US008521948B2
a2 United States Patent (10) Patent No.: US 8.521.948 B2
Post et al. 45) Date of Patent: Aug. 27,2013
(54) HANDLING DYNAMIC AND STATIC DATA 8,103,821 B2* 1/2012 Changetal. 711/103
FOR A SYSTEM HAVING NON-VOLATILE 8,266,481 B2* 9/2012 Moshayedr 714/710
MEMORY 8,275,928 B2 9/2012 Lin .oooovviiiniiinnn, 711/103
2005/0114589 Al* 5/2005 Lofgrenetal. ... 711/103
_ _ _ 2005/0132126 Al 6/2005 Lin et al.
(75) Inventors: Daniel J. Post, Cupertino, CA (US); Nir 2007/0294490 Al 12/2007 Freitas et al.
J. Wakrat, Los Altos, CA (US) 2008/0282025 A1 11/2008 Biswas et al.
2009/0240873 Al 9/2009 Yu et al.
; : : 2009/0265508 A1 10/2009 Bennett et al.
(73) Assignee: Apple Inc., Cupertino, CA (US) 2010/0037006 Al 2/2010 Chen et al.
: : : : : 2010/0169542 Al 7/2010 Sinclair
(*) Notice: Subject to any disclaimer, the term of this 2010/0174845 Al* 7/2010 Gorobets et al. 711/103
patent is extended or adjusted under 35 2010/0211737 Al* 82010 Flynnetalcocoo....... 711/114
U.S.C. 154(b) by 285 days. 2010/0268871 Al 10/2010 Lee et al.
2011/0022819 Al* 1/2011 Postetal.ocooevevnn.. 711/207
(21) Appl. No.: 12/983,715 2011/0029715 Al* 22011 Huetal.oococcoov..... 711/103
5 Filed Jan. 3. 2011 FOREIGN PATENT DOCUMENTS
(22) He A s EP 1804169 7/2007
(65) Prior Publication Data * cited by examiner
US 2012/0173832 Al Jul. 5, 2012 Primary Examiner — Hiep Nguyen
(51) Int.Cl. (74) Attorney, Agent, or Firm — Van Court & Aldrigde LLP
GO6F 12/00 (2006.01)
(52) U.S.Cl (37) ABSTRACT
USPC oo 711/103 Systems and methods are disclosed for handling dynamic and
(58) Field of Classification Search static data for a system having non-volatile memory
None (“NVM”). By determinming whether data being written to the

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

NVM 1s dynamic or not, a NVM 1nterface of a system can
determine where to mitially place the data on the NVM (e.g.,
place the data on either a dynamic stream block or a static
stream block). Moreover, this information can allow the
NVM interface to improve the efficiencies of both garbage

5388.083 A 7/1995 Assar et al. collection (“GC”) and wear leveling.
8,028,121 B2* 9/2011 Jeongcocoovvvvvvvvirnnnnns, 711/103
8,090,899 Bl1* 1/2012 Syu ..oooviiieeiiiiiniiinnn, 711/103 28 Claims, 8 Drawing Sheets
600
802
START 604
' .
RECEIVE AWRITE REQUEST
CORRESPONDING TO A LBA RANGE
I __606

OBTAIN AT LEAST ONE PARAMETER
FROM A TREE, WHERE THE
TREE STORES LOGICALTO

PHYSICAL ADDHESS MAPPINGS

LEA RANGE DYNAMIC BASED
ATLEAST IN PART ON THE

608

S DATA
ASSOCIATED WITH THE

614 |
~_PARAMETER
PROGRAM THE L 610
DATAASSOCIATED YES .
WITHTHEWRITE | [e e DATAASSOGIATED
WITH THE WRITE REQUESTTO A
STATIC STREAM
DYNAMIC STREAM BLOCK
BLOCK OF A NVM S ANUM

US 8,521,948 B2

Sheet 1 of 8

Aug. 27, 2013

U.S. Patent

S VdadLNI
MNAN

L B B N B DL B B DL B B D B DL D I B O I B B B B BN

JUS

LN N N N B B N B O O N O O I O O I O O I O O I O O N O O B O O B O O B O O I O O I O O I O O B O D B O O B O O B O O B O B B O B B O O B O B B O D N O B B O O B D B T O B B N B N O D N D B B D D N D B B B B A

AOIADU DINOALOZ T2

L N B A N NN EEEEEEEEEEIEEIEEEIEIEEEEEEEEIEEEEEEEEEEEEIEEEIEEIEEEEEEIEIEEIEEIEIEIEIIEIEEEEIEEENEERN

Ad.LINOHEID
HOHLINOO
PG

A OWIN

f+ +f ¥+ +f+ ¥+ ++F+++F+FFFLFFFPFFPrPFFrPFLPErrFEPSFPSSSFrSSFSSFESrSFESFSEFELFELEsEr

US 8,521,948 B2

Sheet 2 of 8

Aug. 27, 2013

U.S. Patent

072

00¢

LAY
HAAY |

HITIOHLNOD
NOLLYISNYHL |

SHE

AN e AN 0

AAN

917 AV

gle dOVAHALNI WAN

US 8,521,948 B2

Sheet 3 of 8

Aug. 27, 2013

U.S. Patent

SoddU0V
WIS AHG

b Ol

Ld
ﬁ e

4

4

4

4

4

1

et |

1

L]

4

4

= .

L]

4

4

4

4

e .
L

4
4
w 1
1
4

-Gd | 092

4
4

.

'

N

4

4

f 4

]

. f
'

.

4

]

f

" f
4

.

.

f

4

|] F

ol
€|

* 1
. 1
H 4

4

1

4

4

4

1

e L]
1

1

> 1

> :
* .
4

4
bed |
1

" 1
.

- 1
1

1

4

F ’
1

-
-
iTw

-
<
O

-
N

-

w 1
“ 4
4
4
4
1
4

U.S. Patent Aug. 27, 2013 Sheet 4 of 8 US 8,521,948 B2

408 400

301 iii 1@2
1
-

41— 10

IWMM.

&
)
&
]
&
o 5
-
. H
F]
=
L)
-
Tty Py,
L] L]

L] & -

L] ok LI

- LR
LT
. &

b2 o T L 2 2 . [2 2 & Pl b

Y

L
48 432

RANGE
434

PAGE ADDREDSS
435

COUNTER
436~

JoER WEAVE
SEC}UENCE ‘

437
PR

U.S. Patent Aug. 27, 2013 Sheet 5 of 8 US 8,521,948 B2

500
506 508 504 502

| PAGE | WEAVE | O
| ADDRESS | SEQUENCE | (/o |

-
ii

U.S. Patent Aug. 27, 2013 Sheet 6 of 8 US 8,521,948 B2

500
602

rjﬁ?

RECEIVE AWRITE REQUEST
CORRESPONDING TO A LBA RANGE

slbie

OBTAIN AT LEAST ONE PARAMETER
FROM A TREE, WHERE THE
TREE STORES LOGICAL TO

PHYSICAL ADDRESS MAPPINGS

aaa

T ISDATA TS
" ASSOCIATED WITH THE ™
| BA RANGE DYNAMIC BASED
AT LEAST IN PART ON THE
~ ATLEASTONE =~

~~._ PARAMETER _~

-
k|
-

PROGRAM THE

DATA ASSOCIATED | YES 010
Wﬁg@*ﬁéﬂég}” %f ~ PROGRAM THE DATAASSOCIATED |
. WITH THE WRITE REQUEST TO A
STATIC STREAM
3LOCK OF A NVM DYNAMIC STREAM BLOCK
OF ANVM

U.S. Patent Aug. 27, 2013 Sheet 7 of 8 US 8,521,948 B2

- 4
-
-

-

| DETERMINE THAT GC NEEDS TO BE|

PERFORMED ON A BLOCK

706
SELECT A PAGE OF THE BLOCK:
THAT HAS VALID DATA

708

vea 15 DATASTORED ™~
ON THE PAGE

S _DYNAMIC DATA
71
P - , . NO /18
COPY THE DATA v .
TO A DYNAMIC COPRPY THE DATATO
STREAM Bl OCK A STATIC STREAM |

BLOCK OF ANVM |

o PR P

L A

OF ANVM

712

—~ARE THERE™

7 ADDITIONAL

<___PAGES OF THE BLOCK THAT ===
~~_ HAVE VALID DATA "

1

I RAL
ERAGE THE BLOGK

U.S. Patent Aug. 27, 2013 Sheet 8 of 8 US 8,521,948 B2

800
—
304
.........
OF ATREE TO DETERMINE A

DISTRIBUTION OF THE DYNAMIC
CHARACTERISTIGS OF DATASTORED ON ANVM |

 SELECT A BLOCK FROM THE NVM THAT IS
HIGH-CYCLED BLOCK OF THE NVM

808

18 THE BLOCK A™_NO
“~_DYNAMIC BLOCK_—

812
ASSIGN THE BLOCK AS A STATIC STREAM BLOCK

814

516
“15 DATA STORED ON™

COPYTHEDATA| vps -
TO ADYNAMIC =< APAGE OF THE BLOCK
STREAM BLOCK

-)
L - b b

L)

L]
-
-y
d -
‘. -
d =
" h
. " L
[=
Iy = N .
" t | *
-
-
.. !
I3
-
. {h L]
> [
-
-
-

{

‘m"ﬁﬁ 320

TOPY THE DATATO A
STATIC STREAM BLOCK

iii

~"ARE THERE ~

" ADDITIONAL PAGES ON ™_YES

o THE BLOCK THAT HAVE "
~_ VALIDDATA _~~

US 8,521,948 B2

1

HANDLING DYNAMIC AND STATIC DATA
FOR A SYSTEM HAVING NON-VOLATILE
MEMORY

BACKGROUND OF THE DISCLOSURE

NAND tlash memory, as well as other types of non-volatile
memories (“NVMs™), are commonly used for mass storage.
For example, consumer electronics such as portable media
players often include tlash memory to store music, videos,
and other media.

A NVM may include both data that 1s needed by an elec-
tronic device (e.g., “valid data”) and data that 1s no longer
needed by the electronic device (e.g., “invalid data™). Valid
data stored 1n a NVM can further be separated into data that 1s
frequently updated or changed (e.g., “dynamic data”) and
data that 1s rarely updated or changed (e.g., “static data”).
Conventionally, the placement of data in the NVM 1s rather
arbitrary, such that there may be a mixture of dynamic and
static data stored 1n a single block of the NVM.

Some NVMs are configured such that a block of pro-
grammed memory locations needs to be erased before any of
the memory locations in the block can be reprogrammed.
Theretore, electronic devices typically perform an operation
referred to as “garbage collection” (“GC”) to free up blocks
for erasing and reprogramming. To free up all of the memory
locations 1n that block for erasing, the electronic device may
copy the block’s valid data into memory locations of another
block. Because there 1s a mixture of dynamic and static data
on a block, the efliciency of GC can be low because the
amount of valid data that has to be copied may be significant.

In addition, electronic devices may sometimes perform GC
on a block using an operation referred to as “wear leveling”.
Wear leveling 1s generally used to extend the usetul life of the
NVM. Oftentimes, systems may perform unnecessary wear
leveling of the NVM, which may 1n factresult in more wear of

the NVM.

SUMMARY OF THE DISCLOSUR.

(L]

Systems and methods are disclosed for handling dynamic
and static data for a system having non-volatile memory. By
determining whether data being written to the NVM 1s
dynamic, a NVM 1nterface of a system can determine where
to mitially place data on the NVM. Moreover, this allows the
NVM interface to improve the efficiencies of both garbage
collection and wear leveling.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and advantages of the mven-
tion will become more apparent upon consideration of the
following detailed description, taken 1n conjunction with
accompanying drawings, in which like reference characters
refer to like parts throughout, and in which:

FIGS. 1 and 2 are block diagrams of electronic devices
configured 1n accordance with various embodiments of the
imnvention;

FIG. 3 1s a block diagram of an illustrative mapping of
logical block addresses to physical pages 1 accordance with
various embodiments of the invention;

FIG. 4 15 a block diagram of an 1illustrative tree used for
providing logical to physical address mappings in accordance
with various embodiments of the invention;

FIG. 5 1s a graphical view of metadata that can be associ-
ated with user data 1 accordance with various embodiments
of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 1s a flowchart of an 1llustrative process for program-
ming data to a non-volatile memory 1n accordance with vari-
ous embodiments of the invention;

FIG. 7 1s a flowchart of an illustrative process for perform-
ing garbage collection on a non-volatile memory 1n accor-
dance with various embodiments of the invention; and

FIG. 8 1s a flowchart of an illustrative process for deter-
mining whether to perform wear leveling on a non-volatile
memory in accordance with various embodiments of the
invention.

DETAILED DESCRIPTION OF TH.
DISCLOSURE

L1l

Systems and methods for handling dynamic and static data
for a system having non-volatile memory (“NVM™) are pro-
vided. By determining whether data being written to the
NVM 1sdynamic, a NVM interface of a system can determine
where to mitially place the data on the NVM. Moreover, this
allows the NVM interface to improve the efficiencies of both
garbage collection (“GC”’) and wear leveling.

For example, 1n response to receiving a write request cor-
responding to a logical block address (“LBA”) range, the
NVM interface can determine whether data associated with
the LBA range 1s dynamic. In some embodiments, the NVM
interface can make this determination based on one or more
parameters obtained from a tree or metadata. The one or more
parameters can be any suitable parameter such as, for
example, a counter indicating the number of times a particular
L.BA range has been written, a user weave sequence mndicat-
ing when data was last written to a LBA range by an appli-
cation and/or operating system, a weave sequence indicating
when data was last written to a LBA range by any source (e.g.,
by a GC process or by an application or operating system),
and/or any combination thereof. Based on the determination
of whether data associated with the LBA range 1s dynamic or
not dynamic, the NVM 1nterface can program the data to
either a dynamic stream block or a static stream block.

As used herein, a “dynamic stream block™ may be any
suitable block of the NVM that has been assigned by the
NVM interface as part of a dynamic stream. Incoming data
that 1s classified as dynamic may be selectively placed on one
or more dynamic blocks. Likewise, as used herein, a “static
stream block™ may be any suitable block of the NVM that has
been assigned by the NVM interface as part of a static stream.
Incoming data that 1s classified as static may be selectively
placed on one or more static blocks.

By splitting incoming data into two separate write streams,
GC write amplification can be reduced and the efficiency of
GC can consequently be improved. In addition, the determi-
nation of whether data 1s dynamic allows the NVM 1nterface
to avoid unnecessary wear leveling of the NVM.

FIG. 1 1llustrates a block diagram of electronic device 100.
In some embodiments, electronic device 100 can be or can
include a portable media player, a cellular telephone, a
pocket-sized personal computer, a personal digital assistance
(“PDA”), a desktop computer, a laptop computer, and any
other suitable type of electronic device.

Electronic device 100 can include system-on-a-chip
(“So(C”’) 110 and non-volatile memory (“NVM™) 120. Non-
volatile memory 120 can include a NAND flash memory
based on floating gate or charge trapping technology, NOR
flash memory, erasable programmable read only memory
(“EPROM?”), electrically erasable programmable read only
memory (“EEPROM?”), Ferroelectric RAM (“FRAM”), mag-
netoresistive RAM (“MRAM?”), or any combination thereof.

US 8,521,948 B2

3

NVM 120 can be organized into “blocks™, which can the
smallest erasable umt, and further organized into “pages”,
which can be the smallest unit that can be programmed or
read. In some embodiments, NVM 120 can include multiple
integrated circuits, where each integrated circuit may have
multiple blocks. Memory locations (e.g., blocks or pages of
blocks) from corresponding integrated circuits may form
“super blocks”. Fach memory location (e.g., page or block) of
NVM 120 can be referenced using a physical address (e.g., a
physical page address or physical block address).

System-on-a-chip 110 can include SoC control circuitry
112, memory 114, and NVM 1interface 118. SoC control cir-
cuitry 112 can control the general operations and functions of
SoC 110 and the other components of SoC 110 or device 100.
For example, responsive to user inputs and/or the instructions
ol an application or operating system, SoC control circuitry
112 can 1ssue read or write requests to NVM interface 118 to
obtain data from or store data in NVM 120. For clarity, data
that SoC control circuitry 112 may request for storage or
retrieval may be referred to as “user data”, even though the
data may not be directly associated with a user or user appli-
cation. Rather, the user data can be any suitable sequence of
digital mnformation generated or obtained by SoC control
circuitry 112 (e.g., via an application or operating system).

SoC control circuitry 112 can include any combination of
hardware, software, and firmware, and any components, Cir-
cuitry, or logic operative to drive the functionality of elec-
tronic device 100. For example, SoC control circuitry 112 can
include one or more processors that operate under the control
of software/firmware stored in NVM 120 or memory 114.

Memory 114 can include any suitable type of volatile
memory, such as random access memory (“RAM”) (e.g.,
static RAM (“SRAM”), dynamic random access memory
(“DRAM?”), synchronous dynamic random access memory
(“SDRAM?”), double-data-rate (“DDR”) RAM), cache
memory, read-only memory (“ROM”), or any combination
thereol. Memory 114 can include a data source that can
temporarily store user data for programming into or reading,
from non-volatile memory 120. In some embodiments,
memory 114 may act as the main memory for any processors
implemented as part of SoC control circuitry 112.

NVM mterface 118 may include any suitable combination
of hardware, software, and/or firmware configured to act as an
interface or driver between SoC control circuitry 112 and
NVM 120. For any software modules included in NVM inter-
face 118, corresponding program code may be storedin NVM
120 or memory 114.

NVM nterface 118 can perform a variety of functions that
allow SoC control circuitry 112 to access NVM 120 and to
manage the memory locations (e.g., pages, blocks, super
blocks, integrated circuits) of NVM 120 and the data stored
therein (e.g., user data). For example, NVM interface 118 can
interpret the read or write requests from SoC control circuitry
112, perform wear leveling, and generate read and program
instructions compatible with the bus protocol of NVM 120.

While NVM interface 118 and SoC control circuitry 112
are shown as separate modules, this 1s mntended only to sim-
plify the description of the embodiments of the invention. It
should be understood that these modules may share hardware
components, solftware components, or both. For example,
SoC control circuitry 112 may execute a soltware-based
memory driver for NVM 1nterface 118.

In some embodiments, electronic device 100 can include a
target device, such as a flash memory drive or SD card, that
includes NVM 120 and some or all portions of NVM interface
118. In these embodiments, SoC 110 or SoC control circuitry
112 may act as the host controller for the target device. For

5

10

15

20

25

30

35

40

45

50

55

60

65

4

example, as the host controller, SoC 110 can 1ssue read and
write requests to the target device.

FIG. 2 1llustrates a block diagram of electronic device 200,
which may 1llustrate 1n greater detail some of the firmware,
soltware, and/or hardware components of electronic device
100 (FIG. 1) 1n accordance with various embodiments. FElec-
tronic device 200 may have any of the features and function-
alities described above in connection with FIG. 1, and vice
versa. As shown, dashed lines demarcate the layers. It 1s
understood that the depiction of which components fall
within the demarcation lines are merely illustrative and that
one or more components can be affiliated with a different
layer.

Electronic device 200 can include file system 210, NVM
driver 212, NVM bus controller 216, and NVM 220. In some
embodiments, file system 210 and NVM driver 212 may be
software or firmware modules, and NVM bus controller 216
and NVM 220 may be hardware modules. Accordingly, 1n
these embodiments, NVM driver 212 may represent the soft-
ware or firmware aspect of NVM interface 218, and NVM bus
controller 216 may represent the hardware aspect of NVM
interface 218.

File system 210 can include any suitable type of file sys-
tem, such as a File Allocation Table (“FAT™) file system or a
Hierarchical File System Plus (“HFS+”), and may be part of
the operating system of electronic device 200 (e.g., part of
SoC control circuitry 112 of FIG. 1). In some embodiments,
file system 210 may include a flash file system, which pro-
vides a logical to physical mapping of pages. In these embodi-
ments, file system 210 may perform some or all of the func-
tionalities of NVM driver 212 discussed below, and therefore
file system 210 and NVM driver 212 may or may not be
separate modules.

File system 210 may manage file and folder structures for
the application and operating system. File system 210 may
operate under the control of an application or operating sys-
tem running on electronic device 200, and may provide write
and read requests to NVM driver 212 when the application or
operating system requests that information be read from or
stored in NVM 220. Along with each read or write request,
file system 210 can provide a logical address to indicate
where the user data should be read from or written to, such as
a logical page address or a logical block address with a page
olfset.

File system 210 may provide read and write requests to
NVM driver 212 that are not directly compatible with NVM
220. For example, the logical addresses may use conventions
or protocols typical of hard-drive-based systems. A hard-
drive-based system, unlike flash memory, can overwrite a
memory location without first performing a block erase.
Moreover, hard drives may not need wear leveling to increase
the litespan of the device. Therefore, NVM interface 218 can
perform any functions that are memory-specific, vendor-spe-
cific, or both to handle file system requests and perform other
management functions 1n a manner suitable for NVM 220.

NVM driver 212 can include translation layer 214. In some
embodiments, translation layer 214 may be or include a flash
translation layer (“FTL”). On a write request, translation
layer 214 can map the provided logical address to a {iree,
crased physical location on NVM 220. On a read request,
translation layer 214 can use the provided logical address to
determine the physical address at which the requested data 1s
stored. Because each NVM may have a different layout
depending on the size or vendor of the NVM, this mapping
operation may be memory and/or vendor-specific.

In addition to logical-to-physical address mapping, trans-
lation layer 214 can perform any other suitable functions that

US 8,521,948 B2

S

may be typical of tlash translation layers. For example, trans-
lation layer 214 can perform garbage collection (“GC”) to
free up a programmed block of NVM 220 for erasing. Once
freed and erased, the memory locations can be used to store
new user data recerved from file system 210, for example. In
some cases, the GC process may 1mvolve copying the valid
data from the programmed block to another block having
erased memory locations, thereby invalidating the valid data
in the programmed block. Once all of the memory locations 1n
the programmed block have been invalidated, translation
layer 214 may direct bus controller 216 to perform an erase
operation on the programmed block. As used herein, “valid
data” may refer to user data that has been programmed 1n
response to the most recent write request corresponding to
one or more logical addresses (e.g., LBAs), and may therefore
be the valid version of user data for the one or more logical
addresses.

As another example, translation layer 214 can perform
wear leveling on NVM 220, which may be used to distribute
wear on various blocks of NVM 220. Wear leveling 1s neces-
sary because a portion of NVM 220 may be cycled substan-
tially more than other portions of NVM 220 (e.g., beyond a
cycling specification), which can potentially cause the system
to run out of useable space. In addition, excessive wear on a
small portion of NVM 220 may lead to worse data retention
overall.

Translation layer 214 can perform wear leveling by first
monitoring the number of cycles (e.g., erase cycles and/or
write cycles) that each block of NVM 220 has cycled through.
Then, at a suitable time (e.g., during idle time or during a GC
process), translation layer 214 can selecta block oTNVM 220
to 1itiate wear leveling. In some embodiments, the block
may be selected using a wear-leveling queue.

After selecting the block, translation layer 214 can 1nitiate
wear leveling on that block. For example, translation layer
214 may perform GC on the block (e.g., by copying the valid
data stored on the block to another block and erasing the
block).

In some embodiments, NVM driver 212 may interface with
NVM bus controller 216 to complete NVM access requests
(e.g., program, read, and erase requests). Bus controller 216
may act as the hardware iterface to NVM 220, and can
communicate with NVM 220 using the bus protocol, data
rate, and other specifications of NVM 220.

NVM interface 218 may manage NVM 220 based on
memory management data, sometimes referred to herein as
“metadata”. The metadata may be generated by NVM driver
212 or may be generated by a module operating under the
control of NVM driver 212. For example, metadata can
include any information used for managing the mapping
between logical and physical addresses, bad block manage-
ment, wear leveling, ECC data used for detecting or correct-
ing data errors, or any combination thereof. The metadata
may include data provided by file system 210 along with the
user data, such as a logical address. Thus, 1n general, “meta-
data” may refer to any information about or relating to user
data or used generally to manage the operation and memory
locations of a non-volatile memory.

NVM interface 218 may be configured to store metadata in
NVM 220. In some embodiments, NVM interface 218 may
store metadata associated with user data at the same memory
location (e.g., page) in which the user data 1s stored. For
example, NVM 1nterface 218 may store user data, the asso-
ciated logical address, and ECC data for the user data at one
or more memory locations of NVM 220. NVM interface 218

may also store other types of metadata about the user data in

10

15

20

25

30

35

40

45

50

55

60

65

6

the same memory location. Metadata will be discussed in
more detail in connection with FIG. §.

NVM interface 218 may store the logical address so that,
on power-up of NVM 220 or during operation of NVM 220,
clectronic device 200 can determine what data resides at that
location. In particular, because file system 210 may reference
the user data according to 1ts logical address and not its
physical address, NVM interface 218 may store the user data
and logical address together to maintain their association.
This way, even if a separate table maintaining the physical-
to-logical mapping in NVM 220 becomes outdated, NVM
interface 218 may still determine the proper mapping at
power-up or reboot of electronic device 200, for example.

Referring now to FIG. 3, a block diagram 1illustrating an
example mapping of logical block addresses 302 to physical
pages 304 1s shown. Logical block addresses can correspond
to logical blocks 1n a logical space. Each logical block can be
the smallest granular unit of the logical space that can be read
from and/or written to, and can have any suitable size such as,
for example, 512 bytes, 4K, or 8K.

A file system (e.g., file system 210 of FIG. 2) can allocate
any suitable number of LBAs to a file. For instance, as shown
in FI1G. 3, LBAs 302 can correspond to files A-G, where each
of the files A-G 1s allocated a particular LBA range. For
example, file A 1s allocated LBA range 0-39, file B 1s allocated
LBA range 40-99, file C 1s allocated LBA range 100-339, and
so on. The size of each file A-G 1s shown by the numbered
spans to the left of the files.

In addition, LBAs may be used by the file system to refer-
ence data stored 1n one or more memory locations of a NVM
(e.g., NVM 120 of FIG. 1 or NVM 220 of FIG. 2). For
example, each LBA of LBAs 302 can map to a page of pages
304. Accordingly, each LBA can map to the physical address
of a corresponding page. As shown 1n FIG. 3, for instance, the
LBA range for file A maps to the physical addresses begin-
ning with P2 and ending with P3-1, the LBA range for file B
maps to the physical addresses beginning with PO and ending
with P1-1, and so on.

FIG. 4 shows a block diagram of tree 400, which may be
used to provide logical to physical mappings. In particular,
tree 400 can provide a mapping between LBA ranges (e.g.,
LBA ranges of LBAs 302 of FIG. 3) and corresponding physi-
cal addresses (e.g., physical addresses of pages 304 of FIG. 3)
ofaNVM (e.g., NVM 120 of FIG. 1 or NVM 220 of FIG. 2).
In some embodiments, tree 400 can be stored and maintained
in volatile memory (e.g., memory 114 of FIG. 1).

Tree 400 can include multiple nodes, where each node may
be consistently sized for memory allocation purposes (e.g.,
cach node may have a fixed size of 64 bytes). In addition, each
node of tree 400 can include one or more entries. For example,
as shown 1n FI1G. 4, node 402 can include four entries (e.g.,
entries 404-410).

Each entry of a node can correspond to a LBA range (e.g.,
a run-length encoding compressed (“rle-compressed”)
range), and can include either a pointer to another node (“a
node pointer”) or a physical address of the NVM (*“a NAND
pointer”). For instance, as shown in FIG. 4, entries 404-410
are shown to correspond to LBA ranges 340, 200, 260, and
224, respectively.

Moreover, as shown 1n FIG. 4, each of entries 404-410 can
have node pointers that point to additional nodes 1n the tree. In
particular, entry 404 1s shown as pointing to node 420, which
in turn has two entries (e.g., entries 430 and 432). Persons
skilled 1n the art will appreciate that entries 406-410 can also
point to other nodes 1n tree 400 (e.g., nodes 422-426). How-
ever, for the sake of simplicity, these nodes are not shown 1n
detail, but are rather shown as dashed boxes.

US 8,521,948 B2

7

Each of entries 404-410 may include counters 412-415,
which can indicate the number of times a particular LBA
range has been written. For example, as shown in FIG. 4, the
LBA ranges corresponding to each of entries 404-410 have
counters with values of 10, 13, 20, and 10, respectively.

Counters will be discussed 1n more detail below.
Entry 430 of node 420 has a NAND pointer 433 that points

to a physical address of the NVM (e.g., page address P2). In
contrast, entry 432 of node 420 has a node pointer 438 that
points to another node 1n tree 400 (e.g., node 440). For the
sake of simplicity, node 440 1s not shown 1n detail, but 1s
rather shown as a dashed box.

Because LBA ranges (e.g., rle-compressed ranges) are
stored 1n tree 400 instead of LBAs, a NVM interface (e.g.,
NVM interface 118 of FIG. 1 or NVM interface 218 of FIG.
2) may need to traverse tree 400 from a top node to the bottom
nodes 1n order to obtain a logical to physical mapping of a
particular file. For example, based on the LBAs of a file, the
NVM interface can increment an address tally as 1t expands
from the top node of tree 400 until the resulting address tally
matches the LBAs of the file. Persons skilled 1in the art waill
appreciate that tree 400 can have any suitable tree structure. In
some cases, tree 400 can have a tree structure that improves
the retrieval time for a particular entry such as, for example, a
b-tree or a b*-tree.

In comparison to a mapping system that stores LBAs (e.g.,
starting and ending LBAs), each entry of tree 400 can be
allocated a smaller amount of memory, which 1s beneficial for
a system with space constraints. In particular, each entry of
tree 400 can be allocated a number of bits that corresponds to
the si1ze of the range that 1s stored in the entry. As a LBA range
increases 1n size, the number of bits allocated to the corre-
sponding entry also increases. For example, 1f an entry of a
node corresponds to a small rle-compressed range, the entry
can be allocated a smaller size (e.g., 4 bytes). Alternatively, if
an entry of a node 1s storing a large rle-compressed range, the
entry can be allocated a larger size (e.g., 6 bytes). Because the
s1ze allocated to a particular entry 1s dynamic, each node of
tree 400 can fit a variable number of entries.

Moreover, by storing LBA ranges instead of LBAs, more
pointers (e.g., node and NAND pointers) can be included in
cach node of tree 400. For example, 1f each node of tree 400
1s allocated 64 bytes and each entry 1s then allocated between
4 to 6 bytes, each node of tree 400 may be capable of storing
10 to 16 pointers.

As shown 1n FIG. 4, one or more entries of tree 400 may
have fields containing information associated with the entry.
For example, entry 430 may include range 434 and page
address 435, which can respectively provide the LBA range
and page address of the entry. In particular, i1t entry 430
corresponds to file A (FIG. 3), range 434 and page address
435 can have values of 40 and P2, respectively.

In addition, counter 436 can indicate the number of times
that LBA range 434 has been written. For example, when the
NVM interface detects that a file system (e.g., file system 210
of FIG. 2) has 1ssued a write request for a particular LBA
range (e.g., a file that has been assigned to the LBA range), the
NVM mterface can increment a counter that corresponds to
that LBA range (e.g., increment the counter by one). In the
example shown 1n FIG. 4, for instance, counter 436 indicates
that range 434 has been written four times so far. Persons
skilled 1n the art will appreciate that each of entries 404-410,
430 and 432 can include additional fields not shown in FI1G. 4.

Generally, counters corresponding to entries of tree 400
can provide an indication of how dynamic or static a piece of
data 1s. For example, when data 1s first written to a new {ile, 1t
may be unclear whether data associated with the file 1s

10

15

20

25

30

35

40

45

50

55

60

65

8

dynamic or static. However, as the file 1s continually updated,
inferences can be made as to whether data associated with the
file 1s dynamic data based on the number of times that the file
1s written. As used herein, “dynamic data” can be valid data
stored 1n a NVM that 1s frequently updated or changed. In
contrast, “static data” can be valid data stored in a NVM that
1s rarely updated or changed.

Counters of tree 400 can be changed in various ways
depending on the occurrence of one or more events. For
example, a counter corresponding to an entry 1n a tree may
eventually saturate at a maximum value (e.g., Ox11 for an 8-bit
counter). Thus, 1n some cases, the NVM 1nterface can moni-
tor the counters of tree 400, and detect when a counter 1n tree
400 has reached a maximum value. Upon detecting that a
counter has reached a maximum value, the NVM 1nterface
can halve the values of all counters of the tree. This 1s possible
because the measurement of dynamic/static characteristics of
data 1n a system 1s relative.

As another example, 11 a contiguous LBA range splits into
two or more ranges, the NVM 1nterface can copy the counter
previously associated with the LBA range to an entry associ-
ated with each of the two or more split ranges. The NVM
interface can then increment counters associated with the
split ranges that are being written to. In the example shown 1n
FIG. 4, for instance, 11 LBA range 434 splits into two ranges
(c.g. a lower range and an upper range), the NVM 1nterface
can copy the value of counter 436 into each of the resulting
entries. If a write request 1s then 1ssued for the upper range,
the NVM interface can update the counter of the upper range,
but retain the same value for the counter of the lower range.

As yet another example, 1f the NVM interface determines
that a LBA range has been deleted, the NVM interface can
reset a counter corresponding to the LBA range to a default
value (e.g., a default value of 0). This 1s because the dynamic
characteristics of data written for a particular LBA range can
often depend on the type of file that 1s assigned to the LBA
range. Thus, a new file that 1s assigned to a LBA range may
have different dynamic characteristics than a previous file that
was assigned to the LBA range, so the corresponding counter
in tree 400 should also be reset.

In some embodiments, one or more entries of tree 400 can
also include user weave sequence 437, which can correspond
to an age when data was last written to a particular LBA range
by an application and/or operating system (e.g., data was last
written by a host). In some cases, user weave sequence 437
may be a counter (e.g., a 48-bit counter) that increments as
data updates are made to the LBA range. For example, as
shown in F1G. 4, for instance, user weave sequence 437 1n tree
400 indicates that the age when data was last written to range
434 1s 10.

Instead of or 1n addition to storing user weave sequence 1n
tree 400, persons skilled in the art will appreciate that the user
weave sequence ol data can be stored 1n any other suitable
location 1n a system. For example, the user weave sequence
may be stored as metadata in a page of a NVM (e.g., NVM
120 of FIG. 1 or NVM 220 of FIG. 2).

Turning now to FIG. 5, metadata 500 can represent differ-
ent types ol metadata that can be associated with user data
stored ina NVM (e.g., NVM 120 of FIG. 1 or NVM 220 of
FIG. 2). As shown 1n FIG. 5, metadata 500 can include user
weave sequence 302, which can correspond to an age when
data was last written to an associated LBA range (e.g., LBA
range 506) by an application and/or operating system. As a
result, user weave sequence 502 can be similar to user weave
sequence 437 (FIG. 4). Consequently, when comparisons
need to be made at a later time, a NVM 1nterface may be able

US 8,521,948 B2

9

to obtain the user weave sequence from either a tree (e.g., tree
400 of FIG. 4) or metadata 500.

In some embodiments, metadata 500 can include weave
sequence 504, which can correspond to an age when data was
last written to LBA range 506 by any source (e.g., by a GC
process or by an application or operating system). Persons
skilled 1n the art will appreciate that any suitable types of
metadata can be stored in the NVM. For example, as shown in
FIG. 5, metadata 500 can also include page address 505,
which can correspond to one or more page addresses associ-
ated with the user data. As another example, one or more

counters (e.g., stmilar to counters 412-415 or counter 436 of
FIG. 5) and/or ECC data (not shown 1n FIG. 5) can also be
included in metadata 500. Persons skilled 1n the art will also
appreciate that weave sequence can instead or 1n addition be
stored 1n a tree (e.g., tree 400 of FIG. 4).

Any suitable approach can be used to determine whether
data associated with a LBA range (e.g., a {ile) 1s dynamic. In
some embodiments, the NVM interface can determine
whether a dynamic value associated with the LBA range 1s
greater than or equal to a pre-determined threshold. The
dynamic value can correspond to a counter of the LBA range
(e.g., one of counters 412-4135 or counter 436 of FIG. 4), a
user weave sequence, a weave sequence, any other suitable
value, and/or any combination thereof.

Correspondingly, the pre-determined threshold can corre-
spond to an average dynamic value of data stored in a NVM.
In some cases, the pre-determined threshold can be deter-
mined using heuristics obtained by scrubbing tree 400. The
average dynamic value can therefore vary over time depend-
ing on the total number of writes 1ssues by a file system and
the dynamic characteristics of all of the data stored on the
NVM. As such, the determination of whether a particular
piece ol data 1s dynamic may be relative to the average
dynamic value of all of the data stored on the NVM.

As an example, the NVM interface can obtain the pre-
determined threshold by first scrubbing each node of tree 400
to determine a distribution of the dynamic characteristics of
the data stored on the NVM. Then, using the distribution of
the dynamic characteristics, the NVM interface can calculate
an average dynamic value of data stored on the NVM.

In other embodiments, the NVM interface can determine
whether data associated with a LBA range 1s dynamic by
performing a relative comparison between a counter and an
age of data, such as a user weave sequence of data (e.g., user
weave sequence 437 ol FIG. 4 or user weave sequence 502 of
FIG. 5). In some embodiments, the NVM interface can deter-
mine 1 the user weave sequence 1s young or old by comparing,
the user weave sequence to a current age of the system.

After determining whether the user weave sequence 1s
young or old, the NVM interface can compare the user weave
sequence with the counter. For instance, 1f the user weave
sequence 1s relatively young and the counter has a large value
(c.g., the LBA range has frequently been written to), the
NVM interface can determine that the data 1s relatively
dynamic. Alternatively, 1t the user weave sequence 1s rela-
tively old and the counter has a small value (e.g., the LBA
range has rarely been written to), the NVM interface can
determine that the data 1s relatively static. Furthermore, i1 the
user weave sequence 1s relatively old and the counter has a
large value, the NVM 1nterface can determine that the data
was dynamic but 1s now static. Persons skilled 1n the art wall
appreciate that mstead of comparing the counter to a user
weave sequence, the NVM interface can compare the counter
to weave sequence (e.g., weave sequence 304 of FIG. 5) or an
age when a LBA range was {irst written.

10

15

20

25

30

35

40

45

50

55

60

65

10

In further embodiments, the NVM interface can determine
whether data associated with a LBA range 1s dynamic by
comparing an age when a LBA range was last written to an
age when the LBA range was first written. The age when a
LBA range was last written can correspond to a weave
sequence (e.g., weave sequence 504 of FIG. 5) or a user
weave sequence (e.g., user weave sequence 437 of FIG. 4 or
user weave sequence 502 of FIG. J).

Based on the above comparison, the NVM interface can
obtain a difference 1n age, and determine i1 the difference 1n
age 15 less than a pre-determined threshold. If the difference in
age 15 below the pre-determined threshold, the NVM 1nter-
face can determine that the data associated with the LBA
range 1s dynamic.

In further embodiments, the NVM 1nterface can determine
if data 1s dynamic by comparing an age of data (e.g., the user
weave sequence or weave sequence) with a time of a last
boot-up event. The time of the last boot-up event can establish
a relative baseline for comparison with the age of the data.

In yet further embodiments, the NVM interface can deter-
mine 11 data 1s dynamic based on information recerved from
an operating system. For example, in addition to providing
one or more LBAs, a LBA count, and a buffer associated with
data to be stored in the NVM, the operating system may also
provide information regarding whether the data 1s static.

Referring now to FIGS. 6-8, flowcharts of illustrative pro-
cesses are shown 1n accordance with various embodiments of
the mvention. These processes may be executed by one or
more components of a system (e.g., electronic device 100 of
FIG. 1). For example, at least some of the steps in the pro-
cesses of FIGS. 6-8 may be performed by a NVM interface
(e.g., NVM interface 118 of FIG. 1 or NVM 1nterface 218 of
FIG. 2).

Turming first to FIG. 6, process 600 1s shown for program-
ming data to a NVM (e.g., NVM 120 of FIG. 1 or NVM 220

ol F1G. 2). Process 600 may begin at step 602. At step 604, the
NVM interface can receive a write request corresponding to a
LBA range. For example, the NVM interface may recerve a
write request to LBA range 434 (FIG. 4).

At step 606, the NVM mterface can obtain at least one
parameter from a tree, where the tree may store logical to
physical address mappings. For example, the NVM interface
can first identify an entry 1in atree (e.g., tree 400 of FI1G. 4) that
corresponds to the LBA range. After identifying the entry, the
NVM interface can obtain the at least one parameter from the
identified entry. The at least one parameter may include a
counter (€.g., one of counters 412-415 or counter 436 of FIG.
4) 1indicating the number of times that the LBA range has been
written and/or a user weave sequence (e€.g., user weave
sequence 437 of FIG. 4) corresponding to an age when data
was last written to the LBA range by an application and/or
operating system.

Continuing to step 608, the NVM interface can determine
whether data associated with the LBA range 1s dynamic based
at least 1n part on the at least one parameter. For example, the
NVM interface can determine whether a counter associated
with the LBA range 1s greater than or equal to a pre-deter-
mined threshold (e.g., an average dynamic value of data
stored 1n a NVM determined using heuristics obtained from
the tree).

As another example, the NVM interface can perform a
relative comparison between a counter and an age of data. The
age ol the data can be any suitable age such as, for example,
a user weave sequence of data, a weave sequence of data (e.g.,
weave sequence 304 of FIG. 5), or an age when the LBA range
was first written. As yet another example, the NVM nterface
can compare an age when a LBA range was last written (e.g.,

US 8,521,948 B2

11

a user weave sequence or a weave sequence) to an age when
the LBA range was first written.

I, at step 608, the NVM interface determines that the data
associated with the LBA range 1s dynamic, process 600 may
move to step 610. At step 610, the NVM intertace can direct
a bus controller (e.g., NVM bus controller 216 of FIG. 2) to

program the data associated with the write request to a
dynamic stream block of the NVM. Process 600 may then end
at step 612.

As used herein, a “dynamic stream block™ may be any
suitable block of the NVM that has been assigned by the
NVM interface as part of a dynamic stream. Incoming data
that 1s classified as dynamic may be selectively placed on one
or more dynamic blocks. For example, 1n one embodiment, a
dynamic stream block may have previously been a low-
cycled block of the NVM that was later assigned to be a
dynamic stream block.

I, at step 608, the NVM interface instead determines that
the data associated with the LBA range 1s not dynamic, pro-
cess 600 may move to step 614. At step 614, the NVM
interface can direct the bus controller to program the data
associated with the write request to a static stream block of the
NVM. Process 600 may then end at step 612.

As used herein, a “static stream block” may be any suitable
block of the NVM that has been assigned by the NVM inter-
face as part of a static stream. Incoming data that 1s classified
as static may be selectively placed on one or more static
blocks. In one embodiment, a static stream block may have
previously been a high-cycled block of the NVM that was
later assigned to be a static stream block.

In some embodiments, the NVM interface can use separate
write pointers to write to the dynamic stream block or the
static stream block. For example, the NVM interface can use
a dynamic write pointer to write to a dynamic stream block,
and a static write pointer to write to a static stream block.

Thus, by determining whether a particular piece of data 1s
dynamic or static, the NVM interface can better determine the
initial placement of the data on the NVM. This can improve
the efficiency of garbage collection (“GC”’), which can con-
sequently reduce the wearing of the NVM. For example, by
splitting dynamic and static data into separate blocks on the
NVM, the NVM interface can select to perform GC on a
dynamic stream block of the NVM 1nstead of a static stream
block. Because a dynamic stream block may eventually have
little or no valid pages due to the frequency with which
dynamic data 1s updated, the amount of valid data that has to
be moved during GC 1s minimal. Consequently, GC write
amplification can be reduced.

For example, referring now to FIG. 7, a flowchart of illus-
trative process for performing GCona NVM (e.g., NVM 120

of FIG.1 or NVM 220 of FIG. 2) 1s shown. Process 700 may
start at step 702. At step 704, a NVM mterface may determine
that GC needs to be performed on a block of the NVM. At step
706, the NVM 1nterface may select a page of the block that
has valid data.

Continuing to step 708, the NVM interface can determine
whether data stored on the page 1s dynamic data. As men-
tioned above, the NVM interface can determine whether data
1s dynamic using any suitable approach. For example, the
NVM mnterface can find an entry (e.g., entry 430 of FIG. 4) of
a tree (e.g., tree 400 ol F1G. 4) corresponding to a LBA range
of the data. The NVM interface can then determine 1f a
counter (e.g., one of counters 412-415 or counter 436 of FI1G.
4) of the entry 1s greater than or equal to a pre-determined
threshold (e.g., an average dynamic value). As another

10

15

20

25

30

35

40

45

50

55

60

65

12

example, the NVM 1nterface can determine whether data 1s
dynamic based on information recerved from an operating
system.

I, at step 708, the NVM nterface determines that the data
stored 1n the page 1s dynamic data, process 700 may move to
step 710. For example, the NVM interface may determine that
a counter of a corresponding entry of a tree 1s greater than or
equal to a pre-determined threshold.

At step 710, the NVM interface can direct a bus controller

(e.2., NVM bus controller 216 of FIG. 2) to copy the data to

a dynamic stream block of the NVM. Then, continuing to step
712, the NVM interface can determine 11 there are additional
pages of the block that have valid data.

I1, at step 712, the NVM 1nterface determines that there are
additional pages that have valid data, process 700 may return
to step 708, where the NVM 1nterface can determine whether
the data stored on another page of the block 1s dynamic data.
The NVM 1nterface can subsequently repeat this process for
cach page of the block that has valid data.

Referring back to step 712, 1f the NVM mterface instead
determines that there are no additional pages of the block that
have valid data, process 700 may move to step 714.

At step 714, the NVM 1nterface can direct the bus control-
ler to erase the block, and process 700 may end at step 716.
Erasing the block consequently allows the block to be repro-
grammed with new data.

Referring back to step 708, 1f the NVM iterface instead
determines that the data stored on the page 1s not dynamic
data, process 700 may move to step 718. For example, the
NVM interface may determine that a counter of a correspond-
ing entry of a tree 1s less than a pre-determined threshold. As
a result, the NVM interface may determine that the data 1s
static.

At step 718, the NVM 1nterface can direct the bus control-
ler to copy the data to a static stream block of the NVM.
Process 700 may then move to step 712, where the NVM
interface can determine if there are additional pages of the
block that have valid data.

Accordingly, using such an approach, the NVM interface
may be able to change an initial determination of whether data
1s dynamic or static. Thus, 1f a particular piece of data has
changed from dynamic data to static data or from static data to
dynamic data, the NVM interface can change the placement
of that data while performing GC on a block.

Turming now to FIG. 8, a flowchart of an illustrative process
800 for determining whether to perform wear leveling on a
NVM (e.g., NVM 120 of FIG. 1 or NVM 220 of FIG. 2) 1s
shown. Process 800 may start at step 802.

At step 804, a NVM interface can scrub each node of
multiple nodes of a tree (e.g., tree 400 of FI1G. 4) to determine
a distribution of the dynamic characteristics of data stored on
a NVM. The NVM interface can then determine whether
wear leveling 1s needed on the NVM based at least 1n part on
the distribution of the dynamic characteristics. In some cases,
the NVM 1interface can calculate an average dynamic value of
data stored on the NVM using the distribution of the dynamic
characteristics.

For example, at step 806, the NVM interface can select a
block from the NVM that 1s a high-cycled block of the NVM.
In some cases, the block may have a particular number of
cycles (e.g., erase cycles and/or write cycles), where the num-
ber of cycles exceed the cycling of the other blocks of the
NVM by a pre-determined gap.

Continuing to step 808, the NVM interface can determine
whether the block 1s a dynamic block. For example, based on
one or more parameters obtained from atree (e.g., tree 400 of

US 8,521,948 B2

13

FIG. 4) or obtained from metadata (e.g., metadata 500 of FIG.
5), the NVM interface can calculate a block dynamic value of
data stored on the block.

The NVM 1nterface can then compare the block dynamic
value with the dynamic characteristics of the data stored on
the NVM. In some embodiments, the NVM interface can
determine whether data stored on the block has a block
dynamic value that i1s greater than or equal to the average
dynamic value. In other embodiments, the NVM interface can
determine whether data stored on the block has a block
dynamic value that 1s a constant multiple of the average
dynamic value. In further embodiments, the NVM interface
can determine whether data stored on the block has a block
dynamic value that 1s outside of a pre-determined number of
standard deviations from the average dynamic value.

If, at step 808, the NVM interface determines that the block
1s not a dynamic block, process 800 may end at step 810.
Consequently, the NVM interface can keep data on the block.
This way, the NVM mterface can avoid performing wear
leveling on the block because 1t 1s determined to be unneces-
sary.

I, at step 808, the NVM 1interface instead determines that
the block 1s a dynamic block, process 800 may move to step
812. At step 812, the NVM 1nterface can assign the block as
a static stream block. As a result, future static data that 1s
received Irom a file system (e.g., file system 210 of FIG. 2)
may be placed on the block.

Then, continuing to step 814, the NVM interface can deter-
mine 1f data stored on a page of the block 1s dynamic data. If,
at step 814, the NVM 1nterface determines that the data stored
on the page 1s dynamic data, process 800 may move to step
816.

At step 816, the NVM interface can direct a bus controller
(e.g., NVM bus controller 216 of FIG. 2) to copy the data
stored on the page to a dynamic stream block. Process 800
may then move to step 818.

At step 818, the NVM interface can determine whether
there are additional pages on the block that have valid data. If,
at step 818, the NVM interface determines that there are
additional pages that have valid data, process 800 can return
to step 814. At step 814, the NVM interface can determine
whether the data stored on another page of the block 1s
dynamic data. The NVM interface can subsequently repeat
this process for each page of the block that has valid data.

I, at step 818, the NVM interface determines that are no
additional pages that have valid data, process 800 may end at
step 810. Consequently, GC can be performed on the block.
For example, once all of the valid data stored on the block has
been copied to other memory locations of the NVM, the block
can be erased. After erasing the block, the NVM interface can
begin to place static data (e.g., from GC and/or host writes) on
the block.

Referring back to step 814, 11 the NVM interface instead
determines that the data stored on the page 1s not dynamic
data, process 800 can move to step 820. At step 820, the NVM
interface can direct a bus controller to copy the data stored on
the page to a static stream block. Process 800 may then move
to step 818, where the NVM 1nterface can determine whether
there are additional pages on the block that have valid data.

By determining whether data 1s dynamic or static and inte-
grating this information to wear leveling, a system can make
better decisions regarding whether wear leveling 1s needed.
By avoiding unnecessary wear leveling, the system can
reduce the number of cycles performed on a NVM and the
total bandwidth of the system. Moreover, information about

10

15

20

25

30

35

40

45

50

55

60

65

14

whether data 1s dynamaic also allows the system to make better
decisions regarding where to move data while performing
wear leveling on a block.

Furthermore, this approach allows the system to make
wear leveling decisions at a finer granularity (e.g., pages of a
block) than would otherwise be possible in a conventional
wear leveling system where wear leveling 1s generally per-
formed on an entire block. This finely tuned decision-making
process also tends to reduce the amount of wear on the NVM,

and tends to extend the useful life of the NVM.

It should be understood that processes 600, 700, and 800 of
FIGS. 6-8, respectively, are merely illustrative. Any of the
steps may be removed, modified, or combined, and any addi-
tional steps may be added, without departing from the scope
of the ivention.

The described embodiments of the invention are presented
for the purpose of illustration and not of limitation.

What 1s claimed 1s:

1. A method for determiming dynamic data in an electronic
device, the method comprising:

receving a write request corresponding to a logical block

address (“LBA”) range;
obtaining at least one parameter from a tree, wherein the
tree stores logical to physical address mappings;

determiming whether data associated with the LBA range 1s
dynamic based at least 1n part on the at least one param-
eter; and

in response to determining that the data associated with the

LBA range 1s dynamic, programming the data associ-
ated with the write request to a dynamic stream block of
a non-volatile memory (“NVM”).

2. The method of claim 1, wherein the dynamic stream
block 1s a block of the NVM that has been assigned by a
memory interface as part of a dynamic stream.

3. The method of claim 1, wherein in response to determin-
ing that the data associated with the LBA range 1s not
dynamic, programming the data associated with the write
request to a static stream block of the NVM.

4. The method of claim 3, wherein the static stream block
1s a block of the NVM that has been assigned by a memory
interface as part of a static stream.

5. The method of claim 1, wherein the at least one param-
eter comprises a counter indicating the number of times that
the LBA range has been written.

6. The method of claim 2, further comprising incrementing
the counter.

7. The method of claim 2, wherein the determining whether
data associated with the LBA range 1s dynamic comprises
determining whether the counter 1s greater than or equal to a
pre-determined threshold.

8. The method of claim 2, wherein the at least one param-
cter Turther comprises a user weave sequence corresponding
to an age when data was last written to the LBA range by at
least one of an application or an operating system.

9. The method of claim 8, wherein the determining whether
data associated with the LBA range 1s dynamic comprises
performing a relative comparison between the counter and the
user weave sequence.

10. The method of claim 8, wherein the determiming
whether data associated with the LBA range 1s dynamic com-
Prises:

comparing the user weave sequence with an age when the

LBA range was first written to obtain a difference 1n age;
and

determining 1f the difference 1n age is less than a pre-

determined threshold; and

US 8,521,948 B2

15

in response to determining that the difference 1n age 1s
below the pre-determined threshold, determining that
the data associated with the LBA range 1s dynamic.

11. The method of claim 8, wherein the determining
whether data associated with the LBA range 1s dynamic com-
prises comparing the user weave sequence with atime of a last
boot-up event.

12. A system comprising:

non-volatile memory (“NVM”) comprising a plurality of

blocks operative to store data;

volatile memory for storing a tree comprising a plurality of

nodes; and

memory interface comprising:

a bus controller for communicating with the NVM; and
control circuitry operative to:
scrub each node of the plurality of nodes of the tree to
determine a distribution of dynamic characteristics
of the data stored on the NVM: and
determine whether wear leveling 1s needed on the
NVM based at least 1in part on the distribution of the
dynamic characteristics.

13. The system of claim 12, wherein the control circuitry 1s
turther operative to calculate an average dynamic value of
data using the distribution of the dynamic characteristics.

14. The system of claim 13, wherein the control circuitry 1s
turther operative to:

select a block from the plurality of blocks that 1s a high-

cycled block of the NVM;

determine whether a block 1s a dynamic block; and

in response to determining that the block 1s a dynamic

block, assign the block as a static stream block.
15. The system of claim 14, wherein the control circuitry 1s
operative to determine whether data stored on the block has a
block dynamic value that 1s greater than or equal to the aver-
age dynamic value.
16. The system of claim 14, wherein the control circuitry 1s
operative to determine whether data stored on the block has a
block dynamic value that 1s a constant multiple of the average
dynamic value.
17. The system of claim 14, wherein the control circuitry 1s
operative to determine whether data stored on the block has a
block dynamic value that 1s outside of a pre-determined num-
ber of standard deviations from the average dynamic value.
18. The system of claim 14, wherein the control circuitry 1s
turther operative to:
for each page of the block that has valid data, determine
whether data stored on the page 1s dynamic data; and

in response to determining that the data stored on the page
1s dynamic data, direct the bus controller to copy the data
to a dynamic stream block.

19. The system of claim 18, wherein 1n response to deter-
mimng that the data stored on the page 1s not dynamic data,

5

10

15

20

25

30

35

40

45

50

16

the control circuitry 1s further operative to direct the bus
controller to copy the data to a static stream block.
20. A method for performing garbage collection 1n a non-
volatile memory (“NVM”), the method comprising:
determiming that garbage collection needs to be performed
on a block of the NVM:;

for each page of the block that has valid data, determining
whether data stored on the page 1s dynamic based at least
in part on a parameter obtained from a tree; and

in response to determining that the data 1s dynamic, copy-
ing the data to a dynamic stream block of the NVM.

21. The method of claim 20, further comprising erasing the
block.

22. The method of claim 20, further comprising:

maintaining the tree comprising a plurality of entries,

wherein the tree provides a mapping between logical
block address (“LBA”) ranges and corresponding physi-
cal addresses 1n the NVM; and

monitoring a plurality of counters in the tree, wherein each

counter of the plurality of counters corresponds to an
entry of the plurality of entries, and wherein the counter
indicates the number of times the LBA range has been
written.

23. The method of claim 22, wherein the determining
whether the data stored 1n the page 1s dynamic comprises:

finding an entry of the plurality of entries corresponding to

a LBA range of the data;

determiming 11 a counter of the entry 1s greater than or equal

to a pre-determined threshold; and

in response to determining that the counter of the entry 1s

greater or equal to the pre-determined threshold, deter-
mining that the data 1s dynamic.

24. The method of claim 23, wherein 1n response to deter-
mining that the counter of the entry is less than the pre-
determined threshold, determining that the data 1s static.

25. The method of claim 24, further comprising copying
the data to a static stream block of the NVM.

26. The method of claim 22, further comprising:

detecting that a counter of the plurality of counters has

reached a maximum value: and

having values of the plurality of counters of the tree.

277. The method of claim 22, further comprising:

determiming that a LBA range has been deleted; and

resetting a counter of the plurality of counters correspond-
ing to the LBA range to a default value.

28. The method of claim 22, further comprising:

detecting that a file system has 1ssued a write request for a

LBA range; and

incrementing a counter of the plurality of counters corre-

sponding to the LBA range.

G o e = x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,521,948 B2 Page 1 of 1
APPLICATION NO. : 12/983715

DATED . August 27, 2013

INVENTORC(S) : Daniel J. Post et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims
In Column 14, Line 46, 1n Claim 6, delete “claim 2,” and 1nsert -- claim 5, --, therefor.

In Column 14, Line 48, in Claim 7, delete “claim 2,” and insert -- claim 5, --, therefor.

In Column 16, Line 42, in Claim 26, delete “having™ and insert -- halving --, therefor.

Signed and Sealed this
Twelfth Day of January, 2016

Tecbatle 7 Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

