12 United States Patent

US008527223B2

(10) Patent No.: US 8,527,223 B2
45) Date of Patent: Sep. 3, 2013

AbuAli et al.
(54) METHODS AND SYSTEMS FOR ENERGY
PROGNOSIS
(75) Inventors: Mohamed AbuAli, Cincinnati, OH
(US); Jay Lee, Mason, OH (US); Wenvyu
Zhao, Cincinnati, OH (US)
(73) Assignee: University of Cincinnati, Cincinnati,
OH (US)
( *) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 331 days.
(21) Appl. No.: 12/879,439
(22) Filed: Sep. 10, 2010
(65) Prior Publication Data
US 2011/0066391 Al Mar. 17, 2011
Related U.S. Application Data
(60) Provisional application No. 61/241,614, filed on Sep.
11, 2009.
(51) Int.CL
GOIR 17/02 (2006.01)
GOIR 21/00 (2006.01)
GOIR 17/00 (2006.01)
GOIR 17/06 (2006.01)
(52) U.S. CL
USPC ..o, 702/61; 702/57; 702/60; 702/65
(58) Field of Classification Search
USPC ... 702/60, 61, 62, 64, 179, 183, 186,
702/188; 340/657; 705/10
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
8,094,034 B2* 1/2012 Pateletal. .................... 340/657
8,183,995 B2* 5/2012 Wangetal. ............... 340/539.1
2003/0061091 Al1* 3/2003 Amaratungaetal. ......... 705/10

RECEIVE AN EFFECTIVE POWER |-210
TEST SIGNAL

2007/0276547 Al  11/2007 Miller

2008/0189567 Al 8/2008 Goodnow et al.

2008/0263469 Al 10/2008 Nasle et al.

2011/0046904 Al* 2/2011 Souillmi ........cccoooeiiiininnn, 702/62

OTHER PUBLICATIONS

Al-Ghanim, Amjed, “A Statistical Approach Linking Energy Man-
agement to Maintenance and Production Factors,” Journal of Quality
in Maintenance (2003); 1355-2511.

Ansett, M., et al., “Application of Neural Networking Models to

Predict Energy Use,” Ashrae Transactions: Research (1993): 505-
517.

(Continued)

Primary Examiner — Michael Nghiem
Assistant Examiner — Felix Suarez

(74) Attorney, Agent, or Firm — Dinsmore & Shohl LLP

(57) ABSTRACT

In one embodiment, a method for managing an industrial
process wherein a processor transforms electronic data nto
an energy prognosis 1s provided. An energy related test signal
including effective power test data indicative of electrical
energy consumed by an energy consuming machine may be
received. The energy related test signal may be partitioned
into an energy related test sub-signal. Mathematical functions
may be applied to the energy related test sub-signal to extract
a feature set of data from the energy related test sub-signal.
The feature set of data may be transtormed with a transior-
mation matrix into a reduced test feature set. The reduced test
feature set may be input into a performance assessment algo-

rithm based at least 1n part upon a reduced training feature set
derived from data indicative of electrical energy consumed
during healthy operation. A power-based performance index
may be generated with the performance assessment algo-

rithm.
20 Claims, 10 Drawing Sheets

200

s

RECEIVE AN EFFECTIVE POWER | - 214
TRAINING DATA

212
d

EXTRACT A FEATURE SET USING 220y
TIME DOMAIN AND FREQUENCY |~
DOMAIN FUNCTIONS

N

REDUCE FEATURE SETWITH |~ 240

PARTITION INTO AN 220 RECEIVE TIME PARTITION INTO AN 222
EFFECTIVE POWER SUB-SIGNAL BLOCK INFORMATION EFFECTIVE POWER SUB-SIGNAL

EXTRACT A FEATURE SET USING 5%0
TIME DOMAIN AND FREQUENCY |~
DOMAIN FUNCTIONS

oo

GENERATE A REDUCED TRAINING FEATLRE

TRANSFORMATION MATRIX

SET AND TRANSFORMATION MATRLY WITH |~ 242
PRINCIPAL COMPONENT ANALYSIS

e

CONGUCT STATISTICAL 220
PATTERN RECOGNITION

GENERATE POWER-BASED | - 260
PERFORMANCE INDEX




US 8,527,223 B2
Page 2

(56) References Cited

OTHER PUBLICATTONS

Aydinalp-Koksal, Merih, et al., “Comparison of Neural Network,
Conditional Demand Analysis and Engineering Approaches of Mod-

eling End-Use Energy Consumption in the Residential Sector,”

ScienceDirect, Applied Energy 85 (2008) 271-296.

Baretto, G.A., “Time Series Prediction with the Self-Organizing
Map: A Review.” Studies in Computational Intelligence (SCI)
(2007): 135-158.

Barros, I., et al., “Time-Frequency Analysis of Harmonics in Power
Systems Using Wavelets,” WSEAS Transactions on Power Systems,
Issue 11, vol. 1, Nov. 2006.

Benaouda, D., et al., “Wavelet-based Nonlinear Multiscale Decom-
position Model for Electricity Load Forecasting,” FElsevier,
ScienceDirect, Neurocomputing 70 (2006) 139-154.

Biagetti, Tatiana, et al., “Automatic Diagnostics and Prognostics of
Energy Conversion Processes Via Knowledge-Based Systems,” Sci-
ence Direct, Energy 29 (2004) 2553-2572.

Byoung, UK Kim, et al., “Pattern Analysis in Real Time with Smart
Power Sensor.” IEEAC Xplore, Paper #1347, Version 2, Updated
Dec. 18, 2009.

Campos, Jaime, “Development in the Application of ICT 1n Condi-
titon Monitoring and Maintenance,” Elsevier, Computers in Industry,
60 (2009) 1-20.

Cole, A.L, et al., “Algorithm for Non-Intrusive Identification of Resi-
dential Appliances, ”Proc. ISCAS "98, Monterey, CA (1998): 338-
341.

Cole, AL, et al, “Data Extraction for Effective Non-Intrusive Iden-
tification of Residential Power L.oads,” Proc. IEEE Instrumentation
and Measurement Technology Conference, St. Paul, MN (1998):
812-815.

Dahmus, Jeflrey B., et al., “An Environmental Analysis of Machin-
ing.” 2004 ASME International Mechanical Engineering Congress
and R&D Expo. Anaheim: Nov. 13-19, 2004.

Dawson, A.J., et al., “Injection Moulding Process Assessment by
Energy Monitoring,” 2004 IoM Communications, Ltd., Plastics,
Rubbers and Composites 2004 vol. 33, No. 1.

Dhar, A., etal., “Modeling Hourly Energy Use in Commercial Build-
ings With Fourier Series Functional Forms.” Journal of Solar Energy
Engineering (1998): 217-223.

Dietmair, A., etal., “Energy Consumption Forecasting and Optimisa-
tion for Tool Machines,” MM Science Journal (2009) 62-67.
Drenker, S., “Commercial Nonintrusive Load Monitoring Systems
Beta Test Results,” TR-114236; Final Report, Dec. 1998.

Gaouda, A M., et al., “Monitoring HVDC Systems Using Wavelet
Multi-Resolution Analysis,” IEEE Transactions on Power Systems,
vol. 16, No. 4, Nov. 2001.

Gutowski, Timothy, et al., “Electrical Energy Requirements for
Manufacturing Processes,” Proc. 13th CIRP International Confer-
ence on Life Cycle Engineering (LCE 2006), Leuven, Belgium,
(20006): 623-628.

Haberl, J.S., et al., “Development of Graphical Indices for Viewing
Building Energy Data; Part 1,” Journal of Solar Energy Engineering
(1998): 156-161.

Haberl, J.S., et al., “Development of Graphical Indices for Viewing
Building Energy Data: Part I1.”” Journal of Solar Energy Engineering
(1998). 162-167.

Hammond, Geoflrey P., “Industrial Energy Analysis, Thermodynam-
ics and Sustainability,” ScienceDirect, Applied Energy 84 (2007)
675-700.

Hart, G.W., “Nonintrusive Appliance LLoad Monitoring,” Proceed-
ings of the IEEE, vol. 80, No. 12, Dec. 1992, p. 1870-1891.
International Energy Agency (IEA), Demonstrating Automated Fault
Detection and Diagnosis Methods in Real Buildings, IEA Sympo-
sium 217. Oulu: Technical Research Center of Finland (VTT), 2001.
Jain, A.K. Duin, et al., “Statistical Pattern Recognition: A Review.”
IEEE Transactions on Pattern Analysis and Machine Intelligence

(2000): 4-137.

Journal of Central South University of Technology, vol. 12, Issue 2,
2005 Liu,: Investigations and Practices on Green Manufacturing in
Machining Systems, pp. 18-24.

Katipamula, Srinivas, “Methods for Fault Detection, Diagnostics,

and Prognostics for Building Systems—A Review Part 1.” Interna-
tional Journal of HVAC&R Research, vol. 11, No. 1, Jan. 2005. p.

3-25.
Katipamula Srinivas, “Methods for Fault Detection, Diagnostics, and

Prognostics for Building Systems—A Review Part I1.” International
Journal of HVAC&R Research, vol. 11, No. 2, Apr. 2005, 169-187.

Karatasou, S., et al., “Modeling and Predicting Building’s Energy
Use with Artificial Neural Networks: Methods and Results.” Elsevier,

Science Direct, Energy and Buildings (2006): 949-958.

Kiang, Melody Y., “A Comparative Assessment of Classification
Methods.” Elsevier, Decision Support Systems 35 (2003), 441-454.
Kothamasu, R., et al., “System Health Monitoring and

Prognostics—A Review of Current Paradigms and Practices,” Int.

Journal of Advanced Manufacturing Tech. (2006): 1012-1024.
Laughman, Christopher, et al., “Power Signature Analysis,” IEEE
Power & Energy Magazine, Mar./Apr. 2003, pp. 56-63.

Lee, Kwangduk Douglas, Jun. 2003, “Electric Load Information
System Based on Non-Intrusive Power Monitoring.” Massachusetts
Institute of Technology.

Lee, Jay., et al., “Intelligent Prognostics Tools and E-Maintenance.”
Computers in Industry (2006): 476-489.

Lee, W.K., et al., “Exploration on Load Signatures,” International
Conference on Electrical Engineering, (ICEE) 2004, Japan, Refer-
ence No. 725.

Lemmerhirt, J., et al., “Nonintrusive Appliance Load Monitoring
system (Ni1alms)” (1997), Electric Power Research Institute, Inc.
Liangsheng, Qu., et al. “Enhanced Diagnostic Certainty Using Infor-
mation Entropy Theory,” Elsevier, Advanced Engineering Informat-
ics 17 (2003) 141-150.

Marik, Karel, et al., “Decision Support Tools for Advanced Energy
Management,” ScienceDirect, Energy 33 (2008) 858-873.
Mihalakakou, G., et al., “On the Energy Consumption in Residential
Buildings,” Elsevier, Energy and Buildings 34 (2002): 727-736.
Munoz, A A., et al “An Analytical Approach for Determining the
Environmental Impact of Machining Processes,” Journal of Materials
Processing Technology (1995): 736-758.

Norfold, L .K., et al., “Non-Intrusive Electrical Load Monitoring in
Commercial Buildings Based on Steady-State and Transient Load-
Detection Algorithms,” Elsevier, Energy and Buildings 24 (1996):
51-64.

Pappas, S. SP., et al, Electricity Demand Loads Modeling Using
AutoRegressive Moving Average (ARMA) Models, Elsevier, Energy
33 (2008), 1353-1360.

“Powers 1n Nonsinusoidal Situations a Review of Definitions and
Physical Meaning.” IEEE Transactions on Power Delivery, vol. 5,
No. 3, Jul. 1990,

Rasanen, Teemu, et al., “Reducing Energy Consumption by Using
Self-Organizing Maps to Create More Personalized Electricity Use
Information,” ScienceDirect, Applied Energy 85 (2008) 830-840.
Reis, Agnaldo J., “Feature Extraction via Multiresolution Analysis
for Short-Term Load Forecasting.” IEEE Transactions on Power Sys-
tems, vol. 20, No. 1, Feb. 2005.

Seem, J.E., “Pattern Recognition Algorithm for Determining Days of
the Week with Similar Energy Consumption Profiles.” Science
Direct, Energy and Buildings 37 (2005): 127-139.

Seem, J.E., “Using Intelligent Data Analysis to Detect Abnormal
Energy Consumption in Buildings.” Energy and Buildings 39 (2007)
52-58.

Shaw, S.R., et al., “Instrumentation for High Performance
Nonintrusive Electrical Load Monitoring.”” ASME Journal of Solar
Energy Engineering (1998): 224-229.

Tso, Geoflrey P., “Predicting Electricity Energy Consumption: A
Comparison of Regression Analysis, Decision Tree and Neural Net-
works.” ScienceDirect, Energy 32, (2007) 1761-1768.

Verdu, Sergio Valero, et al., “Classification, Filtering and Identifica-
tion of Electrical Customer Load Patterns Through the Use of Self-
Organizing Maps,” IEEE Transactions on Power Systems, vol. 21,
No. 4, Nov. 2006.




US 8,527,223 B2
Page 3

Vesanto, J., et al., “Self-Organizing Map 1n Matlab: the Som
Toolbox,” Proc. Matlab DSP Conference, Espoo, Finland, (1999):
35-40.

Vesanto, J., et al., “Som Toolbox for Matlab.” (2000), Helsinki Uni-
versity of Technology, Helsinki, Finland.

Vyayaraghavan, A., et al., “Automated Energy Monitoring of
Machine Tools,” Elsevier, CIRP Annals—Manufacturing Technol-
ogy; (2010).

Zhao, Feng, et al., “Monitoring and Fault Diagnosis of Hybrid Sys-
tems,” IEEE Transactions of Systems, Man and Cybernetics—Part B:
Cybernetics, vol. 35, No. 6, Dec. 2005.

International Search Report and Written Opinion of the International
Searching Authority, mailed on Apr. 29, 2011, relating to Interna-
tional Application No. PCT/US2010/048630 filed on Sep. 13, 2010.

* cited by examiner



US 8,527,223 B2

Sheet 1 of 10

Sep. 3, 2013

U.S. Patent

XN JONVINEOA43d

09| J45VE-dIM0d ALYdINID

0G| INANSSASSY JONVINGO4dd LINANOD

Ol 145 A11V44 Jondid

0C| 135 N1V v LOVaLX]

TYNOIS-ENS Q3L 134 AJdAN
0cl NV OLNI NOILILdvd

TYNOIS 1541
O~ 1 Q41V 148 ADEAINA NV JAT048

Q0|

| Ol




U.S. Patent Sep. 3, 2013 Sheet 2 of 10 US 8,527,223 B2

¢ .
V)
Os—F
» s _ | D
| I n ""-3 g
¢
W
::3) ——————
a ¢ 3 O
¢ - - O
—" <
f’}
L‘h
J]
Y
-4
S .
.
¢ o
¢ : A
o > 2
O~ 0
Y . o
T QN
t.
¢ : - Lol ®
O—¢ 1= O
B " “ =
’ —
s
o)
r,
U¢ -
a3
¢ e
p.‘:h_'_ : ;
¢:9
Z)
&
e ——————— -
: O A\
hd =_,3 Q
‘ <
{+)
i
Wy
{;ﬂ
LC) — Tep - LC) — : ’ |

dIMOd JAILOV 4IMOd A1LJ3441



US 8,527,223 B2

Sheet 3 of 10

Sep. 3, 2013

U.S. Patent

._NI
NI
0
%
7
9
3
0
Al
NI L
0 7 G 0 )
e — |
27%° O¥G vs 1\ evg
i 50
POG 200G |1
bl
+%¢+r, M W&ﬂw Y “*J _P nk
204 ,.._. ._M J,. W :_m_Qm E0Y .,.‘__. |
A_m“__ rf:k:*}*th ' ____.__n 3 .__}#{ 40
____““ M___ |
: ;
| .w _ GT

dIMOd JAI103443

dIMOd Al LDV



U.S. Patent

%\\ ﬁ\\

) e G e O e G ()
Seesesescesd
QQQQQOQ0Q.P (b
C ) L Y
C
o226 2e oY
fiessasataed
o8 é&%@%ﬁ@
if;& ‘ _, '

H44
RN

Sep. 3, 2013

)

Sheet 4 of 10

US 8,527,223 B2

54p

@cecececesesin

%
{3
LI

S~ ~ 7 ~ T

(i
qb

Ny,

. e, . el

.
Y

808 . 09026 e e Te ™
(LI

S
S ILILILILILI L
ONOROMNRY

1‘-’“3

|
|
|
|

|
|

L
SSS
S
0
&
A

'T'

.

. il il il
e e — e

-

}

2

D

O

052020 0
OIS
(LN

oS
B0
)

D4c ;



US 8,527,223 B2

Sheet S of 10

Sep. 3, 2013

U.S. Patent

Ve

SISATYNY ININOdNOO 1vd
HLIM XILYW NO

INldd

LYIWHOASNYEL ONY L3S

F4N1Y 34 ONINIY

LC

1003 ¥V 3LVaINAD

SNOILONNA NIVINOG
044 ANV NIYWOQ FWIL

JNIEENE IVEER BN LIVE

Zad

TYNDIS-ENS d3MOd A1 L0344
NV OLNI NOILIL4Vd

v LYQ ONINIY 4
1<~ | dAMOd AILIA44T NY JAIF034

Q0

cle

G 9l

NOILYINGOANI ¥OO 1

JNIL AIF03d

09¢

0Gc

Ove

0%<

AN FONVYINEOA43d
A5V8-4IMOd JLYEINTD

NOILINDOQ3d N3 L LVe
TYIILSILYLS LONANOY

0c<

Olc

XId1YIA NOILYIWHO4SNYAL
HLIM 135 340144 J0Nd4y

SNOILONNA NIYIWOA
AONANO3S ANY NIYWOQ JNIL
JNARENEL NINEER SNLLINE

TYNOIS-ENS 4IMOd 3A1LO3443
NV OINI NOILIL4Yd

TWNIIS 1541
dIMOd JAILO3443 NY JAIF03e




US 8,527,223 B2

Sheet 6 of 10

Sep. 3, 2013

U.S. Patent

057

007

05

9 ol
LN WL
00¢ 052 002 061 001 05

N
-

XAANI JONVINGO1dd 15Y8-8IM0c

i




US 8,527,223 B2

Sheet 7 of 10

Sep. 3, 2013

U.S. Patent

L Ol

SISATYNY ININOdNOQ TWdIONIEd
74,0 | HLM XIGLYW NOLLYWOANYEL ONY 135
F9N1¥34 ONINIvEL d40Nd38 ¥ ALVEaNTD

SNOILONNA NIYINOG JNIL
C&% -7 ONISN L3S LY Y LOvyLX3

TYNIIS-ANS ddMOd JAILD44S

09%

04%

XN JONYINEO A4

Q35V8-4IM0d ALYEINTD

NOILINDOD34 N&3LLVa
IVIILSILY LS LONANOY

Cl% NV OLNI NOILILaYa

dIMOd JAILIVY

7% MO SFTOAD LIVHELX

v LYd ONINIVEL daMOd AILOYAY ANV
5% dIMOd JAILO3443 NV A0

00%

9%

F10A0 FOVEINY

ALY IOV

0%%

0%

Ol%

XIdLYI NOILLYWaO45NYaL
HLIM 135 J801¥3d4 J0Nd3Y

SNOILONNA NIVINOQ JAI L

ONISH L3S JdLVAd ¥ LOVELXA

TYNDIS-dIS daMOd A1 L0344
NV OLNI NOILILavd

TUNDIS 1541
dIMNOd AILO3443 Ny JAIF03d




US 8,527,223 B2

Sheet 8 of 10

Sep. 3, 2013

U.S. Patent

008

00/

009

g ol

005

11940

007

00¢

00¢

001

10

¢()

¢

XJAN| JONVING04dd d35¥E-dIMOa



US 8,527,223 B2

Sheet 9 of 10

Sep. 3, 2013

U.S. Patent

O YW ONIZINYEHO-4T3S Y49 o “l4

XAANT FONwIA
dVIN ONIZINYDE0-4T35 Q9v 15YE-4IM0d 4LVeINID

)44dd

SISATYNY INANOWOD TvdIONINd HLIM TYNOIS LS3L AJISSVTD . Lo
2y HLIM XIMLYIN NOILYIWHOASNYHL ANV 13S
J4NLY3d ONINIYYL @30Nd3y ¥ FLYEINTD HOMMT NOLLYZIINYNO
]
OGH ANINIA 3LYTNOTYD
SNOILONNA NIYIANOA JNIL
et 35 LY Y LOvH1X3 XISLYI NOILYWHOASNYA L

HLIM 145 Jd11v44 0Nd3d

O
TYNDIS-ANS ¥3IMOd AILD3443
771 W OLNI NOLLILaYd SNOILONNE NIYWOQ AL
O%t -~ 9NISN 13S NLY3H ¥ 1ovdLa
v.1vd ONINIVAL d3M0d ALV TYN9IS-8NS Y3IMOd IAILD3443 N
NOUd 5diLs F10A) LIvdLX: OZ¥ | OINI Y¥IMOd AILDT443 NOILILYYd
YIMOd AILDY3 11940 OYYIAY TYNDIS 1STL ¥IMOd IAILOY M
1% NOY4 STIDAD LOVYLX3 LY IOV 914 —| WO Sd3LS 31040 LOVHL3
y /
Ol
v1¥Q ONINIVEL ¥3MOd FAILOYIY ANV TYNOIS 1531
A% YIMOd FAILDF443 NV FAFDY OL¥ =1 ¥IM0d A1LD3443 NV FAEDH

QO




US 8,527,223 B2

Sheet 10 of 10

2013

b/

Sep. 3

U.S. Patent

Ol Dl
d31S 3100
0802 0902 0Y0Z 0202 0002 086l 0961 Ov6 0Z6! 0061
i
0
07
7 -
012 =
9 &
......................................................................... 08 m
ogw
0]
X
0]

cl.é



US 8,527,223 B2

1

METHODS AND SYSTEMS FOR ENERGY
PROGNOSIS

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

This application claims priority to U.S. Provisional Appli-
cation No. 61/241,614, filed Sep. 11, 2009, entitled “PRECI-

SION ENERGY MANAGEMENT SYSTEM (PEMS) FOR
INDUSTRIAL MACHINERY,” the entire contents of which

are hereby incorporated by reference.

TECHNICAL FIELD

The present specification generally relates to methods and
systems for managing an industrial process and, more spe-
cifically, methods and systems for managing an industrial
process with an energy prognosis.

BACKGROUND

Manufacturing systems generally deteriorate with usage
and age. System deterioration can lead to undesired conse-
quences such as, e.g., higher costs and lower quality. Thus, 1t
1s advantageous to manage the undesired consequences of
system deterioration with increased knowledge regarding the
performance of the system. Maintenance activities have
evolved from reactive maintenance and preventive mainte-
nance to condition-based maintenance as the manufacturing,
community has increased its understanding of system dete-
rioration. For example, when the system conditions can be
monitored, a condition-based maintenance can be 1mple-
mented by determining the maintenance needs of the system
dynamically from observed operational conditions of the sys-
tem. Many of the prognosis and health management tech-
niques in the condition-based maintenance regime require the
addition of sensors that are not normally part of the manufac-
turing process. In many 1industrial applications, the acquiring
of sensors as well as the ability to add on such sensor is
difficult at best or not possible at all.

Accordingly, a need exists for alternative methods and
systems for managing an industrial process with an energy
prognosis without requiring the addition of difficult to obtain
SENSors.

SUMMARY

In one embodiment, a method for managing an industrial
process 1s provided. A processor may transform an energy
related test signal into an energy prognosis. The energy
related test signal including effective power test data indica-
tive of electrical energy consumed by an energy consuming,
machine may be received automatically with the processor.
The energy related test signal may be partitioned automati-
cally with the processor into an energy related test sub-signal.
Mathematical functions to the energy related test sub-signal
may be applied automatically with the processor to extract a
teature set of data from the energy related test sub-signal. The
feature set of data may be transformed automatically with the
processor with a transformation matrix into a reduced test
teature set. The reduced test feature set may be mput auto-
matically with the processor into a performance assessment
algorithm, wherein the performance assessment algorithm 1s
based at least 1n part upon a reduced traiming feature set
derived from data indicative of electrical energy consumed
during healthy operation. The energy prognosis may be gen-
erated automatically with the processor, wherein the energy
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2

prognosis 1s based at least 1n part upon a power-based perior-
mance index calculated by the performance assessment algo-
rithm.

In another embodiment, an energy management system
may include: an energy consuming machine for producing a
product, an energy sensor communicably coupled to the
energy consuming machine wherein the energy sensor gen-
crates an energy related test signal comprising real power test
data and reactive power test data indicative of energy con-
sumed by the energy consuming machine, and a processor
communicably coupled to the energy sensor. The processor
executes machine readable instructions to: recerve the energy
related test signal; partition the energy related test signal into
an energy related test sub-signal; apply time domain func-
tions and/or frequency domain functions to the energy related
test sub-signal to extract a feature set of data from the energy
related test sub-signal; transform the feature set of data with
a principle component analysis into a reduced test feature set;
compare the reduced test feature set to training data indicative
of a normal operating condition of the energy consuming
machine; generate a power-based performance index with a
performance assessment algorithm, wherein the power-based
performance 1ndex 1s based at least 1n part upon a difference
between the reduced test feature set and the training data; and
generate a fault indication based at least in part upon the
power-based performance 1index.

In yet another embodiment, a toolkit for managing an
industrial process 1s provided. The toolkit 1s stored on a
machine readable medium and includes machine readable
instructions to transform electronic data into an energy prog-
nosis. The machine readable instructions may include the
following. A signal loading algorithm to receive an energy
related test signal including real power test data indicative of
clectrical energy consumed by an energy consuming
machine. A partitioning algorithm to transform the energy
related test signal into an energy related test sub-signal. A
feature extraction algorithm to transform the energy related
test sub-signal into a feature set of data from the energy
related test sub-signal. A principal component analysis algo-
rithm to transform the feature set of data into a reduced test
feature set. A performance assessment algorithm for compar-
ing the reduced test feature set to a baseline indicative of a
normal operating condition of the energy consuming
machine. A performance prediction algorithm for generating,
an energy prognosis that forecasts a future health condition of
the energy consuming machine based at least in part upon the
reduced test feature set. A visualization algorithm for display-
ing the energy prognosis.

These and additional features provided by the embodi-
ments described herein will be more fully understood 1n view

of the following detailed description, 1n conjunction with the
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments set forth 1n the drawings are illustrative
and exemplary 1n nature and not intended to limait the subject
matter defined by the claims. The following detailed descrip-
tion of the illustrative embodiments can be understood when
read in conjunction with the following drawings, where like
structure 1s indicated with like reference numerals and 1n
which:

FIG. 1 schematically depicts a system for managing an
industrial process according to one or more embodiments
shown and described herein;
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FIG. 2 graphically depicts a cycle extraction technique
according to one or more embodiments shown and described
herein;

FI1G. 3 graphically depicts a cycle step extraction technique
according to one or more embodiments shown and described
herein;

FI1G. 4 graphically depicts a self-organizing map according,
to one or more embodiments shown and described herein:

FIG. 5 depicts a tflow chart of a method for managing an
industrial process according to one or more embodiments
shown and described herein;

FIG. 6 graphically depicts power-based performance
indexes over time according to one or more embodiments
shown and described herein;

FIG. 7 depicts a flow chart of a method for managing an
industrial process according to one or more embodiments
shown and described herein;

FIG. 8 graphically depicts power-based performance
indexes over time according to one or more embodiments
shown and described herein;

FIG. 9 depicts a flow chart of a method for managing an
industrial process according to one or more embodiments
shown and described herein; and

FIG. 10 graphically depicts power-based performance
indexes over time according to one or more embodiments
shown and described herein.

DETAILED DESCRIPTION

As used herein with the various 1illustrated embodiments
described below, the following terms include, but are not
limited to, the following meanings.

The phrase “communicably coupled” means that compo-
nents are capable of transmitting data signals with one
another such as for example, electrical signals via conductive
medium, electromagnetic signals via air, optical signals via
optical waveguides, and the like.

The phrase “effective power” means the net transfer of
clectrical energy in one direction past a sensing point, 1.e.,
elfective power 1s indicative of a transier of electrical energy.
Effective power 1s commonly measured 1n kilowatts (kW).

The phrase “reactive power” refers to the portion of elec-
trical energy that 1s stored and/or returned to the source, 1.¢.,
reactive power 1s indicative of a lack of a transfer electrical
energy. Reactive power 1s commonly measured in volt-am-
peres reactive (VAr).

The term “sensor” means a device that measures a physical
quantity and converts it into a signal which is correlated to the
measured value of the physical quantity.

The term ““signal” means an electrical and/or electromag-
netic wavetorm, such as DC, AC, sinusoidal-wave, triangu-
lar-wave, square-wave, and the like, capable of traveling
along and/or within a transmissive medium.

The term “synchronized” means that two signal compo-
nents are collected at about the same time and/or rate with one
another or that the two signal components may be mapped to
one another such that they can be analyzed as though they
were collected at about the same time and/or rate with one
another.

FIG. 1 generally depicts one embodiment of an energy
management system for managing an industrial process. The
energy management system generally comprises an energy
consuming machine, an energy sensor and a processor that
executes machine readable instructions. Various embodi-
ments of the energy management system and various embodi-
ments ol methods for managing an industrial process are
described in more detail herein.
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Referring now to FIG. 1, 1n the 1llustrated embodiment, an
energy management system 10 may comprise an energy con-
suming machine 20. The energy consuming machine 20 may
be any device that transmits or modifies electrical power such
as a machine used for manufacturing or producing a product.
Example energy consuming machines include a milling
machine, a pressing machine, an injection molding machine,
and a grinding machine.

The energy management system 10 may comprise an
energy sensor 22 that generates an energy related signal that
may be transmitted to another device such as a microproces-
sor. The energy sensor 22 1s communicably coupled to the
energy consuming machine 20 such as, for example, at a
power 1nput or a controller output. Specifically, the energy
sensor 22 may measure electrical energy along the power
input to the energy consuming machine 20 and transmit an
energy related signal indicative of the measured electrical
energy. The energy related signal may comprise data indica-
tive of temperature, humidity, pressure, voltage, current,
clfective power, reactive power, or combinations thereof. The
energy sensor 22 may be a temperature sensor, a humidity
SEeNsor, a pressure sensor, a current sensor, a voltage sensor, a
power sensor, or a combination thereof. It 1s noted that the
sensors described herein are not limited to sensors that
directly observe a physical quantity, 1.e., the energy sensor 22
may sense the input or output of an electronic device such as
a controller to generate an energy related signal.

Still referring to FIG. 1, the energy management system 10
may comprise a processor 30 for executing machine readable
instructions 100. The processor 30 1s communicably coupled
to the energy sensor 22 and recerves an energy related signal.
The energy related signal 1s transformed according to the
machine readable mstructions 100. The processor 30 may be
an integrated circuit, a microchip, a computer, or any other
computing device capable of executing the machine readable
instructions 100. The processor 30 1s communicably coupled
to an electronic memory (not depicted 1n FIG. 1) for storing
clectronic data. The electronic memory may be RAM, ROM,
a flash memory, a hard drive, or any device capable of storing
the machine readable instructions 100. In the embodiments
described herein, the processor 30 and the electronic memory
may be integral with one another, or the processor 30 and the
clectronic memory may be discrete components communica-
bly coupled with one another.

The machine readable mstructions 100 are executed by the
processor and may be stored within the electronic memory.
The machine readable instructions comprise logic or an algo-
rithm for transforming energy related signals mto an energy
prognosis. The logic or algorithm may be written 1n any
programming language ol any generation (e.g., 1GL, 2GL,
3GL, 4GL, or 5GL) such as, e.g., machine language that may
be directly executed by the processor, or assembly language,
object-oriented programming (OOP), scripting languages,
microcode, etc., that may be compiled or assembled 1nto the
machine readable instructions 100. Alternatively, the logic or
algorithm may be written in a hardware description language
(HDL), such as implemented via either a field-programmable
gate array (FPGA) configuration or an application-specific
integrated circuit (ASIC), and their equivalents.

Still referring to FIG. 1, 1n one embodiment the machine
readable mstructions 100 comprise a process 110 to receive
an energy related signal. The energy related signal may com-
prise elfective power test data, reactive power test data, or a
combination thereol. The test data 1s indicative of the energy
consumed by an energy consuming machine 20. For example,
the test data may correspond to the energy consumed during
an industrial process. The energy related signal may also
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comprise elfective power training data, reactive power train-
ing data, or a combination thereof. The traiming data 1s 1ndica-
tive of electrical energy consumed by the energy consuming,
machine 20 during a known operating condition such as, for
example, a normal condition or a failure condition. The train-
ing data may be compiled from the sensed operation of the
same machine, the sensed operation of a similar machine or
artificially generated to mimic the desired operating condi-
tion. Specifically, an ijection molding machine may be
observed during normal operation in order to compile train-
ing data to be applied to the same mjection molding machine,
another injection molding machine, or a completely different
type of machine. Furthermore, the training data may be com-
piled by a model (e.g., computer simulation or mathematical
model) that substantially mimics the desired operation of the
energy consuming machine 20.

The terms “energy related,” “effective power,” “reactive
power,” “testing,” and “training” are utilized throughout the
present disclosure. For clarity, it 1s noted that when the term
“energy related” 1s utilized with the terms “signal” or “sub-
signal,” the term “energy related” may generally refer to data
that 1s any possible combination of eflective power data,
reactive power data, testing data, and training data. For clar-
ity, 1t 15 also noted that when the terms “efiective power data™
and “reactive power data,” are utilized they may generally
refer to testing data and/or training data. Similarly, for clarity,
it 1s noted that when the terms “testing data” and ““training
data,” are utilized they may generally refer to effective power
data and/or reactive power data.

The machine readable instructions 100 may further com-
prise the process 120 to partition the energy related signal into
an energy related sub-signal. The energy related signal may
be partitioned according to a time block, a cycle or a cycle
step. Examples of each of the partitioning techniques are
described in further detail below.

In one embodiment, the energy related signal 1s partitioned
into an energy related sub-signal according to a time block.
For example, a time block size corresponding to a time period
of interest (e.g., a single repeated step, a collection of repeated
steps, or a shift) may be defined according to knowledge of an
industnal process. Specifically, a user familiar with the pro-
cess or a statistical analysis of the industnial process may
define a time block size. Once defined, the time block size
may be utilized to divide the energy related signal into equal
energy related sub-signals having a length, 1.e., number of
data points, corresponding to the time block size.

In another embodiment, the energy related signal 1s parti-
tioned mnto an energy related sub-signal according to a cycle.
Cycles may be automatically extracted from the energy
related signal utilizing a cycle extraction technique. When the
energy related signal comprises effective power data and
reactive power data and the effective power data and the
reactive power are synchronized with one another, the cycle
extraction technique can extract machine start of cycles.

For example, the cycle extraction technique can be applied
to extract the machining start of cycles using the reactive
power data as a trigger. The indexes, corresponding to the
sequence of the reactive power data, of each start of cycle can
be mapped onto the effective power data. This can be
achieved by first extracting all eligible data points that satisty

(1),

where RP, refers to the reactive power data and RP,, __, .. 1s
a machine dependent heuristic threshold value.

The cycle extraction technique satisfies equation (1) to
extract all reactive power values that exceed the machine
dependent heuristic threshold value. The extracted reactive
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power data are arranged 1n order of occurrence and utilized to
determine the first start of cycle. Starting with the reactive
power data corresponding to the first extracted reactive power
data point, the reactive power data 1s searched for the nearest
data point having a near-zero value occurring after the first
extracted reactive power data. The near-zero value corre-
sponds to a reactive power data point having a value of about
0 kVAr or a reactive power data point that 1s larger or smaller
than about 0 kVAr when reactive power data lacks a data point
having a value of about O kVAr. The near-zero value 1s indica-
tive of a lack of power consumption, 1.¢. a new machining
cycle 1s about to start. The near-zero value may be obtained
using a sign-change rule that searches each consecutive point
of the reactive power data occurring atter first extracted reac-
tive power data point for the first sign-change from a positive
reactive power value to a negative reactive power value. Once
the near-zero value has been obtained, a data index (e.g., time
stamp or numeric index) corresponding to the near-zero value
can be utilized as the start of cycle data index. Sumilarly, all
other cycles can be extracted one-by-one using a backward-
torward search rule that compares consecutive reactive power
data points 1n combination with the sign-change rule to obtain
start of cycle indexes for all of the reactive power data. The
backward-forward search rule, which reduces the probability
of obtaining redundant values, 1s given by,

g
RPsoc =RPsoc | & RP o RP s

(2),

where RP refers to the reactive power data, SOC, _, refers to
the (n—1)" start of cycle data index, SOC, refers to the n™ start
of cycle data index, and SOC, ., refers to the (n+1)” start of
cycle data index.

FIG. 2 graphically depicts reactive power data and effec-
tive power data. The reactive power data and the effective
power data are synchronized according to time. The start of
cycle data indexes of a first near-zero value 40a, a second
near-zero value 4054, and a third near-zero value 40c¢, as deter-
mined by the sign change rule and the backward-forward rule,
can be mapped (generally indicated in FIG. 2 by dashed lines)
to the effective power data. Specifically, a first start of cycle
42a corresponding to the first near-zero value 40a, a second
start of cycle 4256 corresponding to a second near-zero value
405, and a third start of cycle 42¢ corresponding to a third
near-zero value 40c may be mapped in the effective power
data. After mapping, the effective power data may be seg-
mented nto cycles and analyzed at a cycle level resolution.
For clarity, and not by way of limitation, pseudo-code for one
embodiment of the cycle extraction 1s provided below.

The pseudo-code provided below 1s to be interpreted
according to the immediately following definitions. RP refers
to reactive power data value at time t=1. RP,, __, .. refers to
the machine dependent heuristic threshold value (e.g.,
RP, . ., ~=0.87 for the embodiment depicted in FIG. 2). EP
refers to effective power data value at time t=1. SOC, refers to
the start of cycle at t=1, where SOC, 1s the first start of cycle.
READ RP and EP
SAVE All RP such that: RP,>RP,, ., ..

Initially, the first start of cycle 1s found and all subsequent
indexes (potential candidates for a start of cycle) are
extracted from the reactive power data

FOR 1=1:length (RP)
IF RP, =RP, THEN
SET SOC,; =RP,
ELSEIF RP,=RP,; ANDRP,>RP,, ; THEN
SAVE {RP;}
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-continued

ENDIF
ENDFOR

Next, a process that relies on sign changes 1s used to find all
indexes of RP, closest to zero.
The consecutive point RP,_, 1s defined as the start of cycle.

FOR i =1:length {RP;}
COMPUTE {Sign;} for all {RP,,; - RP;}
IF [Sign,} = 1 > RP,,, - RP, >0
ELSEIF [Sign,! =0 —>RP,, , - RP,=0
ELSEIF [Sign,} =—1->RP,,, - RP, <0
ENDIF
FIND All {Sign,} = 1 —>All RP,,, - RP, < 0
SET RP,,, = SOC,., (e.g. RP, = SOC,)
REPEAT forall i
ENDFOR

In the embodiments described herein, the energy related
signal can be partitioned 1nto an energy related sub-signal
according to a cycle step. Cycle steps may be automatically
extracted from the energy related signal utilizing an auto-
mated cycle step extraction technique. For example, in a
traditional injection molding process, a typical cycle includes
several steps such as, but not limited to, die closing, injection,
rotation, die opening, ejection, and feed. From expert knowl-
edge and operational specifications of the process, estimates
of power specifications and duration of each cycle step may
be known. The process knowledge may be imncorporated nto
the automated cycle step extraction technique and assist in
segmenting a cycle into cycle steps. The cycle may be pro-
vided to the automated cycle step extraction technique by

manual entry according to process knowledge, the cycle
extraction technique, PLC logs or any other source capable of
providing machine cycle information.

When the energy related signal comprises effective power
data and reactive power data synchronized with one another,
the automated cycle step extraction technique can extract
cycle steps from the energy related signal. The reactive power
can be used as a trigger for machine start of cycle extraction
and subsequent extraction of machine cycle steps. For
example, the cycle extraction technique may extract cycle
steps from an 1njection molding energy related signal indica-
tive of a die close, mjection, die open, eject, and the like.
Additionally, the cycle extraction technique may operate
more efficiently in extracting cycle steps from an energy
related signal indicative of an industrial process having sub-
stantially consistent operating conditions such as, for
example, consistent cycle behavior and consistent material
flows through the process.

Referring now to FIG. 3, the cycle step extraction tech-
nique can analyze reactive power data to extract start of cycle
indexes, as described herein. Once the start of cycle indexes
are determined for the reactive power data, the cycle step
extraction technique may further analyze a cycle 44 corre-
sponding to the start of cycle indexes. For example, a sign-
change rule, as described herein, may be utilized to extract
cycle step indexes from a cycle 44 of the reactive power data.
The cycle step extraction technique may extract a first cycle
step mndex 30q, a second cycle step mndex 305, a third cycle
step index 50¢, a fourth cycle step index 504, and a fifth cycle
step index 50e from the reactive power data. When the reac-
tive power data 1s synchronized with the effective power data,
the cycle step indexes can be mapped to their counterpart
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indexes 1n the effective power data. Specifically, the first cycle
step mdex 30q, the second cycle step mdex 305, the third
cycle step index 50c¢, the fourth cycle step index 504, and the
fifth cycle step index 50e from the reactive power data may be
mapped to a first cycle step mdex 52a, a second cycle step
index 525, a third cycle step index 52¢, a fourth cycle step
index 524, and a fifth cycle step index 52¢ of the effective
power data, respectively. After mapping, the effective power
data may be segmented into cycle steps and analyzed at a
cycle step level resolution. As depicted i FIG. 3, the cycle 44
can be segmented 1nto a first cycle step 54a, a second cycle
step 34b, a third cycle step 54¢, and a fourth cycle step 544
according to the extracted cycle step indexes. For clarity, and
not by way of limitation, pseudo-code for one embodiment of
the cycle step extraction technique 1s provided below.

The pseudo-code provided below 1s to be interpreted
according to the immediately following definitions. SOC, to
the start of cycle at t=1, where SOC, 1s the first start of cycle.
RP, refers to reactive power data value at time t=1. RP,, __,
refers to a machine dependent heuristic lower threshold value
(e.g., RP,, __,=—0.4 for the embodiment depicted in FIG. 3).
EP, refers to effective power data value at time t=1. CS; refers
to the cycle step index j for extracted cycle 1 where ie€{1:n},

jell:4}.

READ RP; and EP,
FOR counter = 1: length (SOC,)
READ Cycle_Data={ RP,:RP,, , }
COMPUTE Cycle Diff =RP,,; - RP, for all 1 cycles
FIND All RP, <RP,;,...; 7 1n Cycle Data
SAVE All RP, such that: RP,<RP, __, ;
Set RP, —> CS, (initial index for
cycle step 1)
FOR 1=1:length(Cycle_ Diif)
IF sign({cycle_diff (1+1)) =
sign(cycledifi(1))
THEN Set —> CS 5 (initial index for
cycle step 2)
ENDIF
ENDFOR

FOR 11 = 1: length(Cycle_Diff)

IF Cycle_Diff(11) <-0.2 (half the RP
value)
THEN Set CS 5 (1nitial index for
cycle step 3)
ENDIF

ENDFOR

Convert all local indexes to global cycle step indexes.

CS, =Initial CS,, Index+SOC,

CS, ,=Initial CS ,Index+SOC,

CS ;=Initial CS,;Index+SOC,
Map the extracted cycle steps within each cycle for RP.
RP, =RP {SOC,:.CS,,}
RP,=RP {CS, :CS,,}
RP..=RP {CS_.:CS,,}
RP,,=RP {CS,;:SOC,, ,}
ENDFOR

Referring back to FI1G. 1, the machine readable instructions
100 may comprise the process 130 to extract a feature set
from the energy related signal and/or energy related sub-
signal. The feature set 1s extracted by applying mathematical
functions such as time domain functions and/or frequency
domain functions. The time domain functions include mean,
RMS, crest factor, kurtosis, standard deviation, skewness,
peak-to-peak, maximum, minimum, zero-crossing rate, and
the like. Frequency domain features include mean, RMS,
crest factor, kurtosis, standard deviation, skewness, peak-to-
peak, maximum, minimum, Zero-crossing rate, fundamental
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frequency amplitude, harmonic frequency amplitudes, spec-
tral entropy, spectral entropy amplitude, and the like.

The feature set may be extracted by applying the desired
mathematical function to an energy related sub-signal, 1.e.,
the function may be applied to a time block, a cycle ora cycle
step. In one embodiment, where the energy related sub-signal
1s partitioned according to a time block, a total of twenty four
features are extracted per time block (e.g., ten time-domain
and fourteen frequency-domain features). In another embodi-
ment, where the energy related sub-signal 1s partitioned
according to a cycle, nine time domain features per cycle are
extracted. In another embodiment, where the energy related
sub-signal 1s partitioned according to a cycle step, fifteen time
domain features (nine from effective power data and six from
reactive power data) per cycle step are extracted. It 1s noted
that, as the resolution of the partitioning 1s improved (e.g.,
time block to cycle) frequency-domain analysis becomes less
teasible. Furthermore, as the resolution of the partitioning 1s
turther improved (e.g., cycle to cycle step ) robustness may be
improved by extracting features from both the effective
power data and the reactive power data.

Referring still to FI1G. 1, the machine readable mnstructions
100 may comprise the process 140 to reduce a feature set. A
teature set extracted from an energy related sub-signal may be
reduced to a reduced feature set using linear dimensionality
reduction algorithms such as, for example, principal compo-
nent analysis or nonlinear dimensionality reduction algo-
rithms such as, for example, kernel principal component
analysis, locally linear embedding, Hessian locally linear
embedding, Laplacian eigenmaps, and LT'SA. In the embodi-
ments described herein, a principal component analysis may
be utilized for feature reduction. After feature extraction, the
feature set can be characterized as a random variable with a
multivariate normal distribution. Principal component analy-
s1s may transform the feature set mnto a lower dimensional
random variable with substantially independently distributed
components. A covariance matrix may be calculated by

C=coviFsej (3),

where C 1s a covariance matrix of the feature setand F __, 1s the
feature set. Eigenvalues and e1genvectors are represented by

[V.4]=eig(C) (4),

where A 1s a diagonal matrix consisting eigenvalues sorted in
descending order, V 1s the normalized eigenvector matrix
arranged according to the eigenvalues, and C 1s a covariance
matrix of the feature set. The reduced feature set may be
obtained for a given SVD cut-oif value (e.g., 0.93) by select-
ing largest p eigenvalues such that

2 (5)

(6)

where p is the dimension of the reduced feature set, A, is the 1"
cigenvalue from the diagonal matrix A, r 1s the dimension of
the feature set, and the eigenvalues are sorted 1n descending,
order such that A, >A,> ... >A . The feature set 1s accordingly
transformed into a normalized and reduced feature set, which
by definition has a uniform multivariate normal distribution.

Referring still to FI1G. 1, the machine readable mnstructions
100 may comprise the process 150 to conduct a performance
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assessment of the reduced feature set. The performance
assessment analyzes the reduced feature set and classifies the
information by applying pattern recognition techniques such
as, for example, statistical pattern recognition and/or neural
network pattern recognition.

In one embodiment, the performance assessment com-
prises statistical pattern recognition. Statistical pattern recog-
nition analytically compares the probability distribution of a
feature set and/or a reduced feature set. Feature sets can be
modeled as a types of probability distributions (e.g., Gauss-
1an, binomial, Poisson, etc.) and the overlap of the probabaility
distributions being correlated to likeness of feature sets. By
calculating the overlap of probability distribution of a current
teature set with the probability distribution of a known con-
dition (1.e., normal or failure), a system’s performance metric
or probability of failure may be obtained. For example, as
described herein, a reduced feature set generated by a princi-
pal component analysis 1s substantially Gaussian. The over-
lap of reduced feature sets may be calculated by a cumulative
density function of a p degree of freedom Chi-square distri-
bution, where p 1s the dimension of the reduced feature set as
1s described above. Specifically, a one to one comparison of
cach feature 1n the feature sets may be utilized as the random
variable 1n the p degree of freedom Chi-square distribution,
1.€., the difference of each feature may be described by the
Chi-square distribution. Furthermore, a single instance of test
data may be compared to an average of multiple instances of
training data. Therefore, a power-based performance imndex
may be given by

PPI=1-cdf; 7. ()
j=1

; T (8)

Y= (Y -A)V,A,°,

and

A=[11 .. 1], @, (9)

where Y is a reduced feature set of test data, a, is the average
of the 1’ column of the reduced feature sets of training data,
V , 1s eigenvectors from the principle component analysis, A |
1s the e1genvalues from the principle component analysis, and
I=1,2,...,n.

In another embodiment, an artificial neural network 1s uti-
lized to conduct the performance assessment. For example, a
self-organizing map, which 1s a subtype of artificial neural
networks, represents multi-dimensional data 1n lower dimen-
sional space while preserving the topological properties of
the mput space. The self-organizing map may be a single
layer feed-forward neural network with the output nodes
arranged 1n a low dimensional (e.g., 2D or 3D) grid for visu-
alization. In such a configuration, each iput 1s connected to
all output nodes and a weight vector with the same dimen-
sionality as the input vectors 1s attached to every node. The
number of mput dimensions 1s commonly higher than the
output grid dimension.

The self-organizing map may be organized according to
training having a selection and learming process. Node
weilghts matching the input vector are selected and neighbor-
ing nodes change themselves such as by supervised learning
to become more like the input vector. According to the
embodiments described herein, the multi-dimensional data
may be a reduced feature set indicative of machine operation.
The seltf-organizing map may be trained according to a num-
ber of reduced feature sets corresponding to multiple samples
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of training data. The size of the self-organizing map 1s depen-
dent upon the number of samples of training data and 1is
determined by

m=5xVn (10),

where m 1s the si1ze of the map and n 1s the number of samples
of training data.

The traimning may occur over several iterations. In one
embodiment, the training progresses according to the enu-
merated steps below. 1. Each node weight 1s mitialized, for
example, randomly according to an algorithm which approxi-
mates a random number generator. 2. A vector 1s randomly
chosen from the set of training data and presented to the
lattice. 3. Each node 1s examined to calculate a best matching
unit, 1.e., the node weight closest to matching the input vector
in the mput space according to a measuring criterion (e.g., a
distance measure). 4. The radius of the neighborhood of the
best matching unit 1s calculated and any nodes found within
the radius are considered inside the best matching unit’s
neighborhood. 5. Each neighboring node’s weight vector
(from step 4) 1s adjusted to more closely match the input
vector. The closer anode 1s to the best matching unit, the more
its weights get altered. The weight vector 1s adjusted accord-
ing to

Wit+1)=W(H+L(H)(V(5)- (1) (11),

where trepresents the iteration step, L(t) represents a learning
rate that decreases over time, W(t) represents the old weight,
and V(t) represents the input vector. 6. Repeat steps 2-5 above
for a number of 1iterations or until a terminating criterion 1s
met.

A generalized competitive learning scheme may be utilized
to adjust the weight vectors 1n step 5. The generalized com-
petitive learning scheme moves each of the weight vectors to
the regions of vector space that are more dense in the input
vector (e.g., reduced feature set of training data). When an
input vector 1s presented to the generalized competitive leamn-
ing scheme, all representatives compute each other and the
winner 1s updated to incrementally move closer towards the
input vector. For clarity, and not by way of limitation, pseudo-
code for one embodiment of the generalized competitive
learning scheme 1s provided below.

The pseudo-code provided below i1s to be interpreted
according to the immediately following definitions. t repre-
sents the current iteration step. t___ represents the maximum
allowable number of iterations. m, .. represents the initial
allowable number of clusters. m ___represents the maximum
allowable number of clusters. X represents the input vector
with X being a subset of X. W represents the weight vector
with w, being a subset of W.

INITIALIZEt=0and m=m,,,
REPEAT
t=1+1
PRESENT a new randomly selected x from X
DETERMINE the winning representative w;
[F ((x 1s not *similar’ to w;) AND (m < m,,,,) THEN (New Cluster)
M=m+1
w,, =X
ELSE: Parameter Updating
END
UNTIL (Convergence Occurs) OR (t >t )
IDENTIFY a cluster represented by all w;
TERMINATE when criterion |[W({t) - W(t - 1)|| < e is satisfied

A self-organizing map traimned as described above com-
prises a number of clusters depending upon the number of
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cycle steps extracted during partitioning. For example, F1G. 4
depicts a self-organizing map 80 that was trained with train-
ing data having four extracted cycle steps. The self-organiz-
ing map 80 comprises four distinct clusters representing the
different cycle steps (first cycle step 54a, second cycle step
54b, third cycle step 34¢, and fourth cycle step 54d). The

self-organizing map can be used to visualize testing data such
that the testing data 1s depicted as a hit point 82 indicative of
which cycle step the testing data 1s correlated with. Specifi-
cally, each feature set or reduced feature set of test data 1s
indicated as a hit point 82 on the self-organizing map 80 1n
one of the cycle step clusters. Furthermore, a trained seli-
organizing map may automatically classity input vectors by
using a distance measure to match i1t to the neuron whose

weight vector lies closest to the mput vector.

In one embodiment, the distance metric 1s a minimum
quantization error computed as a fault detection measure to
evaluate every incoming test data point. This minimum quan-
tization error quantifies the difference between a known
behavior (e.g., normal operating condition) corresponding to
the traiming data and the test data (e.g., feature set, or reduced
feature set). Each new test data point 1s input 1nto the trained
self-organizing map as a vector and mapped to a location. The
minimum quantization error can be determined by

MQE:HD_WE?muH (12):

where MQE 1s the minimum quantization error, D 1s the
feature vector of the test data, and w,,_ 1s the weight vector
for the best matching unit on the map.

For example, 1f the training data corresponds to healthy
operation, the self-organizing map tracks the cycles and
underlying cycle steps of test data indicative of healthy opera-
tion. Additionally, hit points indicative of healthy operation
are classified according to the machine cycle step which 1s
currently runnming The distance measure may be utilized for
detecting a fault corresponding to an anomalous operation.
For example, the distance between the test data and its best-
matching unit on the self-organizing map will yield a higher
value than during healthy operation. As 1s described in greater
detail below, the distance determined by the mimimum quan-
tization error can be utilized for threshold alarming.

Referring back to FI1G. 1, the machine readable instructions
100 may comprise the process 150 to generate a power-based
performance index. According to the embodiments described
herein, the power-based performance index may be calcu-
lated to predict current behavior or future behavior. Power-
based performance index values utilized for predictions of
current behavior are described herein above such as, for
example, outputs from statistical pattern recognition or mini-
mum quantization error. Power-based performance index val-
ues for predicting future behavior may include parametric and
non-parametric predictive models such as, for example,
(Gaussian process regression, auto-regressive moving aver-
ages, neural network based predictions, similarity based pre-
dictions, particle filter based methods, and regression spline
based predictive models.

In one embodiment, regression spline based predictive
models are utilized to predict future performance degradation
from historic power-based performance indexes. The models
are developed using cubic splines, 1.e., mathematical func-
tions parametrically defined piecewise by polynomials. The
regression spline based predictive models are trained using
historic power-based performance indexes. With each new
performance value, the model parameters are updated to give
a predicted performance value (e.g., for the next cycle or the
next cycle step).
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Alarms may be set to indicate when the regression spline
based predictive model indicates a fault will occur 1n the
future. For example, historic power-based performance
indexes generated by statistical pattern recognition analysis
of training data may be used to set an alarm threshold of 5

PPl oo IMPPI)-30(PFI) (13),

where PPI 1s the historic power-based performance indexes
and PPI, _ . 1s the alarm threshold based on the average and
standard deviation of historic values. When the predicted 10
power-based performance index 1s less than PPI,, __, indica-
tion of a fault may be provided. Similarly, the historic power-
based performance indexes generated by minimum quantiza-
tion error analysis of training data may be used to set an alarm

threshold of 15

PPl

thresh

=max(PPH+30(PPI) (14),

where PPI 1s the historic power-based performance indexes
and PPI, _ . 1s the alarm threshold based on the maximum
and standard deviation of historic values. A potential fault 20
may be predicted to occur 1n the system when predicted
power-based performance index 1s less than PPI, .. With
cach new data point from the test data, a new power-based
performance index can be predicted at least one cycle ahead
and/or at least one cycle step ahead. 25

According to the embodiments described herein, an indus-
trial process may be managed according to an energy prog-
nosis. The energy prognosis may 1dentily the health of an
energy consuming machine by comparing test data to training
data indicative of a known condition. Thus, the energy prog- 30
nosis 1s related to a known condition of the test data (e.g.,
healthy or unhealthy). For example 1n one embodiment, test-
ing data may be analyzed according to time blocks. The time
block information can be analyzed to generate power-based
performance indexes. An energy prognosis may be made 35
when there 1s a statistically significant reduction 1n any two
consecutive power-based performance indexes or when the
power-based performance imndex exceeds a heuristic thresh-
old. In another embodiment, testing data may be analyzed
according to cycles to generate power-based performance 40
indexes. An energy prognosis may be made when a power-
based performance index 1s below a threshold equal to the
mean of the training data minus three standard deviations of
the training data. In a further embodiment, testing data may be
analyzed according to cycle steps to generate power-based 45
performance indexes. An energy prognosis may be made
when a power-based performance index exceeds a threshold
equal to the maximum of the training data plus three standard
deviations of the training data. Additionally 1t 1s noted, that
the energy prognosis may be contemporaneous with the test- 50
ing data, 1.e., a prediction of current behavior, or may be
predictive, 1.e., a prediction of future behavior.

Referring to FIG. 5, one embodiment of a method 200 for
managing an industrial process 1s depicted. The method 200
relies on a user-defined time block for computation of a 55
power-based performance index per time block. The time
block can be estimated from expert operational knowledge
and/or historic data characterizing the industrial process. For
example, idustrial processes typically follow a consistent
operating procedure which yields abundant and representa- 60
tive data with known power usage conditions (normal or
faulty). The data may be utilized for training and estimation of
time block size. The method 200 comprises the process 212
for recerving time block information such as, for example, by
a data entry, output from memory or output of a PLC. The 65
time block information 1s utilized to process training data as
well as testing data. According to the process 214 an effective
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power training data is received. The training data 1s utilized
for supervised training of a model and comprises effective
power data. The training data 1s input to the process 222 to be
partitioned into an eflective power sub-signal. During parti-
tioning, the training data 1s divided 1nto equal segments hav-
ing a length equal to the time block. Following partitioning,
the process 232 extracts a feature set using time domain and
frequency domain functions. The functions are applied across
the entire time block to generate a training feature set. The
process 242 generates a reduced traiming feature set and a
transformation matrix with a principal component analysis.
The principal component analysis operates as described
herein to generate a reduced feature set that 1s normalized and
approximately Gaussian. Additionally, the eigenvalues and
eigenvectors from the analysis of the traiming data may be
utilized as a transformation matrix for use with testing data.

Upon training the model, the method 200 utilizes output
from training to convert eflective power data into a power-
based performance index ranging from about 0 to about 1 for
a normalized model, where 1 1s indicative of an acceptable
level of operation and 0O 1s indicative of an unacceptable level
of operation. The process 210 receives an effective power test
signal from a power consuming machine. The process 220
partitions the effective power signal into an effective power
sub-signal according to the time block. The process 230
extracts a feature set using time domain and frequency
domain functions. The feature set 1s mnput to the process 240,
where the feature set 1s reduced into a reduced feature set with
transformation matrix from training. In alternative embodi-
ments, the reduced feature set may be generated by a principal
component analysis using the same SVD cut-off value from
training. The normalized reduced test feature set 1s input 1nto
process 250 for statistical pattern recognition. Statistical pat-
tern recognition calculates the overlap between the reduced
test feature set and an average of the training feature sets with
a cumulative density function of p degree of freedom Chi-
square distribution. The output of the statistical pattern rec-
ognition, which indicates a probability of failure value
between about 0 and about 1, may be directly used to generate
a power-based performance 1index in process 260. In further
embodiments, an ongoing statistical pattern recognition
model will output numerous power-based performance
indexes. Such indexes may be collected and used with a
prediction algorithm to generate a power-based performance
index that predicts what the power-based performance index
will be for the next time block.

Referring now to FIG. 6, a heuristic alarm band 74 can be
graphed with a power-based performance index curve 70. An
alarm indicating a potential fault occurs when the power-
based performance index curve 70 crosses the heuristic alarm
band 74 (depicted i FIG. 6 as being equal to 0.4). The
heuristic alarm band 74 may be set to any value that estimates
a failure such as, for example, an estimate from process
knowledge or historic data indicative of known failures. In
another embodiment, the alarming mechanism may be imple-
mented such that when a statistically significant degradation
occurs (a statistically significant reduction in any two con-
secuttve power-based performance indexes) an alarm 1s
raised to indicate a potential fault.

Referring now to FIG. 7, another embodiment of a method
300 for managing an industrial process 1s depicted. The
method 300 utilizes a cycle extraction technique to extract
cycle information from reactive power test data for computa-
tion of a power-based performance index per cycle. The cycle
extraction technique does not require a PLC signal as atrigger
to extract cycle information. However, for validation, the
extracted cycle information can be validated against an actual
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PLC signal to ensure the accuracy of the cycle extraction prior
to deploying the model. The method 300 1s largely analogous
to the method 200 with average cycle length replacing time
blocks. Thus, the method 300 may be deployed, e.g., to man-
age 1industrial processes which comprise substantially consis-
tent operating periods where representative data with known
power usage conditions are available for training. The process
312 receives effective power training data and reactive power
training data, which may be synchronized. The process 314
extracts cycles from reactive power traiming data with the
cycle extraction technique. The cycles are extracted from the
training and analyzed by the process 316 to calculate an
average cycle of the training data. Since, industrial processes
commonly operate with consistent cycles, average cycle val-
ues may be utilized to partition efiective power data. The
average cycle 1s utilized in process 322 to partition the effec-
tive power training data into an effective power sub-signal. A
feature set 1s extracted from the effective power sub-signal
using time domain functions 1n process 332. A reduced train-
ing feature set and a transformation matrix 1s generated with
a principal component analysis 1n process 342. An effective
power test signal 1s received by the process 310 and the
elfective power test signal data 1s partitioned 1into an effective
power sub-signal according to the average cycle 1n process
320. A feature set 1s extracted with time domain functions
from the effective power sub-signal, which has been divided
into cycle segments, 1n process 330. The feature set 1s reduced
into a reduced feature set using the transformation matrix
from training in process 340. In process 350, statistical pat-
tern recognition 1s conducted, as 1s described 1n further detail
above, to calculate the overlap between the reduced test fea-
ture set and the average of the reduced training feature sets. A
power-based performance imdex 1s generated in process 360.
The power-based performance index 1s indicative of the over-
lap between the reduced test feature set and the average of the
reduced training feature sets. Therefore, the output of the
statistical pattern recognition may be directly used as the
current power-based performance index, or historic power-
based performance indexes may be input mto a predictive
model to predict a power-based performance index one cycle
into the future.

With reference to FIG. 8, a power-based performance
index may be calculated per cycle using the mathematical
procedures described herein. Predictive alarming may be uti-
lized to provide indications of failures before they occur. For
example, a predictive model may utilize a regression trend of
historic power-based performance indexes 170 to predict a
predicted power-based performance index 172 one cycle
ahead. A statistical threshold 174 may be computed from the
training data as described herein (e.g., F1G. 8 depicts a thresh-
old that 1s three standard deviations below the mean). An
alarm 1s raised when the predicted power-based performance
index 172 falls below the statistical threshold.

A cycle may have intrinsic cycle mmformation that 1s indica-
tive of several independent and consecutive cycle steps
executed during the cycle. For example, 1n a traditional 1njec-
tion molding process, a typical cycle includes several steps
such as, for example, die closing, injection, rotation, die
opening, ejection, and feed. The alorementioned models can
be expanded to incorporate intrinsic cycle information (1.€.
cycle steps) with the power-based performance indexes com-
puted and analyzed per cycle step. Referring to FIG. 9, a
turther embodiment of a method 400 for managing an imndus-
trial process 1s depicted. The method 400 1s similar to the
method 300 and expands on the cycle extraction technique.
An automated cycle step extraction, as 1s described above,
extracts cycle step information to improve the resolution of
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the energy prognosis. An effective power training data and
reactive power training data 1s received at process 412. Cycles
are extracted from the reactive power training data at process
414. An average of the cycles 1s calculated at process 416. The
cycle steps are extracted from the reactive power training data
using an automated cycle step extraction technique at process
419. The elfective power training data 1s partitioned nto an
elfective power sub-signal according to the cycle steps 1n
process 422. The effective power training data may be parti-
tioned according to the cycle step mnformation from the reac-
tive power training data when the two data sets are synchro-
nized. A feature set 1s extracted by applying time domain
functions at a cycle step resolution to both the effective power
training data and the reactive power training data at process
432. A reduced training feature set and a transformation
matrix are generated with a principal component analysis at
process 442. A collection of reduced traiming feature sets are
utilized to generate a self-organizing map at process 463
according to supervised training, as 1s described 1n detail
above.

Atprocess 410, an elffective power test signal and areactive
power test signal are recerved. Cycle steps are extracted from
the reactive power test signal using the average cycle inifor-
mation from the training data and the automated cycle step
extraction technique at process 418. It 1s noted that the use of
average cycle mformation 1s for computational efficiency
with relatively low impact on accuracy for repetitive pro-
cesses. However, other embodiments may utilize the cycle
extraction technique directly on test data when average cycle
calculations lead to relatively high levels of inaccuracy. For
test signals that are synchromized, the effective power test
signal 1s partitioned according to the cycle steps of the reac-
tive power test signal into an effective power sub-signal at
process 420. A test feature set 1s extracted by applying time
domain functions are applied at a cycle step resolution to both
the effective power test sub-signal and the reactive power test
sub-signal at process 430. The test feature set 1s reduced 1nto
a reduced test feature set with the transformation matrix from
the principal component analysis at process 440. The reduced
test feature set 1s input into the self-organizing map and
classified, 1.e., mapped as a hit point at process 464.

Thereduced test feature set 1s also utilized with the reduced
training feature sets to calculate minimum quantization error
at process 450. The mimimum quantization error 1s calculated
to determine the distance the reduced test feature set 1s from
its closest matching reduced training feature set. The distance
measure 1s used for operation tracking and fault detection for
cach cycle step. In other embodiments, the self organizing
map may be utilized to calculate the minmimum quantization
error, as 1s described in more detail above. The power-based
performance index 1s indicative of the distance measure of the
minimum quantization error. Therefore, the distance measure
may be output as the power-based performance 1index at pro-
cess 460. Historic power-based performance indexes may be
input into a predictive model to predict a power-based per-
formance 1ndex one cycle step into the future.

With reference to FIG. 10, a power-based performance
index may be calculated per cycle using the mathematical
procedures described herein. Predictive alarming may be uti-
lized to provide 1ndications of failures one cycle step before
they occur. For example, a predictive model may utilize a
regression trend of historic power-based performance
indexes 270 to predict a predicted power-based performance
index 272 one cycle step ahead. A statistical threshold 274
may be computed from the training data as described herein
(e.g., FIG. 10 depicts a threshold that 1s three standard devia-
tions above the maximum of the training data). An alarm 1s
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raised when the predicted power-based performance imndex
272 exceeds the statistical threshold.

Additionally, 1t 1s noted that the cycle step level analysis
may be utilized to inferentially determine component level
performance. For example, each cycle step of an 1njection
molding process has an internal mechanical component that
consumes electrical energy. Specifically, closing the die and
injection uses an injection motor; rotation uses an injection
motor; die open and ejection uses an ejection motor and a
hydraulic pump; and material feed for next cycle uses a feed
motor. Thus, when a cycle step 1s correlated to a step carried
out by a single power consuming component, quantifying the
power-based performance at the cycle step resolution reveals
information about the component performance such as, for
example, a motor, a pump, or any other component that con-
sumes energy at cycle step increments.

In further embodiments, the energy prognosis may quan-
tify the energy consumed throughout an industrial process by
utilizing a cost based model. The cost based model generates
an energy prognosis indicative of energy consumption and/or
energy cost based upon partitioned energy related signals
and/or production volume data. In one embodiment, the
energy related signal 1s partitioned according to a time block,
cycle, and/or cycle step. The cost based model analyzes the
partitioned signal and generates an energy prognosis indica-
tive of the amount of energy consumed per time block, per
cycle, and/or per cycle step. The energy prognosis can be
utilized to improve the efficiency of the manufacturing pro-
cess by matching consumption to portions of the industrial
process, for example, cycle step power consumption data may
identily inefficient machine components. In another embodi-
ment, production volume information is utilized to generate
an energy prognosis idicative of the amount of energy con-
sumed to per product, 1.€., each product may be provided with
a label (e.g., KkW/product) which describes 1ts production cost
in terms of electrical energy consumed. For example, when an
industnal process has a known fixed production volume, the
amount of energy consumed per 1s determined by a ratio of
the energy consumed per segment (1.€., time block, cycle, or
cycle step) to the production volume per segment. Addition-
ally, the energy prognosis may be extrapolated to describe the
monetary cost (e.g., $/product) of the energy consumed by
multiplying the energy consumption information (e.g.,
kW/product) with a known energy cost (e.g. $/kW).

It 1s noted that the terms “substantially” and “about” may
be utilized herein to represent the inherent degree of uncer-
tainty that may be attributed to any quantitative comparison,
value, measurement, or other representation. These terms are
also utilized herein to represent the degree by which a quan-
titative representation may vary from a stated reference with-
out resulting 1n a change 1n the basic function of the subject
matter at 1ssue.

While particular embodiments have been 1llustrated and
described herein, 1t should be understood that various other
changes and modifications may be made without departing
from the spirit and scope of the claimed subject matter. More-
over, although various aspects of the claimed subject matter
have been described herein, such aspects need not be utilized
in combination. It 1s therefore mtended that the appended
claims cover all such changes and modifications that are
within the scope of the claimed subject matter.

What is claimed 1s:

1. A method for managing an industrial process wherein a
processor transforms an energy related test signal into an
energy prognosis, the method comprising:
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recerving automatically with the processor the energy
related test signal comprising eifective power test data
indicative of electrical energy consumed by an energy
consuming machine;

partitioning automatically with the processor the energy
related test signal 1nto an energy related test sub-signal;

applying automatically with the processor mathematical
functions to the energy related test sub-signal to extract
a feature set of data from the energy related test sub-

signal;
transforming automatically with the processor the feature
set of data with a transformation matrix into a reduced
test feature set;
inputting automatically with the processor the reduced test
feature set into a performance assessment algorithm,
wherein the performance assessment algorithm 1s based
at least 1n part upon a reduced training feature set dertved
from data indicative of electrical energy consumed dur-
ing healthy operation; and
generating automatically with the processor the energy
prognosis, wherein the energy prognosis 1s based at least
in part upon a power-based performance index calcu-
lated by the performance assessment algorithm.
2. The method for managing an industrial process of claim
1 further comprising calculating automatically with the pro-
cessor a difference between the power-based performance
index and a prior-consecutive power-based performance
index, and generating automatically with the processor a fault
indication when the difference exceeds a threshold.
3. The method for managing an industrial process of claim
1 further comprising;:
inputting automatically with the processor the power-
based performance mndex 1nto a performance prediction
algorithm, wherein the performance prediction algo-
rithm 1s trained with a set of historic power-based per-
formance indexes:
predicting automatically with the processor a future per-
formance index with the performance prediction algo-
rithm, wherein the future performance index 1s based at
least 1n part upon the power-based performance index;
and
generating automatically with the processor a fault indica-
tion when the future performance index exceeds a
threshold.
4. The method for managing an industrial process of claim
1 further comprising providing a user interface automatically
with the processor to receive a time block wherein the energy
related test sub-signal 1s partitioned according to the time
block.
5. The method for managing an industrial process of claim
1 further comprising;:
providing reactive power training data indicative of elec-
trical energy consumed during healthy operation;
locating automatically with the processor a first peak
within the reactive power training data;
identifying automatically with the processor a first subse-
quent near-zero within the reactive power training data
that 1s nearest to the first peak wherein, the first subse-
quent near-zero occurs after the first peak;
locating automatically with the processor a second peak
within the reactive power training data wherein, the sec-
ond peak occurs aiter the first peak;
identilying automatically with the processor a second sub-
sequent near-zero within the reactive power training
data that 1s nearest to the second peak wherein, the first
subsequent near-zero occurs after the first peak; and
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calculating automatically with the processor a cycle length
based at least 1n part upon the first subsequent near-zero
and the second subsequent near-zero.

6. The method for managing an industrial process of claim
5 further comprising calculating automatically with the pro- 5
cessor an average cycle length of the reactive power training
data, wherein the energy related test sub-signal 1s partitioned
according to the average cycle length.

7. The method for managing an industrial process of claim
5 wherein the energy related test signal comprises reactive
power test data, Turther comprising:

associating automatically with the processor the cycle

length with the reactive power test data indicative of
clectrical energy consumed by the energy consuming
machine, wherein the cycle length 1s associated with a
start point corresponding to a beginning of an industrial-
machine cycle;

extracting automatically with the processor a cycle step

from the reactive power test data, wherein the cycle step
1s based at least in part upon the start point and a subse-
quent minimum within the reactive power test data that
occurs after the start point; and

associating the cycle step with the effective power test data.

8. The method for managing an industrial process of claim
1 turther comprising;:

providing real power training data indicative of electrical

energy consumed during healthy operation;

applying automatically with the processor the mathemati-

cal functions to the real power training data to extract a
training feature set of data from the real power traiming
data; and

transforming automatically with the processor the training

feature set of data with a dimensionality reduction algo-
rithm 1nto the reduced training feature set, wherein the
transformation matrix 1s defined by the dimensionality
reduction algorithm.

9. The method for managing an industrial process of claim
1 turther comprising calculating automatically with the pro-
cessor a statistical overlap of the reduced training feature set
and the reduced test feature set with a statistical pattern rec-
ognmtion algorithm, wherein the performance assessment
algorithm comprises the statistical pattern recognition algo-
rithm and the power-based performance index 1s indicative of
the statistical overlap of the reduced traiming feature set and
the reduced test feature set.

10. The method for managing an industrial process of
claim 1 further comprising:

training automatically with the processor a self-organizing

map with the reduced training feature set;

inputting automatically with the processor the reduced test 50

feature set 1into the self-organizing map;

mapping automatically with the processor the reduced test

feature set to a location 1n the self-organizing map that
best correlates to the reduced test feature set.

11. The method for managing an industrial process of 55
claim 10 further comprising calculating automatically with
the processor a distance measure indicative of a comparison
ol the location 1n the self-organizing map and the reduced test
feature set.

12. The method for managing an industrial process of 60
claam 1 wherein the energy prognosis 1s indicative of an
amount of energy consumed to per product.

13. The method for managing an industrial process of
claim 1 wherein the energy prognosis 1s an indication of a
statistically significant delta between an immediately prior 65
power-based performance index and the power-based pertor-
mance index, an alarm when the power-based performance
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index exceeds a first threshold or a prediction that a future
power-based performance index will exceed a second thresh-
old based at least 1n part upon the power-based performance
index.
14. The method for managing an industrial process of
claim 1 wherein the energy related test signal further com-
prises data indicative of temperature, humidity, pressure,
voltage, or current.
15. The method for managing an industrial process of
claim 1 wherein the mathematical functions comprise a time
domain function applied to a time block, a cycle or a cycle
step.
16. An energy management system comprising:
an energy consuming machine for producing a product;
an energy sensor communicably coupled to the energy
consuming machine wherein the energy sensor gener-
ates an energy related test signal comprising real power
test data and reactive power test data indicative of energy
consumed by the energy consuming machine;
a processor communicably coupled to the energy sensor,
wherein the processor executes machine readable
instructions to:
receive the energy related test signal;
partition the energy related test signal into an energy
related test sub-signal;

apply time domain functions and/or frequency domain
functions to the energy related test sub-signal to
extract a feature set of data from the energy related
test sub-signal;

transform the feature set of data with a principle com-
ponent analysis 1to a reduced test feature set;

compare the reduced test feature set to training data
indicative of a normal operating condition of the
energy consuming machine;

generate a power-based performance index with a per-
formance assessment algorithm, wherein the power-
based performance index 1s based at least 1n part upon
a difference between the reduced test feature set and
the training data; and

generate a fault indication based at least 1in part upon the
power-based performance 1index.

17. The energy management system of claim 16 wherein
the processor executes the machine readable instructions to:

extract a cycle step from the reactive power test data;

associate the cycle step with the real power test data; and

generate a component level performance prediction related
to health of a component of the energy consuming
machine.

18. The energy management system of claim 16 wherein
the energy consuming machine 1s a milling machine, a press-
ing machine, an injection molding machine or a grinding
machine.

19. The energy management system of claim 16 wherein
the energy sensor 1s a temperature sensor, a humidity sensor,
a pressure sensor, a current sensor, a voltage sensor, a power
sensor, or an output from a controller.

20. A toolkat for managing an industrial process, wherein
the toolkat 1s stored on a machine readable medium and com-
prises machine readable instructions to transform an energy
related test signal into an energy prognosis, the machine
readable 1nstructions comprising:

a signal loading algorithm to receive the energy related test
signal comprising real power test data indicative of elec-
trical energy consumed by an energy consuming
machine;

a partitioning algorithm to transform the energy related test
signal into an energy related test sub-signal;



US 8,527,223 B2

21

a feature extraction algorithm to transform the energy
related test sub-signal into a feature set of data from the
energy related test sub-signal;

a dimensionality reduction algorithm to transform the fea-
ture set of data into a reduced test feature set;

a performance assessment algorithm for comparing the
reduced test feature set to a baseline indicative of a
normal operating condition of the energy consuming
machine;

a performance prediction algorithm for generating the
energy prognosis that forecasts a future health condition
of the energy consuming machine based at least in part
upon the reduced test feature set; and

a visualization algorithm for displaying the energy prog-
nosis.
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