized environment, the I/O device
20 may provide a flexible number of I/O resources to a num-
ber of processes executing on the processing units 30. In one
embodiment, the system manager or service processor (if
present) may determine and allocate the hardware resources
of the I/O device 20 among the processes during an 1nitial-
1ization of computer system 10. The I/O device 20 may be
configured to provide a measure of protection for the allo-
cated resources such that no process may eirther accidentally
or otherwise access the resources that have been allocated to
another process.

In one embodiment, an I/O device such as the I/O device
20, for example, needs to be 1dentified by the O/S, enumer-
ated within the overall IO device tree constructed by the O/S,
allocated memory space, granted a unique access 1dentifica-
tion, provided interrupt mechanisms, and allocated various
other resources 1n order to efficiently bind the service pro-
vided by the device into the overall system. Accordingly, a
function 1s a hardware construct that includes a set of pur-
pose-specific registers (not shown) built into an I/0O device
which standardizes the way a device presents 1ts capabilities
and resource requests to system software. Some of the regis-
ters such as application hardware registers, for example, may
identify device capabilities and resource requests, while other
registers may be used by system S/W to allocate resources
such as DMA access enabling, for example, to the device.
Additional registers may provide status and error manage-
ment tools. A function provides this information and control
capability 1n a standardized way independent of the service
provided by the I/O device. Some I/O devices may have as

US 8,527,745 B2

S

few as one function, while other devices may contain many
functions, and may have a function allocated to each active
system 1mage sharing the device. A base address register
(BAR) may be used by a function to indicate to the O/S when
it reads the BAR the amount of memory space the application
requires. Should the O/S grant that request, 1t writes into the
BAR an address which represents the starting location within
the overall address map where the O/S has allocated the
address space needed by the application. The application
device driver affiliated with the function uses that as the base
address to access resources contained within the device.

Thus, the shared resources described above and provided
by the host interface 22 may be represented as functions. In
one embodiment, the host interface 22 may support a number
of functions, and each function may include a number of
resources. The hardware resources may be divided up among,
the functions 1n an arbitrary manner. In one embodiment,
cach interface or I/O port may correspond to a respective
function. For example, each function of the host interface 22
may provide (1.e., be associated with) one or more of the
hardware resources (e.g., MAC, statistics and control, DMA
channels, PIO configuration space) that allow each processor
30 to substantially transparently share the network port 25.
Accordingly, each function may include one or more appli-
cation hardware registers that may be accessed by an appli-
cation device driver to control and configure the application
hardware resources 240. As described above, each 1/0 1nter-
face may be independently programmed and controlled by
the processing unit 30 to which 1t 1s connected.

As described above, a given function may need to be reset
at any time for a variety of reasons by the OS and/or the
associated process running on a processor 30. Accordingly, as
shown, 1n FIG. 1, the host interface 22 includes a TLP pro-
cessing unit 60, the control unit 65, and AA registers 70. As
will be described 1n greater detail below in conjunction with
the description of FIG. 2 and FIG. 3, the control unit 65 may
be configured to respond to requests for function level resets
(FLR) by processing each request within a predetermined
amount of time. More particularly, the control unit 65 may be
configured to reset and 1nitialize necessary registers and hard-
ware (e.g., configuration space registers) within the host
interface 22 that 1s associated with the function(s) for which
the reset(s) have been requested within the time allotted to an
FLR. For example, the PCle™ Specification may require that
an /O device perform an FLR so that a host 1s able to begin
reimitializing the function within a predetermined time. How-
ever, the control unit 65 may use the AA registers 70 to
communicate to the associated application device driver the
availability of the application hardware associated with the
function being reset so that the application device driver may
begin using application hardware within the function when
the associated application hardware has been reset and 1ni-
tialized.

Referring to FIG. 2, a block diagram depicting more
detailed aspects of one embodiment of the host interface unit
of FIG. 1 1s shown. Similar to the host interface 22 of FIG. 1,
the host intertace 22 of FIG. 2 also includes the control unit 65
that 1s coupled to the TLP processing unit 60 and to the AA
registers 70. However, as shown in FIG. 2, the A A registers 70
are shown 1n more detail. More particularly, the AA registers
70 are shown as AA registers 70A through 70C. However,
although only three AA registers are shown, there may be any
number of functions and thus, any number of corresponding,
AA registers 70, one AA register 70 for each function. In the
illustrated embodiment, the control unmit 65 and the TLP pro-
cessing umt 60 are coupled to application execution hard-

ware, designated as 240A, 2408, and 240C.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, the TLP processing unit 60 may be
configured to send, recerve, and process incoming transaction
layer packets. The TLP processing unit 60 may also be con-
figured to disregard incoming packets targeting particular
functions upon notification by the control unit 65. As men-
tioned above, the PI1O registers 24 may include configuration
and status registers that may need to be reset during an FLR.

As shown, each of the AA registers 70 includes multiple
fields. More particularly, each AA register 70 includes an
availability indication (e.g., a single bit, or multiple bits)
which indicates whether or not the application hardware (e.g.,
one or more application hardware registers) associated with
the function 1s available to the corresponding application
device driver. In the 1llustrated embodiment, each AA register
70 1includes a timer field. In one embodiment, the timer field
may be an encoded value that may be updated by the control
unmit 65 and 1ndicate an estimated time until the application
hardware registers within the function are available. In
another embodiment, the timer ficld may be an encoded value
that indicates to the driver that the hardware 1s still alive when
the function 1s not available. It 1s noted that in other embodi-
ments, there may be a single availability field with a single bit,
and each register may correspond to a particular function.

In one embodiment, the control unit 65 may be configured
to 1mtialize and update the AA registers 70 during FLR opera-
tions. In addition, control unit 65 may be configured to reset
the configuration space registers (CSR) within PIO registers
24, and to reset specific application execution hardware as
necessary. Application hardware (1.e., processing sub-blocks
of application execution hardware 240A-240C) 1s under con-
trol of the application device driver and may include control
registers and the hardware that mampulates, for example,
DMA engine registers for a storage controller, cryptographic
engine control registers, and the like. In addition, application
execution hardware 240A-240C of FIG. 2 may include por-
tions of the RxDP 27 and TxDP 26 units which may include
specific application hardware such as classification and rout-
ing tables, for example.

More particularly, control unit 65 may be configured to
change the availability indicator of a given AA register 70 to
indicate that the application hardware within the correspond-
ing function 1s unavailable for general use by the application
device driver 1n response to recerving an FLR request for that
function, and to change 1t back to available when the appli-
cation hardware resources have been reset. Accordingly, the
control unit 65 may perform the reset of the CSRs of PIO
registers 24, as well as resetting and initializing the appropri-
ate application execution hardware 240 associated with the
function.

FIG. 3 15 a flow diagram describing operational aspects of

an embodiment of the host interface unit 22 of the I/O device
shown 1n FIG. 1 and FIG. 2. Referring collectively to FIG. 1

through FIG. 3 and beginning 1n block 300 of FIG. 3, during
system 1nitialization, a system manager allocates resources
among the functions. In one embodiment, the system man-
ager may be implemented as software executing on a service
processor (not shown). However, it 1s contemplated that in
other embodiments, the system manager may be imple-
mented as software executing on another dedicated processor
or processing unit that may be configured to allocate the
system resources.

An operating system (OS) instance may enumerate the I/O
devices 1n the system. In one embodiment, the enumeration
process may include the OS 1dentitying each I/0 device and
function 1n the system. The OS instance may build the I/O
device tree, and allocate the address space for the functions.
The OS may then assign the functions to the various processes

US 8,527,745 B2

7

running on the processors 30A and 30%. In one embodiment,
cach function may be identified by a unique ID. Each process
may be associated with a respective application device driver.
In one embodiment, the application device driver 1s an
instance of device driver software that may be used by all the
processes. The application device driver may use read and
write operations through load and store operations to access
the application hardware resources within the I/O device 20
(block 301).

During operation the application software may invoke the
appropriate driver to access the allocated I/O resources.
Accordingly, the application device driver accesses the AA
register 70 that corresponds to the function which the driver 1s
accessing (block 303). If the application hardware within the
function 1s not available as indicated by the availability indi-
cation 1n the AA register 70 (block 305), then the application
device driver may be configured to wait a predetermined
amount of time before checking again (block 303). For
example, 1n response to a request, the application device
driver may check the availabaility, and if the application hard-
ware 1s not available, in one embodiment, the application
device driver may poll the AA register 70. In one embodi-
ment, the application device driver may also check the timer
field of the AA register 70 to ensure that the I/O device 20 1s
alive, and 11 the timer value does not change, the driver may
notify the OS that there 1s a problem. In another embodiment,
the control unit 65 may send an interrupt to the application
device driver when the application hardware becomes avail-
able 1 a variety of ways.

It the application hardware 1s available (block 305), the
application device driver may mnitialize the application execu-
tion HW resources that are associated with that function
(block 307). The I/O device hardware resources that will be
used by the application soitware are now ready and may be
used and accessed by the application device driver during
normal operations (block 309). This process may be repeated
for each process using a different function on the I/0 device
20.

As long as the OS and/or application software does not
require an FLR (block 311), operation proceeds normally
(block 309). Ifan FLLR becomes necessary as described above
(block 311), the host OS notifies the appropnate application
device dniver of the impending FLLR, and waits for either the
application device driver to complete the shutdown tasks, or
the OS waits for a predetermined amount of time and 1nitiates
the FLR. For example, the application device driver may be in
the middle of a DMA transier. Thus, for an orderly shutdown,
presumably the application device driver could take some
amount of time to finish and notify the OS of the completion.
However, 11 the application device driver or the I/0 device
were not responding, such as when a problem exists, the OS
may initiate the FLR (block 313).

The control umt 65 may continuously scan for FLR
requests during operation. Control unit 65 may concurrently
service multiple FLR requests as described below. In
response to recerving each FLR request, the control unit 65
changes the availability of the corresponding function (e.g.,
as 1dentified by the function number) to unavailable and also
changes the state of the application hardware to unavailable
by, for example, performing a write to the availability field of
the associated AA register 70. In addition, the control unit 65
notifies the TLP processing unit 60 to stop accepting trans-
actions to that function (block 315). The control unit 65 may
then begin resetting and initializing the host interface HW
resources allocated to that function within a predetermined
amount of time. More particularly, as described above, the
control unit 65 may reset the CSRs and other host interface

10

15

20

25

30

35

40

45

50

55

60

65

8

HW resources for that function, which the OS configures,
within a given amount of time. For example, as described
above, the PCle specification specifies that the OS may begin
reinitializing the function after 100 ms, and 1n some cases 1 s.
When the control unit 63 finishes resetting the host interface
HW resources, the control unit 65 notifies the TLP processing
unit to begin accepting transactions for that function. The
function 1s now available for system soltware access but the
application hardware 1s not yet available for application
device driver general access. (block 317).

The control unit 65 begins client/application execution
HW reset and 1nitialization. As described above, depending
on the particular resource there may be tables of entries that
may need to be parsed and individual entries that correspond
to the function cleared (block 319). This resetting process
may take considerably longer than the time allotted before the

OS may begin remitializing the function. Thus, the control
unit 65 continues resetting the resources until the application
hardware 1s reset (block 325). When the control unit 65 1s
fimshed resetting the application hardware 240, the control
umt 65 may change the AA register 70 to indicate the appli-
cation hardware 1s now available. Operation may proceed as
described above 1n conjunction with the description of block
303, in which the driver may check the status/availability of
the application hardware.

During the time that the control unit 635 1s resetting the
application execution HW 240 (block 319), i1 the predeter-
mined allotted time (e.g., 100 ms) expires, the OS may begin
accessing the function again. Thus, as indicated by the dashed
line, after that time has elapsed the OS begins reconfiguring
the function that was reset by accessing the host interface 22
(block 321). When the OS completes the reconfiguration of
the resources for that function, the OS notifies the application
device driver to begin using the function and its resources
(block 323). Before attempting to access the application hard-
ware within the function, the application device driver first
checks 1ts availability as described above in conjunction with
the description of block 303. In addition, 1n one embodiment,
the control unit 65 may, at predetermined intervals, update the
timer field of the AA register 70 of the function being reset so
that the application device driver may determine the I/O
device 20 continues to operate, and/or the application device
driver may determine an approximate time remaiming before
the FLR 1s completed.

It 1s noted that although the above embodiments have been
described 1n the context of a multi-root system having mul-
tiple processor hierarchues. It 1s contemplated that in other
embodiments, the host interface unit 22 and the associated
control unit 65 and AA registers 70 may also be used 1n a
single root system having a single processor 30.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure 1s fully appreciated. It 1s intended that the follow-
ing claims be nterpreted to embrace all such vanations and
modifications.

What 1s claimed 1s:

1. An mput/output (I/0O) device comprising:

a host interface configured to provide one or more 1/O
connections to one or more processing units via respec-
tive corresponding communication links; and

a plurality of application hardware resources coupled to the
host interface:

wherein the host interface includes:

a control unait;

US 8,527,745 B2

9

a plurality of groups of configuration space registers,
cach group corresponding to one of a plurality of
functions;

wherein each function includes one or more application
hardware registers, wherein at least one of the appli-
cation hardware registers 1s associated with a respec-
tive application hardware resource; and

a plurality of application availability registers, each
associated with a respective function and configured
to indicate whether the one or more application hard-
ware registers within the respective function are avail-
able for access by a corresponding application device
software driver;

wherein 1n response to recerving a request for a function

level reset (FLR) of a particular function, the control unit

1s configured to:

cause the associated application availability register to
indicate that the one or more application hardware
registers within the particular function 1s not available
to the application device soitware driver;

reset the corresponding group of configuration space
registers accessed by system software within a prede-
termined amount of time;

reset the associated respective application hardware
resources; and

update a timer field of the application availability regis-
ter at predetermined intervals, wherein the timer field
ol the application availability register includes a value
corresponding to a time until the one or more appli-
cation hardware registers are available.

2. The device as recited 1n claim 1, wherein the host inter-
face further includes a transaction layer packet (TLP) pro-
cessing unit coupled to the control unit, wherein the control
unit 1s further configured to notity the TLP processing unit to
stop accepting transactions directed to the particular function
while the control unit is 1n the process of resetting the corre-
sponding group of configuration space registers.

3. The device as recited 1in claim 1, wherein the control unit
1s further configured to notity the TLP processing umt to
begin accepting transactions directed to the particular func-
tion once the control unit completes the reset of the corre-
sponding group ol configuration space registers.

4. The device as recited 1n claim 1, wherein the control unit
1s configured to cause the associated application availability
register to indicate that the one or more application hardware
registers within the particular function are available to the
corresponding application device software driver once the
control unit completes the reset of the associated application
hardware resources.

5. The device as recited 1n claim 4, wherein the predeter-
mined amount of time corresponds to a time period after
which an operating system of a given one of the processing,
units that requested the FLR 1s allowed to access the group of
configuration space registers corresponding to the particular
function.

6. The device as recited 1n claim 1, wherein the control unit
1s configured to concurrently process a plurality of FLR
requests.

7. A system comprising:

one or more processing units each configured to execute

operating system software and one or more application

device software drivers; and

an 1put/output (I/0) device coupled to each of the one or

more processing units via a respective communication

link;

wherein the I/0 device includes:

a plurality of application hardware resources; and

10

15

20

25

30

35

40

45

50

55

60

65

10

a host interface coupled to the plurality of application
hardware resources, wherein the host interface
includes:

a control unait;

a plurality of groups of configuration space registers,
cach group corresponding to one of a plurality of
functions;

wherein each function includes one or more applica-
tion hardware registers, wherein at least one of the
application hardware registers 1s associated with a
respective application hardware resource; and

a plurality of application availability registers, each
associated with a respective function and config-
ured to indicate whether the one or more applica-
tion hardware registers within the respective func-
tion are available for access by a corresponding
application device software driver;

wherein 1n response to receiving a request for a function
level reset (FLR) of a particular function, the control
unit 1s configured to:
cause the associated application availability register

to 1indicate that the one or more application hard-
ware registers within the particular function 1s not
available to the corresponding application device
driver;

reset the corresponding group of configuration space
registers accessed by system software within a pre-
determined amount of time;

reset the associated application hardware resources;
and

update a timer field of the application availability
register at predetermined intervals, wherein the
timer field includes a value corresponding to a time
until the one or more application hardware registers
are available.

8. The system as recited in claim 7, wherein the host inter-
face further includes a transaction layer packet (TLP) pro-
cessing unit coupled to the control unit, wherein the control
unit 1s further configured to notity the TLP processing unit to
stop accepting transactions directed to the particular function
while the control unit 1s in the process of resetting the corre-
sponding group ol configuration space registers.

9. The system as recited 1n claim 7, wherein the control unit
1s further configured to notily the TLP processing umt to
begin accepting transactions directed to the particular func-
tion once the control unit completes the reset of the corre-
sponding group of configuration space registers.

10. The system as recited 1n claim 7, wherein the control
unit 1s configured to cause the associated application avail-
ability register to indicate that the one or more application
hardware registers within the particular function are available
to the corresponding application device software driver once
the control unmit completes the reset of the associated applica-
tion hardware resources.

11. The system as recited 1n claim 7, wherein the predeter-
mined amount of time corresponds to a time period after
which an operating system of a given one the processing units
that requested the FLR 1s allowed to access the corresponding
group of configuration space registers.

12. The system as recited 1n claim 7, wherein the control
unit 1s further configured to reset the associated application
hardware resources after resetting the corresponding group of
conflguration space registers.

13. A method comprising:

providing an mput/output (I/O) device having a host inter-

face including a plurality of groups of configuration

US 8,527,745 B2

11

space registers accessible by system software, each
group corresponding to one of a plurality of functions;
wherein each function includes one or more application
hardware registers, wherein at least one of the applica-
tion hardware registers 1s associated with a respective
application hardware resource;
providing a plurality of application availability registers,
cach associated with a respective function and indicating
whether the one or more application hardware registers
within the respective function are available for access by
a corresponding application device software driver;
wherein 1n response to recerving a request for a function
level reset (FLR) of a particular function, processing the
FLR request by:
causing the associated application availability register to
indicate that the one or more application hardware
registers within the particular function 1s not available
to the application device soltware driver;

5

10

15

resetting the corresponding group of configuration 2¢

space registers within a predetermined amount of
time;

resetting the associated application hardware resources;
and

updating a timer field of the application availability reg-

ister at predetermined intervals, wherein the timer

12

field includes a value corresponding to a time until the
one or more application hardware registers are avail-

able.

14. The method as recited 1n claim 13, further comprising
notifying the host interface to stop accepting transactions
directed to the particular function while resetting the corre-
sponding group of configuration space registers.

15. The method as recited 1n claim 13, further comprising
notilfying the host interface to begin accepting transactions
directed to the particular function when the resetting of the
corresponding group of configuration space registers 1s com-
plete.

16. The method as recited 1n claim 13, further comprising
causing the associated application availability register to indi-
cate that the one or more application hardware registers
within the particular function 1s available to the correspond-
ing application device soitware driver once the resetting of
the associated application hardware resources 1s complete.

17. The method as recited 1n claim 13, wherein the prede-
termined amount of time corresponds to a time period after
which an operating system ol a given processing unit that
requested the FLR 1s allowed to access the corresponding
group ol configuration space registers.

18. The method as recited 1n claim 13, further comprising
concurrently processing a plurality of FLR requests.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

